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Introduction 

Motivated by analytic aspects in the study of non-simply connected mani- 
folds, we introduce and exploit in this paper a certain type of cohomology 
for finitely generated discrete groups r ,  which takes into account the metric 
structure of such a group given by a word-length metric. The basic ob- 
jects used to produce this cohomology are families of Lipschitz contractions 
from F to finite-dimensional Euclidean spaces R g. The resulting cohomol- 
ogy classes, to be called Lipschitz classes, form a subspace H~(F) of the 
ordinary group cohomology with real coefficients H*(F) = H*(BF, R). By 
imposing an additional properness condition, one obtains a more restricted 
variant, namely the proper Lipschitz cohomology H~,pr(F ). 

Carrying a "Lipschitz structure" gives a significant advantage to a 
group cohomology class. In particular, as we show early on in the paper (cf. 
sec. 1.10), every proper Lipschitz class gives rise to a homotopy invariant 
higher signature, for any closed oriented manifold mapping to BF. This, in 
fact, follows immediately from Mishchenko's higher signature theorem [M], 
once the construction of Lipschitz classes is given a K-theoretical counter- 
part by means of Kasparov's intersection product [K]. 

Thus, it becomes important to recognize the kinds of groups F for 
which the proper Lipschitz cohomology exhausts the cohomology of BF. 
After ~:me familiarity with the concept is developed (sec. 1.1-8), one can 
see fairly easily that H~,pr(F ) = H*(F) if F is a discrete subgroup of the 
group of isometries of a complete, simply connected Riemannian manifold of 
non-p(~sitive sectional curvature (cf. sec. 1.9). The same is true for discrete 
subgroups of an almost connected Lie group or of an algebraic group over 
a local field. The most difficult, but perhaps the most interesting, case is 
that of a general (word) hyperbolic group. The proof that all cohomology 
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classes of any subgroup of such a group are properly Lipschitz occupies the 
entire chapter II. Its essential ingredients can be summarized as follows: 

(1) a procedure of symmetrizat ion at infinity, allowing the transformation 
of a proper map c~ : M ~ N N into a Lipschitz map, provided there 

exists a proper self-contraction f : M ~ M with Lipschitz constant 
< 1 ;  

(2) an "extension lemma" for Lipschitz maps, with control of the Lipschitz 
constant, which plays in the context of this paper a role analogous to 
the Hahn-Banach theorem for locally convex vector spaces; 

(3) an est imate of the Lipschitz constant of the obvious candidate for a 
self-contraction on a &hyperbolic space~ when restricted to a set of 
points whose mutual  distances are sufficiently large with respect to the 
hyperbolicity constant 6. 

Note that,  at this stage, we have already recovered the proof of the 
Novikov conjecture on the homotopy invariance of higher signatures, in all 
cases which were previously known (conlpare [I~.], [C~/I], [KS]). 

In chapter III we extend the homotopy invariance of higher signatures 
to non-proper Lipschitz cohomology classes. The proof, which is consid- 
erably more elaborate than in the proper case, is based oil concepts and 
techniques developed in [C2]. Thus, in the spirit of loc. cit., we establish a 
"reverse index theorem" asserting that  to each ( E H~(F) one can associate 
a suitable "analytic index map" L e Homz ( I ( , (C*(F) ,C) .  This means 
that  for any element x C K , ( B F )  its "higher topological index" (ch,x,(> 

can be expressed as L(p(x)), where # :  I ( , (BF)  -~ I ( , (C*(F) )  denotes the 
analytic assembly map (of [BC] and [K]). 

Non-proper Lipschitz cohomology classes arise natural ly in the context 
of continuous cohomology for topological groups made discrete. The general 
principle appears to be the following: if ~ : F ~ G is a homomorphism fl'om 

a finitely generated discrete group to an almost connected topological group, 
then ** (He*at(G, N)) C H~,(F). In the present paper we prove the validity 
of this principle in two important  cases: 

(a) when G is locally compact,  and 

(b) when G = Diff+(M) is the group of orientation preserving diffeomor- 
phisms of a closed manifold M and z* is restricted to the subring of 
H$o,t(G, N) generated by Gelfand-Fuchs classes via integration along 
the fiber. 
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I. P r o p e r  Lipschi tz  Cocy l e s  

1. M u l t i p r o p e r  m a p s  I' ~ [t/v. 
Let F be an abstract discrete group, consider a map c~ : F --* R N, 

and let us try to pull back to r the fundamental  class of R N in the real 

cohomology with compact support, say c E HN,np(RN). We represent c 

by a (necessarily closed) N-form w on R N with compact support and we 

first define a non-F-invariant N-cocycle c* on F by integrating co over the 

N-simplices in R s spanned by the c~-images of (N + 1)-tuples of points in 

F. That  is, 

C*(3'0,""" ,3'N) = JA Ct*(co) 

w'here A is the abstract N-simplex spanned by 3'0, 71, - �9 7N and the map 
is extended (from 3'0,. �9 �9 3'N) by linearity to a map of A to R g also called a.  

Next, in order to make c* F-invariant we try to sum it over F and set 

c* = E 3'c* , 
"rEF 

i.e. 

~*(3'o,..., 3'N) = ~ c*(V3'o, ..., 3'3'N) �9 (1.1) 
~EF 

Notice that  the above infinite sum would make perfect sense if there were 
only finitely many non-zero terms. This motivates the following definition. 

2. DEFINITION: 

A map c~ : F ~ R N is called multiproper if for every finite subset F C F 

and every compact subset B C R N there exist at most finitely many 3' E F 

such that  the convex hull of the image of the 7-translate of F meets B, i.e. 

B N Conv o(TF)  = O, (1.2) 

for ahnost all 7 E F. 

Notice tha t  "multiproper" reduces to the usual "proper" if (1.2) is 

required only for the one-point set F = {id} E F. 

Now. if a, is multiproper, then the sum y~ in (1.1) does have only 
F 

finitely many non-zero terms and so the definition of the N-cocycle ~* on F 

is meaningful. Then we observe that  the cohomology class of ~* in HS(r; R) 
depends onlv on c = [~] E H~Vomp(R N) and so we have our pull-back 

~'*((') d~ [~*] E H N ( F )  �9 
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3. EXAMPLE: 

Let F admit  a compact  smooth manifold X for a classifying space. 
This means that  the universal covering X of X is contractible and the 
fundamental  group ~ I (X)  is isomorphic to F. Then every continuous proper 
map  A : )~ ---* R N induces a homomorphism 

A * :  H*omp(R N) ---, g*omp(.Y ) . 

(If A is smooth,  one can define A* by pulling back forms w from R N to X. If 

A is non-smooth,  one can apply this to a smooth approximation of A.) Then, 

by summing over F = 7rl (X) which acts on X by deck transformations, one 

obtains a homomorphism 

g*omp(,Y ) ~ H * ( X ) ,  

whose composi t ion with A* is denoted by A*: 

A* : H*omp(R N) --* H * ( X )  . 

If A is smooth,  then the image A*(c) of a class c E H*(R N) given by a form 

w on R N can be represented by the form 

"yEF 

on  X = ~Y/F. 

Notice, that  we have not used the contractibili ty of .~ so far. This 
becomes important  only if we want to compare A* to K*. Recall that  every 

isomorphism 7rl(X) --* F induces a homomorphism h : H*(F)  ---* H*(X) 
and in the case where f (  is contractible, h is an isomorphism. So, with a 
fixed isomorphism between F and ~rl(X), we can identify the cohomology 

of F with that  of X.  

Next, by restricting A to the F-orbit of a base point x0 E .Y, we obtain 

a map a, : F --~ ~ g  for 

a(7 )  = A(7~0)  , 

and whenever c~ is mult iproper we have the homomorphism 

~* : H(*o,,,p(R ~') --* H*(F)  . 
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Then. under a very mild assumption on A, this homomorphism does not 
depend on the choice of x0 and, in fact, it equals A* via the identification 
H*(F) = H * ( X ) .  The "very mild assumption" is satisfied, for example, 

if .4 is a Lipschi tz  map with respect, to the nletric on 2( lifted from some 

Riemannian metric on X,  i.e. 

distRN (A(Xl), A(x2)) < c d i s t~ (x l ,  x2) , 

for all xl ,  x2 E X and a fixed constant c >__ O. 

. 

Let us indicate a typical situation where the homomorphism A* is non- 

trivial. Let the (compact) manifold X have no boundary,  assume d i m X  -- 

N and let the (proper) map A : ..Y ---* ~ g  have a non-zero degree d with 
respect to some orientation chosen in .~2. Then the fundamental  class c E 

H,:~mp(R N ) goes to d times the fundamental  class of .~ and A*(c) E HN(x) 
equals d t imes the fundmnental class of X.  

EXAMPLE: Let F = Z N and X equal the N-torus  T N. Then ,~" = R N and 
the identity map  A : .Y + ~ N  induces the fundamental  class of T N. Notice, 
that in this case, A* = K* and so the standard embedding c~ : Z N ---+ R N 

induces a non-zero element in 

HN(z N) = HN(-] -N) = R . 

(Recall that  the cohomology here and below is taken with real coefficients.) 

5. 

There are definite limits to our construction of non-trivial elements in 
* N H*(F) of the form ~*(c) for c E Hcomp(R ). First of all, the cohomology of 

R N with compact  support  is non-zero only in dimension N ,  where it is one 

dimensional. Thus we may only produce non-trivial elements in HN(1-'). 

To see bet ter  what happens next, we assume that  1-' is isomorphic to the 

fundamental group of a compact  polyhedron X,  such that  the universal 

covering iY is N - c o n n e c t e d ,  i.e. rr2(.~) = 7r3(.Y) . . . . .  a-N(,~) = 0. (For 

example, the manifolds X with contractible X are good enough here.) Then 
the group Hiomp(.~() for i _< N is, in fact, independent of X and can be 
called i Hcomp(F ). Furthermore,  it is not hard to extend this definition to an 
arbitrary finitely generated group F without assuming the existence of X.  
(Notice that  the existence of X amounts to a certain finite dimensionality 
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property of the cohomology of F.) Now we observe that  the homomorphism 
~* factors through 

~* : H*omp([~ N) ~ H;omp(r), 

and so it is zero in dimension N if H~mp(F ) = 0. (It may  be only fair to the 

reader if we admit  at this point that  our Hcomp(~ ) equals the cohomology 
of F with coefficients in the real group ring of F.) For example, if our X is 

a closed n-dimensional manifold, then the homomorphism ~* is zero unless 

g~ : N .  

To appreciate the third difficulty which may appear  we suggest that  the 
reader look at the free group F on two generators, where the s p a c e  H : o m p  ( F )  

is infinite dimensional. The polyhedron X here is the figure oo and X is a 

regular infinite tree. It takes a minor effort to construct a proper Lipschitz 
map A :  .~" --* R which induces a given class c* in H~omp ()() from a class c in 

HJomp(R). The problem becomes visibly more difficult for N >_ 2 where 2( 
is a kind of N-dimensional  tree, e.g. an N-dimensional  Bruhat-Tits building, 
whose first (and least interesting) representative is the Cartesian product  

of N trees. Here we have infinitely many N-dimensional  branches  getting 

in the way and arranging them into a proper Lipschitz map  A : X ~ R g 
with A* r 0 on Hcomp requires a certain amount  of attention. We advise 
the reader to look at such maps  of products  of trees to R g.  

6. Families of Maps.  
We want to detect  cohomology classes in H~'(F) (or in Ha(X)  for F = 

7h(X))  by using proper maps F ~ R g (or .~ ~ RN), where N > n. There 

are two somewhat  different aspects to the problem, which we first discuss 

separately. 

6 .A  N o n - c o m p a c t  f ami l i e s .  Suppose F = :r l (X) where X is a closed 

connected aspherical n-dimensional manifold; "aspherical" means ~rl (X) = 
0 for i _> 2, which is equivalent to contractibil i ty of the universal covering 

.~ of X.  The class we want to detect  is [X]* e Ha(X)  = H~(F) ,  i.e. 

the fundamental  cohomology class of X for some choice of orientation on 

X.  If the dimension n of X equals N = dim R g then we have at our 

disposal, as before, proper maps X --~ ~ g  of non-zero degree d which 

"detect" [X]*. Now let N > n. Then, of course, individual (proper) maps  
) (  ~ R N are homologically insignificant and so we need families of such 

maps. Namely, we take a parameter space P which is an ( N - n ) - d i m e n s i o n a l  
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oriented manifold ,  e.g. P = ~N-,~, and use as our "detectors"  proper  maps  
.~( x P --, R N of non-zero degree. 

Remark: If we had  no addi t ional  restr ict ions on our proper  maps  )~ ---* 
R N there would be no need for ext raneous  paramete rs  since every open n- 

dimensional  manifold  .Y admi t s  a proper  m a p  of degree 1 onto  R ~. However, 

in our appl icat ions  we are only allowed to use proper  Lipschitz maps  )(  
R N. Then,  it m a y  happen  ( though we do not  have a convincing example)  

tha t  a "Lipschitz  detector"  .Y x P ---, R N exists only  for N > n = d im)~ .  

Anyhow, there are cases where the "paramet r ic  Lipschitz detector"  is readi ly 

available while the non-paramet r ic  one (with N = n) is ha rd  to come by. 

Notice t h a t  the Lipschitz condi t ion for maps  .~ x P ~ R N applies to 

some produc t  metr ic ,  where the metr ic  on .'~ mus t  be F-invariant  and  the 

metric on P m a y  be chosen as large as we want.  

6 .B E q u i v a r i a n t  f a m i l i e s .  Let  X be as above and suppose we want  

to "detect"  a k-dimensional  cohomology (o1" homology)  class of X for k < 

n = d im X.  hnag ine ,  for example,  we have a k-dimensional  submanifo ld  

Y C X represent ing a class in Hk(X) which we want  to detect  by maps  

into W ~. There  are cases where the fundamen ta l  group of Y cons t i tu tes  a 

"k-dimensional  piece" of 7q (X) ,  as happens,  for example,  if X is an n- torus  

and Y is a k-dimensional  subtorus.  For such a Y we can use an (n - k)- 

dimensional  fami ly  of maps  f" --* W' de tec t ing  [Y]* C Ht ' (Y)  C H*(X) as 

we did for [X]* in 6.A. However, in the general  case the fundamen ta l  group 

of a connected  submani fo ld  Y represent ing a given class in Hk(X) m a y  be 

as big as 7rl(X). For example ,  let. Y be a closed surface in the n - t o m s  -[~ 

whose f u n d a m e n t a l  group surjects onto t ha t  of T" .  Then  the  lift Y of Y to 

W ' = Y" is a connected  surface which is ra ther  dense in W ~ and  there is no 

apparent  fami ly  here of the previous kind Y x P --, W' wi th  non-compac t  P .  

Let  us indicate  how to overcome this problem by using an act ion of F = 

7h(X) on the pa rame te r  space. Namely,  we take some (n - k)-dimensional  

manifold P wi th  a free F-act ion and  look for ( typical ly  n o n - p r o p e r ) m a p s  

Y x /3 ---, R '~ which comnmte  with  the diagonal action of F on Y x P .  

One can th ink  of 5 : }:~ x / 3  ___, R,~ as a m a p  of P = /3 /F  into the  space 

(Map(f~,  W~)) /F  where the act ion of F on the  space of maps  is induced by 

the act ion of F on }~. (Notice t ha t  the maps  2( x P - - - *  ~ g  we looked at  

before correspond to maps  P --* Map( .~ ,  Rg) . )  

We denote  by Z the diagonal  quot ient  space }" x / 5 / d i a F  and  we insist  

on properness of the maps  Z ---* R" corresponding to our  diaF- invar iant  
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maps Y x /5 .._, R". Such a map, by definition, detects [Y] if the map 
Z ---, R n has non-zero degree. 

Notice that  we shall eventually use here only those maps :Y x / 5  --* R n 
which are Lipschitz with respect to the product metric in ~" x /5 where 
:Y must  have F-invariant (i.e. coming from Y) metric, while o n / 5  we may  

choose arbitrarily large metric (in order to facilitate the Lipschitz condition). 

EXAMPLES: (a) Let Y and P be closed, connected, oriented submanifolds 
in the n-torus i-n, such that  d i m Y  = k, d i m P  = n - k ,  and such that  Y and 
P have a non-zero intersection index 5. We identify the universal covering 
of yn  with R '~ and thus we obtain a proper map of Y to R n. Furthermore,  

each translate Y +p ,  p E P gives us a lift :Yp C Y~ and hence a map of :Y to 
R" defined up to the action of F = Z n. Thus, we get our proper Lipschitz 

map  Y •  ---* R ~, which has degree 5 r 0 and which detects the class 
[Y]* E g k ( $  ") of Y (as well as the class [P]* E g n - k ( T  ~) of P).  

(b) Let X be a closed manifold with a metric of non-positive sectional 
curvature. Then, for each point x E X,  the (geodesic) exponential map 
eXpx : T,(X)  ---* X lifts to a diffeomorphism of the tangent  space Tx(X) 
onto the universal covering (by the Car tan-Hadamard  theorem). This lift 
is uniquely defined by a choice of a point ~ E ~Y over x and denoted by 
ex--~,. The collection of maps e . ~ ,  for x running over X defines a fiberwise 

diffeomorphic map of the tangent, bundle T(X) to the manifold Z(X) = 
~- x .~ /d iaF  which is fibered over X with the fibers called Z,(X)  (=  X).  
Since e .~  : T(X) ---* Z(X) is a diffeomorphism we have the inverse map, 

denoted 

log: z(x) T(X), 

which diffeomorphically sends each fiber Zx(X) onto T,(X). 
Now we take two intersecting cycles in X,  realized by submanifolds Y 

and P as earlier. The embedding Y x / 5  C ~Y • ~Y induces an embedding of 
Z = Z ( ) ;  P )  = ~-T x / 5 / d i a F  into Z(X) and the composition with log gives 

us a map Z ---* T(X). Notice, that Y and P appear on an equal footing 
in this discussion, but we now distinguish between the two by making our 
choice of the projection Z(X) ~ X. There are, a priori, two projections, 

corresponding to the projection of ) (  x )( on the first and on the second 
factor. Here we choose to project on the second factor, so that  P goes to 

the base X of the fibration Z(X) C X while ]'~ x ~, ~ E ~5 goes to the 
fibers. Thus,  the image of our map Z ---* T(X) lies in the tangent  bundle 
T(X) restricted to P C X. One thinks of this as a family of maps of 
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= Zp C Zp(X)  to the Euclidean space R '~ = Tp(X) which now varies 
together with p E P .  This generalized family of maps ~" ~ N ~ reduces 

to an ordinary family (where N" is independent of p) if the manifold X is 
parallelizable, i.e. if the tangent bundle T ( X )  is trivial. In this case, there 

exists a fiber-isomorphic map  T ( X )  ---* R '~, which we may also choose fiber 
isometric (for our Riemannian metric, thought of as a field of Euclidean 

structures on the fibers T , ( X ) ,  x E X) .  If we compose the above map 
T(X) --* N '~ with the previously constructed log-map Z ---* T ( X )  we get a 
proper map Z -~ R n whose degree (clearly) equals the intersection index 

between Y and P.  Besides, this map is Lipschitz on each fiber Zp = Y, 
p E P,  which is good enough for our future purposes. 

If X is non-parallelizable, one cannot, in general, produce the desired 
map Z ---, R ~, but  one can add extra parameters  to obtain an [X]*-detecting 
family of maps Y ~ R N for some N > n as we shall see later. 

7. F a m i l i e s  o f  m a p s  I' ---* R N. 

Here, as earlier, F is a discrete group with a fixed left-invariant met- 
ric and we s tudy proper Lipschitz maps ~ : F ~ R N. Notice that  every 

Lipschitz map with the Lipschitz constant )~, i.e. satisfying 

distR N (a(~/1),a(')'2)) _< Adis t r (? t ,72)  , for all ~1,72 E F ,  

can be made Lipschitz with A = 1 by composing with the scaling map 
x H A- ix  of R N. Lipschitz maps with A _< 1 are also called contracting, 
since they are distance decreasing. 

Similarly, given a family of uniformly Lipschitz maps, i.e. )~-Lipschitz 

for a fixed A, we can make them all contracting, by the scaling x H A-ix .  

From now on we prefer to deal with contracting rather than uniformly Lip- 

schitz families as it is somewhat  easier oi1 the terminology. 

7.A F a m i l i e s  w i t h  a f ixed  t a r g e t .  This means a continuous map 5 : 

P x /3  --, R N , where /5  is a locally finite polyhedron of finite dimension with 

a proper (but  not necessarily free) action of F, and where 5 satisfies the 
following three conditions. 

(i) Contracting property. For each ~ E /5  the map ~ oll F = F x ~ is con- 

tracting (for a left invariant metric on I" chosen and fixed beforehand). 

(ii) diaF-invariance. The map 5 is invariant under the diagonal action of 
[' on [' •  where F (isometrically) acts on itself by left translations. 
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(iii) Properness. For each 3 E F the map ~ on /5 = 7 x / 5  is proper; this is 
equivalent to the properness of the map 

F x / 5 / d i a F  --+ N N 

associated to P. 

Let us translate the above conditions in terms of maps of the quotient 
space F x /5 /d iaF  to R g. First, we observe that  this quotient space is canon- 
ically homeomorphic to/5 ,  by the project ion/5 = id x/5 ~ F x / 5 / d i a r ,  id = 
the ide:ltitv element of F. Every diaF-invariant map ~ : F x /5  ---+ ~ g  defines 
a map of P = F x /5 /d i aF  to R N by going to the quotient. Conversely, every 
map o :/5 ~ R x leads to 5 by 8,(?, ~) = a~(7-: ~5); this 8 is F-invariant, as 

Next we observe that  

distR.,, (c;(id x~) ,g ( ' )  x ?)) = distRN ( ( I ' ( ) ' ) ) ,  C t ' { " f - - l p ) )  

and the:: we ca:: easily see that the contracting property (i) is equivalent to 
the following 
(i)' Displacement bound. All )'5 E/5  and 7 E F satisfy 

distRN (ca()5), a(7}5)) < II~ll, 

where 1171] c~f (listr,(?,id). (Notice that 117]1 = HT-:II for every left 
invariant metric on F, as d i s t (7 - : ,  id) = d i s t (77 - : ,  7).) 

Smmning up, we see that a family c~ satisfying (i)-(iii) amounts to a 
proper map c~ : P ---, R '~" satisfying (i)'. 

7.B F a m i l i e s  w i t h  a v a r i a b l e  t a r g e t .  Here the F-space/5  comes along 
with an Euclidean F-bundle T ---* P. This means that  T is an oriented 
vector bundle over /5 with a continuous field of Euclidean metrics in the 

fibers :Fp. )5 E/5  and F acts on T by fiber-wise linear, metric and orientation 

preserving homeomorphisms such that the resulting ac t ion  on the set of the 
fibers coincides with the underlying action of F on P .  

Now, our families are maps K : F x / 5  ~ T,  such that: 
(i)* every F-slice F x }5 lands in the fiber T~ and the  resulting map  F = 

F • ~ ---* T~ is contracting; 
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(ii)* the map G is diai,-equivariant; 
(iii)* the function 

is proper on/5  = I, x/B/dial,  where II 117 denotes the norm T --* R+ 
corresponding to the Euclidean structure. 

R e f o r m u l a t i o n  in t e r m s  of /5  a lone.  If the action of I, on 15 is free, or 
more generally, if the isotropy subgroup of every point ~ E/5 acts trivially 
on the fiber T~, then the bundle T is induced from a vector bundle T over 
the quotient space P = /5 / i , .  I n  this case our families can be identified with 
proper continuous maps c~ : P -~ T which commute with projections of/5 
and T to P,  i.e. the diagram 

/5 ~) T 
\ / 

P, 

is commutative, and which satisfy the displacement bound 

dist (ct(7}),a(~)) _< 11711 , 

for the implied Euclidean distance in the fibers Tp, p E P. 
In the general case, where the (finite) isotropy of ~ may act non-trivially 

on ~ ~, the above reformulation is still possible but becomes somewhat awk- 
ward as it applies to the orbibundle structure on T/I, .  

7.C Fix ing  t h e  t a rge t .  Every family with a fixed target space R N can 
be formally (and obviously) reduced to the variable case with T = / 5  • RN 
where I, acts on the first factor. Conversely, if the I,-bundle T --* /5 is 
trivial, i.e. admits a continuous I,-invariant field of orthonormal N-frames, 
for N = rank T, in the fibers T~, ~ E/5, then the resulting identification of 
each fiber with R g gives us a fiber isometric map T --* R N. By composing 
this map with a family I, x /5  ~ ~ we obtain a family I, •  ~ R iv and we 
easily see that the properties (i)*-(iii)* of the former imply (i)-(iii) of the 
latter (compare Example(b) in 6.B). 

More generally.let T be non-trivial, but just assume that the isotropy 
of each point ~ e P acts trivially on T~ (e.g. I, acts freely on/5).  In this 
case T is induced from the bundle T = T/I" over P = P/I ' .  This T admits a 
complementary Euclidean bundle, say S --* P,  such that T $ S is trivial and 
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the:: the lift, S --+/5 F-complements :F, i.e. T �9 S is F-trivial. (Notice that 
the existence of a F-complement to T implies that the isotropy subgroups 
act trivially on the fibers.) 

Suspens ion .  Let us suspend a given ~ : P x/5 __+ ~ with an arbitrary (not 
necessarily complementary to T) Euclidean F-bundle S --+/5 as follows. We 
take the (total space of the) bundle S for the new (suspended) parameter 
space/5,, we pull back the bundle T | S -+ ~5 to S and we denote the pulled 
back bundle by T' = T ~ S --+ S = /5 , .  Now we define the suspension 

a '  = a [ - 4 - ]  : r • 

a ' ( : ,  (i), : ) )  = i)) + (7.1) 

where the points in/5, = ~ are represented by the pairs ()3, g) for }5 E/5 and 
E S~ and where the sum on the right hand side is take:: in the fiber T~ | S~ 

which is canonically identified with the fibers :F~, for all p' E/5, of the form 

p' = (~, ~), g E S~. In other words (7.1) defines a map F x/5, __+ T(~S which 
is then interpreted as a map to the bundle :F' over/5, (which is induced from 
the bundle T �9 S over/5 by the projection/5, = ~ __+ p).  

It is immediate, that the properties (i)*-(iii)* for 8 imply those for ~'. 

F ix ing  t h e  t a r g e t  over  t h e  suspens ion .  Now we assume that S is the 
bundle complementary to T and we use a trivializing map of T' = T ~ 

t o  ~N+M for N = rank T and M = rank S. This, composed with 8', gives 
us a family denoted 

~o : r x/5,  __+ RN+M 

which satisfy our requirements (i)-(iii). 

Remark: It will become clear later on (see (II) in 8.A) why we have to 
enlarge the parameter space (/5, = ~ instead of/5) rather than use the 
(more) obvious family P x /5  __+ ~ �9 S obtained by composing the original 
a :  r x /5  __+ ~ with the embedding T --+ :F �9 S by t'~-+ t '+  0. 

8. Proper Lipsehitz eohomology. 
We want to describe the cohomology classes of F with real coefficients 

which are "detected" by a given family ~ : F x /5 + ~. In fact, we are 
going to construct a homomorphism, called a,n, fi'om a certain homology 
of ,5 to the cohomology H*(F) such that the "detectable" classes will be 
exactly those which lie in the image of this homomorphism. We start with 
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the simplest case where /5 is a smooth oriented i-dimensionM F-manifold 
(i.e. the action of F on /5 is smooth and orientation preserving) and we 
define the value of our homomorphism on the fundamental  class [P] of 
/5 as follows. The homomorphism 8n,  when applied to the /-dimensional 
homology, is going to land in H k ( r )  for k = N - i, where N = rankT.  So, 
~n[/5] may be defined by a k-cochain on F, i.e. a F-invariant real valued 
fimction in the variables 70 , . - . , 7k  E F. Denote by A = A(v0 , . . . ,Vk)  the 
simplex abstractly spanned by 70 , . . . , 7k ,  i.e. A equals the set of formal 

k k 

linear combinations y~ #jVj, with #j >__ 0, satisfying y~ ~ i  = 1. The map 
j = 0  j = 0  

5,: F x / 5  __, ~ seads each F = F x ~, ~ E/5  into the fiber :F~ and then this 
map extends by linearity to 5zx : A x /5 ~ T, 

k k 

" j = 0  j = 0  

where the points of T are represented by the pairs (~ , t )  E T~. 

Let us take an exterior form a; on T whose support lies within bounded 
distance fl'om the zero sect ion/5  ~ :F, i.e. Ilsll  _ coast  < oo, for all s in 
the support of a;. We temporari ly assume the map 8 is smooth (on each 
") x /5)  and set 

(,) c(~'0,... ,'yk) = • 

for the induced N-form 8;, (a,') on the oriented manifold A x /5 (which has 

dimension k + (N - k) = N).  Notice that  the properness property of 

in conjunction with the contracting property (see (iii)* and (i)* in 7.B) 

insure that  the form ~:,*,,(~) has compact support and so the integral in 
(*) is indeed defined. Furthermore,  if the form a; is F-invariant, then the 

diaF-equivariance of ~ makes the fimction c invariant, 

c(~7o . . . .  ,77~) = c(7o . . . . .  7k) �9 

Now we take a F-invariant closed form ~ representing the (F-invariant) 
Thorn class of T and take the cohomology class of c, [c] E H k ( r ) ,  for ~n[/5]. 

Recall that  the Thorn class is the Poincar~ dual of the infinite cycle 
represented by the zero section /5 ~-* :F. Also notice that  if T admits a 
(F-invariaut) trivialization map T ---* R "~;, then the Thorn class is induced 
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by the fundamental class of R N in N N Hcomp(~{ ) and so one can use for w the 
pull-back of some form with compact support on R m. 

In the case where 8 is non-smooth, one can always slightly (and F- 
equivariantly) perturb ~ in order to make it smooth and then the above 
class in Hk(F) is defined by means of the (smooth!) perturbed 5. A trivial 
argument shows the result is independent of the perturbation. 

8.A. Let us indicate two useful (albeit obvious) properties of the above 
construction. 

(I) Functor ia l i ty .  Let/5 and/5' be two F-manifolds with/-dimensional 
Euclidean F-bundles T over/5 and T' over/5' and let f :  T' --* T be a con- 
tinuous fiber preserving and fiber isometric F-equivariant map, such that 
the underlying map f :/5' ~ / 5  is proper. Let 

~ : r x / 5 ~ T  and 8 ' : F x / 5 ' - - - §  

be diar-equivariant continuous maps, such that 

f (~ ' (%P ' ) )  : ~(D',7(P')) �9 

Then the contraction and properness properties (i)* and (iii)* (see 7.B) 
for 5 imply those for ~', and if f (and hence f)  is onto, then conversely (i)* 
+ (iii)* for ~r imply those for 8'. Furthermore, if the map f has certain 
degree d ( i .e . f . [P ' ]  = d[P], which is always so for some d if the manifold 
P is connected), then K~[/5'] = d~o[/5]. 

EXAMPLE: Let f be an automorphism (gauge transformation) of T, i.e. a 
F-equivariant fiber isometric map T ~ T sending each fiber into itself. Then 
each of the properties (i)*, (ii)* and (iii)* for ~ implies the corresponding 
property for ~' and ~ ( / 5 )  = 3n(/5). 

(II) Suspens ion  proper ty .  Consider a family ~ : F x/5 ~ T, let ,.q be 
another r-bundle over/5 and take the suspension 8' = 8 [-~ S :  F x/5, ~ ~, 

(where/5' equals the total space of S and T' = T ~ S, i.e. the bundle on 

/5' induced by the projection/5' ~ / 5  from the Whitney sum T | S). Then 
each of (i)*, (ii)* and (iii)* implies the corresponding property of ~' and 
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8.B Extension of ~ to R-cycles. Now let i B be an arbitrary (non- 
malfifold) F-polyhedron and let us observe that  the construction of ~n(/5) 
obviously generalizes to all infinite simplicial F-invariant cycles in /B with 

real coefficients. Thus c~n becomes a homomorphism from the real P- 
invariant homology of /5 with (infinite) non-compact  support  to the co- 
homology of F, i.e. 

~n : Hi (P  : F) ~ HN-i(F)  , i = O, 1 , . . . .  

Notice that  if the action of F is free and the quotient space P is compact  
then the above homology H, ( /5  : F) (with any, not only real, coefficients) 

is. obviously, the same as the ordinary homology of P = /5/F. If P is 
non-colnpact, then H,(/B : F) equals the homology of P with non-compact 

(infinite) supports  (again, for arbitrary coefficients). In general, the natural  
llonmmorphism 

H, ( /3  �9 F) ~ H , ( / 3 / F )  

mav not be an isomorphism. Yet if the coefficient field is R and if there 
are only finitely many conjugacy ('lasses of "~ E F which act non-freely on 

P. then this homonmrphism is an isomorphism. (Observe that  the above 
finiteness condition is satisfies if P / F  is compact.)  

8.C DEFINITION: A cohomology class c in H*(F)  with real coefficient is 
called proper Lipschitz (with the variable target space R N) if there exist a 
proper F-space /3  f ~ /3 and 8 as above, such that c = ~n(b) for some 

b E H , ( P  : F). (Recall, that  for N = r a n k T  and b E Hi we get c E HN-i ) .  
Here. one 1nay distinguish the case of c = C~n[/5] for a manifold [', and also 
the case of the fixed target space N x,  which means T = /3 x R N and the 

map ~ �9 F x / 3  + ~ reduces to a F-invariant map r x P --+ R N. 

The following proposition shows that the target space R N can be fixed. 

8.D PROPOSITION. Every proper Lipschitz c/ass c can be represented as 
/~(b) where the implied F-bundle T ~ P is trivial and so ~' reduces to a 
map F x / 5  + R.~ satisfying (i)-(iii) of 7.A. 

Proof: Let its first assume that F acts fi'eely on /3. Then there exists a 

(complementary) bundle S --+/3 such that T q~ S is trivial and the propo- 

sition follows by taking the suspension 8'  = c~ [ ~ ]  S for a given ~ with 

~(b) = c. Here it is worth noticing that the projection, say rr : ,fi' = S + / 3  

induces a natural  suspension homomorphism (which is, in fact, an isomor- 
phism) rr n : Hi(P : F) ---+ Hi+M(P' : F), i = 0, 1 , . . . ,  as every / -cyc le  i n / 5  
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pulls back to an (i + M)-cycle in /5 '  = S for M = r ankS .  The  suspension 
h o m o m o r p h i s m  clearly commutes  with 8n (compare (II) in 8.B), i.e. 

an(rrn(b))  = So(b) for all b E H, ( /5  : F) , 

which is exactly what  we use in the proof. 
Now let us drop the freeness assumpt ion  on the action of F o n / 5  and 

then  invoke the following elementary fact. 

LEMMA. For every homology class b E Hi( P : F) there exist an i-dimensional 
F-polyhedron P' on which the action of F is free and a proper F-invariant 
m a p  a :/5' --~ P,  such that b = a(b') for some b' E H , ( P '  : F). 

Proof: One should th ink of/51 as a kind of blow-up of (the suppor t  of) a 
cycle representing b at the fixed point  locus. In fact, one may  first blow up 
all o f / 5  by replacing every point )5 with non-trivial  isotropy subgroup F~ 
by the classifying space of F~. Since the groups F~ are finite, this process 
does not change the real (co)homology of /5  and so every F-cycle i n / 5  lifts 
to the blown up space. The  details of the proof are left to the reader. 

Now we use the flmctoriality of 8n  (which was s ta ted  in (I) of 8.A in the 
special case of b = [/5] and which obviously holds in general) and conclude 
tha t  

8a(b) = 8~(b 1) , 

where 8 '  : F x /5  ~ T'  is induced by a from a given 8 : F x 15 _,  ~ as follows. 
The  bundle T '  --*/5' is induced from T by cr (in the usual  sense) and ~' sends 
every "slice" F x ~' to T~, = T~, for ~ = a (~ ' )  by 8 ' (7  , iu') = 8(',/ ,a(p)). 
Thus  we reduce the general case of the Proposi t ion to the free case which 
has been already settled, o 

8 .E  Remark: Suppose the class c we want to "fix" is of the form 80[/5] 
for an / -d imens iona l  manifold /5. Then  we may  look for another  manifold 
t51 with a trivial ~1 --, /5, (i.e. with the fixed target  space R s ' )  and for 
~1 : /51 ._~ ~1 such tha t  

= c .  

If the  action of F on /5 is free, then  the suspension const ruct ion with 
complementa ry  t o / 5  works perfectly within the manifold framework. Also 
there is no problem with the blow-up if there are only finitely many  con- 
jugacy classes of isotropy subgroups F~. But  in the general case there is 
no apparent  simple procedure for fixing the target wi thout  passing from 
manifolds to R-cycles. 
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9. M a n i f o l d s  w i t h  K _< 0. 
Le t /3  be a complete  simply connected Riemannian  manifold with non- 

positive sectional curvature and let. F be a discrete subgroup in the isometry 
group Iso/3. Take some point. P0 E /~ (at. which we may assume the action 
of F is free if we wish so) and define the map /~  fl'om F x / 3  to the tangent  

bundle T = T(/5) as the inverse to the exponential  maps  at all ~) E /5, 
restricted to the orbit of Po, i.e. 

a (7 ,  p) = log~ (7(Po)) , 

where 
log~ = exp~ "1 : /~ -+ T/}(/T) 

d e f  

(compare 6.B, Ex. (b)). The  condition IC < 0 makes log~ contract ing and 
the conditions (ii)* and (iii)* in 7.B are trivially satisfied for this & Now, 
we claim that  the h o m o m o r p h i s m  

an : H, ( /3  : F) ~ H*(F) 

is an isornorph, ism. 

Proof: First ,  assume the action of F to be fl'ee. Then  

H,(/% : P) = Hi,"r(P) for P = / 3 / F  

and 

H*(F) = H * ( P ) ,  

since/B is contractible (in fact, exp?(/~) --+ P is a homeomorph i sm for every 

)5 E /B when K < 0). Furthermore,  the exponential  map  pulls back the 
Thorn class of T = T ( P )  to the Poincar~ dual  of the diagonal  in P x P.  
It becomes clear at this point  that  our 5:n now anmunts  to the Poincar4 
duality i somorphism 

i n f  D : H i (P)  ---+ H ' - i ( P )  . 

In the general (non-free) case, the relevant Poincar~ duali ty isomor- 
phism applies to H i ( P  " F) and lands in the cohomology of the deRahm 
complex of F-invariant forms, say, 

.D : H i ( I ) :  F) --+ H ' - i ( / 3  : F) , 
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and 5n is the composition of th is /9  with the homomorphism 

H* (/5: F) ---* H* (F) , 

corresponding to the orbit map 

r - - , / 5 ,  v v( 0) �9 

Notice that since/5 is contractible, the orbit map extends F-equivariantly 
to the simplices abstractly spanned by the (k+  1)-tuples (70, . . . ,  Vk), which 
defines the above homomorphism. (Since K _< 0, there is a particularly 

k 

nice extension of the orbit map to simplices, which assigns to ~ I~j"fj the 
j=O 

Riemannian "center of map" of the weighted points #070(P0),.-., #kVk(Po) 
in t5.) 

Finally, we observe that the homomorphism H*(/5 : F) --~ H*( r )  is an 
isomorphism for the cohomology with real coefficients which concludes the 
proof of our claim. 

9.A Remark on contractible manifolds ~5: If we drop the assumption 
K(/5) < 0 but only assume/5 is contractible, much of the above remains 
valid. Namely, here one has a proper F-equivariant map A : P • P ~ T(/5), 
such that every slice/5 x ~ goes to the fiber T~(/5) and the map .4p:/5 x ~ --* 
Tp(/5) has degree one for all ~ E/5. This follows by elementary homotopy 
theory. What the homotopy theory is unable to provide is the contracting 
property of .4 on the slices/5 x :~. Yet, even without this property, one can 
study the restriction 5 of .4 to a F-orbit, F(~0) x /5 ~ T(/5), define the 
homomorphism ~n : H.(/5 : F) -* H*(F), and then prove Kn is an isomor- 
phism. Unfortunately, the lack of the contracting property makes A and 
unsuitable for our purposes, at least at the present state of the art. On the 
other hand, there is no counter-example in sight of the above contractible F- 
manifold/5, where one cannot find .4 with the contraction property. (If /5/F 
is non-compact one should allow a preliminary modification of the metric 
in/5.) 

10. Proper Lipschitz cocycles and the Novikov conjecture. 
In this section we shall show that for any discrete group F and any 

proper Lipschitz cohomology class w E H*(F, R), the Novikov conjecture 
is satisfied, i.e. the following expression is a homotopy invariant of pairs 
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(M,~b), where M is a compact  oriented manifold and #, : M --* B F  a 

continuous map: 

Higher Signature  (M, r  = <L(M)~/~*(c~), [MI) . 

The proof of this fact will be a simple application of Kasparov's  r-equivariant  
KK- theo ry  [K]. 

10.A T H E O R E M .  Let F be a discrete group. Every proper Lipschitz co- 
homology class cv E Hk(r, R) satisties the Novikov conjecture. 

We first recall that  a Fredholm representation of the group F is given 

by a uni tary representation 7r of F on a Hilbert space Ij and an operator  F 

on h such that  the following are compact  operators (for any g E F): 

a) F ' 2 - 1  , b) F - F *  , c) [~(g) ,F]  . 

More specifically, these data  define an odd Fredhohn representation. 

An even one is given by the ~ame data  together with a 1[/2 grading 7, 
7 2 = 1, "y = "y* of b, which commutes with 7r(g), Vg E F, and anticommutes 
with F.  

Using the Hilbert  bundle on BF  obtained from the representation 7r of 

r on h and a continuous family of Fredhohn operators ( G ) x e B r  obtained 
fl'om F (cf. [M]) one associates to every even Fredholm representation of F 
a virtual bundle on BF. This yields a map: 

. ' :  I(/c(c*(c), c) --, I(*(Br) 

of the K-homology of the C*-algebra of the group F to the N theory of the 

classifying space BF. Here C* (F) = Cn*~ • (F) is the enveloping C*-algebra of 

the involutive Banach algebra (I(F) of (1-flmctions on F, with convolution, 

and with the involution f*(g) = ~ ( g - l ) .  The K-homology is defined for 

any C*-algebra, as is the bivariant fnnctor K K ( A ,  B) of Kasparov ([K]). 

It follows from the work of Miscenko [M] that: 

IO.B LEMMA. Any w E H * ( B F ,  R) which is of tile form ch(pt(f l))  for some 

d E K K  (C* (F), C),  satisties tile No~qkoy colqectm'e. 

As mentioned above. K-homology is defined for any C*-algebra A. 
Moreover, in the ( 'omnmtative case, i.e. when A = C0(X) is the algebra of 
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continuous fllnctions vanishing at oc, Oll a locally compact  space X,  one has 
a natural  rational isonlorphisnl: 

ch. : K K ( A ,  C) ~- H . (X)  , 

where H, (X)  is the homology we considered in section 8 above when X is 
a locally finite polyhedron. 

A bit more generally, this Chern character in K-homology still makes 
sense in the case of proper actions of a discrete group F on a locally compact  
space }" and one gets a natural  rational isomorphism: 

ch. : K K r ( C 0 ( I ' ) , C )  -~ H.(}" : F) , 

which reduces to the above for X = Y/F when the action of F is free. Here 
we used the equivariant K K - t h e o r y  of Kasparov. whose definition is recalled 
below. 

All this shows that., in order to prove Theorem 10.A, it is enough to lift 
to X- theory  the construction of the map a'n : H , ( /3  : F) + H*(BP) which 

was defined and explored in the previous sections. That  is, it is enough to 

construct  a map O from the group K I@ ( Co( ['), C) to KK(C*(F) ,  C) such 
that the following diagram is conmmtative: 

KKr(C0(P),C) e,, KK(C*(F),C) "', K*(BF) 

l h.  ch" 
H,(b  �9 r) , H*(gr)  

(10.1) 

Our data  here is, exactly as above, a proper F-space /3 and a proper 
map  a : /3 __+ RN which satisfies the displacement bound: 

distR,,, (a,(~),a,(7~9)) <_ Ibll v> ~ ~ ,  v~ ~ r .  

It then follows that any class of the form co = c~n(x) for some x E H,( /5;  F) 

can (rationally, which is enough for our purpose) be writ ten as co = ch* (#'r  

for some y E KICr(Co(P), C) such that  ch,(y)  = x. Thus, any proper Lips- 

chitz class is (rationally) in the range of ch* oid and hence, by Lemma 10.B, 

satisfies the Novikov conjecture. 
Thus, our proof is now reduced to two main steps: 
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1) construction of the map q~; 

2) check that the diagram (10.1) is commutative.  
Let us begin with 1). Parallel to the homologieal sitation, we shall de- 

fine the map ~5 as an intersection product,  i.e. we shall construct an element 
N(ct,) E ICKF(C, C0(/5)) of the F-equivariant N- theory  of ,b and let 

o(v) = Ic(( )#ru mCr(C, c) mc(c*( r ) ,  c ) ,  

where the intersection product  in F-equivariant NN theory has been written 

# r .  
For the convenience of the reader, we shall recall the definition of Kas- 

parov of the group KNr(A, B), where .4, B are two C*-algebras on which 
tile discrete group F acts by automorphisms.  It. will then be obvious that  a 
proper map ct, : P ---+ R N defines an element 

e mCr (c, c0(b)) 

In general, the group KKr(A, B) is constructed as the group of equiv- 

alence classes of Kasparov A - B bimodules (E, F, 7). We have to explain 

what E, F, 7 are and what conditions they have to satisfy. 
First, C is a C*-module over B. This notion extends the commutat ive  

notion (i.e. when B = Co(X), X locally compact)  of a continuous field of 

Hilbert spaces (~3x)xsx, which itself contains as a special case the Hermitian 

complex vector bundles E over X. Given such a bundle E on X ,  the space 

E = Co(X, E) of continuous sections of E vanishing at ec has the following 
structure: 

- C is a right module over Co(X). 
- The map ~, r 1 E C --+ (~,r/) E Co(X), (~,r/} (:r) = (~(x),rl(x)) (which 

uses the inner product  in each fiber Ex of E) verifies, besides its obvious 

sesquilinearity (antilinear in {): , 

a,) ({a, rl}=a*(~,rj}b Va, bECo(X) 
>_ o 

7) gifted with norm II{H = II ({,{} II 1/~', E is a Banach space. 

All these conditions make sense when Co(X) is replaced by an arbitrary 
C*-algebra B and define the notion of C*-module over B. Even when B is 

commutative,  the notion is more flexible than that of the Hermitian bundle 

since it allows fiber dimensions which vary in a semicontinuous discontinuous 
manner. 
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To the usual notion of endonmrphism of a Hernfitian bundle, corre- 
sponds in general the notion of endomorphism of a C*-module. They  form 

a C*-algebra: 

End B(g) , 

whose elements are pairs T,T* of B-linear continuous maps from g to g 

such that: 

(T*~, , )  = (~,T,} V ~ , ,  E E .  

Any pair {, r /of  elements of g gives rise to the endormorphism: 

[~ > <  '/I E End u(g)  , 

with: 

(1~ >< ,1 ) r  = ~ ( , , r  E E V ( e E .  

The linear span of these special "rank one" endornorphisms, is a two sided 

ideal in End B(C), and its elements are called compact endomorphisms. 

Now a Kasparov A - B bimodule is given by a C*-module g over B, a 

representat ion of A in g (i.e. a , -homomorphism rr of ,4 in End B(E)), and an 

element F of End B(C) such that  the following are compact  endomorphisms: 

a)  ( F  2 - 1)rr(a) , Va E A ; b) ( F  - F*)rc(a) , V a  E A ; 

e) [~(0.), F] , V~, E .4. 

Finally, in the r-equivariant  case, in which r acts by automorphisms on 

both  C*-algebras A and B, one requires that F also acts on g, that  is one 

has an action p of F on g which is compatible  with the action of F on A 

and B (i.e. p(g)(a@) = g ( a ) .  p ( g ) { ,  g(b) for a E A, { E g, b E B and 
(p(g){, p(g)rl) = g ({, r/) V~, ~/E g) and verifies: 

d) p(g)Fp(g)  - I  - F is compact  for any g E F . 

The essential feature of the Kasparov theory is the existence of the 

composi t ion or intersection product:  

K K r ( A , B )  x K K r ( B , C )  --+ K K r ( A , C )  , 

which satisfies bilinearity and associativity relations. We refer to [K] for 

the precise description of the equivalence relation giving rise to K K r ( A ,  B )  
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out of ('lasses of Kasparov F equivariant A - B bimodules,  and for the 
intersection product.  

We shall now proceed to define the element I f ( a )  of K K r  (C, Co(/%)), 

given the proper F-space /5  and the proper map a : /5 + R N satisfying the 
displacement bound. We thus construct a P-equivariant Kasparov A - B 

bimodule where A = C is trivial and will be ignored, while B = C0(/5) with 
the action of F coming from F's action on P.  

As a C*-module we take g = C0(t 5, S), the space of continuous maps 

vanishing at oc f r o m / 5  to the fixed (finite dimensional) Hilbert  space S _~ 
C 2N/2 of spinors, associated to the Euclidean space R N. That  means that  S 

is a Hilbert space equipped with a linear map "y: R N -~ End (S) such that 
a , ) - ~ ( X ) = ~ ( X ) * ,  V X ~ R  N 

,3) = I lXl l  2 . v x  �9 R 

An endomorphism T E End B(C) is given by a continuous family T~ E 
End (S), .~: E J~. We can now use the proper map o, : /5  --~ R N in order to 

define the endomorphism F we are looking for. Specifically, we take 

f .  r --- "-~((~tl(X)) , ~1(32) - -  (1 + Ila,(a:)ll)-lca,(a:), (10.2) 

for any z E/5.  

The action of the group F on g = C0(/5, S) is the obvious one, coming 

from the action on/5 ;  that  is 

( r O ( g ) ~ ) ( X )  = ~ ( g - l x )  ~'.;C E ? , g E F . 

We are now all set t.o check that  the triple (g, F, p) is a F-equivariant 

Kasparov . 4 - B - b i m o d u l e ,  i.e. that  conditions a),b),c),d) above are fulfilled. 

Since A = C acts by 7r(A) = A �9 ids, condition c) is automat ic  and we can 

replace 7r(o.) in a) and b) by ids. By construction (condition a) above), the 

operator F is selfadjoint so that b) is clear. 

To check a) we have to show that  F 2 - 1 is a compact  endomorphism of 

g. Here g is the space of sections of a (trivial) Hermit ian bundle with finite 
dimeT~,sio,n, al fiber S; thus, tile compactness of an endomorphism, (Tx)~ep = 
T E End B(g), is equivalent to the condition: IIr.,,ll ~ 0 w h e n  x oo. This 

is immediately implied for F e - 1 by the conjunction of [3) (7(X)  2 = 112112) 
and of the properness of n. which shows that. Ila, l(a')ll --, 1 when x -* oo 

in/5. 
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Thus, it remains to check d), i.e. to show that  for each element g E F 
one has: 

[ IFg.~. -F~[[~O when x ~ o o .  

Again, this follows immediately from the displacement bound together with 
the properness of c~, which show that: 

IIO~l(gZ)- C~l(X)][--+ 0 when x --+ c~ .  

This shows that  the triple (g, F, p) defines an element K(c~) E KKr (C, C0 (/5)) 

of the F-equivariant K- theory  group of/5. Note that  this element is odd or 
even according to the parity of N = dim(RN); this means that  in the even 

case the spinors S have a natural  Z/2 grading 7 which makes F odd and 
everything else even. We can now define the map 0 :  IfKr(Co(/5),C) --* 
K I ( r ( C ,  C) = KIC(C*(F), C) by: 

r = 

In order to prove Theorem 10.A, it remains to show that  with this choice 
of ~ the diagram (10.1) is comnmtative.  

k 

We let F act on the space EF  of formal convex combinations ~ #jTj; 
0 

k 

ttj >_ O, ~ #j = 1, of elements 7j E F. The space EF  is contractible and, 
0 

"rationally", we can identify the quotient BF = EF/F with the classifying 
space of F. 

We let /5 be a proper F-space and c~ : /5 ~ R :v be a proper map 
satisfying the displacement bound. We may assume (cf. 8.D) that  the action 

of F on /5  is free. In this case, paralM to the homological situation discussed 

above, one has a natural  isomorphism: 

KKr (C'o(/5), C) C) 

To see that,  one observes that,  by construction, the group 
If  I(r ( Co( /5), C) of F-equivariant Kasparov C o ( / 5 ) -  C bimodules is iden- 

tical with the group K/C(C0(/5) r,c) where the C*-algebra C0(/5)~F is 

the crossed product  of Co(/5) by the action of F. Indeed, in both cases one 
deals with a covariant representation zr of (C0(/5). F) on a Hilbert space 
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together with an operator F on I~ such that  for any f E Co(/5) and 7 E F 
the following are compact operators in b: 

a) 7r(f)(F 2-1) ;  b) 7r(f)(F-F*); c) [Tr(f),F ] ; d) [ r ( 7 ) , F  ] . 

This gives the equality: 

KKr(Co(/5), C) = I(K(Co(/5) C, C). 

Now the action of F on /5 being flee and proper, one has the Morita 
equivalence Co(/5)>~F ~ C0(/5/F) and hence the isomorphism: 

KK(C0(/5).F,C) _ KK(Co(/5/F),C). 

This implies in particular that  we can restrict to triples (b, 7r, F)  as 
abo~'e such that  [Tr(7),F ] = 0, V7 E F. Let such a triple g, = ([~,Tr, F)  

be given, and consider the space Z = /3 X r EF. It is the total space of 
fibration Z ~ BF with f i be r /5  canonically associated to the action of F on 
/5. The fibers p - l ( x )  _~ /5 are locally compact by construction. The exact 
F-invariance of (b, 7r0.F) where 7r0 is the restriction of 7r to Co(/5) shows 
that the class g can be used to integrate over the fibers in I f  theory, i.e. as 
a map: 

K~,:(Z) ---, K*(BF), 

whore the left-hand side means K-theory  with fiberwise compact  support. 
More specifically, for any compact subset M of BF, the subspace p-1 (M) of 

Z is locally compact  and the class g defines an element of 
/ ( I f (C0 ( p - l ( M ) ) ,  C ( M ) ) ,  and hence a map: 

K2(F'(M)) K*(M). 

Here the C*-module over C(M) is the space g = C(M,'6) of continuous 
sections of the fiat bundle of Hilbert spaces on BF induced by the represen- 

tat.ion 7r of F. In other words, if we let M be the F-covering of M given by 
the pull-back to M of EF ~ BF, an element ~ of g is a F-invariant continu- 
ous section of the trivial bundle with constant fiber I~ on 21"-~ : g = C(~r ,  [~)P. 

Since the operator F is F-invariant it defines an endomorphism of g 
by: 

(F~)~ = F~.r , V~ E C(~"I, b) r . 
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The action p of Co(p-l(M)) on s is given by: 

(p(f)~) (~:) = 7r(f~)~ , V~ E M ' ,  ~ E E , 

where f~ E Co(/3) is the restriction of f to the f iber /3 in the identification 
/5 x r M = p-1 (M).  

Now the element pt(O(y)) E K*(BF)  is equal to (y x 1)(a), where 
a E K~c(Z) is constructed as follows. One first extends, as we did above 

when dealing with homology, the map cr : /3 --, R N to a map a~ from 
x r  E r  --, R s .  Here /3 Xr EF  can be thought of as the space of formal 

convex combinations ~ #jXj, where xj E /3 are on the same F-orbit; then 

This map is tiber'wise proper on the fibration 

/3 Xr EF = Z & BF , 

and thus the pull-back by o,' of the Bott elements /3 E Kc(N N) (i.e. the 
fundamental  class of N N in K- theory  with compact  supports) gives us an 
element a/*(~) E IQc(Z). 

Our claim, that  , r  = (y x 1)a'*(/3), follows from the s tandard 
description of the Bott element from spinors and Clifford multiplication 

[ABS]. 

It then follows that  for any compact subset M C BF and any K- 
homology class z E K,(M) one has the equality: 

( # ' ( 0 ( y ) ) , z )  = (o,'*(~),y • ~-} . 

Thus, passing to Chern characters, we get: 

( c h * ( # % ( y ) ) , c h , ( z ) )  = ( c h * ( a , ' * ( / 3 ) ) , c h , ( y )  x c h , ( z ) )  . 

The commutat iv i ty  of the diagram (10.1) follows now from the equality: 

ch*(/~) = Fundamental  class of R ~v (in Hc*omp(R N) 

and the natural i ty  property of the Chern character. 
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II. In terna l  Cri ter ia  for the  E x i s t e n c e  o f  C o n t r a c t i n g  M a p s  into  R N 

Let Y be an n-dimensional Riemannian manifold, e.g. the universal covering 

)( of a compact  manifold X.  We are interested in proper,  contracting (i.e. 
distance decreasing) maps (and families of maps) Y --~ R N, which may be 

used in the case Y = X for the construction of Lipschitz (co)homology 
classes of the fundamental  group F = 7rl(X). For example, we seek a 

geometric criterion for the existence of a single proper, contracting map 
Y --, R '~ of degree 1 (Y is assumed oriented at this point) and we want this 
criterion to be formulated in terms of Y itself without explicit reference to 

the external Euclidean space R 'r 

1. Se l f con trac t ing  m a n i f o l d s  and  spaces .  

A proper,  continuous, selfmap f : Y --. Y is called selfcontracting if 

(a) the Lipschitz constant A = A(f) is < 1, which means 

dist ( f (Yi ) ,  f(Y2)) _< A dist(gl.  Y2) , 

for all Yl, Y2 in Y and a fixed A < 1; 

(b) the map  f is homotopic to the identity by a homotopy of proper maps 

L : Y ~ Y .  
In what  follows we assume the Riemannian manifold is complete and 

connected. In this case the map f has a unique fixed point, denoted yo 6 Y, 

and every Riemannian ball B(r)  C Y arround yo satisfies 

f - 1  (B(r) )  D B ( A - l r )  , 

for the above A < 1; therefore, the i terated pull-backs 

bl = f - l ( B ( r ) )  , B ,  -- f - l ( B 1 )  . . . .  , S i  = f - l ( B i - 1 ) , . . . ,  

exhaust Y (provided r > 0). The complements Di = Bi - B~-I do not 
oo 

pairwise intersect, their union [3 Di covers the complement Y - B(r ) ,  and 
i = 1  

f maps D~+I onto D/ for all i = 1,2 . . . .  Thus, for every point y in Y 

outside B ( r )  there exists a unique i = i(y) = 0, 1 . . .  such that  the i-th 

power (iterate) f i  of f brings y to O1 = f - 1  (B(r) )  - S ( r ) .  
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2.  S y m m e t r i z a t i o n  o f  p r o p e r  m a p s  Y --* R/V. 

The word "symmetry"  refers to equivariance of maps  Y -*  ~ N  with 

respect  to f ac t ing on Y and  some self-similarity x ~-~ #x,  # for 0 < # < 1, 

on R N. According to this,  a m a p  c~ : Y --~ R N is called #-symmetr ic  

(equivariant)  at infinity if 

= 

for all y outside a compac t  subset  in Y. 

2 . A  LEMMA. Let  Y be a complete  connected Riemannian manifold wi th  a 

selfcontraction f and  let # be a number  in the interval 0 < FL < 1. Then an 

arbitrary proper continuous map  a'0 : Y ~ R N is properly  homotop ic  to a 

m a p  a : }" ~ R s s y m m e t r i c  at infinity, 

Proo]: Let  ft  denote  the implied homotopy  between f = f l  and id = /Co 

and  let p~ = 1 - t(1 - It) in terpola te  be tween / to  = 1 and  #1 = P- T h e n  we 
compose  the homotopies  f t  in Y and  x ~-* #~-lx in R N and  set 

ct't = p~-ler o f ,  . 

Observe tha t  c~t=0 = a'0 and  tha t  C~l = p-lc~0 o f .  Thus  the  devia t ion of 

c~, 1 from (~'0 measures  the a s y m m e t r y  of c~0 in our sense. We observe t ha t  

the  homotopy  o,t is proper, as it is a composi t ion  of proper  homotopies .  We 

choose a sufficiently large R iemann ian  ball B = B( r )  C Y a round  the  fixed 

point, go of f ,  such t h a t  the complement  Y - B stays away f rom the  origin 

0 _< R N in the course of the homotopy  a:,, i.e. a t ( Y  - B)  C R N, t E [0, 1], 

does not  meet  a fixed open ball in R N around the  origin. Then  we modi fy  the 

h o m o t o p y  c~t by mak ing  it cons tan t  on B and wi thout  changing it outside 

a small  ne ighbourhood  of B.  This  is done using the s t a n d a r d  h o mo t o p y  

ex tens ion  l e m m a  (of Borsuk) which provides us wi th  a new h o m o t o p y  of 
! proper  maps  ctt : Y ~ RN, t E [0, 1], such tha t  

! 
(i) a' 0 = o0 , 

(ii) a', I B = c~0. t E [0~ 11 
(iii) a'~ equals  o'1 on the complement  1" = f - l ( B ) ,  

(iv) the images  o/t(}" - B) C R x keel) away from the origin for all t E [0, 1]. 

Observe t ha t  condi t ions  (ii) and  (iii) imply,  in view of the  cont inui ty  

of (~t, t ha t  o,~ is symmet r i c  in our sense on the b o u n d a r y  of the region 
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D1 = f - l ( B )  - B. Recall that  f - : ( B )  D B and notice that  the boundary 
OD: consists of two disjoint parts: the interior part, where D: meets B, i.e. 

&,,  = O B  , 

and the exterior part, where D1 is adjacent to Y = f - : ( B ) ,  

O~x = O ( Y  - f - : ( B ) )  . 

The map f sends D1 into B, such that  0ex goes to 0i., while the rest of D1 
goes strictly inside B. The map o,~ on 0~x equals a,: = p- :a '0  o f ,  which 
implies the symmet ry  condition for a,~ on OD1, 

C~/l(y) = l t - l c t / l ( f ( y ) )  , y E aex , 

! 
since c h I 0i~ = ot0. 

Now we observe that  the map c~ on f - :  (B) uniquely extends to a map 
c~ which is symmetr ic  outside B by 

oe(y) = p - i  a " t f i ( y  ) 

for the integer i = i (y ) ,  y E Y - B ,  such that  i f ( y )  E DI = f - l ( B )  - B. 
The symmet ry  of a~ on OD: insures the continuity of ca, on Y and the above 
property (iv) shows that  ca, is properly homotopic to a,: and hence to a'0. In 

fact, tha t  property allows a homotopy between a0 and o, which keeps the 
infinity of Y away from the origin and then such a homotopy can be made 

proper by an obvious radial deformation in R N. 

2.B COROLLARY. Every proper m a p  O'o : }" ~ R N is p roper l y  h o m o t o p i c  

to a con t rac t ing  map Y ~ N N. 

Proof: An obvious smoothing operation makes the above a, smooth, keeping 
it symmetric.  Then  the smoothed o, is necessarily (and obviously) Lipschitz, 
provided t t - tA < 1, where A = A(f) < 1 is the contracting (Lipschitz) 

constant of f : }T ~ y .  (In fact, the Lipschitz constant of the smoothed 
a, on Di is bounded by const(#- lA)i , )  Since P couhl be chosen arbitrarily, 

the corollary follows, as every Lipschitz map can be made contracting (i.e. 
with the Lipschitz constant < 1) by composing it with an appropriate self- 
sinfilarlity of R N. 
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2.C Remark on families of maps: Our symmetrizat.ion of proper maps was 
completely canonical at the homotopy level and thus it works perfectly for 

arbitrary families of maps in so far as the relevant properties of these maps 

are uniform with respect to the parameters. This will be specified later on 

when we turn to specific cases. 

2 . D  EXAMPLES: The above corollary shows in particular that  every com- 

plete connected Riemannian manifold Y which admits  a selfcontraction also 

admits  a proper contracting map c~ : Y ---* R n, n = d imY,  of degree 1. 

Notice that  the existence of a selfcontraction f : Y ---* Y which is (by defi- 

nition) homotopic to the identity, implies that  Y is contractible and hence 

an orientable manifold. Then, for any choice of the orientation in Y, one 

has a proper map O'o : l" --* R" of degree one (since Y is non-compact, as 

also immediately follows from the existence of a selfcontraction on Y), and 
Corollary 2.B allows a proper homotopy of a0 to a contracting map a. 

One can somewhat relax the assumptions on f needed for the existence 

of a proper contracting map ~, : }" + R" of degree one. Namely one may 

only assume f has degree one, without insisting that  it be homotopic to 
the identity. (Here, the manifold }" does not have to be contractible but we 

assume it is orientable.) Then our symmetrizat ion process can be applied 

(we leave it to the interested reader) to some power fk of f which is good 

enough for the Lipschitz corollary. Unfortunately, the homotopies involved 

in this :::ore general symmetrizat ion are non-canonical which makes the 

construction unsuitable for familes of maps. 

Finally. one may ask what happens if one starts with a proper contract- 

ing map t" + }" of degree d _> 2. Probably, such a Y does not, in general, 

admit  any proper map to R '~ of positive degree but we have not worked out 

a specific counterexample. 

3. r -equivariant  diagonal  se l feontract ion.  
Let us describe the most important  example of a family of selfcontrac- 

tions of a l:/iemannian manifold Y with a given discrete isometric action of 

a group F. The manifold Y here :nay have a boundary but is still complete 

as a metric space. 

3.A DEFINITIONS: A F-dia-selfcontraction of Y is a family of selfcon- 

tractions fy : t" --~ Y paranmtrized by y E Y which is represented by a 

continuous map F :  Y x Y ~ Y x Y for F :  (y:,}'~) ~ (Y: , fm(Y2)) ,  such 

that  the following four conditions are satisfied: 

(i) The map F fixes the diagonal 1" = A C Y x Y, i.e. fy(y)  = y. 
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(ii) The map F commutes with the diagonal action of F on Y x Y, i.e. in 
terms of fy, 

7 fy7  -1 = f ~ y f o r a l l T C F a n d y E Y .  

(iii) Every map f~, y E Y, is a proper l-Lipschitz map (i.e. Lipschitz, with 
Lipschitz constant t )  of Y into itself, for a fixed X < 1 independent 
of y. 

(iv) There exists a homotopy Ft between F0 = Id and F1 = F,  such that: 
(iv)' F~ is F-equivariant for the diagonal action of F; 
(iv)" F, fixes the diagonal Y = A C Y x Y and is fiber preserving, i.e. 

F, maps y x Y into itself for all g E Y; 
(iv)"' Ft is uniformly proper which means the following: there exists 

a function R(d), such that  R(d) -~ +~z for d ~ + e c  and such 
that  every point in Y x Y which is d-far fi'om the diagonal Y = 
A C Y x Y (for the product, metric) remains R(d)-far from the 
diagonal in the course of the homotopy, i.e. the flmction 6(yl, y2) = 
dist ((yl,  y2), A) satisfies 

_> 

for all t 6 [0, 1] and (Yl,g~_) 6 Y x Y. 
Notice that  the uniformity is automatic  if the action of F on Y is 

cocompact, i.e. if Y/F is compact.  

3.B EXAMPLE: Let Y be a complete simply connected manifold of non- 
positive sectional curvature K _< 0. Here if there is a boundary  we insist 
it. is convex and then every two points yl and y~ are joined by a unique 

geodesic segment. Let fy, (y,) E Y be the center of this segment. Then  this 
is a F-dia-selfcontraction with the contraction constant t = 1, as follows 

flom the elementary properties of K .<_ 0. Notice that  here we do not need 

the metric to be smooth but may  allow singular spaces with K <_ 0 (see [G], 
[D-G]). 

4. F i b e r  c o n t r a c t i n g  m a p s  Y x Y --, T(Y). 
Let Y be a contractible manifold with a smoth proper F-action. Then 

tllere exists a smooth map ct0 of Y x Y to the tangent bundle T ( Y )  with 

the following five properties. 
(a0) c~0 is F-equivariant for the diagonal action of F on Y x Y and the 

obvious action oll T(Y) (i.e. the differential of the action of F on Y). 
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(bo) Each "fiber" y • Y C Y x Y, g E Y. is sent by Oo to the tangent space 
Ty(Y) and the map  g x Y ~ Ty(]') is proper for all y E Y. 

(Co) At every boundary  point y E 0Y the map a'0 send y x Y to the half- 
space in T~(Y) formed by the inward looking tangent vectors. 

(do) At each diagonal point (y, g) E Y • Y the differential of C~o restricted 
to the tangent spece T(y,y)(y x Y) = Ty(Y) equals the identity map 

Tu(Y)  ---* T~(Y).  
(eo) The C~o-pullback of the zero section Y ~ T(Y)  equals the diagonal in 

Y x Y .  
The existence of such c~0 is a trivial exercise in algebraic topology and 

it is also clear that  such or0 is unique up to a homotopy in the class of maps 

satisfying (a0)-(e0). 
An important  (albeit obvious) property of a0 is that  it pulls back the 

F-invariant Thom class of T(Y)  to the Poincar6 dual of the diagonal of 
~" x Y, provided Y has no boundary. (A similar property remains valid in 
the presence of the boundary  but  we shall bypass the boundary  problem in 

our cases of interest.) 
Now let us assume that Y is a Riemannian manifold which admits  a 

F-dia-selfcontraction. 

4 .A  PROPOSITION. There eMsts a continuous map a : Y x Y ~ T ( Y )  
which satisfies the above properties (a0)-(d0) and also the following three 
additional properties: 
(1) For each y E Y the map a, : y x t" - -  Ty is contracting (i.e. A-Lipschitz 

with A < 1). 

(2) The map o, is uniformly proper, i.e. 

Ilo'(y,,'J -)ll >  (dist'(gl,g2)) , 

for some fimction R(d) satisfying R(d) --* +oc for d --* +oo and the 

norm II II on T ( Y )  defined by the Riemannian metric on Y .  
(3) The map o, is homotopic to o'o in the c/ass of maps Y x I" --* T(Y)  

satisfying ( ao )-( do ). 

Proof: One can trivially homotope ct0 in order to achieve (2) and so we 

may  assume that  or0 is uniformly proper to start  with. Then we apply the 
symmetr iza t ion process to the maps a : y x Y --* Ty for all y and thus obtain 

a map  a l  which is symmetric,  and hence contracting at infinity. Then it can 

be made contracting everywhere by the discussion in II.5.G below (which 

collapses to a triviality in the present case). 
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4.B COROLLARY. The cohomology of  F is proper Lipschitz. 

Proof: If Y has no boundary  the proof is immediate  with the map a re- 

stricted to Y x F(y0) for some Y0. 
Now, let the boundary  OY be non-empty and let us adjust our discus- 

sion to this case. First we introduce the manifold 

I1"+ = Y U (OY x R+) , 

where cgY is identified with c9(OY x R+) = OY x 0 in the obvious way. Notice 
that Y+ is diffeomorphic to the interior of Y but  for us it appears as the 
extension of Y by 0Y x R+. For each point y+ = (y, t) E cgY x R+ C Y+ we 

denote by fl+ : Ty(Y)  ---* Ty+(Y+) the obvious isomorphism and we denote 
bv 5 = 6(y+) the tangent vector field - t  -~ o~ on 0Y x R. Finally, we define 
the map c~+ : Y+ x Y --, T(Y+ ) by 

(i) c~+ I Y  x Y = c , .  

(ii) a+(y+,  y') = fl+ (a(y, y')) + 6(y+) , 
for y+ = (y, t) E OY x R+ C Y+ - Y. Then this a+ restricted to Y+ x F(yo), 
g0 E Y does the job, as a straightforward verification shows. 

4.C S i n g u l a r  spaces  w i t h  s e l f - c o n t r a c t i o n s .  We want to extend the 

discussion in the previous section to singular (i.e. non-manifolds) F-spaces 

which can be regularized by embeddings into manifolds. 

DEFINITION: A metric space Y with a F-action is called F-regularizable 
if there exist a Riemannian manifold Y' with a proper isometric action 

of F, a F-equivariant Lipschitz embedding Y C Y'  and a F-equivariant 

retraction p : Y'  -+ Y which is homotopic to the identity by a homotopy of 
r-equivariant maps Y' --* Y'. 

EXAMPLE: If Y is a finite dimensional polyhedron and the action of P is free 

or if it is cocompact then (}, F) is well known to be regularizable (compare 
6.F'). 

4.C'.  I f  ' ,], F) is F-regularizable and i f  Y admits  a F-dia-selfcontraction 
then the cohomology of  F is proper Lipschitz. 

Proof: One has as earlier in II.4 an equivariant map Y '  x Y '  ~ T ( Y ' )  
satisfying (a0)-(e0) of II.4, which can be symmetr ized on Y'  x Y such that  

the resulting map  a : Y'  x Y -* T(Y ' )  becomes contracting on the fibers 

! / x  }'. The details here are straightforward and left to the reader. 
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Remark:  The regularity assumption on (Y, F) can be relaxed by allowing 
embeddings into certain infinite dimensional spaces as will be shown some- 

where else. 

EXAMPLE: We have already mentioned that the spaces of nonpositive cur- 
vature K < 0 admit  F-dia-selfcontractions and whenever they are regular- 

izable our proposit ion applies. Importaa~t instances of such Y are Bruhat- 

Tits  buildings where the regularity condition restricts the structure of the 
isotropy subgroups Fy, y E Y. For example, if the orders of Fy are bounded 

by a constant  independent  of y E Y, then (:~, F) is regularizable (compare 

[KS]). 

5. Interpolat ion  of se l fcontract ing  maps.  
A subset  in a metric space, say to  C Y, is called a net if 

sup dist(y, Y0) < o o .  
yEY 

Often one says "e-net" for an g > 0 if the above sup is < g. This terminology 
suggests that  g is small but  in our discussion the nets may be quite rare, 

which corresponds to large g. A typical example is where Y is isometrically 

acted upon by a (discrete) group F with the compact  quotient space Y / F  

and our Y0 is a F-orbit  P(yo) C Y. 
The problem we address in this section is as follows. Given a contract- 

ing (i.e. Lipschitz with the Lipsehitz constant < 1) map f0 : Y0 + Y, when 

does it extend to a contracting map Y --+ Y? 
Wha t  we are really interested in are contracting maps Y0 - -+ ~ Y  for 

Y0 = F(y0) and these will eventually be constructed in three steps starting 

from a contracting map f0 : Y0 --+ Y. The first step, which will be  accom- 

plished in this section, consists of an extension of f0 to a contracting map 

f : Y --+ Y. The second step is a construction (by symmetrizat ion) of a 

contracting map a, : Y --+ R g starting from f .  The third and final step 
is trivial, as contracting maps to R N restrict from Y to ~'~. Thus the role 

of Y D Y0 is purely auxiliary but  it seems impossible to achieve our goal 

wi thout  bringing Y explicitly into the picture. 

5 . A  G e n e r a l i t i e s  on  ex tens ion  of  Lipschitz maps.  The basis of all 

extension results is the following well known and almost trivial 

PROPOSITION. Le t  Yo be a subset  in an a r b i t r a w  me t r i c  space Y and Oeo : 

Yo --+ R be a L ipsch i t z  funct ion.  Then  a'o ex t ends  to a Lipsd~i tz  funct ion 

c~ : ~" ---+ R, such that  the Lipschi tz  col~stant of  a, equals tha t  of  Oeo. 
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Proof: First, let the complement 1" - I% consist of a single point Yl- Then 
the value xi = o'(y:) C R must  lie in the intersection of the closed balls 
(intervals) I (a 'o (y ) , ry )  C R, y E I'o, of radii ry = )~odis ty (y ,y : ) ,  where 

X0 denotes the Lipschitz constant of f0. Every two such intervals (balls) 
do intersect, since the extension problem is (obviously) solvable for the case 
where to  consists of two points, and by the (trivial one-dimensional ease of) 

Helly Theorem all intervals intersect. Thus the extension of (~0 is possible 

for 

r = ~;  u {y~ } .  

In the general case, the ,proof is concluded by well ordering the complement 

of }o. i.e. by writing 

:r = ~0 u M }  u {y~} u . . . ,  

and by using transfinite induction. (This looks slightly less ridiculous if the 

complement Y - 1~ contains a countable dense subset  as we only need the 
extension construction on this subset.) 

EUCLIDEAN COROLLARY. EveLv L ipsd l i t z  map  O'o : }'o --~ R N  extends  to a 

Lipschitz map c: : Y --* N N with the Lipschitz  constant  

~(~) 5v'~V~(~o). 

Proof: Apply the above proposition to the coordinate functions of c~0. 

Remark: One would not have had the loss in the constant if one had used 
the metric in R N corresponding to the sup-norm 

II(x  . . . .  , . , N ) I I =  sup Ix,I, 
i=l,. . . ,N 

instead of the Euclidean norm ~ ,2 %i" 

I~IEMANNIAN C O R O L L A R Y .  Let  V be a contractible Riemannian  mani[old 

and l/o C V be a compact  subset  in V .  Then every Lipschi tz  map  So : Yo ---* 

1 o ex tends  to a Lipschi tz  map o, : Y ---* V such that  

),(a,) < C) , (~o )  , 

where the constant  C' depends  on V and V-o (but not  on Y, Yo or so).  
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Proof: Take a smooth  embedding V C •N (for N = 2 dim V) and observe 
that  the contractibil i ty of V implies the existence of a (smooth) Lipschitz 

map  p : ~ N  ~ V which fixes V0. (In fact one only needs here the con- 

tractibil i ty of the embedding V0 ~ V and one may choose p with the image 

in a compact  submanifold V1 C V containing the implied contracting ho- 
motopy.) Then the required extension is obtained by first extending c~0 to 
a Lipschitz map Y --* R N D V0 and then by composing this with p. 

5 .B  U n i f o r m l y  L i p s c h i t z  c o n t r a c t i b l e  ( U L C )  space s .  A metric space 

V is called C-contractible for some positive function C = C(5), 6 E [0, cr 
if for an arbi trary metric space Y, a subspace Y' C Y and a Lipschitz map 
cr' : Y' --~ V with Diama, ' (Y' )  _< 6, there exists an extension of c~' to a 

Lipschitz map c~ : Y ~ V, such that  the Lipschitz constants of c~ and cd 
satisfy 

< 

In view of the proof of the above corollary a sufficient condition for the 

C-contractibil i ty is as follows: 

(5.1) for every subset  V' C V with D iamV'  <_ & there exist a Lipschitz 
embedding q : V' ~ ~ N  and a Lipschitz map p : R N --* V, such that 

p o q = Id : V' --* V' and the Lipschitz constants of p and q satisfy 

v/-N~(p)A(q) < C ( 6 ) .  

We say that  V is uniformly Lipschitz contractible if it is C-contractible 
for some fimction C = C(5). 

5 .C  B a s i c  E x a m p l e s .  Let V be a contractible Riemannian manifold 
which admits  an isometric action of a group F with a compact  quotient 

V/F.  Then V is ULC as immediately follows from the above criterion (5.1) 

and the preceeding proof of the Riemannian Corollary. 

A speciM case of this example is when V is the universM covering of a 

compact  aspherical manifold and F is the Galois group of the covering. 

A more general example of a similar nature is when V appears as a leaf 

of the foliation of some compact  space, such that all leaves (including V) 
lying in the closure of V are contractible. 

5 , D  LOCALIZATION OF THE LIPSCHITZ INEQUALITY NEAR A NET. Let  Yo C 
Y be an eo-net and let c~ : Y ---* V be a map such that 
(a) a [ ~'~ is Ao-Lipschitz, i.e. o~ is Lipschitz on Yo with the implied Lipschitz 

constant < A0, 
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(b) c~ satisfies the A-Lipschitz inequality for all pairs of points yl and Y2 in 
Y within distance Co, i.e. 

dist v (c~(yl), a'(y2)) _< A distv(gl ,  y_~) , 

whenever dis tz (y l ,  .q2) <_ Co. Then a, is A'-Lipschitz for 

A' = 5 maX(Ao, A) . 

Proof: In order to est imate dist, v.(ct(yl),ct(g2) ) in the case where 

dis ty(yl ,y2)  > ~-0 we move gl and g2 with dist(yi,g~) <_ ~-o for i = 1,2, 
and observe that  by the triangle inequality in ~." 

dist (o '(yt) .a(g2)) _< 

! I l I < d i s t  (o'(yi),a'(y~)) + (list (.~(gx),o(g.2)) + (list ( o ( y . ) , . ( y . ) )  . 

On the other hand, the triangle inequality in }" shows that  

�9 I ! dlst(yl.  Y2 <- dist(yl,  g2) + 2c0 

&lid so 

dist (o'(yl),c~(g._)) < 2ACo + Ao(dist(yl,g._) + 2c0) . 

This obviously implies for dist(yl,  g'2) <_ Co that 

dist (c~'(gl). o(g2 )) _< A dist,(gl, g.,) 

for the required A' = 5 max(~0, ~). n 

5.E U n i f o r m  local  b o u n d e d n e s s  ( U L B ) .  A metric space Y is called 
uniformly locally bounded if it can be covered by subsets Bi C Y, i E I, 
such that  Bi a r e  uniformly bounded, i.e. 

sup diam Bi <_ ,3 < oc , 
iEI  

and each ball B(R)  C Y of radius R contains at most u < oo subsets Bi 
where the number  u depends only on R (but not on the center of B(R)) ,  
i.e. 

Bij C B ( R )  , j = 1 . . . . .  k ,  ~ k <_ u = u ( R )  . 
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EXAMPLE: Let Y be the universal covering of a compact  Riemannian man- 
ifold X. Then Y is ULB and the implied covering of Y can be obtained as 
a lift of a finite open covering of X by simply connected subsets�9 

A - c o v e r i n g s .  A covering of Y by (finitely many)  subsets, say Y1, . . . ,  ym, 
in Y, is called a A-cover if each Yj can be decomposed into a union of 
uni.formly bounded subsets, 

Yj = U B j  , i =  1 , 2 , . . . ,  
i 

which are mutual ly  A-separated, i.e. 

d l s t ( B j , B j ) > A  for all j = l  . . . .  ,m  

and i' r i, where 

dist(A, B) d~f inf dist(a, b) over all a E A and b E B . 

The following proposition is obvious. 

A metric space Y is ULB i f  and only i f  for every A > 0 it admits a 
finite A-covering. 

EXAMPLE: Let Y be a discrete ~-separated space for some 6 > 0, which 

m e a n s  

dist(yl,  y~.) _> 

for every two distinct points yl and y~ in Y. Then the ULB property means 
that  every R-ball in Y contains at most u(R) points and a A-covering 

amounts  to a partit ion of Y into a union of A-separated subsets�9 
It is also worth noticing that  if some z-net I'o C Y is ULB then so is Y. 

Since every metric space Y contains a &separated c-net Y0 for arbi trary r > 
0 and 5 < e, the above discussion applies via t~ to non-discrete spaces Y. 

Finally we mention the following well known geometric criterion for 
ULB which will not, however, be explicitly used in this paper. 

A complete Riemannian manifold with Ricci curvature bounded from 
below. 

Ricci >_ - p  > - e ~  , 

is ULB. 
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5.F L i p s c h i t z  i n t e r p o l a t i o n .  Let Y and V be metric spaces, Yo C Y be 
an :0-net and let O~o : I% ---, V be a Lipschitz map. 

INTERPOLATION LEMMA. /[  V is ULC (Uni formly  Lipschitg Contract ible)  

and either Y or V is ULB (Uni formly  Local ly  Bounded) ,  then C~o ex tends  
to a L ipsch i t z  m a p  c~ : Y ---* V .  

Proof: First we consider the case where Y is ULB and we take a finite 
A-covering of Y for some A > :0, say 

j = l  

Now the extension is achieved in steps, by induction, as follows. Suppose, we 
k 

have already obtained a Lipschitz map a,~ on U }'j and we want to extend 
j = l  

k+ l  
it to U 1~[/. We decompose }~+1 into a union of uniformly bounded and 

j = l  
k 

mutually A-separated subsets, Yk+l U i ~i = B/~+: and l e t  } k + l ( s  C U Yj 
i j = l  

k 
consist, of the points y in U }[/which lie :0-close to B~+I, i.e. 

j = l  

dist(y, B i k+l) < eo 

Now, we use ULC and extend the map o'k I -i }/,-+1(:0) to the union of Yt~+l (:0) 
i with B~+ 1. The Lipschitz constant A[.+I of the extended map depends only 

on A(a'k) and so 
i 

s u p / ~ k + l  ~ /~k+l < Oo . 
i 

Thus the above extensions, for all i = 1,2 . . . . . .  define a map 
k+l  

a'~:+l : U 1~ ~ v ,  such that  the Lipschitz property (inequality) with 
j = l  

k+ l  
the constant Ak+l is satisfied for all pairs of points Yl, Y2 in U I~ within 

j = l  

distance _< :0. (This follows from A > :0 and the definition of Y~+l(:o).) 
Then the Lipschitz localization (see II.2.D) implies that  o'k+: is Lipschitz 
with 7(a,t.+l) _< 5~k+1 as we may assume A~.+: _> A~.(a'k). 



4 0  A. C O N N E S ,  M. G R O M O V  A N D  H. M O S C O V I C I  G A F A  

Now we turn to the second case when V is ULB and we take a A- 
711 

covering V = [.J 1~ for A > 3:0A(a'0 ). Then we pull back each Vj to Yo 
j-----1 

and take the :o-neighborhood of the pull-back ao1(1/~-) C Y for Yj. Clearly 

0 ~  = Y and each Yj decomposes into a union of mutual ly A'-separated 
j= l  

subset B i for A'  >_ (A(a 'o)) - :A - 2:0 > :0, where the diameters of the 
images (*0(Io N Bi)  C V are uniformly bounded. It suffices to apply the 
above step-by-step extension argument  which concludes the proof in the 
second case. 

Remark: Notice that  the Lipschitz constant A(a) of the extension a : Y --~ 
1" is bounded in terms of the following data: 
(1) The Lipschitz constant. ~0 = ~(ao). 
(2) The "net" number go. 
(3) The UCL-function C(6), 5 > R. 

(4) The number m of the A-covering. 
(5) The supremum D of the diameters of the bounded subsets in the A- 

covering. 
More precisely, in the first, case, where Y is ULB, the A-covering de- 

pends on go and so the numbers A and D depend on g0. Then the first 
step of the extension process works at the scale 5o = k(ao) (D + 2:o) and 
so A(o:) is bounded by 5A(a0)C((S0). Then 51 = )~(ct'l)(D + 2:o) and 
,~(~*;) _< 5A(c~1 )C(~1) and so on. Here the final ~(a,) depends on the geome- 
tries of both spaces Y and V. 

On the contrary, in the second case, where V is ULB, the geometry of 

I" and Yo affects the final constant ~(a,) only via g0 as we take a A-covering 
of V with A > 3:0)~0. In particular, if :0A0 is a priori bounded by a fixed 
constant, then ~(a)  depends only on )~0 and (the geometry of) V. 

5 . F  t CONTRACTING COROLLARY. Let V be a metric ,space which is ULC 

and ULB and let ~ and 6 be positive constants. Then there exists a positive 

uumber  ~o = ~ o ( ~  ~, b). ,~udl that every )~o-Lipsd2itz (i.e. with the Lipschitz 

constant < Ao) map (~'o " }o ---* V extends to a A-Lipschitz map a : Y ---* V, 

where Y is an arbitrary lnetric space and Yo C )" is an eo-net with eo < 

Aol (S. 

We whall use this corollary for a fixed & < 1 and we express it in words 

by saying that  every sufficiently strongly contracting map so : Yo "-+ V 

extends to a contracting map oe : Y --+ V,  provided :0,~(a0) is bounded 
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by a fixed constant independent of the needed "strength of contraction" 

5.G I n t e r p o l a t i o n  o f  f a m i l i e s  o f  m a p s .  Here we are interes ted in 

families of Lipschitz maps  c~p : Y --, V where p runs over some pa rame te r  

space P which typical ly  is a manifold  or a locally compac t  polyhedron.  We 

want to have a family  (~p which is cont inuous in (y,p)  ~ Y x P and  such 

that  the  Lipschitz constants  of c~p are uni formly  bounded,  i.e. s  <_ ~ < 

oc, p E P.  There  is a simple reduct ion  of this problem to the case of 
an individual  map.  Namely,  every cont inuous family  of )~-Lipschitz maps  

(),p : Y --, 17 for a given /~ > 0 can be regarded as a ~-Lipschitz m a p  

Y x P --* 1 ,T for the following metr ic  dr on Y x P.  To cons t ruc t  do we s tar t  

with an a rb i t ra ry  metr ic  do on Y x P ,  whose restr ict ion to each Y = Y x p, 

p E P,  equals the original metr ic  of Y. Then  we denote  by d* the pull-back 

of the metr ic  d i s tv  to Y x P by the map  a, : (y ,p)  ~-* a,p(y). Finally,  we set 

do = max(d0, s  . 

(Notice tha t  d* is not  quite a metr ic  as it vanishes at  some pairs of points  
in Y x P ,  name ly  at  those pairs of points  which are identified by a ,  but  da 

is a flflly-fledged metric.)  Since the maps  ap = a [ }" x p are s  

for the metr ic  do I Y x p, the metr ic  da on Y x p equals do (which is our 

original met r ic  on Y). It is also clear tha t  a, is ,~-Lipschitz wi th  respect  to 
d a .  

In order to apply  the above considerat ions to the extension of maps  

from Z C Y x P to Y x P we first need an extension of metrics.  To simplify 

the presenta t ion  we assume in the following L e m m a  tha t  the spaces Y and  

P are locally compact. 

METRIC EXTENSION LEMMA. Let d be a metric on Z such that d I Y x p = 

d r  for all p E P and  a given metric dy  on Y = Y x p. Then there exists a 

metr ic  d on Y x P such that 

(i) d l  Y x p = d Y  f o r a l l p E P a n d  

(ii) d[Z>_d. 

Proof: We s ta r t  wi th  the case when Y x P is compac t  and  we look for 

a metr ic  d ~ on P such tha t  the Cartesian product (or sum -d of d r and  

d~- satisfies (ii), where the Car tes ian  product  (sum) d is defined as the 

sup remum of those metr ic  5 on Y x P such tha t  

6 ] Y x p = d y ,  p E P  
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and 

/ s [ g x P = d s  , g E Y .  

Notice that  with this definition the property (i) of d is automatic.  

In order for d to satisfy (ii) the metric d' on P must be bounded from 

below by the function e(pt ,p2) defined as follows. Let zl and z2 be two 
points in Z over Pl and pz, i.e. of the form zl = (gl ,pl) ,  zz = (y2,p2). Set 

g(zx,z2)=d(zl.Z.2)-dy(gj,g2) 

and then let 

z ( p l , p 2 ) = s u p ~ ( z l , z 2 )  

where the sup is taken over all pairs of points zl and z2 in Z lying over Pl 

and P2. 
The function e may be negative (even equal - o c )  for some Pl and p2 

and we rectify the mat te r  by taking 

e +  = m a x ( 0 ,  e )  . 

The flmction e+ obviously vanishes on the diagonal A = {Pl = P~ } C P x P 

and since Y and P are compact  e+ is uniformly continuous at A. Therefore, 

there exists a non-negative continuous function ~/on P x P which dominates  

e+, i.e. e' _> e+ and still vanishes on A. Then, by compactness of P ,  the 

function e' can be dominated by a metric d' on P ,  for example by 

d'(pl,p2) = sup [c'(pa,p) - z'(P2,P)] �9 
pEP 

This concludes the proof in the compact  case. 

If Y x P is non-compact,  we take a locally finite cover of it by compact  

product  subsets  }} x Pi, i E I, equip each of them with a metric di satisfying 

the conclusion of the Lemma on ~'/x Pi and then define d on Y x P as the 
supremum of the metrics/S on Y x P satisfying the following two conditions: 

(i)' ~SlY x p = dy for a l l p  E P.  

(ii)' /SLY/x Pi _< di for all i E I. 
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Conclusion: Extens ion  of  Lipschitz families.  Suppose we are given 
a continuous map  (~ : Z ~ V which is A-Lipschitz on the intersections 
Z n (Y x p), p E P ,  and which we want to extend continuously to all of 
Y x P D Z with a controlled Lipschitz constant on all Y x p. This is done 
by first bringing in the metric d = d~ on Z, defined as at the beginning of 
this section by 

d~ = max(d0, A- ld  *) , 

where do is the original (product) metric on Y x P restricted to Z and d* is 
induced by c~ from d is t r .  Then d extends with the above Lemma (whenever 
that applies) to a metric d and then the extension problem for continuous 

families of Lipschitz maps %, : Y ~ V reduces to that  for individual maps 
}" x P --~ V which are Lipschitz with respect to d. 

6. Se l fcontract ing of  hyperbol ic  spaces. 
Let us start  with a general geometric contraction which sometimes leads 

to a selfcontraction. 

6.A G e o d e s i c  s i m i l a r i t y  m a p .  Let Y be a metric space with a fixed 

point g0 and s be a number in the interval 0 < A < 1. Then s 
f = fyo,a is the following set-valued selfinapping of Y : f(g) C Y consists 
of those g' E I" which satis(v 

dis t(yo,y ' )  = Adist(go,g) and dis t (y ' ,y)  = (1 - ),) dist(yo, y) . 

If the subset  f(y) C Y is non-empty for all go, A and y, then we say that  
Y is a geodesic space. If Y is complete then this geodesic property obviously 

implies the existence of a geodesic segment [go, Y] C Y between every pair 

of points y0, y in I", i.e. a subset in 1" isometric to the real segment [0, d] 

for d = dist(yo, g), such that  0 ~ go and d H y under the implied isometry 

[0, d] ---, [Yo, Yl]. Notice that the selfsimilarity f = fyo.~ reduces to t H At 
on the geodesic segments issuing from Yo. 

6.A' .  Another useful "geodesic" construction is the radial (normal) pro- 

jection of I" to the sphere of radius R in Y around y0. This projection p 

applies to the points g E I" with dist(y0, g) >_ R by 

p(y) = {g' E Y I dist(y ' .go) = R ,  dist(y, y') = dist(g, yo) - R} . 
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6.B H y p e r b o l i c i t y .  A geodesic metric space Y is called 6-hyperbolic for 
some 6 > 0 if for every Y0 E Y, every R > 0 and every two points with 
ri = dist(y0, Yi) >_ R, i = 1, 2, any two points y~ E P(Yi), i = 1, 2, satisfy the 
following 6-inequality 

dist(yl,  y~) _< max (6, dist(yl,  y2) - A1 - A2) 

for Ai = ri - R, i = 1, 2. We say tha t  Y is hyperbolic if it is 6-hyperbolic 
for some 6 > 0. 

EXAMPLES: (a) The real line R is obviously 6-hyperbolic for 6 = 0 but  the 
Euclidean spaces R k for k >_ 2 are not hyperbolic. 

(b) Trees with geodesic metrics axe 0-hyperbolic, as a simple argument  
shows. In fact every 0-hyperbolic space is a (generalized) tree. 

(c) Every complete simple connected Riemannian manifold Y with 
strictly negative curvature, i f (Y )  _< - ~  < 0 is 6-hyperbolic for 6 < 10a 2. 
This follows from the Caxtan-Alexandrov-Toponogov inequality for I{ < 0. 

A detailed account of basic properties and examples of hyperbolic 
spaces can be found in [G] and [D-G]. Here we only mention the follow- 
ing (easy but not  completely trivial) s tatement.  

6 .C LIPSCHITZ STABILITY OF HYPERBOLICITY. Let ~ and Y2 be geodesic 
metric spaces (e.g. complete Reimannian manifolds), such that  Y1 is hyper- 
bolic. If  Y1 and Y~ admit  nets (in the sense of II.5 YI' C ~'l and y~ C Y2 
which axe Lipschitz equivalent (i.e. there exists a bijective Lipschitz map 
Y~ ~ ~ whose inverse is also Lipschitz), then ~ is also hyperbolic. 

F-COROLLARY. Let ~'~ and ~ be geodesic metric spaces which admit dis- 
crete cocompact isometric actions o[ some group F. flY1 is hyperbolic then 
so is ~ .  

The Lipschitz stability and the P-Corollary are proved in [G] and [D-G]. 
An important  consequence is that  the hyperbolicity of a cocompact  F-space 
Y (cocompact means Y/F is compact)  depends only on F and is called 

the word hyperbolicity of F ("word" refers to the notion of a word metric  
in F). Every word hyperbolic group is finitely presented and if such F is 
realized by ~rl(X) for a compact  manifold X,  then the universal covering 

is hyperbolic for the Riemannian metric on .~" induced from a Riemannian 
metric  on X (see [G], [D-G]). 

An impor tant  geometric class of word hyperbolic groups is consti tuted 
by the fundamental  groups of closed Riemannian manifolds with negative 
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curvature K < 0 but some of (the known examples of) hyperbolic groups 
do not come from negative curvature. In fact, one does not know if every 
hyperbolic group admits a discrete isometric action on some manifold with 
negative curvature. Yet many results extend fi'om/t" < 0 to the hyperbolic 
case. An instance of this, the Novikov conjecture, is t reated in the present 
paper (see II.6.E and compare [C-M]). 

6.D H y p e r b o l i c  c o n t r a c t i o n  of  ne t s .  Let Y be a &hyperbolic space 
and f = f~,uo the geodesic selfsimilarity of Y defined in II.6.A. Take two 
points ~1 and y~ within a certain distance d in Y and let y[ and y~ be two 

points in the images f (Yl  ) and f(y'2), respectively. We want to est imate the 
distance d' = dist(y~, g ' ) ' and  to do that  we observe that  the map f acts on 
each y E 7t" as the radial projection to the sphere of radius A dist(y0, y). We 
~ / S s u l n e  

dist(g0, !11) _< dist(y0, y2) 

aml let y'.; be some radial projection of .t/ to the sphere of radius R~ = 
dist(y0, y~) = A dist(y0,//1 ), i.e. //" E p(//~) for the implied radial projection 
p (see II.6.A'). Bv the triangle inequality 

d! �9 I ! �9 I I !  �9 I !  ! 
= dlst(/&, y_o) _< dlst(yl,  Y2 ) + &st(y~,, Y2) , 

where the first summand on the right hand side is est imated by the 5- 
inequality applied to the projection p to the sphere of radius R~ and where 

the second summand  equals A(R~_ - R1) for 'r i = dist(y0, Yi), i = 1, 2, and 
where 

R . , , - R I  < d  

by the triangle inequality. Therefore, d' <_ m' + Ad, for 

,n' = m a x  ( & d -  (1 - A)R1 - (R._ ,  - ~ - ~ 1 ) )  = 

= max ( & d -  (1 - A)(R] + R2) - A(R2 - Rt))  _< max(& Ad) , 

and SO 

d' _< max(& 2Ad) . 

Now let I~ be a A-separated e-net in Y (i.e. every two distinct points 

in }o have dist _> A) for A _> 2A-16 and let us assign to each y E Yo some 

point y' E f (y)  for f = fx,p. Then the map y ~ y' clearly is (by (5.1)) a 
2)~-contracting map }~ ~ Y. 
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6.E S e l f c o n t r a c t i o n  o f  Y. Notice that. the above c-net ]'o can be chosen 
with ~ <_ 2A-13 and so Ae <_ 25 remains bounded for A ~ 0. Thus we are in 

a position to find a Lipschitz extension of the above map,  call it f0 : Y0 --* Y 
to all of Y, according to (II.5.FP). Namely: 

Let Y be ULB and ULC then, for a sufficiently small A > 0, the map 
fo extends to a self contraction of Y. 

Recall that  the ULC and ULB properties are satisfied if Y is con- 
tractible and admits  a discrete cocompact action of an isometry group F 
and that  the hyperbolici ty of Y in this (cocompact)  case is equivalent to 

the word hyperbolici ty of F. Also recall that  the major  role of selfcon- 

tractions Y --, Y is to provide (sufficiently many) proper Lipschitz maps 
F ~ R N, and so we want to realize a given group F by isometries of a con- 

tractible manifold. This is achieved in the hyperbolic case with the following 
theorem. 

6 .F  T H E O R E M  OF RIPS.  Every word hyperbolic group F admits a dis- 
crete cocompact simplicial action on some locally compact simplicial poly- 
hedron P. 

Proof: Let. Y be a metric space and d > 0. Denote by Pd(Y) the simplicial 
complex whose k-simplices are abstract ly  spanned by those (k + 1)-tupes of 

points y0, y l , . . . ,  yk E Y which satisfy 

dist(yi,yj) << d ~ i~ j=O,  1 , . . . , k  . 

LEMMA. f f  Y is 6-hyperbolic and d )_ do = do(5) then the polyhedron 
Pd(Y) is contractible. Furthermore, if Yp is an e-net in Y then Pd(YO) is 
contractible for d _) do = d0(6, e). 

See [G] and [D-G] for the proof. 

Now, with this Lemma the proof of Rip's theorem is immediate.  Take 

an arbi t rary Riemannian manifold with cocompact  isometric action of F, 
e.g. the universal covering of Y of a compact  Riemannian manifold X with 

7h(X) = F. Then choose some F-orbit ~v~ = F(yo) C Y and take P = Pd(Yo) 

for a sufficiently large d. 

6 .F  p COROLLARY. Every word hyperbolic group F admits a faithful dis- 
crete isometric cocompact action on some contractible manifold Yr with 
boundary. 
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Proof: Every locally compact  polyhedron P with a cocompact  F-action 
is F-regularizable (see II.4.C) as it admits a piece-wise linear F-equivariant 

embedding into some F-manifold with boundary,  say i : P ~ I~o, so that  the 

embedding i is a F-homotopy equivalence. For example, if F acts freely on P ,  
one starts with a P.L. embedding of P / F  ~ gi N, then one chooses a regular 
neighborhood X C R N of the image and one finally takes the universal 

covering of X for Yr If the action of F on P is non-free this argument should 

be preceeded by locally equivariant embeddings of small neighborhoods of 
points p E P acted upon by the isotropy subgroups Fp C F. This is easy and 
well known, and in our case, of a contractible P, this gives us the desired 

contractible F-manifold !Qo. 

6.F" Remarks: (a) The above discussion yields the following more general 
conclusion. 

Let }" be a hyperbolic ULB space with an isometric action of some 

group F, such that the action is uniformly discrete in the following sense: 

for every D _> 0 there exists an integer k >_ O, such that for every subset 

B C Y with Dimn B <_ 0 there exists at mos t  k elements 7 E F for which 

B NT(B ) r 0. Then F admits  a mfiformly discrete isometric a.ction on some 
ULB and ULC Reimannian lnanifold t'co with boundar~ 

(b) Blowing away the boundary oft~o.  Let. us take the interior Yin = 

1 ~ o -  01Qo and introduce a complete Riemannian metric g + on Yin as 

follows. Denote by g~o the original Riemannian metric on }~o and let 

~;(y) = inf (1,dist(y,0}~o))  for y E l 'i,. Then we set 

- - 9  
g+ = ~  -gco on }in , 

and Y+ = (}] . ,g+)  (compare II.4.B). Clearly, Y+ is a complete manifold 

as the g+-length of each curve C equals the integral of •-1 over C with 

gco-length (measure) element. In fact, the geometry of (} i . , g+)  near the 
boundary OY~o is close to that  of the s tandard hyperbolic space H "  - I n t  B '~ , 

n = dim Y, with the Poinca% metric. 

To obtain a bet ter  picture of g+ we assmne that  the manifold }~o = 

(}~o, gco) has bounded geometry in the following sense: 

There exist constants ~: > 0 and ~ > 0, such that  every point y E Y~o 

admits a neighborhood U which is ,~-Lipschitz equivalent to the intersection 

of an open e-ball in R ~ with a closed half-space, where "~-Lipschitz" refers 
to a ,~-Lipschitz homeomorphism whose inverse is also ,~-Lipschitz. 
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Notice that  if the action of F on Yco is cocompact,  then, obviously, the 
geometry is bounded. Also observe that  under the assumptions of the above 
Remark (a) one can insure that  Yco has bounded geometry. 

Now it is easy to see that  in the bounded geometry case the following 

implications take place: 
(1) Yco is hyperbolic r Y+ is hyperbolic, 
(2) Yr is ULB r Y+ is ULB, 
(3) Yco is ULC r Y+ is ULC. 

It follows that ,  by replacing Yr by Y+, we can, under the assump- 
tions of (a), produce a complete hyperbolic Riemannian F-manifold without 
boundary which is ULB and ULC. (In fact, if one wishes, one may  have 
bounded geometry which is stronger than ULB.) 

6 .G F -ne t s .  A F-net is, by definition, a subset Z C Y x Y invariant 
under the diagonal action of F and such Z u = Z N (y x Y) C Y = y x Y 
is a net in Y for every y E Y and such that  the implied density constants 
s(Z~) -- sup dist(y',  Z~) are bounded from above by some e -- s(Z).  

y~EY 

In what  follows we often need Z to be A-separated for some large A ~> 0 
which means such separation for all Z~ C Y. It is also often convenient to 
have the diagonal of Y x Y contained in Z which can always be achieved 
by just adding the diagonal to Z and removing other points in Z close to 

the diagonal in order to retain the separation property of Z. 

L o c a l l y  c o n s t a n t  ne t s .  Suppose we are given a covering of Y by some 

subsets ]~, i E I,  such that  for every -~ E F the translated set 7(Yi) equals 
some ]/3, J = 7(i) E I,  such that  either i = j or :t~ is disjoint from Y/. Notice, 
that  in our case of a discrete isometric action of F on a locally compact space 
there always exists an arbi trary fine locally finite covering by open subsets 

:i') with the above property, such that  the subgroup Fi moving Yi into itself 
equals the isotropy subgroup Fy, of some point Yi E Yi. Next let us take a 
net  Z(i) C Y for each i E I,  such that  Z(i) is invariant under the subgroup 

Fi and Z(j) = 7Z(i)  whenever 7(}~) = :[~. If the densities ~(Z(i)) are 
bounded by a fixed constant So then, obviously, the union 

z =  Ut~ • Z(i) 
iEI 

is a F-net which has the inlplied density constant s (Z)  bounded by co 
and which is called a locally constant F-net. Notice that  each net Z v ~- 
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Z N (y x Y) C Y = y x Y in this case equals the union UZ(i) over those 
i E I for which Y/ ~ y. Thus the A-separation property of Z essentially 
reduces to that  for Z(i).  Namely if all Z(i) are A-separated and 

dist (Z(i),  Z( j ) )  > A (6.1) 

whenever Y/f3 Yj 7 ~ 0 for Y/•  Yj then Z is A-separated. Notice that  (6.1) 
imposes a lower bound on ~ = ~(Z) in terms of A and the multiplicity of the 

covering Y = l.J Yi. On the other hand, if the multiplicity of the covering 
i 

is bounded by some k, then for every A > 0 one can find A-separated 
nets Z(i)  satisfying (6.1) and having ~ < C(k)A for some universal function 
C(k). This takes care of the free action and, in general, we have the following 
simple lemma. 

6.G ~ LEMMA. Suppose the space Y is finite di1~el~sional and assume that 
for every Ao > 0 and every (necessarily finite) subgroup Fo C F fixing 
some point in Y the union of Ao-separated Fo-orbits in Y form a net with 
the density constant eo <_ CoAo for a constant Co = C0(Y, F). Then for 
every A there exists a locally constant A-separated F-net Z C Y x Y with 
c(Z) <_ C1A for some constant C1 = C1(}~ F). 

Proof: Since Y is finite dimensional (as well as locally compact  and metriz- 

able) one can choose the covering Y = U ]') of finite multiplicity. The 
above condition on F0 gives us Fi-equivariant A-separated nets Z(i) ,  i E I, 

with r  <_ CoA which then can be slightly (thanks to the bounded 
multiplicity) rarefied in order to satisfy (6.1). [] 

A typical (hyperbolic) example where the F0-assumption of the lemma 
is not satisfied is where Y = [-1,  1] • R with F consisting of the trans- 
formations (tl,t~_) H (+t l , t2  + k), k E 7. However, if we pass from Y to 
Y+ considered in II .6 .F ' (b) ,  then this difficulty disappears as the points in 

Y+ = Y],, C ]~o = Y lying close to OY are "strongly moved" by all 7 E F. 
This effect can be achieved in the general case even if we start  with a space 

Y without any boundary by first multiplying I" by [0, 1] and then by apply- 
filg the blow-up +construct ion to Y • [0, 1]. Thus we obtain the following 
improvment of the above lemma. 

6 .G ' .  Suppose that for every F0 as in II.6.G ~ there exist numbers R > 0 
and d > O, such that every ball in Y of radin,s R contains a point y, such 
that d i s t (y ,7 (y ) )  _> d for all3, E F 0 -  {id}. Then for e v e r y A  > 0 the 
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space 1" = ( I "x  [0, 11) + admits a closed locMly constant A-separated r-net 

Z' C t "  x I "t with r  _< C~A. 

Remark: Notice that  the a~ssumption in II.6.G" is satisfied in many natural  
cases, for example if the action of F on Y is cocompact.  In particular, one 
always has the desired F-nets in the context of the word hyperbolic groups. 

6.H G e o d e s i c  F -d id -contrac t ion  o f  ne t s .  Here we assume Y is hy- 
perbolic and every two points can be joined by a geodesic segment (which 
follows from our definition of hyperbolicity if Y is complete). We recall that 
for each positive A < 1 ~lld y E 1" there is a natural  set-valued geodesic simi- 
larity map  denoted f~,~ : Y ---* Y (see II.6.A) which sends each y' E Y to the 
union of the convex combinations (1 - A)y + ~y' over all geodesic segments 
[y, g'] C I" between y and y'. Notice that  if Y is (S-hyperbolic, then (by an 
easy argmnent)  this union, call it {(1 - A)y 

6 .H '  LEMMA. Let the space Y satisfy the 
p < 1 be an arbitrmy positive constant. 
net  Z C 

F o : Z ~  
(i) The 

(ii) The 

(iii) 

(iv) 

(v) 

+ Ay'}, has diameter  < 25. 

assumptions of II.6.G' and let 
Then there exists a closed F- 

Y x Y containing the diagonal of Y x 1" and a continuous map 
l" x I" with the following six properties (compare II.3.A). 

map Fo fixed the diagonal of Y x Y .  
map Fo commutes with the diagonal action o f f  on Y x Y and on 

Z c Y x Y .  
For every y E Y the map Fo sends Zy = Z M (y x Y) into y x Y and 
the resulting map, call it fy : Zy --* Y = y x Y ,  is p-Lipschitz for each 

y E } ' .  
For every two points y and y t  the image fy(y~) lies 36-close to some 
segment [y, yq C Y between y and yr. 

The density constant c( Z) satisfies the inequality 

c(Z) _< CA 

for a constant C =  C(t"; F). 

(vi) The maps fy are uniformly proper (seeII.3.A). In fact, dist (y, fy(y ' )  ) >>_ 
C'# dist(y, y'). 

Proof: First we construct  Z as earlier of the form 

z = U x z ( i ) ,  
i 
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such that the separation constant ak of Z is large compared to the hyper- 
bolicity constant ~ of Y. Then we take a point yi in each subset ~ C Y, 

such that the istropy subgroup Fy~ equals the subgroup Fi mapping ~ into 

itself and we join every point in Z(i) C Y with Yi by a geodesic segment, 

say [Yi, Y'], Y' e Z(i), such that  

for all 7 E Fi. Then we take A = ft/2 and set 

fy(y') = (1 - )~)Yi + ~Y' 

for all yr E Z(i), where the convex combination refers to the above chosen 

segment between gt and yi. This gives us a map Fi of Y/ • Z(i) C Z to 

}" x Y and as all of Z is the union over i E I of such products,  which can 
be assumed mutal ly disjoint by the proof of II.6.G r, we obtain our map 
F : Z ~ Y x Y. The only point which needs verification is the #-Lipschitz, 

which follows from the hyperbolicity essentially the same way as earlier in 
II.6.D. 

6.E L i p s c h i t z  c o h o m o l o g y  o f  h y p e r b o l i c  g r o u p s .  Now we are ready 
to prove the following 

T H E O R E M  . Let a group F admit an isometric discrete (see I I .6 .F ' )  action 
on a ULB hyperbolic metric space, e.g. F is a subgroup in a word hyperbolic 
gro~ip. Then the cohomology of F is properly Lipschitz. 

Proof: ~ATe already now (see I I .6 .F ' )  that  F lnay act on a complete Rieman- 

nian hyperbolic manifold Y which is ULB and ULC and such that  (due to 
the uniform discreteness assumption and thanks to II.6.G") the action sat- 

isfies the assumptions of II.6.G'. Therefore, there exists a F-net Z C Y x Y 

and a map F0 : Z --+ Y x Y as claimed b~ II.6.H'. Then by the Lips- 
chitz interpolation discussion in II.5.F and II.5.G this map extends to a 

F-dia-selfcontraction F of Y (see II.3.A), where the properties (i)-(iii) of F 

in II.3.A follow from the corresponding properties of F0 (see II.6.H ~) and 

(v) in II.6.H' needed to insure the contracting property of F (according to 

II.5.F'). Then the existence of a uniformly proper homotopy  Ft (see (iv) in 

II.3.A) trivially follows from (iv) and (vi) in II.6.H'. 

Finally, the existence of a F-dia-selfcontraction implies (see II.4.B) that  
the cohomology of F is Lipschitz. [] 

Recall that  the most  important  corollary (for us) reads: 

F satisfies the Novikov conjecture. 
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Remark:  The uniform discreteness assumption is rather unpleasant as it 
rules out, for example, the actions of F on the hyperbolic space H n with 

parabolic elements. It is easy to remove this restriction with an infinite di- 

mensional version of the Lipschitz cohomology, appropriate for the Novikov 
conjecture. On the other hand, removing the ULB-condit ion requires more 
effort. This will be discussed further in another paper. 

III. Lipschitz Cocyles and Secondary Classes 

In this section we shall show that  the hypothesis of properness of the action 
of the discrete group F on the space P ,  in the construction of Lipschitz 

classes, is unnecessary. Thus, both the construction of the group cocycle c 
and the Novikov conjecture for a cohomology class of c will remain valid for 

the extended notion of Lipschitz classes. Besides being more natural  (Lip- 

schitz cohomology becomes flmctorial for any group homomorphism),  the 
extended theory now covers the group cocycles on diffeomorphism groups 

coming from Gelfand-Fuchs cohomology. 

1 .A F a m i l i e s  w i t h  a f ixed  t a r g e t .  This means a continuous map c~ : 

P --* R N, where P is an oriented snlooth manifold on which F acts by 
orientation preserving diffeomorphisms. We not longer assume that  the 

action of F on P is proper. The assumptions on c~ are: 

(I) Displacement  bound: 

distRN (a(p) ,  c~(Tp) ) < 117It , Vp E P ,  ~ E F .  

(II) Properness:  a : P ~ R N is proper. 

The construction done in 1.8 above, of the group cocycle an[P]  E 

Hk(F) ,  works without  any change. One has: 

c(o/o .... ,o/k)= f o'2(") 
JA xP 

where o'~x : A x P --+ T = P x R N, and u = 1 x /3 is the (F-invariant) 

Thorn class of the trivial bundle T = P x R N over P (/3 is the generator 
of N N Hc~omp(R )). For any F-invariant smooth form w E H J ( P  : F) the same 

construct ion works and yields the following cocycle of dimension j + (N  - 
dim/5) = q  

C("fO, . . .  ,O/q) = ] 0 ' ~ ( ~  X (M) i 

JA x P  
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One can easily remove the orientation hypothesis on P and work with 
twisted F-invariant forms on P. We thus get a map c~n : Hi(P  : F) 

HN-~(F). 
1.B F a m i l i e s  w i t h  a v a r i a b l e  t a r g e t .  Here the F-manifold P comes 

along with an Euclidean, oriented F-bundle T _L, p .  This means, as above, 

that T is a vector bundle over P which is F-equivariant, the F-action pre- 

serving both the metric and the orientation. The map c~ is now a continuous 

section 

a ' : P - - * T  

of the bundle T on P,  which satisfies the following two conditions: 

(I)* Displacement bound: 

dist (7c~(p), ct(t'I))) _< {It'll , v 7  e F ,  p e P .  

(II)* Properness: The fnnction p ---* [[a,(p)[[ is proper on P. 

Note that  we do not impose the condition tha t  would normally follow from 

I7.B, i.e. that  o,(p) is fixed by the isotropy subgroup {7 E F , ~,p = p}. 

It turns out to be unnecessary both for the construction of an  and for the 

Novikov conjecture. 

To construct an  let us consider the classifying space BF, together with 

the universal F-principal bundle: 

EF  --. BE 

with EF  a contractible E-space on which F acts properly and freely. Let 

then Pr  = P x r EF,  Tr = T x r EF  be the corresponding induced bundles 

over BE, and ~rr : Tr --~ Pr  be the corresponding projection. The fibers of 

P : Pr ~ BF, t : Tr ~ EF are natural ly isomorphic to P and T respec- 

tively and the bundle Tr ~ Pr  is an oriented Euclidean vector bundle. In 

particular it has a Thorn class which we call view as a cohomology class: 

N u C Hproper(Tr).__. 

where the projection 7or is proper on the support of u; in fact we can assume 

that the support of u is contained in the unit ball bundle of Tr. 

Next, using the local triviality of the F-principal bundle EF  ~ BE, we 

get sections o'i : p - l ( u i )  --* TI" I P-I(Ui)  for open sets Ui C BF, and we 

can, using a parti t ion of unity {ki},  combine them into a section s(q) = 
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7~Xi(p(q))c~i(q) of Tr ~ Pr .  The displacement bound shows that  the 
norm, [[s(q)[[ of this section is a proper function on each fiber of the fibration 

P r  ~ B r .  

It thus follows that  the pull-back of the Thom class u is a cohomology 
C l a s s  

g 
S*(tt) E Hproper(PF ) 

in the cohomology of P r  with proper support for the projection p : P r  ~ BF. 

If P is oriented and F preserves this orientation we can now define the 
class an[P] e H N - d ( B F )  = HN-d(F), where d -- d i m P ,  by integrating 
s*(u) along the fibers of the fibration Pr  p BF. More specifically, when 

evaluated on an N - d  dimensional singular simplex f : A ~ BF,  the cocycle 

c = p!s*(u) is given by fp~ f*s*(u) ,  where P~ is the pull-back to A by f of 

the bundle Pr  -~P BF,  while f : PA --~ Pr  is the corresponding map. 

In general, given a F invariant current of order 0, i.e., a current given 

locally by a differential form with measures as coefficients, w E H J ( P  : F), 
we define (~n(W. [P]) E HN-d+J(BF)  = HN-d+J(F)  as p!((~ •  1)s*(u)) .  

Here w x r 1 is the extension of a; as a cohomology class on Pr  = P • r EF.  

As above, we thus get a well defined map 

H k ( P  : F) "% HN-I~(F)  . 

1 .C  DEFINITION. A cohomology class c in H*(F)  with r e d  coefficients is 
called Lipschitz i f  there exists P, T -~ P and a, as above, such that c = an (b) 
for some b E H . ( P  : F). 

The main result of this section will be that  any Lipschitz cohomol- 

ogy class satisfies the Novikov conjecture. Before embarking on the proof, 

which will rely on cyclic cohomology, we shall exhibit interesting examples 

of Lipschitz classes for which the F-action is not proper. 

2. Examples. 
The first two examples will be trivial but  not the third one whose 

generalization will show that. Gelfand-Fuchs classes on Diff are Lipschitz. 

EXAMPLE 1: Any O-dimensional class is Lipsch, itz, with, P = the one- 
point F-space and N = O. Note that  if" we insisted that  the F-action on P 
be proper it would not be  clear at all that  such a class is Lipschitz. 
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EXAMPLE 2: Any 1-di'mc'nsional class h E H I ( F , R )  is Lipschitz. Indeed, 
it comes from a group homomorphism h : F ~ R, being a group 1-cocycle. 
We then let P = R be endowed with the action of F by translation: 7 "P = 
h ( - ) ) + p ,  V7 E F, p E R. We let a, be the identity map from R to R N, 
N = 1 and let b E Ho(P : F) be the homology class of dimension 0 given by 
Lebesgue measure # = d p ,  i.e., with the notation of 1.A by the translation 
invariant 1-form w = dp. For ?0,71 E F one has: 

= •  x / 3 )  

1 1 

where o.x ( ~ )~j~fj,l.,) = (17, ~ )U (h('u) + 17)); thus, with ~(p) = f(p) dp, 
0 0 

J f d p =  1, and ~0 = 1 - ~ .  ~ 1 =  ~ w e g e t  

1 

o,*,x (w x /3) = (dp A d)Q (h('yl) - h(~/o ) ) f (  ~ Aj (h(Tj) + p)) �9 
0 

Hence. integration in dp eliminates f and integration in ,~ gives h(3'1)-h(70) 
as expected. 

EXAMPLE 3: We consider the group Diff+(S 1) = F of orientation preserv- 
ing diffeomorphism of the circle (or any countable subgroup) together with 
the Godbillon-Vey class, viewed as an element of H2(F, R) thanks to the 
following formula of Bott and Thurston: 

1 ~ f.q. 
c(g ,g-)  = , g*(dt'(gl))C(g~) . 

Here (. is a group 2-cocycle, i.e. (.(El g2) = d(1,gl ,gtg2) with c' a left 
invariant straight cocyele; also f(g), for g E F, is the logarithm of the 
.Iacobian: 

We shall now show that  this 2-cocycle on F is Lipschitz. In fact the same 
proof will work for Gelfand-Fuchs cohomology classes. 

Let us carefldly construct the triple (P,a,~) .  The F-space P is the 
3-dimensional manifold J+  = P of 2-jets of diffeomorphisms of a neighbor- 
hood of 0 E N with an open set of S 1. With S 1 = N/Z any j E J+  can be 
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written j ( t )  = y + tyl + t'2y2, where y E S 1, yl > 0 (this is the meaning 

of the + in J + )  and Y2 E R. The group F = Diff +(S  1) acts on J+  by 

composition, thus, with 7 E F one has 

, 
(7 o j ) ( t )  = 7(Y) + tYlT'(Y) + t2(v'(Y)Yu + - - - ~ Y  ) �9 

This action commutes  with the natural  structure of G-principal bundle on 

J+ ,  where the Lie group G is the group of 2-jets of orientation preserving 
diffeomorphisms of R 2 fixing the origin, i.e. the 2-dimensional group of upper 

triangular unimodular  matrices. 
Obviously the action of F = Diff+(S 1) on P is not proper. The proper 

map (~ : P ~ R 2 is constructed as follows: the principM G-bundle J+  

is trivial (since G is contractible) as is obvious fl'om the choice of section 

jo(Y) = Y + t , i . e .  Yl = 1, Y2 = 0. This gives us a m a p a , 0  : P ---* G s u c h  
that  (~0(j �9 a) = a'0(j)a, Va E G. Now we endow G with a right invariant 
Riemannian metric of negative curvature (and G is then isometric to the 

Poincar5 disk). We then take: 

a( j )  = expi -1 (no(j)) = log 1 (a'o(j)) e R 2 , 

where log I is the inverse of the Riemannian exponential map at 1 E G, 

exp I : R 2 = T1 (G) ---* G. 
The map a is proper by construction, and we shall check that  it satisfies 

the displacement bound (with some constant c) for each finitely generated 

subgroup of Diff+(S1). Since log I is a contraction, we just  have to check 

the bound: 

d i s tc  ((~0(TJ),t~0(J)) _< ce(7) , V j  e P ,  7 E F0 , 

where 2(7) is the word length of 7 E F0 with respect to a finite set of gen- 

erators. But  such a bound follows from the finiteness of Sup (distp(Vj, j ) ) ,  
jEp 

for any 7 E F, where we use on P any Riemannian metric which is invariant 
under the right action of G. 

Since P is oriented and F preserves the orientation, to get an element 

b of Ho(P  : F) we look for a F-invariant differential form w of degree 3 on 
P .  We take w = 2y~ -3 dy A dyl A dye. 

LEMMA. The 2-cocycle a'n(W. [PI) e H~(Diff+(S '~) ,R)  is the Godbillon- 
Vey cocycle. 
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Proof: Since our main concern is to show that o'a(w. [P]) is non-zero, 
we shall handle only the case when F0 C PSL(2, R) C Diff+(S 1) is the 
fired~ group of a compact  I~iemann surface of genus > 1. The general 

case follows along the same lines but  is more cumbersome. Thus we identify 

EF0 with the Poincar5 disk U and let F0 act on U = EF0 by isometrics 
with quotient M = B r o .  As above in III.1.B, we let Pro --* M = B r 0  be 
the induced bundle over M fl'om the action of F0 on P = .]+. This bundle 

is a principal G-bundle over S~o : S 1 XFo ~I. Since G is contractible, it is 
trivial and admits  G-equivariant smooth maps 

~!1 : P F 0  - ~  G 

whose composit ion with log I yields the map s, 

s : P r 0  ~ R ~  , ,~'=log 1oa l  , 

which is used in III.1.B. It follows that the cohomology class s*(u) E 

Hi~rope,.(PF0) is the pull-back by  ~' of the fundamental  class of R 2 in co- 
homology with compact  support ,  and is hence Poi'nca'rd dual to any smooth 

section of Pro ~ S~,0. 
We want to compute  an  (w. [P]) evaluated on the homology fired~ 

tal class [M] E H2(M,  R). Thus, by III.1.B, we just  need to compute  

f#  (w' xro l)s*(,) , 
o 

where the 3-form w has been extended to Pro = P • EFo using its Fo- 
invariance. But  since s*(u) is Poincar~ dual to (any) section a :S~o ~ Pro 
of p we get: 

~*(~'Xro) �9 
ql  

F0 

We shall now check that this is the Godbillon-Vey invaHant of the foliation 

of Sto = S 1 Xro E r 0  which is the horizontal foliation of this fiat bundle with 
fiber S 1 over M.  For this, it is enough to check that  the pull-back p*(GV) 
of the Goodbil lon-Vey class of this foliation is given by the 3-form w x ro 1. 

By natural i ty of the Godbillon-Vey class we just  need to check that  a: x r0 1 

is the Godbillon Vey class of the pulled back foliation. However, this lat ter  

foliation is defined by the closed non-vanishing 1-form 0 x ro 1, where 0 is 
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the Diff+-invariant 1-form 0 = ~ on J+ .  Thus, the result follows from the 
Yl 

following classical equalities between Diff + invariant forms on J+ :  

dO = 01 A 0 , co = dO1 A O1 

where 0 1 = 2  d y -  m 
We shall now extend the construction of example 3 to higher dimen- 

sional Gelfand-Fuchs classes. 

3. Higher  d imens iona l  Gelfand Fuchs classes are Lipschitz .  
Let M be a smooth  oriented, compact,  n-dimensional manifold and let 

F = Dif f+(M) be the group of orientation preserving diffeomorphisms of 
M.  Let k E N and J+(M) be the positive higher fl'ame bundle over M (cf. 
[HI, 1.8); an element of J+(M) is the k-jet at 0 E R n of a germ of orientation 

preserving local diffeomorphism of a neighborhood of 0 in R ~ with an open 

subset  of M.  As above, the manifold J+(M) is a principal Gk bundle 
over M ,  where Gk is the Lie group of k-jets of orientation preserving local 

diffeomorphisms of R n fixing 0. Moreover P = Dif f+(M) acts natural ly on 

J+(M) and its action commutes  with the action of Gk. The group SO(n) 
sits in Gk as a maximal  compact  subgroup, so that  we can consider the 

quotient. Mk = J+(M)/SO(n) as a F-manifold. Now let Ok be a natural 

map  of the complex WO(n)  (cf. [H] loc. cit.) to the complex of F-invariant 

differential forms on M s  =l i ra  Mk. For any co E Hq(WO(n)) let k be 

large enough so that  0k(co) is well defined on Mk, then one obtains a group 

cocycle on F, p(co) E Hq-'~(F, R) as follows. 

The F-manifold Mk. is the total space of a F-equivariant bundle over 
2/4 whose fibers F~ are isomorphic to the quotient Gk/SO(n) of Gk by its 

maximal  compact  subgroup. Let N = dim Fk, and fix an orientation of 

Fk. The corresponding orientation of M~, is then F-invariant. One can then 

consider the following fibration with fiber Fk: 

Mk Xr E F  ~ M Xr E F .  

The Thorn class u of this bundle with contractible fibers can be  viewed 
as an element of N Hp,.opr ), with Mk,r = Mk Xr E r  and "proper" 
meaning that  p restricted to supports  is a proper map. Thus it makes sense 

to use the homology class 0k(co) �9 [Mk] of dimension n + N - q to integrate 

u over the fibers of the fibration M~,r -* BF  and obtain a group eocycle 

p(~:) E H * ( B F )  of dimension N - (n + N - q) = q - n. 

This is exactly what. we did in example 3 above. In general we shall 
prove: 



Vol.3, 1993 G R O U P  C O H O M O L O G Y  W I T H  L I P S C H I T Z  C O N T R O L  59 

3.A T H E O R E M .  Any  c e pH* (WO(n)) C H*(F, R) is Lipschitz. 

With the above notation, we take as a F-manifold the space P = Mk. 

The problem is to realize the above Thorn class u (which was on Pr)  from the 

suitable section a of a F-Euclidean vector bundle T on P in such a way that  

satisfies the displacement bound for F = Diff+(M) acting on Mk. This 

would be easy if one could endow the homogeneous space F = G k / S O ( n )  of 

the Lie group Gk, with a left invariant Riemannian metric of non-positive 

sectional curvature. Indeed, one would then take T as the tangent bundle 

along the fibers of P p M and a ( j )  = exp~ -1 (sp( j ) )  where s is a fixed 

smooth section of this bundle with contractible fibers. A left invariant 

Riemannian metric of non-positive sectional curvature on F = G k / S O ( n )  

exists for k = 1 or for k = 2, n = 1, which was the situation of example 

3 above. However, it does not exist in general. We shall overcome this 

difficulty by a technique of inductive construction of proper maps satisfying 
the displacement bound which will apply to many other situations. 

Since we want to deal with groups F which are not necessarily finitely 

generated we shall refornmlate the displacement bound as follows: 

3.B DEFINITION. Let F be a discrete group, P a, F-space, T a r-equivariant 

Euclidean vector bundle over P and a, : P --~ T a section of T.  Then c~ 

satisfies the displacement bound i f  

vg e r ,  Sup II~"(gp) - g~ < o~. 
pEP 

When F is finitely generated it follows immediately that  for ~ small 

enough Ac~ satisfies the previous displacement bound. 

Our key technical tool is the following lemma. 

3.C LEMMA. Let F be a discrete group, P a F-space, T1 and T2 two Eu- 

clidean F-equivariant vector bm~dles on P,  ~'1 a continuous section of T1 

satisfying the displacement bound and c~2 a continuous section of T2 such 
that: 

l) Vg e a ,  ~c,  < o~. with II<~(gp) - g,,~(v)ll -< Cg ell'~'(')ll Vp e P .  

Then c~2 is homotopic  among sections satM:ving 2) to a continuous section 

~'~ of T~ which satisfies the displacement bomld and: 

2) Ilo,(p)ll + II,V(~,)ll-> Logll,,'~(P)ll v~,e P .  



60 A .  C O N N E S ,  M .  G R O M O V  A N D  H .  M O S C O V I C I  G A F A  

Proof: We look for a cont inuous f lmction f (x ,  y) > 0 of two real variables 
x > 1, y > 1, such that :  

a) x f ( x , y )  < l Vx, y; 3) y f (x ,y )  > L o g g - L o g x  Vx, y; 
7) [xyOxf(x,Y) I <_ 1 Vx, y; 6) IxyOuf(x,y)l <_ 1 Vx, y. 

Let us check tha t  the following funct ion f fulfills these condit ions:  

1 + L o g y -  L o g x  
f ( x , y ) =  for y > _ x  

Y 

f ( x , y ) =  1 for y < a "  
" X 

It is clearly cont inuous since x >_ 1, y > 1 and  the two definit ions agree on 

the diagonal.  
I+L~ where t = y /x  > 1, ~,) It is clear f rom y < x, otherwise x f (x ,  g) = t 

which is all right. 

3) This  is clear: for g < x, Log g - Log x is negative.  

~) One has,  for g > x, i)~f(x,g) - _A_ while for y < x, O~f(x,y) = 
- -  - -  x y '  - -  

1 This  shows tha t  Oxf(x, g) is a cont inuous funct ion and also tha t  ,~. 2 " 

I X y d y f ( x , y ) [  <_ 1. 

~) One has. for y _> x, O J ( x ,  y) = - ~  Log(v/x) and for y <_ x, O~f(x, y) = 
0. This  shows t h a t  Oyf is continuous and  xg Oaf(x, y) = --~ Log(y/x) 

1 Log t, t > 1 which is bounded  by 1 in norm. for g >_ x is of the form - u _ , 

We shall now prove tha t  condit ions a) .  7), 6) are sufficient to get the 

d isplacement  bound  for f ( e  I1~11, 11~2][), a'2 = a,~. It  is clear tha t  condi t ion 

,3) insures tha t  o,~ is homotopic  to a2 among sections of T2 sat isfying 2). 

Let g E F, there are constants  C1, C,_ < oo such tha t  

[l~l(~p)-~o,L(p)[[ <_ c'1, W e  P 

II~-~(g~) - g~2(~,))l < c'., exp (] l~l(P)l l ) ,  Vp e P .  

Of course bo th  C1 and  Co_ depend  on g E F. Bu t  we jus t  need to show tha t  

Sup Ilo"-,('~J')- 9o'~(~)11 < ~ .  
pEP 

We shall prove the following inequali ty:  

To do this ,  we let x = expHa,,(p)H, y = [[a,~.(.)][, x'  = exp][al(gp)H, 
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First, the diplacement bound for CI' 1 shows that 11o,2(gl))-g~(P)ll ~< c :  
and hence that: 
a) ] L o g x - L o g x '  I < C :  . 
Next, the inequality 2) of the lemma shows that  with ( = c~2(p), ( '  = 
g - : a 2 ( g p )  one has: 

I1~-  (11-< C2x 
which using a) we can replace by the symmetric condition: 
b) I1~ - ~'11 <_ inf(x, x')C2e c' 
It, follows then that y = I1~11 and y'= I1~'11 satisfy: 
c) lY - Y'I < i n f ( x , x ' ) C 2  ec '  

We have to est imate IIf(x, u)~ - f (x ' ,  Y')~'II. Since conditions a),b),c) 
are symmetric under the exchange of (x, y, {) with (x', y', {'), we may assume 
that y < y'. One then has 

f (x ' ,  y')~'  - f ( x ,  y)~ = 

= f ( x ' , y ' ) ( ~ '  - ~ ) +  ( f ( x ' , y ' )  - f (x ' ,  y))~ + ( f ( x ' , y )  - f ( x , y ) ) ~  . 

The first term f ( x ' ,  y ' ) ( ( '  - ~) is bounded in norni by 

( x ' ) - : l l ( - ~ l l  , 

::sing condition ~) for f ,  and hence by C2e c '  , using the inequality b). 
The second tern: ( f ( x ' ,  y ' )  - f ( x ' ,  y))(  is bounded in norm by 

] f ( x ' , y ' )  - f ( x ' , y ) l y  <_ y Sup Io, f ( x ' , t ) l l y '  - yl . 
[y,y'l 

But the inequality (5) on O J  gives the bound (x') -1 for y Sup[y,y, l ]Ot f (x ' ,  t)], 

and hence the bound C2e c~ for the second term, ::sing inequality c). 
The third term (f(x ' ,  y) - f(x,  y)){ is bounded in norm by 

[ f ( x ' , y )  - f ( x , y ) l y  <_ y Sup [ O , J ( u , y ) l l x '  - xl . 
[ x,.,,,] 

Again, the inequality 7) on O x f  gives the bound 

( Inf (x ,x ' ) )  -1 for y S u p l O u f ( u , y ) l  

and hence the bound e c~ for the third term using inequality a). 

3.D COROLLARY. L e t  F, P, T1, T2, ~: and ~ be as in Lemma 3.C and ass- 
sume  tha t  [[ch(p)H + Ila,2(p)ll is a p r o p e r  func'tiol~ on P .  T h e n  t he  sec t ion  

c~(p) = (or1 (p), a,~(p)) for r = T1 �9 T2 sat is f ies  the  d i s p l a c e m e n t  b o u n d  and  

p--* II~(p)ll is a p~oper  f u n c t i o n  on P .  
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Proof: One has IIo'(P)II = II~176 >- Sup (ll~,~(Ptll, Log 11~2(P)II) 
by condition 2) of the lemma. 

This corollary gives us a tool to construct inductively proper maps 

satisfying the displacement bound. The precise est imate in Log ll~'2ll of 
Lemma 3.C is important .  Simple examples such as the following show that 
this Log bound cannot be improved: 

3.E EXAMPLE: Let P be the connected solvable 2-dimensional Lie group 

of transformations t --, at+n,  a > 0 of N. Thus (a, n)(a', n') = (aa', an'+n). 
Let F = P act on P by left multiplication and T1, T,_ be the bundles on P 
with constant fiber R. Let, a:(a,  n) = Log a, o'2(a, t~) = a-an. Then clearly 

a l  being a group homomorphism satisfies the displacement bound while, 
with ~f = (x,y)  E F, 

a2 (Tp ) -  a~(p) = (xa)-l(zl~ + y ) -  0-17~ = a- l~ ' - ' y  

so that  II~(~p)-~2(p)ll -< c~ exp lit,: (p)ll. Thus the conditions of Lemma 3.C 
are fulfilled, but  it is impossible to improve the growth of a," since for a left 

[: 11 invariant metric on G = P,  its restriction to unipotent subgroups 0 ' 

n, E N ,  is typically tile metric d(n, n') = Log (1 + [,t, - n']). 

3 .F  COROLLARY. Let G be a //near algebraic group (over N) and K a 
m a x i m a / c o m p a c t  subgroup. Then there exists a smooth section ct, of the 
tangent bundle T of G / K ,  such that (for a fixed left G-invariant Euclidean 

metric  on T): 

: )  I1~11 i~ a p,'oper function on G/I ( ;  

2) Sup H a ( 9 p )  - g~(p)ll < ~ Co,. an:~ ~ ~ a :  
G/I( 

3) the pull-back by a, of  the Thorn class of T is the fimdamental class iz~ 

g L m p ( a / I ( ) .  

Proof: We shall construct  a by induction using Lemma 3.C. Recall that  (cf. 

[M1]) G = N>~H (semidirect product)  with N nilpotent simply connected 
and H reductive. When N = {0}, the homogeneous space G / K  admits 

an invariant metric of non-positive curvature so that  the answer follows 

from section 1.9. Moreover the resulting section a of T ( G / K )  satisfies the 

following further condition: 

II~(a)ll---exp(~ll~'(gu)ll), v g e a ,  
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where the left hand side is the norm of the matrix 7r(g) in an arbitrary finite 
dimensional linear representation of G whose restriction on K is orthogonal. 

In general, we shall assume that  we have proved the lemma for any N 

of dimension < d and with the following further condition fulfilled by the 

constructed section c~: 

4) For any representation 7r of H in a finite dimensional space with ~rlK 

orthogonal, and for any polynomial P on the Lie algebra of N there exists 

)~ = A(Tr, P)  < ec such that  

II (h)lllP( )l-<exp ll (g)ll, 
We have already seen how to fulfill this condition for N = {0}. Let us now 

construct a, for G = N x H ,  N of dimension d. Let Z be the center of N,  it 

is by construction a normal subgroup of N x H  = G and we let G1 be the 

quotient group G/Z,  p the canonical homomorphism form G to G1. One 

has G1 = ( N / Z ) x H  so that  G1 has the same form as G with dimN1 < d. 

The restriction of p to H C G is injective and we let K1 = p(K) be the 

corresponding maximal  compact subgroup of G1. 

The induction hypothesis thus provides us with a smooth section ot 1 of 

T(G1/KI) which satisfies 1),2),3),4). 

Let us consider the G-equivariant fibration 

a / I (  p a l / I (1  

with p(gK) = p(g)Kt for any g E G. 

Let us first understand the fibers p - t { x } ,  x E G1/K1. The center Z of 

:V is a vector space and the fibers of 

p: G--~G1 

are, in a left G-invariant manner,  affine spaces over Z (which acts on the 

right). When one divides by I (  ~_ K1, this a n n e  structure is lost but not 

the Euclidean metric coming from any K invariant fixed Euclidean metric 

on the vector space Z. With  this choice we get a G-invariant metric on the 

vertical bundle T2 = Kerp ,  C T(G/K) .  We shall construct a section c~2 of 

using a section s : G1/IQ ~ G / K  of the map p by the formula 

= ."s0'(.")i 
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(or, in a more fancy notation, the inverse of the exponential map exp~ along 
the fibers, applied to the point s(p(x))). The lack of G-invariance of a'2, 
i.e. II(~2(gx) - g(~2(x)l I is governed by the lack of G-invariance of s, i.e. by 

H(s(gx))-lgs(x)H, where s(gx)-lgs(x) e Z. 

To construct  s, we use the linear section LieN1 !g L i e N  and the re- 
spective group exponential maps. We then extend it to N: :~H --~ N x H  by 
s(n:, h) --- (s: (n:) ,  h) V n: e 1u h e U.  

Let g = (n,h) e G, x = (n:,hlK1) E G1/I(1 and let us compute 

(s(gx))-lgs(x) E Z in terms of s : :  N: ---* N. One gets: 

h71h-:((s:(nh(nl)))-:nh(s:(n:)))  e Z .  

Here g = (n ,h)  is fixed while x = (nl ,  h:K1) is the variable and we have to 
est imate the size of the above expression in the vector space Z. But h: only 
appears once and through its action by the representation 7r of H in Z, we 
can thus bound it by 1lTr(hll)]l. Let us show that  the remaining term, i.e. 

81(nh(nl))-lrth(sl(nl)) i s  bounded by a polynomial in e x p - l ( n l )  e L ie  

algebra of N:.  This is clear since for fixed h and n the above expression 

applied to nl = expa : ,  a: E LieN1 is a polynomial map of LieN1 to Z. 
This shows that  we can bound the norm of the above element of Z by 
llTr(hl-1)l[ I l P ( e x p - l ( n : ) )  II. 

Moreover, the dependence of P on g = (n, h) ca:: be absorbed in an 
overall multiplicative constant C 9. Thus, the section a'2 of T~ satisfies the 
bound 

II- (gy)- -< CgexpAHcrt(P(Y))Jl Vy e G/I( ,  

for a suitable A provided by the induction hypothesis. 

Let us then fix a G-invariant Euclidean metric on the tangent bundle 
T = T(G/K),  whose restriction to To is the previously chosen metric. We 
have a natural  G-equivariant isomorphism of T: C T, the orthogonal of 

T2 C T, with the pull-back p* (T(G:/K:)) of the tangent bundle of a,/K:. 
Let 5:  be ,kp*cY:, the pull-back of the section a'l of T(G1/K1), then the 
section a'2 satisfies the bound 

11 2(gy)-g 2(y)ll -< C expll '(Y)ll V y e a / K  

and we can thus apply Lemma 3.C to P = G/If  with the pair (~':, c~). Let 
then c~ be as in Lemma 3.C: the section a(y)  = (g/l (.q), a,~(y)) of T(P) sat- 

isfies the displacement bound and II (u)ll is a proI, er function on P = G/I(. 
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In fact it clearly satisfies the stronger condition 4) since any polynomial is 
bounded by a function exp(A Log t) for large t. Finally, a verifies 3) by con- 
struction. We have thus shown how to proceed by induction, which proves 
Corollary 3.F. 

Proof of Theorem III.3.A: As above, we let J + ( M )  be the positive k-frame 
bundle over M, and I" = Diff+(M).  Consider the F-equivariant fibration 
]" = J+/SO(n) -L M. It is induced from the Gk-principal bundle J+  --* M 
and the left action of Gk on P = Gk/SO(n), i.e. one has Y = J+  x a ,  P.  

Let V be the tangent bundle along the fibers of 7r; it is a F-equivariant 
bundle on Y and is induced from the action of Gk on the tangent bundle of 
P. Thus we can endow it with the F-invariant Euclidean metric coming from 
a G~. The local triviality of the Gk-principal bundle J+  and the compactness 
of M give us a finite covering {Ui} of 5I  by open sets, and isomorphisms 

71--l(~ri) '~ ~[i X P such that  on U~ N (•, r162 = (x, gij(x)p), where 

(g,j) is a 1-cocycle with values in G,.. Now since Gk satisfies the hypothesis 
of Corollary 3.F we let a, be a smooth section of T(P) fulfilling the conditions 
of the corollary, and using a partit ion of unity we get a corresponding section 

= ~-~(\iop)(a'oOi) of V. Since F acts by gauge transformations on J+,  the 
compactness of M and the displacement bound for a show that  ~ satisfies 
the displacement bound relative to the action of F. 

Finally, condition 3) of Corollary 3.F shows that 8 has the right proper 
homotopy class. 

Remark: Using Lemma 4.B below, one can actually extend Corollary 3.F 
to ahnost connected Lie groups. 

3.G T H E O R E M .  Let G be an ahnost connected locally compact group, [' 
a finitely generated discrete group and ~ : F --* G a homomorphism. Then 
m~," cohomolog:}, class in ~* (H~*ont(C, R)) is Lipschitz. 

Proof: By a well-known theorem, G has a normal compact  subgroup such 
that the quotient GLie is a Lie group. By another well-known result (see 
~'.g. [M2]), 

H*ont(G , R) = H*o,,t(GLi~, R) . 

Thus, the s ta tement  follows fl'om the above remark. 

4. Lipschitz cocycles and Chern classes of r-equivariant bundles. 
Let F be a discrete group, P a F-manifold and a, a proper section, sat- 

isfying the displacement bound, of a r-equivariant  Euclidean vector bundle 
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T over P .  In constructing the map an  from H . ( P  : F) to group cohomology 
we defined the homology H . ( P  : F) from invariant closed currents of order 0 

on P.  Our aim in this section is to show that the class of Lipschitz cocycles 
is stable under multplication by arbitrary polynomials in the Chern classes 

of F-equivariant complex vector bundles E over P ,  without  any hypothesis 
of existence of a F-invariant metric on E. 

4 .A  T H E O R E M .  Let (P, T, c~, C) be a geometric group cocycle, E a F- 
equivariant complex vector bundle over P and Er  the associated complex 
vector bundle over Pr = P Xr EF.  Let Q = Q ( c l , . . . ,  cn) be an arbitrary 
polynomiM in the Chern classes of Er.  Then the cohomology class p = 
(C Xr Qc~*(ur)) �9 H*(F)  is Lipschitz. 

The first difficulty we meet in proving this theorem is the absence of a 
F-invariant Hermit ian metric on the vector bundle E. To deal with it, we 
shall use the following two lemmas. 

4 .B  LEMMA. Let P be a locally compact F-space, f a positive continuous 
function on P such that f (p)  --* ec~ when p --~ oo. There exists a continuous 
positive function h(p) < f(p)  such that h(p) --* oc when p --* cx~ and 
satisfying the displacement bound: 

�9 r ,  Sup Ih( p) - h(p)[ < 
P 

Proof: Let/3 > 0 be such that  ~ e -~e(g) = C~ < oo where e(g) is the word 
ger 

length relative to a finite set of generators Z C F. Let then 

O(p) = ~ e-fle(g)e -f(gv) . 
gEF 

One has by construction 0 < 
f(g[-lg) _> e (g ) -g (g l ) ,  V g, gl E 

p E P .  

O(p) _< C~ < oe. Moreover the inequality 
F shows that  O(gl,p) <_ e~e(gl)O(p), Vgl  E F, 

It follows tha t  the function Log 0(p) satisfies the displacement bound,  as 

well as - Log 0(p). Now the inequality 0(p) >_ e -/(p) shows that  - Log (0(p)) 

< f(p) .  Since f (gp)  --, (x~ when p ~ oo, one has by the Lebesgue dominated 

convergence theorem that  0(p) --* 0 when p ~ c~, so that  - Log 0(p) ~ c~ 

when p --* oo. Thus we can take for h the positive part  h(p) --- 
( -  Log0(p))  + = - L o g -  O(p). 
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4.C LEMMA. Let ( P, T, ca,, C) be a g'eometric cocycle and E a F-equivariant 
complex vector bundle on P. There exists a F-equivariant fibration P1 p-~ P 
and an equivalent cocycle (P1, T1, O 1 ,  C ' l  ) Sllch that the bundle p* (E) = E1 
admits a F-invariant Hermition metric. 

Proof: The frame bundle o f /9  is a F-equivariant G-principal bundle over 

P, where G = GL(n, C), n = d i m c  E. 

Let P1 P P be the bundle associated with the action of GL(n, C) on 

the space H = GL(n, C) /U(n)  of positive matrices. We endow H with its 

c~nonical Riemannian metric which is G-invariant and of non-positive sec- 

tional curvature. This yields a F-invariant Euclidean metric on the vertical 

bundle V of the fibration/91 p P. 

By construction, the fiber p- l( . r )  over a point a" E /9 is the space of 

all Hermitian metrics on the fiber E.r of E, thus p*(E) has a canonical 

"tautological" metric which is F-invariant. 

We let T1 = p*T ~ V; it. is a F-equivariant Euclidean oriented bundle. 

We already have the section p*o, of the bundle p ' T ,  we need a section a'2 

of 1" which satisfies the displacement bound, is fiberwise proper, and pulls 

back the Thorn class of V to the Thorn class of/91 p P,  an oriented bundle 

with contractible fibers. 

We shall get. ~2 as follows. First we take an arbitrary Hermit ian metric 

on E, i.e. a smooth section s of the bundle P1 -L p .  To this section s we 

associate the following bounded section/31 of the vertical bundle V on t91 

+ 

) 

where/3(y) = y, Fp(y) E I'~. 

The non-positive curvature of the fibers shows that, 

ll/3g(v) -,3(,J)ll _< d(s~(:,.),.~(.~.)) . V y  ~p-'(.~:). 
where one uses the action of g E F on both t3 and s, and the l:{iemannian 
distance in the fibers of P1. 

It follows that  for any conlpact K C P one has 

[ I /3~(y)- /31(y) l  I --* 0 when y - ~  cx~ in p-1(1(). 
Let, then Z C F be a f ini te set of generators and 

--1 
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Let h(y) be given by the formula of Lerama 4.B, it satifies the displacement 
bound and h(y) ~ f(y),  also 

h(y) ---* oo in p - l ( K )  for any K compact of P .  

Then a2(y) = h(y)j31 (y) is fiberwise homotopic among proper sections of V 
to the original section/3. The norm of a2 is fiberwise proper. Finally, let 
us check that  a2 satisfies the displacement bound. One has, for g E Z, 

  (y)ll -< Ih(g )- h( )l II  (g )ll +  (y)ll, 
which is bounded since h(y)llt3~(y)-/31(y)[ I _< 1. 

We now let a l  = p*aOa2;  it is a proper section ofT1. We let C1 - p'C; 
since a~(uv) is the Thorn class of the bundle P1 p P associated to the 

section s, we get the required equivalence (P1, T1, a l ,  C1) "~ (P, T, a,  C). 

4 .D LEMMA. Let (P, T, a, C) be a geometric F-cocycle. 
1) Let E be an oriented F-equivariant Euclidean vector bundle over P. 

Then there exists a F-equivariant fibration P1 ~ P and a geometric 
F-cocycle (P1, T1, al , C1 ) with associated group cocycle 
(Cxr, e(Er)~*(UT)), where e(Er )  is the Euler class of the bundle as- 
sociated to E on Pr. 

2) Let E be a Hermitian F-equivariant vector bundle over P. Then there 
exist a F equivariant fibration P1 p P and an equivalent geometric 
F-cocycle (P1,TI ,al ,C1)  such that the pu11-baek p~(E) admits a F- 
equivariant subbundle of rank one. 

Proof: 1) We let P1 be the total space of E, we take T1 = p*(T �9 E) and 
) 

a l  = p * a O a 2 ,  where a2(y) = ys(p(y)), s being the F-invariant zero section 
of E. Now instead of taking C1 = p'C,  which would yield an equivalent 
cocycle, we take C1 = s,C.  It is a F-invariant current, and the dimension 

of the associated group cocycle is now increased by dim E. The equality 
e(E)  = s*(uE), where uE is the Thorn class of E, yields the desired answer. 

2) Let, first Po ~ P be the F-equivaraint ilbration with fiber over x E P 
the projective space P(Ex)  of the fiber E~. 

Let L be the canonical complex line bundle over P0. The construction 
of 1) applies to the real oriented bundle E0 = L �9 . . .  �9 L, direct sum of 

n - 1 copies of L, n = d ime E, and yields a triple (P1 ,TI , a l ) ,  where P1 

is the total  space of Eo, T1 is P*I o p~T ~ p~Eo and a l  is as above. We 
let C'I = s,p~C. Since the pushforward p0* of the Euler class of E0 is a 
constant. r 0 we get the conclusion. 
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Proof of Theorem III.4.A: Using Lemmas 4.C and 4.D we can assume that  
the bundle E is a direct sum of F-equivariant Hermitian line bundles Ei. 
We are thus dealing with a polynomial in the first Chern classes c i (Ei) ,  i.e. 
in the Euler classes e(E~). The answer follows from the multiplicativity of 

the Euler class combined with 4.D.1). 
Let us now state and prove two propositions which are corollaries of 

the above lemmas. 
Let us recall from [C2] the following 

4.E DEFINITION: An action of the discrete group F on a manifold P is 
almost isometric if there exists a F-equivariant reduction of the structure 

group of P to a group of block triangular matrices with orthogonal diagonal 

blocks. 

If we apply the proof of Lemma 4.C in the real context,  i.e. with 

GL(n,R) instead of GL(n, C), to the tangent bundle of P we get, using 
[c2]: 
4.F PROPOSITION. Let ( P , T , a , C )  be a geometric F-cocycle, then there 
exists a F-equivariant tibration P1 ~ P and an equivalent geometric F- 
cocycle (Pi ,  T1, a l ,  C1) such that the action of F oil P1 is almost isometric. 

This reduction to the ahnost isometric case is crucial for the use of 

cyclic cohomology and the proof of the Novikov conjecture for Lipschitz 
cocycles. 

The next proposition relaxes a bit the axioms in the definition of a 
Lipschitz class. 

4.G PROPOSITION. Let P be a locally compact F-space with a F-equivariant 
Euclidean vector bundle T. Let a'l be a continuous section of T such that 

a) II ,(y)ll -> * > o out , ide  a compact subset or P, 

Then there exists a proper, displacement bounded section a of T on P of 
the form a(y)  = h(y)~i (y) ,  h(y) ~ cx~, y ~ ~x~. 

Proof: Let f (y )  be a positive proper continuous flmction on P such that 

f(Y) <- ( Z Na'~(Y) - a l (Y) l [ ) - '  where Z C F is a finite set of generators 
gEZ 

of F, and with f (y)  ---* oc when y ~ oc. (This is possible by c).) Let 

h(y) < f (y)  be given by Lemma 4.B. Then o,(y) - h(y)o'l (y) is the required 
answer. 
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5. L i p s c h i t z  cohomology and t h e  N o v i k o v  C o n j e c t u r e .  

In this section we shall show how to remove the hypothesis that  the 

action of F on P is proper in the proof of chapter I of the Novikov conjecture 
for Lipschitz classes. 

It is cyclic cohomology which will play a crucial role in this proof. This 
is not surprising in view of Example 3 in III.2. Indeed, in that  example, 
the F-invariant form co of degree 3 on J+  (the space of higher 2-frames on 
S 1) gives an invariant measure on the space Or+ and hence a trace r on 

the crossed product  C* algebra A = C 0 ( J + ) x F .  Such a trace r gives a 

natural  map  from Ko(A) to C and it is this map which replaces in this 

example the Chern character ch : K*(P/F) --+ H * ( P :  F) which we used in 
the proper case. Traces are 0-dimensional cyclic cocycles and in general a 
F-invariant differential form co of degree q on the F-manifold P provides us 

with a cyclic cocycle ~ of dimension d = dim P - q on a dense subalgebra 92 
of the C*-algebra A = C 0 ( P ) x F .  The very delicate problem of extension of 

the corresponding map Kd(~l) ---+ C to a map Kd(A) --+ C has been solved 

in [C2] and we shall use this result to conclude. 

5 .A  T H E O R E M .  Let F be a discrete group. Every Lipschitz cohomology 
class c E Hk(F,  R) satisfies the Novikov co1~jecture. 

We shall use as a tool in the proof of this theorem the natural  "as- 
sembly map" # from the geometric K-group of the pair (P, F) where P is 

a F manifold, to the (analytic) K- theory  of the C*-algebra A = C 0 ( P ) x F ,  

crossed product  of Co(P) by F. This map (see [BC]) extends to group 

actions the usual assembly map: K , ( B F )  --+ K(C*(F ) )  (cf. [K]). The geo- 

metric group K*(P, F) of the F space P is by definition the X-homology of 
the pair (Br, St)  of the unit ball, unit sphere bundle of the vector bundle r 

on Pr  = P • r E F  which is associated to the tangent bundle of P .  (A more 
refined version is necessary to take care of the torsion of F, but  we shall not 

need it here). 

We shall now recall briefly the properties of the generalized assembly 

map  tt : K*(P, F) --+ I f ,  ( C 0 ( P ) x F )  which we shall need for the proof  of the 

theorem. 

Using the Saum-Douglas  description of K homology ([BD]) (i.e. as a 
quotient of Spin~ cobordism) one gets that  every element x E K* (P~F) can 

be obtained from a quadruple (N, q, F, h) where N is a manifold, q : N ~ N 

is a F-principal bundle over N,  F is an element of X- theory  with compact 
support F E K~(N), and h :/V + P is a F equivariant X-oriented map. The 
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N-orientation of h is given by the choice of a F-invariant Spine-structure 
on the bundle T ~  r ~) h*TP on ,~. This notion is well defined because the 

action of F on ,~ is proper. 
Each such quadruple (N ,q ,F ,h)  defines an element of K * ( P , F )  = 

K,(BT, ST) whose image by # can be explicitly described (cf. [C2]). We 
shall just  need 

5.B LEMMA [C2]. I fh  : N --~ P isasubmersion, one has # (N ,q ,F ,h )  = FG 
h! E K(Co(P)xF) ,  where h! E I i I (r (Co(N) ,Co(P))  is the F-equivariant 
family of Dirac operators along the fibers of h. 

We have used here the natural  map of K N r ( A ,  B) to N K ( A x F ,  B x F )  
and the Morita  equivalence C 0 ( N ) x F  -~ Co(N). We refer to [C2] for more 
details. 

Let us assume that  P is F-invariantly oriented. Then the Chern char- 
acter in K-homology:  

ch. : I ( . (Br ,  ST) --+ H. (Br ,  Sr)  

can be composed with the Thorn isomorphism 

r : H . (Br ,  Sr)~_ H._,,(Pr) , with Pr = P xr  EF 

and an explicit computa t ion of r ch.(a:) for x = (N, q, F, h) gives the fol- 
lowing 

5.C LEMMA[C2]. Let x = (N,q ,F ,h)  E K*(P,F ~_ K , ( B r ,  Sr).  Then 
o ch,(x)  = h, (chF)Td(TN | h 'r)  n IN]). 

Here N is oriented since h is K oriented and T is oriented. Moreover, 

is a map from M to Pr  associated to hr : 2~'i" ---+ Pr ,  since/Yr = N x r EF 
is naturally homotopic to N.  

We can now state the main result of [C2] which will be the key fact 

used in the proof of Theorem 5.A. 

5.D LEMMA. Let r be a discrete group acting by orientation preserving 
diffeomorphisms of the (not necessarily compact) manifold P. Let T~ be 
the C subalgebra of H * ( P r ,  C) generated by the cohomology classes of r- 
invariant dosed currents o/" order 0 on P and by the Chern classes of F- 
equivariant bundles on P. Then for any y E Tr there exists an additive map 

(~ of the K theory group K(A)  of the C* algebra A = c0(P)xr, to c,  such 
that 

ebb(x) )  = (~ o ch,(x),  y} , Vx e I c * ( v , r )  . 
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Proof: Since the result is not s tated like this in [C2; Thin. 6.8] (it does not 
involve F-invariant differential f o r m s ) ,  we need to explain how to prove it 

using the technique of [C2]. One first uses Proposit ion 4.F to reduce to the 

almost isometric case, i.e. the case where the action of F on P preserves 

a G-structure on the manifold P ,  where G is a group of triangular block 
matrices with orthogonal diagonal blocks. 

Next, given a F-inwu'iant closed current of order 0, w on P ,  one shows 
exactly as in Lemma 4.4 of [C2] that  the following cyclic cocycle on the 

algebra 9 / =  C ~ ( P ~ F )  defines an m-trace of the Banach algebra completion 

B of 9/given in [C2; Thm. 3.7]: 

~ . . . . .  = f ,  gO .. .gin -- 1 

where m = d i m P  - degco, and f i  E C,~(PxF) is viewed as a family fg, 

g E F of smooth  functions on P.  
The rest. of the proof is then exactly the same as the proof of Thin. 6.8 

of [C2]. 

Proof of Theorem 5.A: Let P be an oriented smooth  F-manifold, w a F 
invariant closed current of order 0 on P and a, a section of a F-equivariant 
Euclidean oriented vector bundle T on P fulfilling conditions (I)* and (II)* 

of III.1.B. We want to prove that the corresponding group cocycle c = 

a 'n(~"  [P]) on P satisfies the Novikov conjecture. 
As a first step, let us show that we can assume that the F-bundle T 

is endowed with a F-invariant structure of complex vector bundle. For this 

we use the suspension (I.7.C) with the bundle T. Thus the new space P' 
is the total  space of T and the new bundle T ~ is the pull back to T of the 

complexification Tc = T �9 iT of T. The new differential form , / i s  the pull- 

back of a; to T which does not change its degree k = deg ca. In particular 

the difference dim T - (dim P - deg ,~) is equal to dim T r - (dim P' - deg ,;). 
Finally the section a ,~ is a'(p, ~) = o,'(p) + i( for p E P,  ( E Tp. As before 

(1.8) one has a~ ( J [ P ' ] )  = C~n (~[P]) and the new bmldle T '  is now complex. 

As a second step we use, assuming that  T is complex, the bundle S = 
AT, exterior algebra of the complex space T, and the natural  representation 

of the Clifford algebra Cliff(TR) of the underlying real vector bundle, to 

construct  as in 1.10, an element K(a) E KKr(C ,  Co(P)). This is done as 

follows. The C* module g over Co(P) is the space of continuous sections 
vanishing at oo of S and the remaining formulas are identical with those of 
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1.10. Thus the endomorphism F of s is given by (F~)p = Fp(p, V( E s = 
Co(P, S) where Fp = 7 ( a l  (p)) is the Clifford multiplication by 

= ( 1  + �9 

As before the displacement bound and the properness of Ilall show that  
(s F)  defines an element A'(a) of I(I(r (C, Co(P)). 

Using K(a) �9 KI(r(C, Co(P)), or rather its image K'((~) in 
IClC(C*(r),Co(P)xr), we obtain a natural  map ~b~ : K(C*(F) )  --+ 

zc(c0(Pl~r), e o ( y )  = u | K'(a). 
As a third step we shall compute the composition ~ba Q # of r with 

the assembly map # :  K . ( B F )  ~ I ( (C*(F) ) .  Let x �9 I ( . (B F)  be given by 
a geometric cycle, i.e. a compact  Spine-manifold V, a F-principal bundle 
l,~ -*P V on V and a / (  theory class E �9 K*(V).  Then Lemma 5.B shows 
that #(x) � 9  = ~ # ( x )  is given by the following geometric cycle: 
(N,Q,F,h) = z, i.e. ~b~L(x) = tL(z). Here N is the manifold V Xr P,  q is 

the F-principal bundle over N given by ,~" = ~" x P -*q V x r P ,  F is the class 
i n / ( * ( N ) ,  the N-theory  with compact support of N given by the formula 

F = :r*(E)~*(t) 

where 7r is the projection N --~ V associated to ]V ~ V the projection 
on the first factor, t is the Thorn class in K- theory  of the complex vector 
bundle T on N associated to the F-equivariant bundle T on P,  and ~ is a 
section of T on N associated, using the local triviality of the bundle N ~ V 
with fiber P,  to the section a of T over P.  

Finally the :nap h : ,~" ~ P is the second projection. 

Let us compute  the Chern character �9 o ch.(z)  �9 H . ( P r ) ,  where Pr  = 
P xr EF, of the element, z. 

The /(-orientat ion of h : ?~ ~ P is given by the Spincs t ruc ture  of 
the fiber ~;'. The Chern character ch(F) is equal, by the above formula, to 
~* (ch(E))3*(cht)  and, as is well known in the originM proof [AS] of the 

index theorem, ch t is the product of the Thorn class u of T by the inverse 
of the Todd genus of this complex bundle, a characteristic class v(T) = 
1+ higher degree. We thus have 

(I) o ch, (x) = h ,  (,~(T)5* (u)Tr* ( .4(V)ch(E)) [N]) 

where h : N -~ Pr  is obtained fi'om hr. : Nr  --* Pr  and the homotopy 
equivalence Nr  = N x r EF  _~ A r. 
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If we express this in terms of ch.(x)  = ~. (A(V)chE[V]) where ~:  W --, 

BF  is the classifying map of the F principal bundle f'~ over V, we get the 
following formula 

r o ch,(z)  --- u(T)G*(u)(ch,(x)  • [P]) 

where T is the complex vector bundle on Pr  associated to T on P ,  ~ is a 

section of T associated to the section a, and where the orientation of the 
fibers P of the fibration Pc ~ BF, is used to define the product  homology 
class ch,(x)  x [P]. It follows from this formula together with Lemma 5.D 
that  for any F-invariant closed current of order 0, ,J E H j(P : F ) ,  there 
exists a linear map L :  K(C*(F) )  --* C such that  

L(#(x)) = @ h , ( x ) , a n ( ~ . [ P ] ) }  , Vx E K,(BF).  

It follows tha t  the Lipschitz class an (w. [P]) satisfies the Novikov conjecture. 

Epilogue. Lipschitz-Poincar6 Dual  of a Group 

The construction of Lipschitz cohomology classes for a finitely generated 
discrete group F can be systematized by means of a "dual object" to BF, 
consisting of a F-space equipped with a "Poinca% duality" map from its 
F-invariant homology (with infinite chains) to H~(F).  We devote the con- 

cluding section to this notion of "Lipschitz-Poinca% dual" of BF, which we 
believe to be of independent  interest. 

Fix a word-length function I'YI, 7 E F and let d(%,72) = 171"1')'21, 
71,72 E F be the associated leff-invariant distance on F. For N E N, let 

LNF= { r  ~ R  N : I1~(~,)- r d('l,,'~2), V'n,~2 e r } .  

Endowed with the product  topology, LNF is a locally compact space. Indeed, 
LNF is a closed subspace of R N • 1-I B~, where B~ C R N is a ball centered 

at the origin of radius I'Yl. F acts on LNF by left translations. On the other 

hand,  SO(N)  acts on LNF in the obvious way: ar  = u o 0, Vu E SO(N) 

and r E LNF. The two actions commute.  
Consider now the subspace FNF of LNF consisting of all Lipschitz 

contractions r : F --, R A' such that  R N = linear span of r It is easy to 
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see that FNF is precisely the union of all SO(N)-orbits  with trivial isotropy. 
.ks such, it is an open subset of LNF and therefore a locally compact space 

itself. Moreover, the action of SO(N) on FNF is free. 

Let PNF denote the quotient space of FNF under the action of SO(N) 
and form the vector bundle 

TNF = FNF XSO(N) R N --+ PNF , 

associated to the principal SO(N)-bundle 7r : FNF --+ PNF and to the 
standard representation of SO(N).  Evaluation at identity gives rise to a 
canonical cross-section &N : PNF --+ TNF as follows: 

a N ( r r ( o ) )  = O XSO(N) O ( e ) ,  V e  �9 F N F  �9 

E.I  LEMMA. TNF --+ P N F  is an Euclidean, oriented F-bundle and the 

continuous section a~,x" : PNF ---+ TNF satisfies the following conditions: 

(I*) I1~,o~,:(~-~,)  - o N(P)II <- b ' l ,  v~, ~ F ,  p �9 PNr; 
(II*) the ftmction IIo'NII(P) -- II ,N(J,)Ii, p �9 INF.  is proper; 

(III*) (TA.F)v = linear span of {7a 'N( ')- lp)  : 7 �9 F}, g p  �9 PNF. 

P,vof: I fp  = rr(0), then q<l 'N(7-1p)  = 0 XSO(N)r TMs,  (I*) and (III*) 
follow just from the fact that  ~ E FNF. Likewise, (II*) is a consequence of 
the definition of FNF as a topological space. [] 

Note that  (I*) and (II*) are the displacement bound and, respectively, 
tile properness conditions required in the definition of a family with variable 
target (cf. 1.7.B, III.1.B). On the other hand, (III*) is a non-degeneracy con- 
dition which could have been added to that  definition without altering any 
of the subsequent developments. A family satisfying the extra  assumption 
(III*) will be called non-degenerate. 

The point of the above construction is that  it provides a universal 

family .with variable target. 

E.2 PROPOSITION. Let (P, T, a) be a non-degenerate family with variable 

target. There exists a proper, F-equivariant map ~ : P --+ PNF, where 
N -__ rank(T),  su& that ( P , T , a )  ~- ~*(P.~,F, TNr,  aN),  i.e. T ~ ~*(TNF) 
and ~T o a = aN o n, where t;T : T --+ TNF is the canonica/ l i f t  of n. 
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Proo]: Let F --* P be the orthonormal frame bundle associted to T --* P. 
An element of F is a pair (p, f )  with p E P and f : Tp --* R N as orientation 
preserving linear isometry. Define r = aF(p, f )  : F --~ R N by the formula: 

r = f(~/o~('y-lp)) , V'~ e r .  

Since (P,T,c~) satisfies (I*) and (III*), it follows that  q~ E FNF. The 
map aF : F --~ FNF thus defined is obviously SO(N)-equivariant  and, 
in view of the fact that  (P, T, a)  fulfills the properness axiom (II*), RE is 
proper. Therefore, it induces proper maps a : P --* PNF and aT : T 
F XSO(N) R u --* TNF. Moreover, aF  provides a canonical identification 
of F with a~(FNF)  and, consequently, of T with a*(TNP). With  these 
identifications made,  it is easily seen that aT o a, = c~N o a. 

Finally, a is F-equivariant because RE is; indeed, if g E F, p' = gp, 

f '  = g .  f and 0' = aF(p' ,  f ' ) ,  then 

r  = f ' (7~(7-1ap))  = f(g-aTc~(7-1gP)) = 0(g-17)  = (g" r �9 o 

Since (PNF, THE, aN) is itself a family with variable target,  one can 
define, as in section 1.8, a duality map C~NN : H. (PNF : F) --+ HN-*(F) .  

Namely, let A = A(70 , . . . ,Tk )  = { ~ tjTj ; ~ tj = 1, tj > 0} be the 
0_<j<k 0<j<k 

k-simplex spanned by 70 , . . - ,Tk  E F and let azx : A x PNF --* TNF be the 

m a p d e f i n e d b y  aa(  Y~ tjTj,p) = ~ t jTf la(Tjp) .  L e t U N  b e t h e ( r -  
0<j<k o___j<k 

N invariant) Thorn class of the bundle TNF --* PNF. Since UN E Hc,(TNF, R) 
(=  compact  vertical cohomology of TNF) and aA is proper, a*A(UN) E 
H N (A • PN F, R). One can therefore evaluate a~x (U g ) on a cycle of the form 
A • C, where C E H~v-k(PNF : F). The resulting number, c(3'0,... ,Tk), 

satisfies the invariance property c(770 . . . .  ,77k) = c (?0 , . . . ,Tk) ,  V7 E F. 
Moreover, the assignment (70 , . . . ,  7k) --* c(70, . . .  ,Tk) defines a group co- 
cycle; its class is, by definition, aNn(C) E H*(7).  

E.3  COROLLARY. Let (P, T, a) be a non-degenerate family with variable 
target and let a : P --. PNF be its classifying map. The following diagram 
is commutative: 

H , ( P F  : r) H , ( P u r  : r) 
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Thus, a natural  definition for the Lipschitz cohoraology of F is the 

following: 

H~(r)  = U Image(aNn: H N - . ( P N r  : r)  -~ H*(r))  _c H * ( r ) .  

Note, however, that  in the body  of the paper we have been using a "smoothed" 

version of this cohomology, consisting only of Lipschitz classes which admit 
a smooth realization, i.e. arise from geometric cycles (P, T, a,, C) with P a 

smooth manifold. 
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