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A b s t r a c t :  Through algebraic geometry we became familiar with the correspondence between geomet- 
rical spaces and commutative algebra. The aim of this talk is to show an analogous correspondence, in 
the domain of real analysis, between geometrical spaces and algebras of functional analysis, going beyond 
the commutative case. This theory is based on three essential points: 

1. The existence of many examples of spaces which arise naturally, such as Penrose's space of uni- 
verses, the space of leaves of a foliation, the space of irreducible representations of a discrete group, 
for which the classical tools of analysis lose their pertinence, but which correspond in a very natural  
fashion to a noncommutat ive algebra. 

2. The possibility of reformulating the classical tools of analysis such as measure, topology and 
calculus in algebraic and Hilbertian terms, so tha t  their framework becomes noncommutative,  the 
commutative case being neither isolated nor closed in the general theory. 

3. The relationship with physics, the spaces used by physicists being noncommutat ive in many cases. 
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Noncommutative Geometry 

I would like to give a general survey of noncommutat ive geometry. I will explain the 
motivation and the general program. For this, I will rely mainly on two things. First, 
the oldest example in noncommutat ive  geometry, which goes back to the discovery of 
quantum mechanics by Heisenberg; I will then continue with pure mathemat ics ,  and will 
end by coming back to physics (in fact, by coming back to what may be extracted from 
the actual phenomenology of elementary particles about  the fine structure of space-time). 

So let me begin by explaining what the general motivation for noncommutat ive  geom- 
etry is. There is a well-known duality which occurs, for instance, in algebra and geometry 
between a space and a commutat ive algebra. Given a space, we want to study it by look- 
ing at the algebra of coordinates on the space, which has to satisfy a certain regularity. Of 
course, if we are doing algebraic geometry, we restrict ourselves to polynomial or algebraic 
functions; but when dealing with topology or differential geometry the regularity is less 
restrictive, and, for instance, we use continuous functions or smooth functions. 

The basic theme of noncommutat ive geometry is that  there are several quite important  
cases in which one is forced to replace a commutat ive  algebra of coordinates with a 
noncommutat ive  algebra. 

The first instance of this goes back to Heisenberg, and the second example is the need to 
consider spaces or manifolds which are not simply connected and whose fundamental  group 
fails to be Abelian (arbitrary finitely presented discrete groups may occur in this way). For 
these spaces, the ordinary use of the Pontrjagin dual of the group is, of course, inefficient. 
The third example comes from foliations: If the space of solutions of a differential equation 
is treated as a classical space, then most of the standard tools completely lose their 
pertinence; in fact, this space is precisely an example of a quantum space, in the sense 
that  it is described by an algebra of coordinates that  fails to be Abelian. Finally, the 
fourth example,  which is now quite fashionable, is quantum groups. Let me explain in one 
word what quantum groups are in this framework: Quan tum groups are the analog of Lie 
groups in noncommutat ive geometry. 

A brief sketch of the general program is as follows. We wish to be able to transplant  
into the noncommutat ive setting the tools that  we are accustomed to in the classical 
commutat ive framework. 

When looking at a space in the classical way, there are a number  of points of view 
which are like "finer and finer," and enable us to comprehend the space. The coarsest 
of these points of view is measure theory. If we know the space only up to measure 
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theory, then essentially we know nothing, because most spaces are isomorphic in measure 
theory: They are isomorphic to the unit interval with the Lebesgue measure. Then 
we have topology and differential geometry (by "differential geometry" I mean only the 
differential geometry of differential forms, currents, characteristic classes, i.e., excluding 
the differential geometry which comes from a Riemannian metric). The fourth and most 
important  point of view is thus Riemannian geometry. I will sketch at the end what the 
relevance of the noncommutative analog of Riemannian geometry is for the physics of 
elementary particles. 

First Example: Quantum Mechanics 

I will start now by explaining the origin of the subject, which is the discovery by Heisenberg 
of quantum mechanics. I would like to show how much this discovery relied on experiments 
and got rid of the usual framework of classical mechanics, forced by the experimental 
results. Let us go back to Heisenberg, at the time when he discovered quantum mechanics 
(which was not called "quantum mechanics," but matrix mechanics for a reason which 
will become clear when we look at the way it was found). 

At that time, by a great deal of work, people had already realized that the atom was 
formed by an inner nucleus, around which there were revolving electrons that governed 
the chemical properties of the atorn. Moreover, a fairly good way of observing atoms 
was by interaction with electromagnetic radiation. For instance, if one takes a prism 
and allows sunlight to pass through it, then this light will be decomposed into various 
rays, and, of course, these rays will form the colors of the rainbow. However, if one 
takes pure bodies like helium or hydrogen and looks at their emission spectrum, then this 
emission spectrum will not contain all the rays in the sunlight. It will only contain certain 
rays, which essentially form a sort of "signature" of the elements in question. Thus, it 
is extremely important  to be able to understand the regularity of these rays. Now, if we 
try to apply classical mechanics in order to understand this, then we take for the atom 
a very simple model. Using mathematical  language, this model will be described by the 
so-called phase space, which is known to be a symplectic manifold, and the functions 
on this space will be the observable quantities of the system. I have been thinking of 
the system as being the atom with the electrons and the nucleus, and all the observable 
quantities evolving with time according to the Hamiltonian evolution, which is given by 
the following equation: 

¢ = { H , I } ,  (1) 

where )~ is the time derivative of f ,  and {H, f}  is the Poisson bracket between f and a 
certain observable which is called the energy, which is the Hamiltonian of the system. 

Now, for simple systems like the hydrogen atom, this equation will be totally in- 
tegrable, which means that there are invariant tori describing the motion of the system, 
and in these tori the motion is almost periodic. This tells us that each observable quantity 
can be computed and expanded as a function of time 

q(t) = ~ qnl ...... kexp(27ri(n, u)t), (2) 
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where the coefficients qnl ...... k are complex numbers, and (n, u) = ~] njuj is a combination 
of the basic frequencies with the same integers nj that appear in qnl ...... k" 

If we take this mechanical system that describes the atom and try to describe in 
classical terms its interaction with radiation, then the answer is given by the Maxwell 
theory. Maxwell theory tells us that,  when the atom is in interaction with radiation, it 
emits plane waves and these plane waves can be completely described as follows. Take 
the observable quantity, which is called the dipole moment. (What we have are electrons 
which are revolving around the nucleus; these electrons have a certain charge, and so they 
form a dipole moment around the nucleus.) This defines a certain observable quantity 
(~(t) which has three components and can be expanded in an almost periodic series 

(~(t) = ~ (,~exp(2~ri(n, u}t). (3) 

Maxwell theory tells us that any of the components 0"~ provides a plane wave W,~ which has 
frequency (n, u). Thus, in particular, the observable frequencies should form a subgroup 
of the real line, generated by the basic frequencies %. 

It turned out, however, that observation was already giving at that t ime a result 
which was contradictory to this fact. If one observes, for instance, the spectral rays of 
the hydrogen atom, then one finds that the wavelengths of these rays are certain precise 
numbers which are, as I said before, a sort of signature of hydrogen. The regularity of 
these rays was already found by Balmer long ago. He observed that the wavelengths of 
these rays were all simple rational multiples of a certain length L. They are of the form 

H~ 9 L ,  H ~ =  16L ,  H~ 25L 3 6 L ,  
= 5 12 = 2i- ' H 6 =  32 " "  (4) 

so what we are dealing with is really 

n 2 

A -  (5) 

The first thing that people realized then was that it was much more natural not to 
talk about wavelengths (it is the wavelengths one observes when looking at the spectral 
rays), but to talk about frequencies, which are calculated as the speed of light divided by 
wavelengths. When we look at frequencies, we get a simpler formula 

1 R R 
A - m z n2 , (6) 

where R is a constant called the Rydberg constant, and m and n are integers. Now, from 
the experimental results we find that the observed frequencies do not form a group; that 
is, they do not form a subgroup of the real line. What happens, however, is that  if we 
look at them (see figure 1) we see that they combine together. For instance, we can take 
the first ray in the Lyman series (1-2) and combine it with the first Balmer ray (2-3), 
obtaining the second Lyman ray (1-3). If we combine it instead with the second Balmer 
ray, then we get the third Lyman ray, and so on. So what happens is that they do not form 
a group, but they combine according to the so-called Ritz-Rydber 9 combination principle, 
which is the following: One can label the frequencies by two indices, say uij (these two 
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indices have nothing to do with integers; they may be whatever we want: Greek letters, 
colors, . . .  ), and they combine according to the rule 

ui j  + u jk  = vik • ( 7 )  

This is what was found experimentally. Heisenberg used the following extremely prag- 
matic kind of reasoning: If one does a little bit of mathematics, then one finds that,  
in the classical case, there is an alternative way of describing the algebra of observable 
quantities. One takes almost periodic functions, which have the given frequencies, and 
multiplies them together by forming the convolution product 

(qq'),v ' =  ~_, qnqn'. (8) 
no~n~-n I 

What is obtained is nothing other than the algebra of convolution of the group F, which 
is supposed to be the group of observable frequencies. However, as experiment shows, 
these do not form a group, so r is to be replaced by the set 

A = { v i~  = ui - u j  } C R (9) 

of real numbers combining according to the Ritz-Rydberg combination principle. Heisen- 
berg decided to follow the experimental results and to replace the commutative convo- 
lution algebra of the group F b y  the convolution algebra of the set A, and therefore to 
work out the convolution algebra of this set with its partially defined composition. It was 
found that the product of two observable quantities a and b was given by 

( a  . b ) ik  = ~ , a i j b s a  • (10) 
J 

It is remarkable that Heisenberg invented this rule from experimental results, although 
he did not know about matrices. Later, he talked to Bohr and Jordan and found out that 
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these things existed in mathemat ics  and were called "matrices." This is why the theory 
was called matr ix  mechanics .  

Then the law of evolution is quite simple; namely, it is given by 

qij( t)  = qi~ exp(27riui j t ) ,  (11) 

and something occurs which is even simpler than in the commutat ive  case. Remember  
that  the evolution was described by the Poisson bracket (the Poisson bracket was an 
additional structure which was coming from the symplectic structure of the phase space). 
Now, in the noncommutat ive  case of matrices, this is not needed. It is replaced by the 
commutator  

 q(t) = i 
~[H,  q], (12) 

where H is a matrix which is zero outside the diagonal and whose diagonal entries are 
ui's such that  vi - vj = vii. (This value vi is not unique; it is unique only up to a common 
addition of a constant.)  

As a consequence of this, from the experimental results we cannot stick to a classical 
phase space; that  is, we cannot stick to classical mechanics. Instead, we are obliged to 
replace the commutat ive  algebra of functions of observable quantities of ordinary phase 
space with a noncommutat ive  algebra. 

It  turns out that ,  in the case of Heisenberg, if we look at a system having finitely many  
levels (or even countably many) then the algebra that  we get is not very complicated 
to analyse. But,  for instance, as soon as we handle situations like quantum statistical 
mechanics - -whe re  one takes an assembly of a t o m s - -  then the noncommutat ive  algebra 
that  we are dealing with is much more difficult to analyse. But this would only pertain 
to the "measure theory" part  of the discussion. 

T h e  N o v i k o v  C o n j e c t u r e  

After this motivating example of Heisenberg, I would like to enter the domain of pure 
mathemat ics ,  and deal with an example in which noncommutat ive  geometry may be seen 
at work. The example is the following. We meet noncommutat ive  objects as soon as 
we try to handle  manifolds which are not simply connected. In fact, when we take a 
manifold M,  to this manifold corresponds a group F = ~rl(M), its fundamental  group, 
which measures the non-simply-connectedness of the manifold. Many of the results which 
are true for simply connected manifolds require more work when one tries to adapt  them 
to the non-simply-connected world. Roughly speaking, the idea is that  when one wants 
to adapt  them to the non-simply-connected situation, one is no longer going to handle, 
for instance, vector spaces over the complex numbers, but modules over the group ring of 
a group. Basically, one is always taking into account the equivariance with respect to the 
action of the fundamental  group, and, instead of doing things down in the manifold, one 
essentially has to work in the covering space. So I will t ry to show how noncommutat ive  
geometry works in examples,  by dealing with the problem of the signature of a manifold. 

I will first describe the signature theorem of Hirzebruch. If we take a manifold of 
dimension 4k which is compact and orientable, then there is an intersection form on the 
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middle-dimensional cohomology and, by construction, the signature of this quadratic form 
turns out to be homotopy invariant, because it is defined in a homotopy invariant way. It 
is not clear at all whether it is possible to relate this quantity to other quantities which are 
computed, for instance, by characteristic classes of the tangent bundle of the manifold. 

The following result is due to Hirzebruch: 

Sign(M) = (L (M) ,  [M] ); (13) 

that is, the signature can be computed by pairing the fundamental class [M] of the 
manifold M with a universal polynomial L(M) = P(Pl , . . . ,Pk)  on the Pontrjagin classes 
of the tangent bundle of the manifold, which depends on the dimension of M. 

There is a huge difference between the two sides of the equation (13), since the left- 
hand side is homotopy invariant by construction, and the right-hand side is essentially 
computable by local computations (by integration over the manifold). This is a fairly good 
answer for the simply connected case, and Novikov proved that this specific combination 
of characteristic classes is the only one that can be homotopy invariant. 

Things get more interesting when the manifold is not simply connected. In the non- 
simply-connected case, there are quantities which are candidates for being homotopy 
invariant, but for which it is not obvious at all, at first sight, that they will be. These 
quantities are the Novikov higher signatures, which are defined as 

Signc(M ) = ( L ( M ) .  ~*(c), [MI ). (14) 

That  is, we keep the same L-genus, but we have to be careful about one thing: Now the 
L-genus is not homogeneous, but it has several components. It has one component which 
is the top-dimensional component,  and it also has components whose dimension differs 
from the dimension of M by multiples of 4. We multiply it by a group cocycle c of the 
fundamental group, after transferring it to a cohomology class on the manifold. (Since 
the manifold has a fundamental group F, the group cohomology of F maps very naturally 
to the cohomology of the manifold.) Then we compute the product L(M) • T*(c) and 
evaluate it on the fundamental class of the manifold M. 

This is a fairly algebraic expression. For a more geometric definition, imagine that the 
so-called classifying space of the group F has been constructed. This is a certain space 
BF that can be explicitly given in many cases. Essentially, we are taking a cocycle in 
BF, transversely oriented, considering a classifying map ~: M -* BF transverse to the 
cocycle, and taking the inverse image ~*(c) of the cocycle. 

The question is whether or not this signature is homotopy invariant. This is a purely 
geometric question, known as the Novikov conjecture. Novikov conjectured that in several 
cases, these quantities, which are called higher signatures, are homotopy invariant. 

I would like to show how noncommutative geometry works in this case. Let me begin 
with the commutative case. I will first specifically discuss the situation when the funda- 
mental group of the manifold is commutative, and we shall see how to make use of this 
commutativity. This is the proof given by Lusztig in this case. We shall see how many 
more tools we have when this group is commutative than in the noncommutative case. 

If the fundamental group F is commutative, then it has a Pontrjagin dual X = I a, 
which is a compact space: the space of all linear characters of the group; that is, all 
homomorphisms from the group to the complex numbers of modulus one. 
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Now we can consider a product space M x X of the manifold and the Pontrjagin dual 
of its fundamental group. On this space we have a very canonical line bundle which is 
given by the fact that whenever we have a character, this character gives us a map from 
the fundamental group of M to the complex numbers of modulus one, and therefore a 
completely natural flat bundle on the manifold M with holonomy given by the character. 
Thus we get a family of flat bundles on M parametrized by the Pontrjagin dual X; that  
is, a natural line bundle on the product M x X. It is not difficult now to consider the 
signature of this family (or the family of signature operators: For each of these flat bundles 
we have a signature with coefficients in the flat bundle, so that we can consider this family 
of operators). On one hand, the signature family is not just the difference between the 
dimension of the positive eigenvectors and the dimension of the negative eigenvectors; it is 
the subspace of the positive eigenvectors minus the subspace of the negative eigenvectors. 
What  we really have is two vector bundles over the base X, and what we get in this way 
is not just a number, but an element of the so-called K-theory of X,  which is denoted by 
K(X). Once we have this element in the K-theory of the space X, it is not difficult to 
show, firstly, that this element is homotopy invariant (this is not much harde:" to prove 
than that the ordinary signature is homotopy invariant), and, secondly, that if one takes 
the Chern character of this family ~ u s t  applying the Atiyah-Singer index theorem for 
families-- one gets exactly the Novikov higher signature. 

Now, the problem which I really would like to deal with is what replaces the Pontrjagin 
dual X,  the K-theory of X, the Chern character, the index theorem, and so forth, when 
the group F (the fundamental group of the manifold) is no longer commutative. 

So far, we have used the commutativity in an essential way. It was used in order to 
define the Pontrjagin dual, and to deal with this Pontrjagin dual in the standard way of 
commutative spaces. 

T h e  G r o u p  K0 

What  is K-theory? K-theory is essentially doing linear algebra with parameters that vary 
continuously in a base space X. If we view things algebraically, K-theory is just doing 
linear algebra where the ground ring has been replaced from the complex numbers C to 
the ring C(X) of continuous functions on X. There is a purely algebraic definition of 
K-theory in terms of classification of finite projective modules. The fact that modules 
are finite corresponds to the fact that fibres are finite-dimensional, and projective is a 
translation of the fact that bundles are locally trivial. So, in fact, the meaning of doing 
K-theory over an algebra can be formulated in a purely algebraic way. Moreover, we find 
out very quickly that the commutativity of the algebra - - t h e  ground ring we are dealing 
wi th- -  has nothing to do with the problem. Therefore, we are free from the hypothesis 
of commutativity of C(X). As soon as we are dealing with finite projective modules, we 
need to represent them inside matrices over the algebra, as idempotents. But matrices 
over an algebra do not commute, so commutativity has nothing to do with the problem. 

The second point is that if we take a discrete group F, then the construction of the 
Pontrjagin dual gives a noncommutative C'-algebra rather than a commutative one. Let 
me explain how this is constructed. One takes the regular representation of the group in 
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the space g2(F), the Hilbert space with orthonormal base formed by the elements of the 
group. In this Hilbert space, the group is acting by the left regular representation and so 
the group ring - - t h e  linearization CF is also acting. We simply take the norm closure 
of this group ring. If the group were Abelian, what we would get would be precisely the 
continuous functions on the Pontrjagin dual of the space (this is not difficult; it is just 
Fourier analysis). So, in general, we have a good replacement for this, except that  it is 
not a commutat ive  algebra. 

There is a natural  way to define the signature of the covering space of a manifold. 
If we look at the universal cover of the manifold, then on this universal cover we have 
the fundamental  group acting, and we can mimic the usual construction of the signature 
on the universM cover. We can still consider the differential forms with a certain growth 
at infinity, and the cup product,  which gives us a pairing and hence a quadrat ic  form. 
It turns out that  this quadratic form can be defined as an element of the so-called Wit t  

group. The Wit t  group is a group of abstract  quadratic forms over the group ring CF. 
But the trouble with the Wit t  group is that  it is defined abstract ly by a presentation of 
quadratic forms (we want them to be equal if they differ by a change of variables, or if 
they are stably equal, and so forth). So it is difficult to analyse. 

Now it should be clear why we take C*-algebras. Precisely because C*-algebras are 
the only algebras for which the spectrum of the self-adjoint elements is real. Why not 
take for example the algebra gl (F) of summable functions on F? This is a Banach algebra. 
But if we take a self-adjoint element in it, in general its spec t rum will fill in the whole 
corona. It is not true for an involutive algebra in general that  the spec t rum of a self- 
adjoint element is real; this is precisely the characterization of C*-algebras. Therefore, we 
take C ' -a lgebras  precisely in order to be able to say that  an element of the Wit t  group 
- - a  self-adjoint quadratic form H = H* that belongs to the ring of q x q matrices over 
an algebra A - -  determines a positive eigenspace and a negative eigenspace. How do we 
get these positive and negative eigenspaces? When the spectrum is real, we do a Cauchy 
integral over a closed curve C enclosing the positive spectrum of H 

1 [ R~ d.~, (15) 
27ri Jc 

where _Rx is the resolvent of the quadratic form. In doing this, by general results, we 
know that  we get an idempotent  projection. So this enables us to say that  the Wit t  
group in this situation maps to the K-theory  (and, in fact, the Wit t  group is equal to 
the K-theory) .  Thus for C*-algebras the main simplification is that  the K- theory  is the 
same as the Wit t  group, and K- theory  is far simpler since it is just linear algebra. 

Put t ing all these things together and using results of Wall-Mishchenko, we obtain 
that  the signature of the universal cover /~/, taken equivariantly with respect to the 
fundamental  group, is in fact an element of the K- theory  of the C*-algebra of the group 

Sig~d~)) e K(c*(r)). (16) 

The problem is as follows. If we were in the Abelian case, then this C*-algebra would 
be the continuous functions on the Pontrjagin dual of P, and the next step would be 
trivial; it would just be to take the Chern character of this signature. (Of course, it would 
be nontrivial to compute this Chern character; here is where the Atiyah-Singer index 
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theorem for families would come in. Nevertheless, there would be no need to define a new 
theory of signatures; we could just take the Chern character,  and compute it.) 

If the group is non-Abelian, we do not have the space. We would like to say that  
this C*-algebra of F is like continuous functions on some space, but we do not have the 
Pontrjagin dual because the algebra can drastically fail to be Abelian. It  turns out that  
what is needed in order to replace the Chern character is, first, to think about  the theory 
of characteristic classes and to be able to understand the theory in such a way that  it will 
still hold in the non-Abelian case. This gives cyclic cohomology, with which I will now 
deal. This theory is motivated very strongly by the example,  in the sense that  there is a 
need for a replacement for the calculations of curvature, characteristic classes, and so on, 
in this non-Abelian situation, where we cannot use the usual setting. 

Cyc l i c  C o h o m o l o g y  

Let me try to present cyclic cohomology as simply as possible. It is just a generalization 
of the notion of trace. If we have a noncommutat ive  algebra .4, then there is a simple 
equality on a functional - -on  a linear form of this algebra which enables us to erase 
the noncommutat ivi ty,  i.e., which enables us to do many  things as if the algebra were 
commutative.  This is the notion of a trace 

r : a l - - , C .  (17) 

The trace satisfies the following cocycle condition: 

,(a°a ') - T(a'a °) = O. (18) 

A cyclic cocycle, in general, is just a higher trace. By higher trace I mean that  it is 
again a functional, but on several variables in the algebra, and satisfying the following 
two conditions 

r(aOa' a2 . . . , a  ~+ ' ) -T (a° ,a 'a2 , . . . , a~+ 1 ) + . . .  
• ". + ( -1 )~r (a° ,a l , . . . , a~a  T M  ) + ( -1)~+lr(a~+la° ,a l , . . . ,a  ~) = O, (19) 

7(a ' ,  a 2 , . . . ,  a '~, a °) = ( - 1 ) n r ( a  °, a ' , . . . ,  a"). (20) 

A simple example of a cyclic cocycle appears in the situation where the algebra is the 
algebra of functions on a manifold. Assume given a de Rham current (recall that  a de 
Rham current of dimension k is a linear form on differential forms of degree k). When I 
say that  it is closed I mean that  when it is paired with a closed form it yields 0. 

If we start  with a closed current c, then we can indeed define a multilinear functional 
on the algebra by the following formula: 

~ ( a ° , . . . , a  k) = ( c , a ° d a ' A . . . A d a k ) ,  (21) 

and it is not difficult to show that  it satisfies conditions (19) and (20) above. Condition 
(19) is just the fact that  the differential of a product is given by the Leibniz rule, and 
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condition (20) tells us that  the current is closed, so we can integrate by parts in the 
current and this enables us to cyclically permute the variables. 

In order to extend the previous functional to matrices by multilinearity, one simply 
has to extend it on tensor products of functions by matrices. There is only one natural  
formula that  can be applied: 

r~(a o ® #O,a 1 @ # l , . . . , a  k ® #k) = %(aO,. . . ,a  k) Tr(#o . . .#k) ,  (22) 

where a ° , . . . ,  a k are functions, g 0 , . . . ,  #k are q x q matrices, and Tr denotes the ordinary 
trace. Observe that  this new expression is not invariant under all permutat ions,  because 
the trace of a product  is only invariant under cychc permutations.  It  is precisely this 
small fact which forces us to consider only cyclic permutations.  

Why are traces important?  The trace on an algebra is important  because the trace 
automatical ly gives a dimension to any finite projective module. If we have a finite pro- 
jective module over an algebra, this module can be viewed as an idempotent  in matrices. 
The trace extends to matrices, and when we evaluate the trace on the corresponding 
idempotent ,  it does not depend upon any choice. 

A higher trace (i.e., a cyclic cocycle) gives us an invariant, exactly like the Chern 
character, for finite projective modules. We shall see by very simple examples that  this 
reduces to the Chern character in the example of a current given above. 

It turns out that  the evaluation of a cyclic cocycle r of even dimension on a diagonal 
element r ( e , e , . . . , e ) ,  for e C Proj(Mq(M)), is homotopy invariant. In other words, if 
we move the idempotent  by deformation among idempotents,  then this quanti ty does 
not change. How does one prove this? The point is the following: If you move an 
idempotent  among idempotents,  then, of course, it is a nice spectral  deformation, because 
the spectrum of an idempotent  is only formed by 0's and l 's ,  so there has to be a nice 
spectral equation to satisfy. This equation is 

i ,  = Ix , ,  

for some element x,. This equation is easily 

et] (23) 

obtained by differentiating the equation 
et 2 = et. Now, when we differentiate T(e, e . . . .  , e), we get an 4 appearing only once at a 
time, and then, by a little algebraic manipulation using the cocycle identity, we can prove 
that  we get 0. So this is invariant under deformations, and, moreover, it is not difficult 
to prove that  it only depends upon the isomorphism class of the finite projective module 
defined by e. Moreover, it is additive, so that  if we take the direct sum of two finite 
projective modules - -even  if we have a monomial which is not l inear - -  what we get is a 
sum of the corresponding traces. 

This means that  the so-called cyclic cohomology, where elements are cyclic cocycles 
modulo an obvious relation, pairs with K-theory, so each cocycle class defines a map from 
the /to of the algebra, / t0(A),  to tile scalars. 

Let me show with this example of currents, first, how this computat ion reduces to the 
Chern-Weil  computat ion by connections and curvature for vector bundles. I showed that  
if we have a closed de Rham current on M, then we have a cyclic cocycle. Of course, if we 
want to know the Chern character pairing, it is enough to know how the Chern character 
pairs with any closed de Rham current, because the closed de Rham currents generate 
the homology of the manifold. So what we have to do is to show the equality 

(%, [El) = % ( e , . . . ,  e) = (ch(E),c) ,  (24) 
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where [E] is the finite projective module of the vector bundle E,  and c also denotes the 
homology class of the current. How does one prove this? The finite projective module 
of a vector bundle is given by an idempotent .  A more geometric way of formulating this 
is to say that  the vector bundle is the pull-back of the canonical vector bundle on the 
Grassmannian by a map from the manifold to the Grassmannian,  because when we take 
an idempotent  in n x n matrices over the algebra, just by a ma t t e r  of translation, this is 
exactly a map from the space to the set of idempotents of n x n matrices,  which is the 
Grassmannian.  On the Grassmannian we have a canonical connection, which comes from 
the orthogonal projection from one fibre (i.e., from one vector space) to the nearby vector 
space. Now we can pull back this canonical connection. 

If we compute the curvature of this connection, we will find that  it is given as a 
matr ix  of differential forms edede, where de is the differentiM of this map c. And so, 
when we pair the curvature to some power with the current, we immediately see that  we 
get r~(e, e , . . . ,  e). 

What  we have done is to translate algebraically the pairing in such a way that ,  firstly, 
it is now completely free of the commutat ivi ty  hypothesis; and, secondly, that  it relates 
in fact to cohomology which is well defined, because, if one looks at the definition of a 
cyclic cocycle, one easily understands that  condition (19) is the condition of being closed. 
Observe that  the sum appearing in this condition is nothing other than the Hochschild 
coboundary of the cochain we are dealing with. And condition (20) is a restriction to 
cyclic coehains, which turns out to be stable under coboundary, so what  we get is a 
complex, and out of this complex we get, of course, a cohomology theory which is cyclic 
cohomology. 

T h e  E q u i v a r i a n t  I n d e x  

Let us look at other examples. Take the group ring of a discrete group, C[F], and suppose 
given a group cocycle c(gl,. . .  ,g~) E C, g, E F. 

Remember  that  when we were considering the Pontrjagin dual, we wanted to compute 
the Chern character. The problem was, of course, only to be able to pair this Chern 
character with group cocycles. Now we still have the group, but it is not Abelian, so we 
cannot talk about the Pontrjagin dual. However, we have the group ring, and the claim 
is that  the following extremely simple formula 

o { 0 if gOgl...g,~ • e (25) 
c ( g , . . . , g ~ ) =  c(g ' , . . . ,g  '~) otherwise 

T 

assigns to every group eocycle a cyclic cocycle on the group ring. 
Now the main trouble is that  we do not have the Atiyah-Singer index theorem. Re- 

member  that  when we were doing the calculation in the case of the Pontrjagin dual of an 
Abelian group, we used the Atiyah-Singer index. So we need a replacement for it. This 
replacement is a theorem which will not only handle the signature operator,  but in fact 
will handle an arbi trary elliptic F-invariant operator on the covering space M. 

If we are given a differential operator D which is elliptic on the manifold M,  we 
can always lift it (because it is local) to the covering space, into an operator  /)  which 
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is F-invariant and still elliptic. It turns out that,  while an operator downstairs has a 
parametrix (an inverse modulo smoothing operators) the operator on the covering also 
has a parametrix, but this one is not an inverse modulo smoothing operators: It is an 
inverse modulo RF, the group ring of F extended by the smoothing operators. (R denotes 
the ring of smoothing operators on the base, which does not depend on the manifold.) 

In fact, the index for the operator is an element of the K-theory of the group ring of 
F extended by the smoothing operators, I n d r / )  C I(0(Rr), which is called F-equivariant 
index. Now the following theorem holds, which is exactly a higher analog of the Atiyah- 
Singer index theorem, in the same way as the Novikov higher signature is the analog of 
the ordinary signature. 

THEOREM (CONNES-MOSCOVICI). If c is a group 2q-cocycle on the group F, then 

1 q ,  
(re, I nd r / ) )  - (2rri)q (2q)! (chaD- Td(M)  - [c], [M]). (26) 

Here Td stands for the Todd genus of the complexified tangent bundle. This formula 
contains two new terms with respect to the Atiyah-Singer formula; namely, the numerical 
constant q!/(2q)!, which takes care of the dimension of the cocycle, and the factor [c], 
which is the class of the group cocycle c viewed on the manifold M. 

Now we apply this to the signature operator on the covering and get the following: 

COROLLARY. If D is the signature operator, then 

(To, Indr D) = Novikov higher signature = (L[M]- c2"(c), [M]}. (27) 

We could say that now the Novikov conjecture is solved in general; but there is still one 
technical problem. (Nevertheless, the conjecture is solved for a generic family of groups, 
namely Gromov hyperbolic groups. I will not give the technical definition of these groups, 
but I will mention the technical reason which still restricts the proof to these groups.) 

When dealing with the Abelian case, one has smooth functions, and smooth functions 
have the following two rather important properties. The first property is that the K-theory 
of the algebra of smooth functions is the same as the K-theory of continuous functions 

K(g°°(M))  -~, K(C(M)) .  (28) 

The second is that the cyclic cocycles that we get automatically extend from the group 
ring CF, which is like Laurent polynomials, to smooth functions. It turns out that,  when 
we take non-Abelian groups, then this problem --which is quite trivial in the Abelian 
case--  has analytical difficulties. However, this technicality can be solved for Gromov 
hyperbolic groups. 

I will now explain in what sense these groups are generic. By a result of Gromov, if we 
look at (finitely presented) groups given by generators and relations, pick a finite number 
of generators, bound the length of the relations, and count among the obtained groups 
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those which are hyperbolic, then the percentage of these tends to 100% as length tends 
to infinity. 

We would like to have the Novikov conjecture true in general. It might be that the 
above technical problem is indeed essential, and the conjecture is only true for groups 
for which one has a sort of analytical control. It is very important  to deal with such 
questions, because it is not only for the Novikov conjecture that they are relevant. What  
one is really dealing with in this situation is analysis on the dual of a discrete group. This 
is a quantum space (it is not Abelian) and this analysis is much more complicated and rich 
than in the Abelian case. Essentially, the Abelian case is a sort of finite-dimensional case, 
while in the non-Abelian case, because of the growth of the groups, we have phenomena 
which are infinite-dimensional in nature. 

R i e m a n n i a n  G e o m e t r y  

At the beginning I explained the original motivation of Heisenberg. Then I showed by 
means of some examples how the idea of noncommutative geometry can be used in specific 
examples. In the foregoing discussion, I have been dealing only with topology, K-theory, 
differential forms, and characteristic classes. Now I want to discuss the very essential part 
of geometry that  deals with the measurement of lengths, i.e., Riemannian geometry. This 
is by no means finished. Although only a small part of it is complete, I think it will have 
applications in physics, so I want to return to physics in the last part of my talk. 

In doing noncommutative geometry, one arrives after many examples at the following 
notion of what might replace the notion of Riemannian manifold. This notion, on one 
hand, will cover the finite-dimensonal case; but in Riemannian geometry it will do some- 
thing more: It will mix the discrete and the continuum. (Riemannian geometry, as it is 
usually known, deals only with the continuum and does not handle the discrete.) It will 
also make it possible to handle nonintegral dimensions, like Hausdorff dimensions. For 
instance, if we have a circle which is winding in a set of higher Hausdorff dimension in the 
plane, it will enable this to be handled exactly as it would be in Riemannian geometry, 
but the functions will not be differentiable. 

Let me come back to the fundamentals of Riemannian geometry. Riemannian geometry 
deals with a certain metric space where the distance is computed as the infimum of the 
arc-lengths, d(p, q) = Inf { f~ ds }, where the length of an infinitesimal arc is given by the 
square root of a quadratic form 

= ~ /~g , , dx " dx" .  (29) ds 

This geometry is amazingly relevant for two reasons. One is that it has a wide variety 
of examples, and the second is that many tools are available. In particular, all the tools 
of differential and integral calculus are available and make computations possible. 

At first, Riemannian geometry was meant to be a generalization of Euclidean and non- 
Euclidean geometries, so there was the temptation of restricting it to extremely special 
spaces, like the ones in which rigid motion is possible. General relativity has shown that 
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this would be a mistake, because in general relativity one is obliged to consider all possible 
spaces of a certain kind, and one is obliged to vary among them. 

Let me now turn from this to a more algebraic standpoint.  We take the algebra Jl of 
functions on the manifold M - - n o  regularity is a s sumed- -  and this algebra is supposed 
to act on a Hilbert space. This Hilbert space is the space of L2-spinors 7 / =  L2(M, S). 
Moreover, I take as given the Dirac operator D; that  is, what we are given is an algebra of 
functions together with a representation. But if we were just handling representations, we 
would have nothing to work with. I want to add some finiteness condition. This finiteness 
condition is given by the Dirac operator D, which is finite in the sense that  its inverse is 
compact,  or in the sense that  its eigenvalues go to infinity. And it is compatible with the 
algebra of functions, in the sense that  if we permute  the Dirac operator  with functions, 
they do not commute,  but what we get is bounded. (The Dirac operator is not bounded.) 

I will next show how to recover the manifold M,  the geodesic distance d(p, q) on M, 
the Riemannian volume, the integration of functions, the gauge potential,  and the Yang- 
Mills action, out of the purely operator-theoretic data ( A , ~ ,  D). And this will be done 
in such a way that we will not be limited to Riemannian manifolds, but after a while will 
be able to handle discrete spaces as well. 

Let me go very briefly through the way the manifold M is recovered. We have the 
algebra, yet we do not quite have the regularity. We recover the regularity by asking that  
the commutator  be bounded. Then by closing we get the algebra of continuous functions. 
By the well-known duality between the algebra of continuous functions and the points, 
we recover the points as a compact topological space 

M = Spectrum of the C*-algebra a;  
(30) 

a = {a E ..4 [D,a] is bounded }. 

Let us look at the distance, which is much more interesting. The usual formula for 
the distance is the infimum over all arcs. I will replace this formula with a formula which 
will give the same answer (i.e., the geodesic distance), but which will be dual; instead of 
considering arcs embedded in the manifold, I will consider coordinates. I want to measure 
the distance between two points as follows: 

d ( p , q ) = S u p {  la(p)-a(q) l  [ l [ D , a ] l l -  1 }. (31) 

Let us check that  this is true. When we compute the commutator  [D, a], we find that  this 
is Clifford multiplication by the gradient Va of the function a. To say that  this operator 
has norm less than or equal to one is precisely to say that,  at each point, this gradient 
has a length less than or equal to one. By a simple argument,  this is precisely to say that  
the function is Lipschitz for the geodesic distance, with Lipschitz constant equal to one: 

Sup la(p) - a(q)l < 1. (32) 
d ( p ,  q) - 

Thus we immediately see that  one inequality is indeed given. To get the other inequality, 
we just take the function which is the geodesic distance to a given point p. This function 
is Lipschitz, so we can put it on the right-hand side and we are done. 

What  we get here is the same geodesic distance as usual. However, the measurement  
has been different, and, in fact, when we are doing measurements - - n o t  of long lengths, 
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but of very small l engths- -  we are perfectly unable to use a path. It could be said, for 
instance, that  a photon has a t rajectory which is a path going from one point to another 
point. Yet this is not true: The photon in quantum mechanics is a plane wave having 
a definite momentum,  so that  there is no path of a photon, and, in fact, we are not 
measuring the distance by the formula of infimum of arc-length, but precisely by the 
formula (31). 

Having this formula does not account for much, because we need to be able to integrate 
functions. There is an analysis of the residue - - t h a t  is, what is called the Dizmier trace 
of operators on the Hilbert space- -  which enables us to write down the volume form in 
the Riemannian case purely operator-theoreticMly from the Dirac operator:  

f M f d V  T r y ( f  D-P),  (aa) 

,.~ n l / P .  where p is the dimension, i.e., the order of growth of the eigenvalues of D: A~ 
This is related to the Tauberian theorem, in the sense that  if we take the functional Tr~ 
- - t h e  Dixmier trace, which is not the ordinary t r ace - -  then it is related to the residue of 
the zeta-function of the operator at the point 1. 

This is a trace which was discovered by Dixmier in 1966. Essentially, his paper  was 
never read: It remained completely hidden in the li terature for a very long time; but 
from the work of Manin Wodzicki and Guillemin I noticed that  the residue of pseudo- 
differential operators was the same trace, except that  the Dixmier trace exists in general. 
It  is not particular to the case of differential operators, or the set up of a manifold. So 
it could be used in general to perform integration in this general Riemannian-theoretic 
situation. And now there is this quite amazing fact that  the Hausdorff measure (for 
instance, on the boundary of quasi Fuchsian groups) is also given precisely by the Dixmier 
trace, although we are now in the non-integral-dimensional situation. 

Thus one constructs first the integration of functions, the distance, and then proceeds 
to construct gauge theory. To construct gauge theory, one uses the Dirac operator,  defines 
connections, vector bundles, curvature, and so on. 

Let us go to the key point. This gauge theory has exactly the same features as the 
ordinary gauge theory. In particular, it is only in dimension 4 that  one has a general 
theorem which relates the second Chern class with the Yang-Mills action. This follows 
from a completely general theorem using the Dixmier trace, which, in fact, justifies the 
Dixmier trace and provides an inequality showing that  the gauge theory is not trivial 
when the second Chern class is not trivial. 

THEOREM. Let ( A , ~ ,  D) be a triple with D -1 C £2n+1 Then: 

1. The equality c2(a°, . . . ,  a 2n) = Tr~(Ta°[D, a l ] . . .  [D, a2n]D -2~) defines a Hochschild 
cocycle on A.  

2. The class of 99 is the same as the class of the Chern character of the K-homology 
class of (.,4, ~ ,  D ). 

Now I would like to show what happens because of the fact that  the theory is not 
limited to the continuum. We may consider a space which is a product  space of a con- 
t inuum (the ordinary four-dimensional continuum) by a discrete space, and the simplest 



56 

discrete space we can take is a two-point space. One translates algebraically the meaning 
of taking a product  by 

A = A1 ® A2 , 
T / =  7/1 ® 7-/2 , (34) 
D = D1@ l +~71® D2 . 

Let us do gauge theory for this two-point space. The two-point space is described 
by the algebra ,4 = C ® C, since functions on the two-point space are just given by two 
complex numbers ( f (a ) ,  f(b)). What  is the Dirac operator there? By a general theory 
which is called K-homology, it can be shown that  it reduces to the following form: The 
Hilbert space is of the form 7-/= C N ® cN; the algebra will act by the matrices 

0 f(b) 

and the Dirac operator D will be of[diagonal and, of course, self-adjoint: 

( 0  M ' )  
D =  M 0 (36) 

for a certain N × N matr ix  M. So this is the structure that  we want to consider on the 
space. 

Now, the first thing we have to do is to compute the distance. If we take for the 
distance the formula given by the infimum over the arc-lengths, then, since we have a 
two-point space, we will get nothing, because there is no arc in the two-point space. But 
we have the other formula, and we can compute the distance between our two points. 
Using the formula (31) we get 

1 
d(a,b) = Sup{ If(a)  - f(b)l II [D,f] II --- 1 } = ~ ,  (37) 

where ~ is the norm of the matrix M, that  is, the square root of the largest eigenvalue of 
M*M. Then we compute the gauge potential,  the Yang-Mills action, and we find a te rm 
that  is precisely the so-called symmetry-breaking term, which physicists were obliged to 
introduce in order to assign masses to elementary particles. 

Then we go a little further and ask ourselves what are vector bundles over a two-point 
space. Of course this is very trivial: A vector bundle is given by two fibres, C k and C k', 
and a nontrivial bundle is one in which k ¢ k'. We pick the simplest nontrivial bundle, 
which has fibres of dimension 1 in one point and of dimension 2 in the other point. 

Once it is seen in detail what is the Riemannian case in dimension 4 and the two- 
point discrete case, we can look at the product case. When we take the product  of 
these two spaces and compute what is the gauge theory, we find exactly what physicists 
have been given, too, by elementary particle physics in the so-called Glashow-Weinberg- 
Salam model. One finds a Lagrangian which comprises many  more terms than the usual 
Lagrangian. Ordinarily, from Maxwell theory and Dirac theory, we know that  the theory 
of quantum electrodynamics is described by one Lagrangian 

£ = £B + £s + £JB,  (38) 

which has a pure gauge potential  part  £B, a fermionic part  £ f ,  and an interaction between 
fermions and bosons given by the diagram 
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e + 

which tells us how a photon can give a positron and an electron, for instance. This 
Lagrangian is that of quantum electrodynamics. 

In this century, it has been understood that quantum electrodynamics was not enough 
to describe the so-cMled electroweak interaction. In fact, it has been discovered that there 
is a nuclear beta decay, that there is radioactivity (which was discovered at the end of 
the last century), and, gradually, with a lot of experiments, people have been led to the 
following experimental Lagrangian: 

f-- -- £.B + £.f + V(H) + f_.(B, H) + f.(f, H). (39) 

where V(H) is the Higgs potential, £( B, H) is the minimal coupling, and £.(f,H) is the 
Yukawa coupling. 

By doing a small calculation in noncommutative Riemannian geometry, I have shown 
that if one altcrs the space a little bit by crossing it with a discrete set of two points, then 
space-time becomes like a product of ordinary space-time by two points, and these two 
points are extremely close: If one computes their distance, one finds something like 10 -16 
c m .  

The idea consists of not just introducing new dimensions, but to pick a discrete fibre. 
Now, when we compute the Lagrangian as explained above, for this new Riemannian 
space we find exactly the standard model with all its five terms (39). 

At the moment, in order to incorporate quarks, one has to do a little more. There are 
two copies of the space, i.e., there are two sides: one is left-handed and the other is oriented 
the other way. In order to incorporate quarks, instead of considering only scalar-valued 
functions on the left-handed copy, we have to consider quaternionic-valued functions. The 
algebra of quaternions is slightly noncommutative (by "slightly noncommutative" l mean 
that they satisfy polynomial identities; they are not something which is of high dimension 
with respect to matrices). 

The general idea is that in order to understand space-time, it may be important  not to 
be limited to ordinary Riemannian connected manifolds and to allow a more general notion 
of space-time - - a  more general notion of Riemannian geomet ry- -  based on operator- 
theoretic data and which makes it possible to talk about "effective" space-time. I am by 
no means saying that this is the final answer on space-time. What  I am saying is that if we 
take this space-time and compute the analog of quantum electrodynamics on it, then we 
get precisely the complicated Lagrangian above (39). So this gives us a bet ter  geometric 
understanding of the finest existing effective model of elementary particle physics. 
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