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GROUP COHOMOLOGY WITH LIPSCHITZ
CONTROL AND HIGHER SIGNATURES

A. CoNNEs, M. GrRoMov aAND H. Moscovict

Introduction

Motivated by analytic aspects in the study of non-simply connected mani-
folds, we introduce and exploit in this paper a certain type of cohomology
for finitely generated discrete groups I', which takes into account the metric
structure of such a group given by a word-length metric. The basic ob-
jects used to produce this cohomology are families of Lipschitz contractions
from I to finite-dimensional Euclidean spaces R". The resulting cohomol-
ogy classes, to be called Lipschitz classes, form a subspace H}(T') of the
ordinary group cohomology with real coefficients H*(I') = H*(BI',R). By
imposing an additional properness condition, one obtains a more restricted
variant, namely the proper Lipschitz cohomology H , (T').

Carrying a “Lipschitz structure” gives a significant advantage to a
group cohomology class. In particular, as we show early on in the paper (cf.
sec. 1.10), every proper Lipschitz class gives rise to a homotopy invariant
higher signature, for any closed oriented manifold mapping to BI'. This, in
fact, follows immediately from Mishchenko’s higher signature theorem [M],
once the construction of Lipschitz classes is given a K-theoretical counter-
part by means of Kasparov’s intersection product [K).

Thus, it becomes important to recognize the kinds of groups I' for
which the proper Lipschitz cohomology exhausts the cohomology of BT.
After .ome fainiliarity with the concept is developed (sec. 1.1-8), one can
see fairly easily that Hy ,([') = H*(T') if ' is a discrete subgroup of the
group of isometries of a complete, simply connected Riemannian manifold of
non-positive sectional curvature (cf. sec. 1.9). The same is true for discrete
subgroups of an almost connected Lie group or of an algebraic group over
a local field. The most difficult, but perhaps the most interesting, case is
that of a general (word) hyperbolic group. The proof that all cohomology
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classes of any subgroup of such a group are properly Lipschitz occupies the

entire chapter II. Its essential ingredients can be summarized as follows:

(1) a procedure of symimetrization at infinity, allowing the transformation
of a proper map o : M — RY into a Lipschitz map, provided there
exists a proper self-contraction f : M — M with Lipschitz constant
<1

(2) an “extension lemma” for Lipschitz maps, with control of the Lipschitz
constant, which plays in the context of this paper a role analogous to
the Hahn-Banach theorem for locally convex vector spaces;

(3) an estimate of the Lipschitz constant of the obvious candidate for a
self-contraction on a é-hyperbolic space, when restricted to a set of
points whose mutual distances are sufficiently large with respect to the
hyperbolicity constant é.

Note that, at this stage, we have already recovered the proof of the
Novikov conjecture on the homotopy invariance of higher signatures, in all
cases which were previously known (compare [K], [CM], [KS}).

In chapter III we extend the homotopy invariance of higher signatures
to non-proper Lipschitz cohomology classes. The proof, which is consid-
erably more elaborate than in the proper case, is based on concepts and
techniques developed in [C2]. Thus, in the spirit of loc. cit., we establish a
“reverse index theorem” asserting that to each £ € H}(I') one can associate
a suitable “analytic index map” L € Homgz (I,(C*(T'),C). This means
that for any element x € L,(BT) its “higher topological index™ (ch,z,&)
can be expressed as L(u(z)), where p: K'(BT) — I, (C*(T')) denotes the
analytic assembly map (of [BC] and [K]).

Non-proper Lipschitz cohomology classes arise naturally in the context
of continuous cohomology for topological groups made discrete. The general
principle appears to be the following: if ¢ : I' — G is a homomorphism from
a finitely generated discrete group to an almost connected topological group,
then *(H2,,(G,R)) C H;(T). In the present paper we prove the validity
of this principle in two important cases:

(a) when G is locally compact, and

(b) when G = Diff* (M) is the group of orientation preserving diffeomor-
phisms of a closed manifold M and 1* is restricted to the subring of

H? ,.(G.R) generated by Gelfand-Fuchs classes via integration along
the fiber.
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I. Proper Lipschitz Cocyles

1. Multiproper maps I' = RV,

Let T be an abstract discrete group, consider a map o : I' — R¥,
and let us try to pull back to I' the fundamental class of RY in the real
cohomology with compact support, say ¢ € HY, (RY). We represent c
by a (necessarily closed) N-form w on RV with compact support and we
first define a non-I'-invariant N-cocycle ¢* on I' by integrating w over the
N-simplices in R" spanned by the a-images of (IV + 1)-tuples of points in
I'. That is,

¢ (or- -1 ) =/Aa*<w),

where A is the abstract N-simplex spanned by 79,71, - .., Y~y and the map «
is extended (from 7y, . ..,vn) by linearity to a map of A to RY also called a.
Next, in order to make ¢* T-invariant we try to sum it over I" and set
¢ = Z ye* o,
~el
ie.
T (Yos - IN) = D € (VY05 TIN) - (1.1)
~vel
Notice that the above infinite sum would make perfect sense if there were
only finitely many non-zero terms. This motivates the following definition.
2. DEFINITION:
A mapa: [ — RV is called multiproper if for every finite subset F C T’
and every compact subset B C RV there exist at most finitely many v € T
such that the convex hull of the image of the y-translate of F meets B, i.e.

BnConva(yF)=0, (1.2)

for almost all v € T.
Notice that “multiproper” reduces to the usual “proper” if (1.2) is
required only for the one-point set F' = {id} € I'.
Now, if « is multiproper, then the sum Y in (1.1) does have only
T

finitely many non-zero terms and so the definition of the N-cocycle @ on I'
is meaningful. Then we observe that the cohomology class of ¢* in HY(T'; R)

depends only on ¢ = [w] € H C‘me(RN ) and so we have our pull-back

a*(c) = [¢] € HN(T) .
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3. EXAMPLE:

Let I' admit a compact smooth manifold X for a classifying space.
This means that the universal covering X of X is contractible and the
fundamental group m;(X) is isomorphic to I'. Then every continuous proper
map A : X — R" induces a homomorphism

A*:H  RY) - HY (X)) .
(If A is smooth, one can define A* by pulling back forms w from R" to X. If
A is non-smooth, one can apply this to a smooth approximation of A.) Then,
by summing over I' = 7, (X) which acts on X by deck transformations, one
obtains a homomorphism

H: (X)— H*X),

comp
whose composition with A* is denoted by A

A" H,(RY) - HY(X) .
If A is smooth, then the image 4" (c) of a class ¢ € H*(R") given by a form
w on RV can be represented by the form

= Z yA* (w)

~v€T

on X = X/I.

Notice, that we have not used the contractibility of X so far. This
becomes important only if we want to compare A" to @*. Recall that every
isomorphism 7;(X) — T induces a homomorphism h : H*(I') —» H*(X)
and in the case where X is contractible, & is an isomorphism. So, with a
fixed isomorphism between I' and 7;(X), we can identify the cohomology
of I' with that of X.

Next, by restricting A to the I'-orbit of a base point Zy € X, we obtain
amapa: I — RY for

afy) = A(vZo) ,

and whenever « is multiproper we have the homoinorphism

o H: (RY)— HXI).

comp
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Then, under a very mild assumption on A, this homomorphism does not
depend on the choice of Zy and, in fact, it equals A" via the identification
H*(I') = H*(X). The “very mild assumption” is satisfied, for example,
if A is a Lipschitz map with respect to the metric on X lifted from some
Riemannian metric on X, i.e.

distgny (A(z1), A(z2)) < ¢ dist}z(ajl,zg) ,

for all zy.12 € X and a fixed constant c > 0.

4.

Let us indicate a typical situation where the homomorphism A" is non-
trivial. Let the (compact) manifold X have no boundary, assume dim X =
N and let the (proper) map A : X — R" have a non-zero degree d with
respect to some orientation chosen in X. Then the fundamental class ¢ €
HE . »(RY) goes to d times the fundamental class of X and A%(c) € HV(X)
equals d times the fundamental class of X,

EXAMPLE: Let I' = ZV and X equal the N-torus TV. Then X =R" and
the identity map 4 : X — R” induces the fundamental class of TV. Notice,
that in this case. A" = @* and so the standard embedding o : ZV¥ — RV
induces a non-zero element in

HYN@Z"y=HYT")=R.

(Recall that the cohomology here and below is taken with real coefficients.)

5.

There are definite limits to our construction of non-trivial elements in
H*(T) of the form @*(c) for ¢ € Hc*omp(RN). First of all, the cohomology of
RY with compact support is non-zero only in dimension N, where it is one
dimensional. Thus we may only produce non-trivial elements in H (T).
To see hetter what happens next, we assume that I' is isomorphic to the
fundamental group of a compact polyhedron X, such that the universal
covering X is N-connected, i.e. m5(X) = m3(X) =...= WN()Z) = 0. (For
example, the manifolds X with contractible X are good enough here.) Then
the group Héomp(ff) for ¢ < N is, in fact, independent of X and can be
called H Ciomp(l"). Furthermore, it is not hard to extend this definition to an
arbitrary finitely generated group I' without assuming the existence of X.
(Notice that the existence of X amounts to a certain finite dimensionality
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property of the cohomology of I'.) Now we observe that the homomorphism
@* factors through

H:omp(RN) — H, (P) ’

comp

and so it is zero in dimension N if H, ggmp(F) = 0. (It may be only fair to the
reader if we admit at this point that our He,,,,(I') equals the cohomology
of I' with coefficients in the real group ring of I'.) For example, if our X is
a closed n-dimensional manifold, then the homomorphism @* is zero unless
n=N.

To appreciate the third difficulty which may appear we suggest that the

reader look at the free group I' on two generators, where the space H, Clomp(F)

is infinite dimensional. The polyhedron X here is the figure co and Xisa
regular infinite tree. It takes a minor effort to construct a proper Lipschitz

map A : X — R which induces a given class ¢* in H, Comp(X ) from a class c in

H!,.,(R). The problem becomes visibly more difficult for N > 2 where X
is a kind of N-dimensional tree, e.g. an N-dimensional Bruhat-Tits building,
whose first (and least interesting) representative is the Cartesian product
of N trees. Here we have infinitely many N-dimensional branches getting
in the way and arranging them into a proper Lipschitz map A : X - RN
with A* # 0 on H(,,, requires a certain amount of attention. We advise
the reader to look at such maps of products of trees to R".

6. Families of Maps.

We want to detect cohomology classes in H™(I') (or in H™(X) for I’ =
71(X)) by using proper maps I' = R" (or X — RY), where N > n. There
are two somewhat different aspects to the problem, which we first discuss
separately.

6.A Non-compact families. Suppose I' = 7m1(X) where X is a closed
connected aspherical n-dimensional manifold; “aspherical” means m1(X) =
0 for ¢ > 2, which is equivalent to contractibility of the universal covering
X of X. The class we want to detect is [X]* € H™(X) = H™(T), ie.
the fundamental cohomology class of X for some choice of orientation on
X. If the dimension n of X equals N = dimR" then we have at our
disposal, as before, proper maps X — RN of non-zero degree d which
“detect” [X]*. Now let N > n. Then, of course, individual (proper) maps
X — RY are homologically insignificant and so we need families of such
maps. Namely, we take a parameter space P which is an (/N —n)-dimensional
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oriented manifold, e.g. P = RV~" and use as our “detectors” proper maps
X x P — R" of non-zero degree.

Remark: If we had no additional restrictions on our proper maps X -
RY there would be no need for extraneous parameters since every open n-
dimensional manifold .X admits a proper map of degree 1 onto R®. However,
in our applications we are only allowed to use proper Lipschitz maps X -
RY. Then, it may happen (though we do not have a convincing example)
that a “Lipschitz detector” X x P — RY exists only for N > n = dim X.
Anyhow, there are cases where the “parametric Lipschitz detector” is readily
available while the non-parametric one (with N = n) is hard to come by.

Notice that the Lipschitz condition for maps X xP >RV applies to
some product metric, where the metric on X must be T-invariant and the
metric on P may be chosen as large as we want.

6.B Equivariant families. Let X be as above and suppose we want
to “detect” a k-dimensional cohomology (or homology) class of X for k <
= dim X. Imagine, for example, we have a k-dimensional submanifold
Y C X representing a class in Hp(X) which we want to detect by maps
into R"”. There are cases where the fundamental group of Y constitutes a
“k-dimensional piece” of m;(X'), as happens, for example, if X is an n-torus
and Y is a k-dimensional subtorus. For such a Y we can use an (n — k)-
dimensional family of maps ¥ — R" detecting [Y]* ¢ H*(Y) C H*(X) as
we did for [X]* in 6.A. However, in the general case the fundamental group
of a connected submanifold Y™ representing a given class in Hi(.X') may be
as big as m1(X). For example, let ¥ be a closed surface in the n-torus T
whose fundamental group surjects onto that of T". Then the lift Y of Y to
R" = T" is a connected surface which is rather dense in R and there is no
apparent family here of the previous kind Y x P — R" with non-compact P.
Let us indicate how to overcome this problem by using an action of I' =
71(.X') on the parameter space. Namely, we take some (n — k)-dimensional
manifold P with a free T-action and look for (typically non- ploper) maps
Y x P — R" which commute with the diagonal action of I' on Y x P.
One can think of & : ¥ x P — R" as a map of P = P /T into the space
(Map(f’, IR")) / I' where the action of ' on the space of maps is induced by
the action of ' on Y. (Notice that the maps X x P — R™ we looked at
before correspond to maps P — Map(f&;, RM).)
We denote by Z the diagonal quotient space Y x P /dial’ and we insist
on properness of the maps Z — R" corresponding to our dial-invariant
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maps ¥ x P — R". Such a map, by definition, detects [Y] if the map
Z — R" has non-zero degree.

Notice that we shall eventually use here only those maps } Y xPoR"
which are Lipschitz with respect to the product metric in ¥ x P where
Y must have I-invariant (i.e. coming from Y) metric, while on P we may
choose arbitrarily large metric (in order to facilitate the Lipschitz condition).

ExaMpPLES: (a) Let Y and P be closed, connected, oriented submanifolds
in the n-torus T", such that dimY = k, dim P = n—k, and such that Y and
P have a non-zero intersection index 6. We identify the universal covering
of T" with R™ and thus we obtain a proper map of Y to R™. Furthermore,
each translate Y +p, p € P gives us a lift Y C T™ and hence a map of Y to
R™ defined up to the action of ' = Z". Thus we get our proper Lipschitz
map Y x IS/I‘ — R™, which has degree 6 # 0 and which detects the class
[Y]* € H*(T") of Y (as well as the class [P]* € H*~*(T™) of P).

(b) Let X be a closed manifold with a metric of non-positive sectional
curvature. Then, for each point * € X, the (geodesic) ezponential map
exp, : Te(X) — X lifts to a diffeomorphism of the tangent space T,(X)
onto the universal covering (by the Cartan-Hadamard theorem). This lift
is uniquely defined by a choice of a point T € X over z and denoted by
exp,. The collection of maps exp, for z running over X defines a fiberwise
diffeomorphic map of the tangent bundle T(X) to the manifold Z(X) =
X x X/dial' which is fibered over X with the fibers called Z,(X) (= X).
Since exp : T(X) — Z(X) is a diffeomorphism we have the inverse map,
denoted

log : Z(X) — T(X) ,

which diffeomorphically sends each fiber Z,(X) onto T,(X).

Now we take two intersecting cycles in X, realized by submanifolds ¥’
and P as earlier. The embedding Y x P C X x X induces an embedding of
Z=ZQ1Y,P)=Y x P/ dial’ into Z(X) and the composition with log gives
us a map Z — T(X). Notice, that ¥ and P appear on an equal footing
in this discussion, but we now distinguish between the two by making our
choice of the projection Z(X) — X. There are, a priori, two projections,
corresponding to the projection of X x X on the first and on the second
factor. Here we choose to project on the second factor, so that P goes to
the base X of the fibration Z(X) C X while Yxp Pe P goes to the
fibers. Thus, the image of our map Z — T(X) lies in the tangent bundle
T(X) restricted to P C X. One thinks of this as a family of maps of
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Y = Z, C Zp(X) to the Euclidean space R* = T,(X) which now varies
together with p € P. This generalized family of maps Y — R reduces
to an ordinary family (where R” is independent of p) if the manifold X is
parallelizable, i.e. if the tangent bundle T(X) is trivial. In this case, there
exists a fiber-isomorphic map T(X) — R™, which we may also choose fiber
isometric (for our Riemannian metric, thought of as a field of Euclidean
structures on the fibers T(X), = € X). If we compose the above map
T(X) — R™ with the previously constructed log-map Z — T(X) we get a
proper map Z — R™ whose degree (clearly) equals the intersection index
between Y and P. Besides, this map is Lipschitz on each fiber Z, = Y,
p € P, which is good enough for our future purposes.

If X is non-parallelizable, one cannot, in general, produce the desired
map Z — R™, but one can add extra parameters to obtain an [X]*-detecting
family of maps Y — RY for some N > n as we shall see later.

7. Families of maps ' — R".

Here, as earlier, I' is a discrete group with a fixed left-invariant met-
ric and we study proper Lipschitz maps o : I' —» RY. Notice that every
Lipschitz map with the Lipschitz constant ), i.e. satisfying

distpny (a('yl),a('yg)) < Adistr(y1,72) forall v,,y7, €T,

can be made Lipschitz with A = 1 by composing with the scaling map
z +— A~z of RV, Lipschitz maps with A < 1 are also called contracting,
since they are distance decreasing.

Similarly, given a family of uniformly Lipschitz maps, i.e. A-Lipschitz
for a fixed )\, we can make them all contracting, by the scaling z — A~ !lz.
From now on we prefer to deal with contracting rather than uniformly Lip-
schitz families as it is somewhat easier on the terminology.

7.A Families with a fixed target. This means a continuous map « :
I'xP —RY , where Pisa locally finite polyhedron of finite dimension with
a proper (but not necessarily free) action of I', and where & satisfies the
following three conditions.
(i) Contracting property. For each P € P the map & on T =T x pis con-
tracting (for a left invariant metric on T' chosen and fixed beforehand).
(ii) dial-invariance. The map & is invariant under the diagonal action of
T onT x P where T' (isometrically) acts on itself by left translations.
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(ii1) Properness. For each 4 € T’ the map a on P=rx P is proper; this is
equivalent to the properness of the map

I x P/dial’ — RY

associated to I

Let us translate the above conditions in terms of maps of the quotient
space I' x P /dial’ to RV, First, we observe that this quotient space is canon-
ically homeomorphic to P, by the projection P=idxP —I'x P/dlaF id=
the identity element of I'. Every dial-invariant map & : I' x P — RY defines
a map of P=TxP /dial’ to RV by going to the quotient. Conversely, every
map a : P — R" leads to a by a(, P) = a(y~!p); this a is [-invariant, as

a(3.3p)=a(y71B7I3D) =y D) = alr. p) -

Next we observe that

distg~ (A(id xP).a(y x 7)) = distgw (a(D).a(y™"'P))

and then we can easily see that the contracting property (i) is equivalent to
the following
(1) Displacement bound. All p € P and v € I satisfy

distg~x (a(P), a(vD)) < VIl

where ||7|| < distp(y.id). (Notice that |7l = lv~*| for every left

invariant metric on I, as dist(y7},id) = dist(vy~1,7).)

Sumiming up, we see that a family « satisfying (i)-(iii) amounts to a
proper map a : P — RY satisfying (i)’.

7.B Families with a variable target. Here the I'-space P comes along
with an Euclidean T-bundle T — P. This means that T is an oriented
vector bundle over P with a continuous field of Euclidean metrics in the
fibers f’p. pE PandT actson T by fiber-wise linear, metric and orientation
preserving homeomorphisins such that the resulting action on the set of the
fibers coincides with the underlying action of I' on P.
Now, our families are maps a : [’ x P — T, such that:
(i)* every I'-slice I' x p lands in the fiber T 5 and the resulting map I' =
I'xp— Tﬁ is contracting;
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(ii)* the map « is dial-equivariant;
(iii)* the function
(3, B) = |a(r, Bl

is proper on P =T x P/dial’ where || || 7 denotes the norm T — R,
corresponding to the Euclidean structure.

Reformulation in terms of P alone. If the action of T on P is free, or
more generally, if the isotropy subgroup of every point p € P acts trivially
on the fiber TP, then the bundle T is induced from a vector bundle T over
the quotient space P = P/ . In this case our families can be identified with
proper continuous maps « : P — T which commute with projections of P
and T to P, i.e. the diagram

is commutative, and which satisfy the displacement bound

dist ((vD), (D)) < Ill

for the implied Euclidean distance in the fibers T, p € P.

In the general case, where the (finite) isotropy of p may act non-trivially
on T}, the above reformulation is still possible but becomes somewhat awk-
ward as it applies to the orbibundle structure on T/I‘

7.C Fixing the target. Every family with a fixed target space RY can
be formally (and obviously) reduced to the variable case with T = P x RN
where I" acts on the first factor. Conversely, if the I'-bundle T — Pis
trivial, i.e. admits a continuous T-invariant field of orthonormal N-frames,
for N = rank T, in the fibers Tp, P € P, then the resulting identification of
each fiber with R gives us a fiber isometric map T — RV, By composing
this map with a family ' x P — T we obtain a family I’ x P — R" and we
easily see that the properties (i)*-(iii)* of the former imply (i)-(iii) of the
latter (compare Example (b) in 6.B).

More generally, let T be non-trivial, but just assume that the isotropy
of each point p € P acts trivially on Tp (e.g. T acts freely on P) In this
case T is induced from the bundle T' = T/T over P = P/T. This T admits a
complementary Euclidean bundle, say S — P, such that T S is trivial and
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then the lift § — P I'-complements f, ie. T D S is T-trivial. (Notice that
the existence of a I'-complement to T implies that the isotropy subgroups
act trivially on the fibers.)

Suspension. Let us suspend a given & : I' x P — T with an arbitrary (not
necessarily complementary to T } Euclidean I'-bundle S — P as follows. We
take the (total space of the) bundle S for the new (suspended) parameter
space P, we pull back the bundle TGB S — P to S and we denote the pulled
back bundle by T = T . S — S = P'. Now we define the suspension

a'=a§:r><ﬁ'—.’T”'

a'(y.(p.3) =aly, p)+5, (7.1)

where the points in P =S are represented by the pairs (p,s) for p € P and
5 € S and where the sum on the right hand side is taken in the fiber T EBS
whlch is canonically identified with the fibers TI’) for all p’ € P’ of the form
p=(p,s),s€ § In other words (7.1) defines a map I x P’ — T®S which
is then interpreted as a map to the bundle T' over P’ (which is induced from
the bundle 7 & S over P by the projection P=5- P)

It is immediate, that the properties (i)*-(iii)* for & imply those for o'.

Fixing the target over the suspension. Now we assume that S is the
bundle complementary to T and we use a trivializing map of T =T S

to R¥+M for N =rank T and M = rank S. This, composed with &, gives
us a family denoted

a’:T'x P - RV+M
which satisfy our requirements (i)-(iii).
Remark: It will become clear later on (see (II) in 8.A) why we have to
enlarge the parameter space (P’ = S instead of P) rather than use the

(more) obvious family I' x P - T @ S obtained by composmg the original
:T x P — T with the embeddmgT—-»TEBSbvt»—»t—l—O

8. Proper Lipschitz cohomology.

We want to describe the cohomology classes of I' with real coefficients
which are “detected” by a given family a : ' x P—-T. In fact, we are
going to construct a homomorphism, called &n, from a certain homology
of P to the cohomology H*(I') such that the “detectable” classes will be
exactly those which lie in the image of this homomorphism. We start with
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the simplest case where P is a smooth oriented i-dimensional I-manifold
(i.e. the action of ' on P is smooth and orientation preserving) and we
define the value of our homomorphism on the fundamental class [P] of
P as follows. The homomorphism &n, when applied to the i-dimensional
homology, is going to land in H*(T) for k = N — i, where N = rank T. So,
an[f’] may be defined by a k-cochain on T, i.e. a I'-invariant real valued
function in the variables vy,...,7¢ € I'. Denote by A = A(7,...,7) the
simplex abstractly spanned by vo,..., 7k, 1.€. A equals the set of formal
linear combinations Z Kjvi, with p; > 0, satisfying Z u; = 1. The map
j= j=0

&:TxP — T sendseachT =T x D, PE P into the fiber T,; and then this
map extends by linearity to aa : A X P—T,

k

&A(éum,ﬁ) = ( Z %P))

where the points of T are represented by the pairs (p, ) € T
Let us take an exterior form w on T whose support lies within bounded
distance from the zero section P < T, i.e. |[s||z < const < oo, for all s in

the support of w. We temporarily assume the map & is smooth (on each
7 % P) and set

(10r- . 78) =/A _EL). (#)

for the induced N-form &% (w) on the oriented manifold A x P (which has
dimension k + (N — k) = N). Notice that the properness property of &
in conjunction with the contracting property (see (iii)* and (i)* in 7.B)
insure that the form @} (w) has compact support and so the integral in
(*) is indeed defined. Furthermore, if the form w is I'-invariant, then the
dial’-equivariance of & makes the function ¢ invariant,

(Y05 Y7R) = (Yoo o TE)

Now we take a ['-invariant closed form w representing the (I'-invariant)
Thom class of T and take the cohomology class of ¢, [c] € H*(T), for anlP)].
Recall that the Thom class is the Poincaré dual of the infinite cycle
represented by the zero section P — T. Also notice that if T admits a
(C-invariant) trivialization map T — R”, then the Thom class is induced
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by the fundamental class of RY in HCJXmP(RN ) and so one can use for w the
pull-back of some form with compact support on RV,

In the case where & is non-smooth, one can always slightly (and I'-
equivariantly) perturb & in order to make it smooth and then the above
class in H*(T) is defined by means of the (smooth!) perturbed &. A trivial

argument shows the result is independent of the perturbation.

8.A. Let us indicate two useful (albeit obvious) properties of the above
construction.

(I) Functoriality. Let P and P’ be two [-manifolds with i-dimensional
Euclidean I'-bundles T over P and T’ over P’ and let f : T" — T be a con-
tinuous fiber preserving and fiber isometric I'-equivariant map, such that
the underlying map f : P - Pis proper. Let

&:I'xP—T and & :TxP T
be dial-equivariant continuous maps, such that

@0 =ay, f(p)) -

Then the contraction and properness properties (i)* and (iii)* (see 7.B)
for & imply those for &', and if f (and hence f) is onto, then conversely (i)*
+ (iii)* for & imply those for &. Furthermore, if the map f has certain
degree d (i.e. f,[P'] = d[P], which is always so for some d if the manifold
P is connected), then &,[P'] = dan[P).

EXAMPLE: Let f be an automorphism (gauge transformation) of f, ie. a
[-equivariant fiber isometric map T — T sending each fiber into itself. Then
each of the properties (i)*, (ii)* and (iii)* for @ implies the corresponding

property for &' and ah(P) = an(P).

(IT) Suspension property. Consider a famlly &:TxP —T,let S be
another I'-bundle over P and take the suspension &' = & - .5' I'xP — T

(where P equals the total space of Sand T' = T . S, i.e. the bundle on

P’ induced by the projection P' — P from the W hitney sum TeS ). Then
each of (i)*, (ii)* and (iii)* implies the corresponding property of &’ and

&h[P'] = an(P) .
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8.B Extension of & to R-cycles. Now let P be an arbitrary (non-
manifold) I'-polvhedron and let us observe that the construction of &n(f’)
obviously generalizes to all infinite simplicial [-invariant cycles in P with
real coefficients. Thus an becomes a homomorphism from the real I'-
invariant homology of P with (infinite) non-compact support to the co-
homology of T', i.e.

&n:H{(P:T)— HY"YI)., i=0,1,....

Notice that if the action of I is free and the quotient space P is compact
then the above homologyv H*(I; : ') (with any, not only real, coefficients)
is. obviously. the same as the ordinary homology of P = ]S/F If Pis
non-compact., then H *(.ﬁ : T') equals the homology of P with non-compact
(infinite) supports (again, for arbitrary coefficients). In general, the natural
homomorphism

H.(P:T)— H,(P/T)

may not be an isomorphism. Yet if the coefficient field is R and if there
are only finitelv many conjugacy classes of 4 € T which act non-freely on
P. then this homomorphism is an isomorphism. (Ohserve that the above
finiteness condition is satisfies if f’/F is compact.)
8.C DEFINITION: A cohomology class ¢ in H*([') with real coefficient is
called proper Lipschitz (with the variable target space R™) if there exist a
proper ['-space P, T — P and & as above. such that ¢ = an(b) for some
be H,(P:T). (Recall, that for N = rank T and b € H; we get c € HN-),
Here. one may distinguish the case of = nn[P] for a manifold P, and also
the case of the fized target space RY. which means T = P x RN and the
map a : I’ x P — T reduces to a -invariant map ' x P SRV,

The following proposition shows that the target space RY can be fixed.

8.D ProPOSITION. Every proper Lipschitz class ¢ can be represented as
an(b) where the implied T-bundle T — P is trivial and so & reduces to a
map T x P — R" satisfving (i)-(iii) of 7.A.

Proof: Let us first assume that T' acts freely on P. Then there exists a
(complementarv) bundle § — P such that T & S is trivial and the propo-
sition follows by taking the suspension &/ = & S for a given a with
a(b) = ¢. Here it is worth noticing that the projection, say 7 : P' = § — P
induces a natural suspension homomorphism (which is, in fact, an isomor-
phism) 7" : H;(P : T)— H,-.,.M(f” :T),i=0,1,..., as every i-cycle in P
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pulls back to an (¢ + M )-cycle in P’ = S for M = rank S. The suspension
homomorphism clearly commutes with an (compare (II) in 8.B), i.e.

& (7™ (b)) = @n(b) forall be H,(P:T),

which is exactly what we use in the proof.
Now let us drop the freeness assumption on the action of I' on P and
then invoke the following elementary fact.

LEMMA. For every homology classb € H,-(I3 : ') there exist an i-dimensional
I-polyhedron P’ on which the action of T is free and a proper I'-invariant
map o : P’ — P, such that b= o(b') for some b’ € H,(P' : T).

Proof: One should think of P’ as a kind of blow-up of (the support of) a
cycle representing b at the fixed point locus. In fact, one may first blow up
all of P by replacing every point p with non-trivial isotropy subgroup I';
by the classifying space of I';. Since the groups I'; are finite, this process
does not change the real (co)homology of P and so every ['-cycle in P lifts
to the blown up space. The details of the proof are left to the reader.

Now we use the functoriality of an (which was stated in (I) of 8.A in the
special case of b = [13] and which obviously holds in general) and conclude
that

Gn(b) = @p(b) |
where & : I'x P — T" is induced by o from a given a : I x P — T as follows.
The bundle T/ — P’ is induced from T by o (in the usual sense) and & sends
every “slice” I' x P’ to ’1~"1-,, =T;, for p=o(P) by &(v,p) = a(v,o(p)).
Thus we reduce the general case of the Proposition to the free case which
has been already settled. o

8.E Remark: Suppose the class ¢ we want to “fix” is of the form an [f’]
for an i-dimensional manifold P. Then we may look for another manifold
P' with a trivial T' — P’ (i.e. with the fixed target space RY") and for
& : P' — T’ such that
a(P)=c.

If the action of T on P is free, then the suspension construction with S
complementary to P works perfectly within the manifold framework. Also
there is no problem with the blow-up if there are only finitely many con-
jugacy classes of isotropy subgroups I';. But in the general case there is
no apparent simple procedure for fixing the target without passing from
manifolds to R-cycles.
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9. Manifolds with K <0.

Let P be a complete simply connected Riemannian manifold with non-
positive sectional curvature and let T be a discrete subgroup in the isometry
group Iso P. Take some point p, € P (at which we may assume the action
of T is free if we wish so) and define the map & from I' x P to the tangent
bundle T = T(]s) as the inverse to the exponential maps at all p € P,
restricted to the orbit of py, i.e.

a(v, p) = log; (v(Bo)) -

where

log; = exp;1 P - T(P)

(compare 6.B, Ex. (b)). The condition i’ < 0 makes log; contracting and
the conditions (ii)* and (iii)* in 7.B are trivially satisfied for this a. Now,
we claim that the homomorphism

an: H(P:T)— H*T)

18 an isomorphism.

Proof: First, assume the action of I' to be free. Then
H,(P:T)=H"(P) for P=P/T

and

H*(T) = H*(P) .

since P is contractible (in fact, e‘:q)ﬁ(lB ) — Pisa homeomorphism for every
D € P when I < 0). Furthermore, the exponential map pulls back the
Thom class of T = T(P) to the Poincaré dual of the diagonal in P x P.

It becomes clear at this point that our &n now amounts to the Poincaré
duality isomorphism

D: HM(P)— H"{(P) .

In the general {non-free) case, the relevant Poincaré duality isomor-
phism applies to H;(P : T') and lands in the cohomology of the deRahm
complex of I'-invariant forms, say,

D:H;(P:T)— H"{(P:TI),
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and &n is the composition of this D with the homomorphism
H*(P:T)— HYI),
corresponding to the orbit map

Notice that since P is contractible, the orbit map extends I'-equivariantly
to the simplices abstractly spanned by the (k4 1)-tuples (vo,...,7%), which

defines the above homomorphism. (Since ' < 0, there is a particularly
k
nice extension of the orbit map to simplices, which assigns to ) u;v; the
§=0

Riemannian “center of map” of the weighted points woyo(po), - - ., e Yk(Po)
in 13)

Finally, we observe that the homomorphism H *(13 :T) — H*(T') is an
isomorphism for the cohomology with real coefficients which concludes the
proof of our claim.

9.A Remark on contractible _manifolds P If we drop the assumption
K (P ) < 0 but only assume P is contractible, much of the ‘above remains
valid. Namely, here one has a proper I'- equivariant map A:PxP — T(P)
such that every slice P x P goes to the fiber T’ (P) and the map A : Px D —
T, (P) has degree one for all p € P. This follows by elementary homotopy
theory. What the homotopy theory is unable to provide is the contracting
property of A on the slices P x p. Yet, even without this property, one can
study the restriction & of A to a I-orbit, I'(py) % P - T(P), define the
homomorphism an : H *(P : ') — H*(T'), and then prove an is an isomor-
phism. Unfortunately, the lack of the contracting property makes Aand &
unsuitable for our purposes, at least at the present state of the art. On the
other hand, there is no counter-example in sight of the above contractible I'-
manifold P, where one cannot find A with the contraction property. (If P /T
is non-compact one should allow a preliminary modification of the metric
in 13.)
10. Proper Lipschitz cocycles and the Novikov conjecture.

In this section we shall show that for any discrete group I' and any

proper Lipschitz cohomology class w € H*(I',R), the Novikov conjecture
is satisfied, i.e. the following expression is a homotopy invariant of pairs
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(M,), where M is a compact oriented manifold and ¢ : M — Bl a
continuous map:

Higher Signature (M, ¢) = (L(M)y*(w), [M]) .

The proof of this fact will be a simple application of Kasparov’s I'-equivariant
K K-theory [K].

10.A THEOREM. Let I' be a discrete group. Every proper Lipschitz co-
homology class w € H¥(T',R) satisfies the Novikov conjecture.

We first recall that a Fredholm representation of the group T is given
by a unitary representation 7 of I' on a Hilbert space § and an operator F
on § such that the following are compact operators (for any g € I'):

a) F? — 1, by F - F*, ) [n(g9). F] .

More specifically, these data define an odd Fredholm representation.
An even one is given by the same data together with a Z/2 grading 7,
2 =1, v = v* of b, which commutes with n(g), Vg € T, and anticommutes
with F'.

Using the Hilbert bundle on BT obtained from the representation 7 of
[ on h and a continuous family of Fredholm operators (F}).epr obtained
from F' (cf. [M]) one associates to every even Fredholm representation of T’
a virtual bundle on BT'. This yields a map:

p' s KK (C*(T).C) — K*(BT)

of the I'-homology of the C*-algebra of the group T' to the I\’ theory of the

classifying space BT'. Here C*(T') = C . (') is the enveloping C*-algebra of

the involutive Banach algebra (*(T') of (!-functions on I, with convolution,

and with the involution f*(g) = f(¢~'). The K-homology is defined for

any C'*-algebra, as is the bivariant functor KN I\(A, B) of Kasparov ([K]).
It follows from the work of Miscenko [M] that:

10.B LEMMA. Anyw € H*(BT,R) which is of the form ch(u!(8)) for some
3€ KNI (C*(T),C), satisfies the Novikov conjecture.

As mentioned above. I-homology is defined for any C*-algebra A.
Moreover, in the commutative case, i.c. when 4 = Co(X) is the algebra of
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continuous functions vanishing at oc on a locally compact space X, one has
a natural rational isomorphism:

ch, : KL(A,C) ~ H,(X) ,

where H,(.X) is the homology we considered in section 8 above when X is
a locally finite polyhedron.

A bit more generally, this Chern character in I'-homology still makes
sense in the case of proper actions of a discrete group I' on a locally compact
space Y} and one gets a natural rational isomorphism:

ch, : KKp(Co(Y),C) ~ H (Y :T),

which reduces to the above for \" = Y/T" when the action of T is free. Here
we used the equivariant I\ I\-theory of Kasparov. whose definition is recalled
below.

All this shows that, in order to prove Theorem 10.A, it is enough to lift
to I-theory the construction of the map an : H*(I3 :T') - H*(BT) which
was defined and explored in the previous sections. That is, it is enough to
construct a map ¢ from the group I{I\'F(C'O(I;), C) to KK (C*(T'),C) such
that the following diagram is commutative:

~ t

KRr(Co(P),C) - KK(CHT),C) > K*(BI)
lch* lch* (10.1)
H.(P:T) - H*(BT)

Our data here is. exactly as above, a proper I'-space P and a proper
map a : P — RY which satisfies the displacement bound:

distgs (a(P).a(vP)) < 7| VPEP,VyeT,

It then follows that any class of the form w = on(2) for some z € H *(13; r)
can (rationally, which is enough for our purpose) be written as w = ch* (utqﬁ(y))
for some y € KNI (Cof P). C) such that ch,(y) = 2. Thus, any proper Lips-
chitz class is (rationally) in the range of ch® o u! and hence, by Lemma 10.B,
satisfies the Novikov conjecture.

Thus, our proof is now reduced to two main steps:
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1) construction of the map ¢;
2) check that the diagram (10.1) is commutative.
Let us begin with 1). Parallel to the homological sitation, we shall de-
fine the map ¢ as an intersection product, i.e. we shall construct an element
K (o) € KK (C, C'O(IB)) of the I'-equivariant I -theory of P and let

#(y) = N(a)#ry € NLKr(C.C) ~ KL (C*(T),C) ,

where the intersection product in I-equivariant A\’ theory has been written
#r.

For the convenience of the reader, we shall recall the definition of Kas-
parov of the group NI(A, B), where 4, B are two C*-algebras on which
the discrete group IT' acts by automorphisms. It will then be obvious that a
proper map « : P — R" defines an element

K(a) € KL (C.Co(P)) .

In general, the group VK1 (A4, B) is constructed as the group of equiv-
alence classes of Kasparov A — B bimodules (£, F.7). We have to explain
what £, F., v are and what conditions they have to satisfy.

First, £ is a C*-module over B. This notion extends the commutative
notion (i.e. when B = Cy(X), X locally compact) of a continuous field of
Hilbert spaces (). )zex, which itself contains as a special case the Hermitian
complex vector bundles E over .X. Given such a bundle £ on X, the space
& = Cy(X, E) of continuous sections of E vanishing at oo has the following
structure:

- & is a right module over Cy(X).
~ The map &,1 € & — (£,1) € Co(X), (€,1) (x) = (€(z),n(z)) (which
uses the inner product in each fiber E, of E) verifies, besides its obvious
sesquilinearity (antilinear in £):
o) (Ca,n)=a*(E,n)b Va,be Co(X)
B) (£:¢§) =20
7v) gifted with norm ||€]| = H (€,8) ”1/2, £ is a Banach space.

All these conditions make sense when Cp(X) is replaced by an arbitrary
C*-algebra B and define the notion of C*-module over B. Even when B is
commutative, the notion is more flexible than that of the Hermitian bundle

since it allows fiber dimensions which vary in a semicontinuous discontinuous
manner.
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To the usual notion of endomorphism of a Hermitian bundle, corre-
sponds in general the notion of endomorphism of a C*-module. They form
a C*-algebra:

End p(¢) ,

whose elements are pairs 7, 7* of B-linear continuous maps from £ to &
such that:

(T*€.m) = (€. Tn)  VEnek&.

Any pair &, 7 of elements of £ gives rise to the endormorphism:
€ ><n|l € End (&),

with:

(l€><nl)¢=€mnC)es V(e

The linear span of these special “rank one” endomorphisms, is a two sided
ideal in End g(€), and its elements are called compact endomorphisms.
Now a Kasparov A — B bimodule is given by a C*-module £ over B, a
representation of A in £ (i.e. a *-homomorphism 7 of A in End p(£)), and an
element F' of End g(&) such that the following are compact endomorphisms:

a) (F2 = D)7(a) . Va € A ; b) (F — F*)w(a), Ya € A ;

c) {W((L),F] . Vae 4.

Finally, in the I'-equivariant case, in which I' acts by automorphisms on
both C*-algebras A and B, one requires that I also acts on &, that is one
has an action p of I' on £ which is compatible with the action of I' on A
and B (i.e. p(g)(a&b) = g(a) - p(g)€ - g(b) for a € A, £ € £, b € B and
{(p(9)€, p(g)n) = g (& m) V& n € &) and verifies:

d) p(g)Fp(g)~" — F is compact for any g € T .

The essential feature of the Kasparov theory is the existence of the
composition or intersection product:

KEKr(A,B) x KKp(B,C) — KKp(A.C),

which satisfies bilinearity and associativity relations. We refer to [K] for
the precise description of the equivalence relation giving rise to K KKr(A, B)
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out of classes of INasparov T' equivariant A — B bimodules, and for the
intersection product.

We shall now proceed to define the element I'(a)} of K K (C, CO(IS)),
given the proper I'-space P and the proper map « : P - RY satisfying the
displacement bound. We thus construct a I'-equivariant Kasparov A — B
bimodule where A = C is trivial and will be ignored, while B = Cy (13) with
the action of I coming from I'’s action on P.

As a C*-module we take & = CO(IB, S), the space of continuous maps
vanishing at oo from P to the fixed (finite dimensional) Hilbert space S ~
2™ of spinors, associated to the Euclidean space RY. That means that S
is a Hilbert space equipped with a linear map 5y : RN — End (S) such that

a) Y X)=vX), VYXeRVN
3 X2 =|X|?. VXeRV.

An endomorphism T € End g(£) is given by a continuous family T, €
End(S). x € P. We can now use the proper map o : P — RY" in order to
define the endomorphism F we are looking for. Specifically, we take

Fr=7(a1(2)) . on(@) = (14 [|a(2)]]) a(2) (10.2)

for any x € P.

The action of the group I" on & = C o(P,S) is the obvious one, coming
from the action on P; that is

(p(9)E)(x) = &g~ ) VaeP, gerl.

We are now all set to check that the triple (&, F, p) is a I'-equivariant
Kasparov 4 — B-bimodule. i.e. that conditions a),b),c),d) above are fulfilled.
Since A = C acts by n(A) = X -idg, condition c) is automatic and we can
replace m(a) in a) and b) by ide. By construction (condition «) above), the
operator F is selfadjoint so that b) is clear.

To check a) we have to show that F? —1 is a compact endomorphism of
€. Here & is the space of sections of a (trivial) Hermitian bundle with finite
dimensional fiber S; thus, the compactness of an endomorphism, (Ty),¢p =
T € End (), is equivalent to the condition: ||T,|| — 0 when z — oo. This
is immediately implied for FZ —1 by the conjunction of 3) (v(X)? = || X||?)
and of the properness of a which shows that Ho/l(a')H — 1 when z — o©
in P.
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Thus, it remains to check d), i.e. to show that for each element g € T
one has:

|Fgr — F¢|l 0 when 22— oo0.

Again, this follows immediately from the displacement bound together with
the properness of «, which show that:

|la1(gx) - al(x)“ — 0 when z—o00.

This shows that the triple (£, F, p) defines an element k(o) € K r(C, Co(P))

of the I'-equivariant K-theory group of P. Note that this element is odd or
even according to the parity of N = dim(R”); this means that in the even
case the spinors S have a natural Z/2 grading v which makes F odd and

everything else even. We can now define the map ¢ : KL (Co(P),C) —
KKp(C,C)=RKK(C*T),C) by:

o(y) = KN(a)#ry .

In order to prove Theorem 10.A, it remains to show that with this choice

of ¢ the diagram (10.1) is commutative.

k
We let T act on the space ET of formal convex combinations ) p;7v;;
0

k
p; >0, > pj =1, of elements y; € I'. The space ET" is contractible and,
0

“rationally”, we can identify the quotient BT = ET' /T’ with the classifying
space of I

We let P be a proper [-space and a : P — R" be a proper map
satisfying the displacement bound. We may assume (cf. 8.D) that the action
of T on P is free. In this case, parallel to the homological situation discussed
above. one has a natural isomorphism:

KL (Co(P).C) = KK (Co(P/T).C) .

To see that, one observes that. by construction, the group
I{Kr(C'o(P ).C) of T'-equivariant Kasparov Cy(P) — C bimodules is iden-
tical with the group KI\'(C'O(I5 }xI',C) where the C*-algebra CO(IS)XI‘ is

the crossed product of Cy(P) by the action of I'. Indeed, in both cases one
deals with a covariant representation r of (Cy(’).T') on a Hilbert space b
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together with an operator F on § such that for any f € CO(IB) and y €T
the following are compact operators in b:

a) m(fUF*=1): by a(f)F-F): o [n(f).F];  d)[r(y),F].
This gives the equality:
I\'I\'F(CO(IB), C)= I\'I\'(Co(ﬁ)xf, C) .

Now the action of I on P being free and proper, one has the Morita
equivalence Co(P)x[ = Cy(P/T') and hence the isomorphism:

KK (Co(P)xT.C) ~ KK (Cy(P/T),C) .

This implies in particular that we can restrict to triples (h, 7, F) as
above such that [W(v),F] = 0,Vy € I'. Let such a triple v = (§,7, F)
be given, and consider the space Z = P xp ET. It is the total space of
fibration Z & BT with fiber P. canonically associated to the action of I' on
P. The fibers p N z) ~ P are locally compact by construction. The exact
[-invariance of (b, mg. F') where my is the restriction of 7 to C'O(I;) shows
that the class y can be used to integrate over the fibers in I’ theory, i.e. as
a map:

K%.(Z) — K*(BT) ,

where the left-hand side means I\-theory with fiberwise compact support.
More specifically, for any compact subset M of BT, the subspace p~!(M) of
Z is locally compact and the class y defines an element of
KK (Co(p~"(M)),C(M)), and hence a map:

K2 (p~ (M) LS K*(M) .

Here the C'*-module over C'(M) is the space & = C(M, 5) of continuous
sections of the flat bundle of Hilbert spaces on BI' induced by the represen-
tation 7 of . In other words, if we let M be the I'-covering of M given by
the pull-back to M of ET — BT, an element £ of £ is a I'-invariant cggtinu—
ous section of the trivial bundle with constant fiber h on M:€= C(M,H)L.

Since the operator F' is [-invariant it defines an endomorphism of &
by:

(F&)e = F&, V&€ C(M.p)".
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The action p of Co(p~*(M)) on £ is given by:

(p(FE)(F) = (f2)€:, VFEeM, Ee&,

where f; € Co (P) is the restriction of f to the fiber P in the identification
P xp M = p~Y(M).

Now the element p?(¢(y)) € K*(BT) is equal to (y x 1)(o), where
o € L'} (Z) is constructed as follows. One first extends, as we did above

when dealing with homology, the map « : P >RV toa map o from
P xp ET — R". Here P xr ET can be thought of as the space of formal
convex combinations Y u;@;, where T; € P are on the same I'-orbit; then

o (Z ,ujfj) = Z/l'ja(a])

This map is fiberwise proper on the fibration
PxrET =22 Br,

and thus the pull-back by o of the Bott elements 3 € I.(R") (i.e. the
fundamental class of RY in K-theory with compact supports) gives us an
element o'*(8) € Ky.(Z).

Our claim, that u'(¢(y)) = (y x 1)a’*(83), follows from the standard
description of the Bott element from spinors and Clifford multiplication
[ABS].

It then follows that for any compact subset M C BI' and any L-
homology class » € IV,(M) one has the equality:

(' (o), 2) = (" (B)y x 2) .
Thus, passing to Chern characters, we get:
{ch*(p'd(y)), chu(z)) = {ch* (a/*(3)), chi(y) x ch.(2)) .
The commutativity of the diagram (10.1) follows now from the equality:

ch*(8) = Fundamental class of RY (in HZ, (RV)

comp

and the naturality property of the Chern character.
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II. Internal Criteria for the Existence of Contracting Maps into RV

Let ¥ be an n-dimensional Riemannian manifold, e.g. the universal covering
X of a compact manifold X. We are interested in proper, contracting (i.e.
distance decreasing) maps (and families of maps) ¥ — R”, which may be
used in the case Y = X for the construction of Lipschitz (co)homology
classes of the fundamental group I' = m;(X). For example, we seek a
geometric criterion for the existence of a single proper, contracting map
Y — R” of degree 1 (Y is assumed oriented at this point) and we want this
criterion to be formulated in terms of Y itself without explicit reference to
the external Euclidean space R".

1. Selfcontracting manifolds and spaces.
A proper, continuous, selfmap f: Y — Y is called selfcontracting if
(a) the Lipschitz constant A = A(f) is < 1, which means

dist (f(y1), f(y2)) < Mdist(y1.y2)

for all y;,y2 in ¥ and a fixed A < 1;
{(b) the map f is homotopic to the identity by a homotopy of proper maps

fi: Y Y.

In what follows we assume the Riemannian manifold is complete and
connected. In this case the map f has a unique fixed point, denoted yo € Y,
and every Riemannian ball B(r) C Y arround y, satisfies

fY(B()) DB 'r),
for the above A < 1; therefore, the iterated pull-backs
b1=f_1(B(T))a B?=f_l(Bl)a'-'vBi=f—1(Bi—1)7"'a

exhaust Y (provided » > 0). The complements D; = B; — B;_; do not
o0

pairwise intersect, their union |J D; covers the complement Y — B(r), and
i=1

[ maps D;y, onto D; for all i« = 1,2,... Thus, for every point y in Y

outside B(r) there exists a unique 7 = i(y) = 0,1... such that the ¢-th

power (iterate) f* of f brings y to D; = f~1(B(r)) — B(r).
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2. Symmetrization of proper maps Y — RV,

The word “symmetry” refers to equivariance of maps Y — RV with
respect to f acting on Y and some self-similarity z +— pax, p for 0 < p < 1,
on RY. According to this, a map o : ¥ — R¥ is called p-symmetric
(equivariant) at infinity if

o f(y)) = paly) ,

for all y outside a compact subset in Y.

2.A LEMMA. Let Y be a complete connected Riemannian manifold with a
selfcontraction f and let i be a number in the interval 0 < u < 1. Then an
arbitrary proper continuous map ag : Y — RV is properly homotopic to a
map « : Y — RY symimetric at infinity.

Proof: Let f; denote the implied homotopy between f = f; and id = fp
and let gy = 1 — #(1 — ) interpolate between po = 1 and py = p. Then we
compose the homotopies f; in Y and z — pu; 'z in R and set

=1
Qp =y agofy.

Observe that a;—¢ = a¢ and that a; = u~lag o f. Thus the deviation of

o from a¢ measures the asymmetry of «p in our sense. We observe that

the homotopy ay is proper, as it is a composition of proper homotopies. We

choose a sufficiently large Riemannian ball B = B(r) C Y around the fixed

point yp of f, such that the complement Y — B stays away from the origin

0 < RY in the course of the homotopy ay, i.e. ay(Y — B) C RY, t € [0,1],

does not meet a fixed open ball in R around the origin. Then we modify the

homotopy a; by making it constant on B and without changing it outside

a small neighbourhood of B. This is done using the standard homotopy

extension lemma (of Borsuk) which provides us with a new homotopy of

proper maps o, : ¥ — RV t € [0, 1], such that

(i) ap = ap ,

(ii) ay | B=ap. t € [0,1],

(iii) o equals a7 on the complement 1" = f~1(B).

(iv) the images o}(} — B) C R" keep away from the origin for all t € [0,1].
Observe that conditions (ii) and (iii) imply, in view of the continuity

of ay, that «f is symmetric in our sense on the boundary of the region
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D, = f~Y(B) — B. Recall that f~1(B) D B and notice that the boundary
0D consists of two disjoint parts: the interior part, where D; meets B, i.e.

am = 0B y
and the exterior part, where D; is adjacent to Y = f~1(B),
Oex = 0(Y — f‘l(B)) .

The map f sends Dy into B, such that Jex goes to d;,, while the rest of Dy
goes strictly inside B. The map o} on Jex equals a; = u~tag o f, which
implies the symmetry condition for o on 9Dy,

ai(y) =pta (fy) . Y EDex,

since o) | G = .
Now we observe that the map o} on f~!(B) uniquely extends to a map
a which is symmetric outside B by

a(y) = p'al fi(y)

for the integer i = i(y), y € Y — B, such that fi(y) € D, = f~}(B) - B.
The symmetry of o} on 9D, insures the continuity of @ on Y and the above
property (iv) shows that « is properly homotopic to « and hence to ap. In
fact, that property allows a homotopy between ag and a which keeps the
infinity of ¥ away from the origin and then such a homotopy can be made
proper by an obvious radial deformation in R".

2.B COROLLARY. Every proper map ag : ¥ — RY is properly homotopic
to a contracting map ¥ — RV,

Proof: An obvious smoothing operation makes the above « smooth, keeping
it symmetric. Then the smoothed « is necessarily (and obviously) Lipschitz,
provided p~'A < 1, where A = A(f) < 1 is the contracting (Lipschitz)
constant of f : Y — Y. (In fact. the Lipschitz constant of the smoothed
« on D; is bounded by const(x~'A)".) Since y could be chosen arbitrarily,
the corollary follows, as every Lipschitz map can be made contracting (i.e.
with the Lipschitz constant < 1) by composing it with an appropriate self-
similarlity of RV,
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2.C Remark on families of maps: Our symmetrization of proper maps was
completely canonical at the homotopy level and thus it works perfectly for
arbitrary families of maps in so far as the relevant properties of these maps
are uniform with respect to the parameters. This will be specified later on
when we turn to specific cases.

2.D ExaMPLES: The above corollary shows in particular that every com-
plete connected Riemannian manifold Y which admits a selfcontraction also
admits a proper contracting map o : ¥ — R”, n = dimY, of degree 1.
Notice that the existence of a selfcontraction f : Y — Y which is (by defi-
nition) homotopic to the identity, implies that Y is contractible and hence
an orientable manifold. Then, for any choice of the orientation in Y, one
has a proper map «g : }* — R" of degree one (since Y is non-compact, as
also immediately follows from the existence of a selfcontraction on V'), and
Corollary 2.B allows a proper homotopy of ag to a contracting map «.

One can somewhat relax the assumptions on f needed for the existence
of a proper contracting map « : Y — R" of degree one. Namely one may
only assume f has degree one, without insisting that it be homotopic to
the identity. (Here, the manifold ¥ does not have to be contractible but we
assume it is orientable.) Then our symmetrization process can be applied
(we leave it to the interested reader) to some power f*¥ of f which is good
enough for the Lipschitz corollary. Unfortunately, the homotopies involved
in this more general symmetrization are non-canonical which makes the
construction unsuitable for familes of maps.

Finally. one may ask what happens if one starts with a proper contract-
ing map ¥ — Y of degree d > 2. Probably, such a ¥ does not, in general,
admit any proper map to R" of positive degree but we have not worked out
a specific counterexample.

3. I'~equivariant diagonal selfcontraction.

Let us describe the most important example of a family of selfcontrac-
tions of a Riemannian manifold ¥ with a given discrete isometric action of
a group I'. The manifold ¥ here may have a boundary but is still complete
as a metric space.

3.A DEFINITIONS: A I'-dia-selfcontraction of Y is a family of selfcon-
tractions f, : ¥ — Y parametrized by y € Y which is represented by a
continuous map F : ¥ x Y = Y x Y for F : (y1,Y2) = (y1, fu, (y2)), such
that the following four conditions are satisfied:

(i) The map F fixes the diagonal Y = A CY x Y, ie. fy(y) =y.
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(ii) The map F' commutes with the diagonal action of ' on Y x Y, i.e. in
terms of f,,

Yfy ' =fy forallyeT andyeY .

(iii) Every map f,, y € Y, is a proper A-Lipschitz map (i.e. Lipschitz, with
Lipschitz constant A) of Y into itself, for a fixed A < 1 independent
of y.
(iv) There exists a homotopy F; between Fy = Id and F) = F', such that:
(iv)" Fy is T-equivariant for the diagonal action of T’
(iv)" F} fixes the diagonal Y = A C Y x Y and is fiber preserving, i.e.
F; maps y x Y into itself for all y € Y,
(iv)"" Fy is uniformly proper which means the following: there exists
a function R(d), such that R(d) — +4oc for d — +oo and such
that every point in Y X Y which is d-far from the diagonal ¥ =
A CY xY (for the product metric) remains R(d)-far from the
diagonal in the course of the homotopy, i.e. the function 6(y1,y2) =
dist ((y1,y2), A) satisfies

6(Ft(ylsy2)) Z R(é(yla y?)) )

for all ¢ € [0,1] and (y;,y2) € ¥ x Y.

Notice that the uniformity is automatic if the action of I' on Y is
cocompact, i.e. if Y/T' is compact.
3.B EXaMPLE: Let Y be a complete simply connected manifold of non-
positive sectional curvature ' < 0. Here if there is a boundary we insist
it is conver and then every two points y; and ys are joined by a unique
geodesic segment. Let f, (y2) € Y be the center of this segment. Then this
is a I'-dia-selfcontraction with the contraction constant A = %, as follows
from the elementary properties of I’ < 0. Notice that here we do not need
the metric to be smooth but may allow singular spaces with I < 0 (see [G],

[D-G)).

4. Fiber contracting maps ¥ x ¥ — T(Y).

Let Y be a contractible manifold with a smoth proper I'-action. Then
there exists a smooth map ag of ¥ x Y to the tangent bundle T(Y) with
the following five properties.

(a0) g is T-equivariant for the diagonal action of I' on ¥ x Y and the

obvious action on T(Y') (i.e. the differential of the action of I" on Y).
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(bg) Each “fiber” yxY C Y x Y,y € Y.is sent by ag to the tangent space
Ty(Y') and the map y x ¥ — T, (Y") is proper for all y € Y.

(co) At every boundary point y € JY the map «p send y x Y to the half-
space in Ty(Y) formed by the inward looking tangent vectors.

(do) At each diagonal point (y,y) € ¥ x Y the differential of ag restricted
to the tangent spece T(, ,)(y X ¥') = Ty(Y) equals the identity map
T,(Y) - T,(Y).

(eo) The ag-pullback of the zero section ¥ — T(}") equals the diagonal in
Y xY.

The existence of such «y is a trivial exercise in algebraic topology and
it is also clear that such oy is unique up to a homotopy in the class of maps
satisfying (ag)—(eo).

An important (albeit obvious) property of aq is that it pulls back the
I-invariant Thom class of T(Y") to the Poincaré dual of the diagonal of
Y x Y, provided Y has no boundary. (A similar property remains valid in
the presence of the boundary but we shall bypass the boundary problem in
our cases of interest.)

Now let us assume that Y} is a Riemannian manifold which admits a
I'-dia-selfcontraction.

4.A PROPOSITION. There exists a continuous map a : ¥ xY — T(Y)

which satisfies the above properties (ag)-(dg) and also the following three

additional properties:

(1) For eachy €Y the map o :y xY — T, is contracting (i.e. A-Lipschitz
with A < 1).

{2) The map « is uniformly proper, i.e.

latya,y2)|| > R(dist(y1.y2)) .

for some function R(d) satisfying R(d) — +oc for d — 400 and the
norm || || on T(Y') defined by the Riemannian metric on Y.

(3) The map « is homotopic to g in the class of maps Y x Y — T(Y)
satisfying (ag)—(do).

Proof: One can trivially homotope ¢ in order to achieve (2) and so we
may assume that oy is uniformly proper to start with. Then we apply the
symmetrization process to the maps o : y xY — T, for all y and thus obtain
a map «; which is symmetric, and hence contracting at infinity. Then it can
be made contracting everywhere by the discussion in I1.5.G below (which
collapses to a triviality in the present case).
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4.B COROLLARY. The cohomology of I' is proper Lipschitz.

Proof: If Y has no boundary the proof is immediate with the map o re-
stricted to Y x I'(yo) for some yq.

Now, let the boundary dY be non-empty and let us adjust our discus-
sion to this case. First we introduce the manifold

Y, =Y U(8Y xRy,

where 0Y is identified with 9(0Y xR, ) = 9Y x 0 in the obvious way. Notice
that Y, is diffeomorphic to the interior of Y but for us it appears as the
extension of Y by Y x Ry. For each point y4 = (y,t) € Y xRy C Y4 we
denote by B4 : Ty (Y) — T, (Y}) the obvious isomorphism and we denote
by 6 = 8(y4+) the tangent vector field ——t% on Y x R. Finally, we define
the map a4 : Y4 xY — T(Y}) by

(i) ap | Y XY =a.

(il) a4 (y+,y") = B+ (aly,y") + 6(y+) ,
for yp = (y,t) € Y xRy C Y4 —Y. Then this oy restricted to Y4 x I'(yo),
Yo € Y does the job, as a straightforward verification shows.

4.C Singular spaces with self-contractions. We want to extend the
discussion in the previous section to singular (i.e. non-manifolds) I'-spaces
which can be regularized by embeddings into manifolds.

DEFINITION: A metric space Y with a [-action is called T-regularizable
if there exist a Riemannian manifold Y’ with a proper isometric action
of ', a T-equivariant Lipschitz embedding ¥ C Y’ and a I'-equivariant
retraction p : Y/ — Y which is homotopic to the identity by a homotopy of
[-equivariant maps Y/ — Y.

EXAMPLE: IfY is a finite dimensional polyhedron and the action of I' is free

or if it is cocompact then (Y,T') is well known to be regularizable (compare
6.F").

4.C’. If 'Y\T) is T-regularizable and if Y admits a I-dia-selfcontraction
then the cohomology of T is proper Lipschitz.

Proof: One has as earlier in I1.4 an equivariant map ¥’ x Y/ — T(Y")
satisfving (ag)-(eq) of I1.4, which can be symmetrized on Y’ x Y such that
the resulting map o : Y/ x Y — T(Y"') becomes contracting on the fibers
¥ x Y. The details here are straightforward and left to the reader.
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Remark: The regularity assumption on (Y,I') can be relaxed by allowing
embeddings into certain infinite dimensional spaces as will be shown some-
where else.

ExAMPLE: We have already mentioned that the spaces of nonpositive cur-
vature K < 0 admit I'-dia-selfcontractions and whenever they are regular-
izable our proposition applies. Important instances of such Y are Bruhat-
Tits buildings where the regularity condition restricts the structure of the
isotropy subgroups I'y, y € Y. For example, if the orders of Iy are bounded

by a constant independent of y € Y, then (Y,I') is regularizable (compare
[KS)]).

5. Interpolation of selfcontracting maps.
A subset in a metric space, say Yy C Y, is called a net if

sup dist(y, Yp) < 00 .

yey
Often one says “c-net” for an ¢ > 0 if the above sup is < ¢. This terminology
suggests that € is small but in our discussion the nets may be quite rare,
which corresponds to large £. A typical example is where Y is isometrically
acted upon by a (discrete) group I' with the compact quotient space Y /I’
and our Yy is a T-orbit T'(yp) C Y.

The problem we address in this section is as follows. Given a contract-
ing (i.e. Lipschitz with the Lipschitz constant < 1) map fy : Yo — Y, when
does it extend to a contracting map Y — Y7

What we are really interested in are contracting maps Yy — RV for
Yo = I'(yo) and these will eventually be constructed in three steps starting
from a contracting map fo : Yo — Y. The first step, which will be accom-
plished in this section, consists of an extension of f; to a contracting map
f Y — Y. The second step is a construction (by symmetrization) of a
contracting map « : ¥ — RV starting from f. The third and final step
is trivial, as contracting maps to RY restrict from Y to Yy. Thus the role
of Y D Y, is purely auxiliary but it seems impossible to achieve our goal
without bringing Y explicitly into the picture.

5.A Generalities on extension of Lipschitz maps. The basis of all

extension results is the following well known and almost trivial

PROPOSITION. Let Yy be a subset in an arbitrary metric space Y and ay :
Yy — R be a Lipschitz function. Then «g extends to a Lipschitz function
a: Y — R, such that the Lipschitz constant of a equals that of ag.
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Proof: First, let the complement ¥ — Yy consist of a single point y;. Then
the value z; = a(y;) € R must lie in the intersection of the closed balls
(intervals) I(ao(y),ry) C R, y € Yo, of radii r, = Agdisty(y,y;), where
Ao denotes the Lipschitz constant of fy. Every two such intervals (balls)
do intersect, since the extension problem is (obviously) solvable for the case
where Y consists of two points, and by the (trivial one-dimensional case of)
Helly Theorem all intervals intersect. Thus the extension of ¢y is possible
for

Y=YoU{y}.
In the general case, the.proof is concluded by well ordering the complement

of ¥p. i.e. by writing

and by using transfinite induction. (This looks slightly less ridiculous if the
complement ¥ — Y contains a countable dense subset as we only need the
extension construction on this subset.)

EvcLIDEAN COROLLARY. Every Lipschitz map ag : Yo — RV extends to a
Lipschitz map a : Y — R" with the Lipschitz constant

Ma) < VNA(aq) .

Proof: Apply the above proposition to the coordinate functions of ayp.

Remark: One would not have had the loss in the constant if one had used
the metric in RV corresponding to the sup-norm

(z1.. . an)|| = _sup |2,

i=1,..,

s : 2
stead of the Euclidean norm /), @7.

RIEMANNIAN COROLLARY. Let V be a contractible Riemannian manifold
and Vo C V' be a compact subset in V. Then every Lipschitz map op : Yy —
Vo extends to a Lipschitz map a : Y — V such that

Ala) < CAao)

where the constant C' depends on V and V, (but not on Y, Y, or ag ).
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Proof: Take a smooth embedding V C R" (for N = 2dim V') and observe
that the contractibility of V' implies the existence of a (smooth) Lipschitz
map p : RNV — V which fixes V5. (In fact one only needs here the con-
tractibility of the embedding Vj < V and one may choose p with the image
in a compact submanifold V; C V containing the implied contracting ho-
motopy.) Then the required extension is obtained by first extending g to
a Lipschitz map Y — R" D V; and then by composing this with p.

5.B Uniformly Lipschitz contractible (ULC) spaces. A metric space
V is called C-contractible for some positive function C = C(6), 6 € [0, 00),
if for an arbitrary metric space Y, a subspace Y’ C Y and a Lipschitz map
o Y — V with Diamo/(Y’) < &, there exists an extension of o' to a
Lipschitz map @ : ¥ — V, such that the Lipschitz constants of o and o
satisfy

Ma) < C(6)Ma') .

In view of the proof of the above corollary a suflicient condition for the
C-contractibility is as follows:
(5.1) for every subset V' C V with DiamV’ < é, there exist a Lipschitz
embedding q : V! — R and a Lipschitz map p : RY — V, such that
pog=1d: V' — V'’ and the Lipschitz constants of p and ¢ satisfy

VNA(p)Mg) < C(8) .

We say that V is uniformly Lipschitz contractible if it is C-contractible
for some function C = C(§).

5.C Basic Examples. Let V be a contractible Riemannian manifold
which admits an isometric action of a group I' with a compact quotient
V/T. Then V is ULC as immediately follows from the above criterion (5.1)
and the preceeding proof of the Riemannian Corollary.

A special case of this example is when V is the universal covering of a
compact aspherical manifold and T is the Galois group of the covering.

A more general example of a similar nature is when V appears as a leaf
of the foliation of some compact space, such that all leaves (including V')
lying in the closure of V are contractible.

5.D LOCALIZATION OF THE LIPSCHITZ INEQUALITY NEAR A NET. LetYy C

Y be an ep-net and let «« : Y — V be a map such that

(a) a | Yo is Ag-Lipschitz, i.e. v is Lipschitz on Yy with the implied Lipschitz
constant < Ag,



Vol.3, 1993 GROUP COHOMOLOGY WITH LIPSCHITZ CONTROL 37

(b) « satisfies the A-Lipschitz inequality for all pairs of points y; and y, in
Y within distance =g, i.e.

disty (a(y1). ay2)) < Adisty (y1,92) |
whenever disty (yy, y2) < £9. Then « is X' -Lipschitz for

A = 5max(Ag, A) .

Proof: In order to estimate disty (a(y;),a(y2)) in the case where
disty (y1.y2) > €0 we move y; and y» with dist(y;,y)) < g for i = 1,2,
and observe that by the triangle inequality in V"

dist (a(y1).a(y2)) <

< dist (a(yy), a(yy)) + dist (a(y)), a(yh)) + dist (a(yy), a{y=)) -
On the other hand, the triangle inequality in ¥~ shows that
dist(y).ys) < dist(y1.y2) + 2e0

and so
dist (a(y1).a(y2)) < 2heo 4+ Ao(dist(y1.y2) + 220) -

This obviously implies for dist{y;, y2) < g¢ that
dist (a(y1).a(y2)) < Adist(y;, y2)
for the required X' = 5max(\g, A). o

5.E Uniform local boundedness (ULB). A metric space Y is called
uniformly locally bounded if it can be covered by subsets B; C Y, i € I,
such that B; are uniformly bounded, i.e.

supdiam B; < 8 < o ,

i€l
and each ball B(R) C Y of radius R contains at most ¥ < oo subsets B;
where the number v depends only on R (but not on the center of B(R)),
ie.

B;, C B(R) , j=1....k,k=>k<v=v(R).
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EXAMPLE: Let Y be the universal covering of a compact Riemannian man-
ifold X. Then Y is ULB and the implied covering of Y can be obtained as
a lift of a finite open covering of X by simply connected subsets.

A-coverings. A covering of Y by (finitely many) subsets, say Yi,..., Y,
in Y, is called a A-cover if each Y; can be decomposed into a union of
uniformly bounded subsets,

;={JBi, i=12,...,

which are mutually A-separated, i.e.
dist(B;i,B;:’) >A forallj=1,...,m
and ¢’ # i, where

dist( A, B) = inf dist(a,b) overalla € Aand be B .

The following proposition is obvious.

A metric space Y is ULB if and only if for every A > 0 it admits a
finite A-covering.

EXAMPLE: Let Y be a discrete é-separated space for some 6 > 0, which
means

dist(y;,y2) > 6

for every two distinct points y; and y» in Y. Then the ULB property means
that every R-ball in Y contains at most v(R) points and a A-covering
amounts to a partition of ¥ into a union of A-separated subsets.

It is also worth noticing that if some z-net Yy C Y is ULB thensois Y.
Since every metric space Y contains a é6-separated e-net Yy for arbitrary € >
0 and é < &, the above discussion applies via Yj to non-discrete spaces Y.

Finally we mention the following well known geometric criterion for
ULB which will not, however, be explicitly used in this paper.

A complete Riemannian manifold with Ricci curvature bounded from
below,

Ricci > —p > —00
is ULB.
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5.F Lipschitz interpolation. Let Y and V be metric spaces, Yy C Y be
an go-net and let ag : Yy — V be a Lipschitz map.

INTERPOLATION LEMMA. If V is ULC (Uniformly Lipschitz Contractible)
and either Y or V is ULB (Uniformly Locally Bounded), then og extends
to a Lipschitz mapa:Y — V.

Proof: First we consider the case where YV is ULB and we take a finite
A-covering of Y for some A > &, say

Y=0Yj.
j=1

Now the extension is achieved in steps, by induction, as follows. Suppose, we
k
have already obtained a Lipschitz map aj on |J Y; and we want to extend
j=1
‘ k+1
it to |J Y;. We decompose Yj4; into a union of uniformly bounded and
Jj=1
' , k
mutually A-separated subsets, Y., = |JBj,; and let Y, (e0) C U Y;
i j=1

k ‘
consist of the points y in |J Y; which lie go-close to B}, i.e.
=1

dist(y. Biyy) < €0 -

Now, we use ULC and extend the map ay, | ¥}, (€o) to the union of Y1 (eo)

with B} +1- The Lipschitz constant AL 41 of the extended map depends only
on A(ay) and so

sqp)\LH < Apg1 < 0.
1

Thus the above extensions, for all i = 1,2.,...., define a map
k+1
a1+ U Y; — V, such that the Lipschitz property (inequality) with
j=1
k+1 o
the constant Ag4p is satisfied for all pairs of points y;,y» in |J Y; within
j=1
distance < gg. (This follows from A > g and the definition of Y, ,(o).)
Then the Lipschitz localization (see I11.2.D) implies that a4, is Lipschitz

with y(ap41) < 5Apy1 as we may assumie Apgpq > Ap(ag).
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Now we turn to the second case when V is ULB and we take a A-
nt

covering V' = |J Vj for A > 3g9A(ag). Then we pull back each V; to Yy
J=1

and take the =¢-neighborhood of the pull-back o 1(Vj) C Y for Y;. Clearly

m

U Y; =Y and each Y; decomposes into a union of mutually A’-separated
J=1

subset B;- for A’ > (/\(ao))—lA — 2eg > &g, where the diameters of the
images ag(Yp N Bj) C V are uniformly bounded. It suffices to apply the
above step-by-step extension argument which concludes the proof in the
second case.

Remark: Notice that the Lipschitz constant A(a) of the extension o : Y —
17 is bounded in terms of the following data:

1)} The Lipschitz constant Ao = A(ap).
2) The “net” number &g.

3) The UCL-function C'(8), 6 > R.

4)

3)

The number m of the A-covering.
The supremum D of the diameters of the bounded subsets in the A-
covering.
More precisely, in the first case, where Y is ULB, the A-covering de-
pends on g¢ and so the numbers A and D depend on gg. Then the first
step of the extension process works at the scale g = A )(D + 2¢¢) and
so Alay) is bounded by 5A(ag)C(éy). Then 63 = Aoy )(D + 2¢p) and
Aao) < BA(a)C(61) and so on. Here the final A(«) depends on the geome-
tries of both spaces Y and V.

On the contrary, in the second case, where V' is ULB, the geometry of
Y and Y; affects the final constant A(«) only via ¢ as we take a A-covering
of V" with A > 3g¢Xg. In particular, if ggA¢ is a priori bounded by a fixed
constant, then A(«) depends only on A and (the geometry of) V.

{
(
(
(
(

5.F’ CONTRACTING COROLLARY. Let V' be a metric space which is ULC
and ULB and let A and 6 be positive constants. Then there exists a positive
number Ag = Xo(V, A, 8). such that every A\y-Lipschitz (i.e. with the Lipschitz
constant < Ag) map oy : Yo — V extends to a A-Lipschitz mapa:Y - V),
where Y is an arbitrary metric space and Yy C Y is an €g9-net with gg <
Agte.

We whall use this corollary for a fixed A < 1 and we express it in words
bv saying that every sufficiently strongly contracting map o9 : Yo — V
extends to a contracting map o : 'Y — V, provided eoA(cy) is bounded
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by a fized constant independent of the needed “strength of contraction”

(Mao))

5.G Interpolation of families of maps. Here we are interested in
families of Lipschitz maps «, : Y — V where p runs over some parameter
space P which typically is a manifold or a locally compact polyhedron. We
want to have a family a, which is continuous in (y,p) — Y x P and such
that the Lipschitz constants of a, are uniformly bounded, i.e. A(a;,) < A <
oo, p € P. There is a simple reduction of this problem to the case of
an individual map. Namely, every continuous family of A-Lipschitz maps
ap 1 Y — V for a given A > 0 can be regarded as a A-Lipschitz map
Y x P — V for the following metric d, on ¥ x P. To construct d, we start
with an arbitrary metric dy on Y x P, whose restriction to each Y =Y x p,
p € P, equals the original metric of Y. Then we denote by d* the pull-back
of the metric disty to Y x P by the map o : (y.p) — ap(y). Finally, we set

d, = max(dg, A\"1d*) .

(Notice that d* is not quite a metric as it vanishes at some pairs of points
inY x P, namely at those pairs of points which are identified by «, but d,
is a fully-fledged metric.) Since the maps a, = o | Y X p are A-Lipschitz
for the metric dp | ¥ x p, the metric d, on ¥ X p equals dy (which is our
original metric on Y'). It is also clear that « is A-Lipschitz with respect to
dy.

In order to apply the above considerations to the extension of maps
from Z C Y x P to ¥ x P we first need an extension of metrics. To simplify
the presentation we assume in the following Lemma that the spaces Y and
P are locally compact.

METRIC EXTENSION LEMMA. Let d be a metric on Z such thatd | Y xp =
dy for all p € P and a given metric dy onY =Y x p. Then there exists a
metricd on Y x P such that

(i) d|Y xp=dy for all p € P and

(i) d| Z > d.

Proof: We start with the case when Y x P is compact and we look for
a metric d’ on P such that the Cartesian product (or sum d of d’ and
dy satisfies (ii), where the Cartesian product (sum) d is defined as the
supremum of those metric 6 on ¥ x P such that

5|Y xp=dy, peEP
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and

blyx P=dp, yey .

Notice that with this definition the property (i) of d is automatic.

In order for d to satisfy (ii) the metric d’ on P must be bounded from
below by the function e(p;,p2) defined as follows. Let z; and zo be two
points in Z over p; and po, i.e. of the form z; = (y1,p1), 22 = (y2,p2). Set

£(z1,22) = d(21.22) — dy (y1, y2)

and then let

£(p1,p2) = sup (1, 22)

where the sup is taken over all pairs of points z; and 2. in Z lying over p;
and p,.

The function € may be negative (even equal —oc) for some p; and pa
and we rectify the matter by taking

¢+ = max(0,¢e) .

The function ¢4 obviously vanishes on the diagonal A = {p; =p.} C Px P
and since Y and P are compact ¢4 is untformly continuous at A. Therefore,
there exists a non-negative continuous function ¢’ on P x P which dominates
g4, 1e. ¢ > &4 and still vanishes on A. Then, by compactness of P, the
function ¢’ can be dominated by a metric d' on P, for example by

d'(p1,p2) = sup
pEP

&' (p1.p) — £ (p2.p)| -
This concludes the proof in the compact case.

If Y x P is non-compact, we take a locally finite cover of it by compact
product subsets Y; x P, i € I, equip each of them with a metric d; satisfying
the conclusion of the Lemma on Y; X P; and then define d on Y x P as the
supremun of the metrics 6 on Y x P satisfying the following two conditions:
(i) 8lY xp=dy for all pe P.

(i) 6|Y; x P; < d;forallieI.
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Conclusion: Extension of Lipschitz families. Suppose we are given
a continuous map « : Z — V which is A-Lipschitz on the intersections
ZN(Y xp), p € P, and which we want to extend continuously to all of
Y x P D Z with a controlled Lipschitz constant on all Y x p. This is done
by first bringing in the metric d = d, on Z, defined as at the beginning of
this section by

d, = max(dp, A"y,

where dg is the original (product) metric on Y x P restricted to Z and d* is
induced by « from disty. Then d extends with the above Lemma (whenever
that applies) to a metric d and then the extension problem for continuous
families of Lipschitz maps o, : Y — V reduces to that for individual maps
Y x P — V which are Lipschitz with respect to d.

6. Selfcontracting of hyperbolic spaces.

Let us start with a general geometric contraction which sometimes leads
to a selfcontraction.

6.A Geodesic similarity map. Let Y be a metric space with a fixed
point yg and A be a number in the interval 0 < A < 1. Then A-selfsimilarity
f = fyo.» 1s the following set-valued selfinapping of Y : f(y) C Y consists
of those y’ € Y™ which satisfy

dist(yo,y') = Adist(yo,y) and dist(y’,y) = (1 — A) dist(yo,y) -

If the subset f(y) C Y is non-empty for all yo, A and y, then we say that
Y is a geodesic space. If ¥ is complete then this geodesic property obviously
implies the existence of a geodesic segment [yo.y] C Y between every pair
of points yo,y in Y, i.e. a subset in Y isometric to the real segment [0, d]
for d = dist(yo, y), such that 0 — gy and d + y under the implied isometry
[0.d] — [yo,y1]. Notice that the selfsimilarity f = f,, . reduces to t — At
on the geodesic segments issuing from yg.

6.A’. Another useful “geodesic” construction is the radial (normal) pro-
jection of Y to the sphere of radius R in Y around yo. This projection p
applies to the points y € Y~ with dist(yp.y) > R by

ply) ={y €Y |dist(y'.yo) = R . dist(y.y') = dist(y.y0) — R} .
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6.B Hyperbolicity. A geodesic metric space Y is called é-hyperbolic for
some 6 > 0 if for every yo € Y, every R > 0 and every two points with
r; = dist(yo, ¥i) > R, i = 1,2, any two points y; € p(y;), ¢ = 1,2, satisfy the
following é-inequality

dist(yy,y5) < max (6, dist(y1, y2) — A1 — As)

for A; =r; — R, it = 1,2. We say that Y is hyperbolic if it is é-hyperbolic
for some 6 > 0.
ExXAMPLES: (a) The real line R is obviously é-hyperbolic for 6 = 0 but the
Euclidean spaces R* for k > 2 are not hyperbolic.

(b) Trees with geodesic metrics are 0-hyperbolic, as a simple argument
shows. In fact every O-hyperbolic space is a (generalized) tree.

(c) Every complete simple connected Riemannian manifold ¥ with
strictly negative curvature, K'(Y) < —x < 0 is é-hyperbolic for § < 10x2.
This follows from the Cartan-Alexandrov-Toponogov inequality for I < 0.

A detailed account of basic properties and examples of hyperbolic
spaces can be found in [G] and [D-G]. Here we only mention the follow-
ing (easy but not completely trivial) statement.

6.C LIPSCHITZ STABILITY OF HYPERBOLICITY. Let Y] and Y be geodesic
metric spaces (e.g. complete Reimannian manifolds), such that Y; is hyper-
bolic. If Y7 and Y> admit nets (in the sense of I1.5 Y C Y7 and y, C Y-
which are Lipschitz equivalent (i.e. there exists a bijective Lipschitz map
Y/ — Y, whose inverse is also Lipschitz), then Y5 is also hyperbolic.

[-CoOROLLARY. Let Y] and Y be geodesic metric spaces which admit dis-
crete cocompact isometric actions of some group I'. If Y; is hyperbolic then
s0 is Ys.

The Lipschitz stability and the I'-Corollary are proved in [G] and [D-G].
An important consequence is that the hyperbolicity of a cocompact I'-space
Y (cocompact means Y/T is compact) depends only on I' and is called
the word hyperbolicity of I' (“word” refers to the notion of a word metric
in I'). Every word hyperbolic group is finitely presented and if such I' is
realized by 71(X) for a compact manifold X, then the universal covering X
is hyperbolic for the Riemannian metric on X induced from a Riemannian
metric on X (see [G], [D-G}).

An important geometric class of word hyperbolic groups is constituted
by the fundamental groups of closed Riemannian manifolds with negative
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curvature k' < 0 but some of (the known examples of ) hyperbolic groups
do not come from negative curvature. In fact, one does not know if every
hvperbolic group admits a discrete isometric action on some manifold with
negative curvature. Yet many results extend from K < 0 to the hyperbolic
case. An instance of this, the Novikov conjecture, is treated in the present
paper (see I1.6.E and compare [C-M]).

6.D Hyperbolic contraction of nets. ILet Y be a é-hyperbolic space
and f = fiy, the geodesic selfsimilarity of ¥" defined in I1.6.A. Take two
points y; and y» within a certain distance d in ¥ and let y{ and y5 be two
points in the images f(y;) and f(y2), respectively. We want to estimate the
distance d’ = dist(y]. y5) and to do that we observe that the map f acts on
each y € Y as the radial projection to the sphere of radius A dist(yo,y). We
assume

dist(yo. y1) < dist(yo., y2)

and let y4 be some radial projection of y} to the sphere of radius R} =
dist(yo. y}) = Adist(yo, y1), i.e. y§ € p(y}) for the implied radial projection
p (see I1.6.A’). By the triangle inequality

d' = dist(yh, yh) < dist(y}. y%) + dist(yy, v4) ©

where the first summaund on the right hand side is estimated by the é-
mequality applied to the projection p to the sphere of radius R| and where
the second summand equals A\(Rs — R;) for »; = dist(yo, i), 7 = 1,2, and
where

Ry — R, <d

by the triangle inequality. Therefore, d’ < m’ + Ad, for

m’ =max (6,d— (1= ARy — (R, — ARy)) =
=max (6,d — (1 = A)(Ry + R2) — A(R2 — R1)) < max(6, \d) ,

and so
d' < max(6,2Xd) .

Now let Yy be a A-separated s-net in Y (i.e. every two distinct points
in Yy have dist > A) for A > 22716 and let us assign to each y € Y some
point y' € f(y) for f = fi,. Then the map y — y' clearly is (by (5.1)) a
2)-contracting map Yo — Y.
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6.E Selfcontraction of Y. Notice that the above ¢-net Yy can be chosen
with € < 2A716 and so Ae < 26 remains bounded for A — 0. Thus we are in
a position to find a Lipschitz extension of the above map, callit fo : Yy —» Y
to all of Y, according to (IL.5.F’). Namely:

Let Y be ULB and ULC then, for a sufficiently small A > 0, the map
fo extends to a self contraction of Y.

Recall that the ULC and ULB properties are satisfied if ¥ is con-
tractible and admits a discrete cocompact action of an isometry group I'
and that the hyperbolicity of ¥ in this (cocompact) case is equivalent to
the word hyperbolicity of I'. Also recall that the major role of selfcon-
tractions ¥ — Y is to provide (sufficiently many) proper Lipschitz maps
I' — R", and so we want to realize a given group I' by isometries of a con-
tractible manifold. This is achieved in the hyperbolic case with the following
theorem.

6.F THEOREM OF RIPS. Every word hyperbolic group I' admits a dis-

crete cocompact simplicial action on some locally compact simplicial poly-
hedron P.

Proof: Let Y be a metric space and d > 0. Denote by P;(Y") the simplicial
complex whose k-simplices are abstractly spanned by those (k+ 1)-tupes of
points yo, Y1, ...,Yx € Y which satisfy

dist(y;,y;) < d , t,j=0,1,...,k.

LEMMA. If Y is 6-hyperbolic and d > dy = do(6) then the polyhedron
P4(Y') is contractible. Furthermore, if Y, is an e-net in Y then Py(Y}) is
contractible for d > dy = dy(6, €).

See [G] and [D-G] for the proof.

Now, with this Lemma the proof of Rip’s theorem is immediate. Take
an arbitrary Riemannian manifold with cocompact isometric action of T,
e.g. the universal covering of Y of a compact Riemannian manifold X with
71(X) =T. Then choose some I'-orbit Yo = I'(yo) C Y and take P = Py4(Y))
for a sufficiently large d.

6.F' COROLLARY. Every word hyperbolic group ' admits a faithful dis-
crete isometric cocompact action on some contractible manifold Y., with
boundary.
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Proof: Every locally compact polyhedron P with a cocompact I'-action
is T-regularizable (see 11.4.C) as it admits a piece-wise linear I'-equivariant
embedding into some [-manifold with boundary, say 7 : P — Y., so that the
embedding i is a I'-homotopy equivalence. For example, if I acts freely on P,
one starts with a P.L. embedding of P/T" — R", then one chooses a regular
neighborhood X C RV of the image and one finally takes the universal
covering of X for Y.,. If the action of I on P is non-free this argument should
be preceeded by locally equivariant embeddings of small neighborhoods of
points p € P acted upon by the isotropy subgroups I', C I'. This is easy and
well known, and in our case, of a contractible P, this gives us the desired
contractible I'-manifold Y.

6.F” Remarks: (a) The above discussion yields the following more general
conclusion.

Let Y be a hyperbolic ULB space with an isometric action of some
group U', such that the action is uniformly discrete in the following sense:
for every D > 0 there exists an integer k > 0, such that for every subset
B C Y with Diam B < 0 there exists at most k elements vy € I for which
BNy(B) # 0. Then T admits a uniformly discrete isometric action on some
ULB and ULC Reimannian manifold Y, with boundary.

(b) Blowing away the boundary of ¥,,. Let us take the interior Y¥;, =
Yoo — 0Y,, and introduce a complete Riemannian metric ¢t on Y, as
follows. Denote by g., the original Riemannian metric on Y, and let
©(y) = inf (1, dist(y, 0Y,,)) for y € Yi,. Then we set

—_) -
g7 =979 on 1Yi,,

and Y+ = (¥j,,9") (compare IL.4.B). Clearly, ¥t is a complete manifold
as the g*-length of each curve C equals the integral of ¢~! over C' with
geo-length (measure) element. In fact, the geometry of (Yi,,g") near the
boundary Y, is close to that of the standard hyperbolic space H™ —Int B,
n =dimY, with the Poincaré metric.

To obtain a better picture of gt we assume that the manifold Y., =
(Yeo, geo) has bounded geometry in the following sense:

There exist constants ¢ > 0 and A > 0, such that everv point y € Y,
admits a neighborhood U which is A-Lipschitz equivalent to the intersection
of an open e-ball in R with a closed half-space, where “A-Lipschitz” refers
to a A-Lipschitz homeomorphism whose inverse is also A-Lipschitz.
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Notice that if the action of I' on Y., is cocompact, then, obviously, the
geometry is bounded. Also observe that under the assumptions of the above
Remark (a) one can insure that Y, has bounded geometry.

Now it is easy to see that in the bounded geometry case the following
implications take place:

(1) Y., is hyperbolic & Y is hyperbolic,
(2) Yo is ULB & Y is ULB,
(3) Yo, is ULC & Y+ is ULC.

It follows that, by replacing Y., by Y+, we can, under the assump-
tions of (a), produce a complete hyperbolic Riemannian I'-manifold without
boundary which is ULB and ULC. (In fact, if one wishes, one may have
bounded geometry which is stronger than ULB.)

6.G I'-nets. A TI'-net is, by definition, a subset Z C Y x Y invariant
under the diagonal action of ' and such Z, = ZN(yxY)CY =y xY
is a net in Y for every y € Y and such that the implied density constants
£(Zy) = suI; dist(y’, Z,) are bounded from above by some € = ¢(Z).
y'ey

In what follows we often need Z to be A-separated for some large A > 0
which means such separation for all Z, C Y. It is also often convenient to
have the diagonal of ¥ X Y contained in Z which can always be achieved
by just adding the diagonal to Z and removing other points in Z close to

the diagonal in order to retain the separation property of Z.

Locally constant nets. Suppose we are given a covering of Y by some
subsets Y;, i € I, such that for every v € ' the translated set y(Y;) equals
some Y, j = () € I, such that either ¢ = j or Y is disjoint from Y;. Notice,
that in our case of a discrete isometric action of I' on a locally compact space
there always exists an arbitrary fine locally finite covering by open subsets
Y; with the above property, such that the subgroup I'; moving Y; into itself
equals the isotropy subgroup I'y, of some point y; € Y;. Next let us take a
net Z(1) C Y for each ¢ € I, such that Z(¢) is invariant under the subgroup
[; and Z(j) = yZ(i) whenever v(Y;) = Y;. If the densities £(Z(:)) are
bounded by a fixed constant ¢ then, obviously, the union

z =J¥ix 2(i)
i€l

is a I'-net which has the implied density constant (Z) bounded by &o
and which is called a locally constant I'-net. Notice that each net Z, =
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ZN(yxY)CY =y xY in this case equals the union UZ(i) over those
i € I for which Y; 5 y. Thus the A-separation property of Z essentially
reduces to that for Z(z). Namely if all Z(i) are A-separated and

dist (Z(i), Z(j)) > A (6.1)

whenever Y; NY; # 0 for Y; # Y, then Z is A-separated. Notice that (6.1)
imposes a lower bound on € = ¢(Z) in terms of A and the multiplicity of the
covering ¥ = UY, On the other hand, if the multiplicity of the covering

is bounded by some k, then for every A > 0 one can find A-separated
nets Z(4) satisfying (6.1) and having ¢ < C(k)A for some universal function
C(k). This takes care of the free action and, in general, we have the following
simple lemma.

6.G’ LEMMA. Suppose the space Y is finite dimensional and assume that
for every Ag > 0 and every (necessarily finite) subgroup Ty C T fixing
some point in Y the union of Ay-separated I'g-orbits in Y form a net with
the density constant g < CoAg for a constant Cy = Co(Y,T'). Then for
every A there exists a locally constant A-separated I'-net Z CY x Y with
e(Z) < Cy{ A for some constant C; = C1(Y,T).

Proof: Since Y is finite dimensional (as well as locally compact and metriz-
able) one can choose the covering ¥ = |JY; of finite multiplicity. The
above condition on 'y gives us I';-equivariant A-separated nets Z(1), i € I,
with ¢(Z(i)) < CoA which then can be slightly (thanks to the bounded
multiplicity) rarefied in order to satisfy (6.1). o

A typical (hyperbolic) example where the I'g-assumption of the lemma
Is not satisfied is where ¥ = [-1,1] x R with T’ consisting of the trans-
formations (t;,ts) — (£t;,t2 + k), k € Z. However. if we pass from Y to
Y'* considered in 11.6.F”(b), then this difficulty disappears as the points in
Y* =¥, C Y. =Y lying close to Y are “strongly moved” by all v € T.
This effect can be achieved in the general case even if we start with a space
Y without any boundary by first multiplying ¥ by [0, 1] and then by apply-
ing the blow-up +construction to ¥ x [0,1]. Thus we obtain the following
improvment of the above lemma.

6.G"”. Suppose that for every I'y as in I1.6.G’ there exist numbers R > 0
and d > 0, such that every ball in Y of radius R contains a point y, such
that dist (y,v(y)) > d for all v € Ty — {id}. Then for every A > 0 the
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space Y’ = (Y x [0, 1])+ admits a closed locally constant A-separated I'-net
Z'CY' xY' withe(Z') < C'A.

Remark: Notice that the assumption in 11.6.G"” is satisfied in many natural
cases, for example if the action of I' on Y is cocompact. In particular, one
always has the desired I'-nets in the context of the word hyperbolic groups.

6.H Geodesic I'-dia-contraction of nets. Here we assume Y is hy-
perbolic and every two points can be joined by a geodesic segment (which
follows from our definition of hyperbolicity if Y is complete). We recall that
for each positive A < 1 and y € Y there is a natural set-valued geodesic simi-
larity map denoted fx, : ¥ — Y (see I1.6.A) which sends each y’ € Y to the
union of the convex combinations (1 — A)y + Ay’ over all geodesic segments
[y.y'] C Y between y and y’. Notice that if ¥ is é-hyperbolic, then (by an
easy argument) this union, call it {(1 ~ M)y + Ay’}, has diameter < 26.

6.H' LEMMA. Let the space Y satisfy the assumptions of 11.6.G’ and let

1t < 1 be an arbitrary positive constant. Then there exists a closed T'-

net Z C Y x Y containing the diagonal of ¥ x Y and a continuous map

Fy: Z — Y x Y with the following six properties (compare 11.3.A).

(i) The map Fy fixed the diagonal of Y x Y.

(ii) The map Fy comnutes with the diagonal action of T on Y xY and on
ZCYxY.

(ili) For every y € Y the map Fy sends Z, = ZN(y xY) into y x Y and
the resulting map, call it f, : Z, — Y =y x Y, is p-Lipschitz for each
yey.

(iv) For every two points y and y', the image f,(y') lies 36-close to some
segment [y,y'] CY between y and y'.

(v) The density constant ¢(Z) satisfies the inequality

e(Z) < CA

for a constant C = C(Y,TI').
(vi) The maps f, are uniformly proper (seel1.3.A). In fact, dist (y, f¥) 2
Cudist(y,y’).

Proof: First we construct Z as earlier of the form

z=\Jvixz3),
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such that the separation constant A of Z is large compared to the hyper-
bolicity constant 6 of Y. Then we take a point y; in each subset ¥; C Y,
such that the istropy subgroup I'y, equals the subgroup I'; mapping Y; into
itself and we join every point in Z(i) C Y with y; by a geodesic segment,
say [vi. Y], ¥’ € Z(i), such that

i v(¥")] = 7(lvi.v'])
for all v € I';. Then we take A = ;1/2 and set

fo(y) =1 =Ny + Ay

for all y' € Z(i), where the convex combination refers to the above chosen
segment between y’ and y;. This gives us a map F; of Y; x Z(i) C Z to
Y x Y and as all of Z is the union over ¢ € I of such products, which can
be assumed mutally disjoint by the proof of I1.6.G’, we obtain our map
F:Z —Y xY. The only point which needs verification is the u-Lipschitz,
which follows from the hyperbolicity essentially the same way as earlier in

I1.6.D.

6.E Lipschitz cohomology of hyperbolic groups. Now we are ready
to prove the following

THEOREM . Let a group I' admit an isometric discrete (see 11.6.F"') action
on a ULB hyperbolic metric space, e.g. I is a subgroup in a word hyperbolic
group. Then the cohomology of T is properly Lipschitz.

Proof: We already now (see I1.6.F") that I’ may act on a complete Rieman-
nian hyperbolic manifold Y which is ULB and ULC and such that (due to
the uniform discreteness assumption and thanks to I1.6.G”) the action sat-
isfies the assumptions of I11.6.G’. Therefore, there exists a [net Z C Y xY
and a map Fy : Z — Y x Y as claimed by I1.6.H. Then by the Lips-
chitz interpolation discussion in IL.5.F and I1.5.G this map extends to a
I-dia-selfcontraction F of ¥ (see 11.3.A), where the properties (i)-(iii) of F
in I1.3.A follow from the corresponding properties of F (see 11.6.H') and
(v) in I1.6.H' needed to insure the contracting property of F (according to
IL5.F"). Then the existence of a uniformly proper homotopy F; (see (iv) in
IL3.A) trivially follows from (iv) and (vi) in I1.6.H'.

Finally, the existence of a I'-dia-selfcontraction implies (see I11.4.B) that
the cohomology of T is Lipschitz. o

Recall that the most important corollary (for us) reads:
I satisfies the Novikov conjecture.
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Remark: The uniform discreteness assumption is rather unpleasant as it
rules out, for example, the actions of I on the hyperbolic space H"™ with
parabolic elements. It is easy to remove this restriction with an infinite di-
mensional version of the Lipschitz cohomology, appropriate for the Novikov
conjecture. On the other hand, removing the ULB-condition requires more
effort. This will be discussed further in another paper.

II1. Lipschitz Cocyles and Secondary Classes

In this section we shall show that the hypothesis of properness of the action
of the discrete group I' on the space P. in the construction of Lipschitz
classes, is unnecessary. Thus, both the construction of the group cocycle ¢
and the Novikov conjecture for a cohomology class of ¢ will remain valid for
the extended notion of Lipschitz classes. Besides being more natural (Lip-
schitz cohomology becomes functorial for any group homomorphism), the
extended theory now covers the group cocycles on diffeomorphism groups
coming from Gelfand-Fuchs cohomology.

1.A Families with a fixed target. This means a continuous map « :
P — R", where P is an oriented smooth manifold on which T' acts by
orientation preserving diffeomorphisms. We not longer assume that the
action of I on P is proper. The assumptions on « are:

(I) Displacement bound:

distgy (a(p),(yp)) < IHll.  VYpeP.,y€l.

(II) Properness: a : P — RY is proper.
The construction done in 1.8 above, of the group cocycle an[P] €
H*(T'), works without any change. One has:

C(vo»-u,'wc)=/ ajy(u),
AXP

where ap : AX P - T = P xR, and u = 1 x 3 is the (I-invariant)
Thom class of the trivial bundle 7 = P x RN over P (3 is the generator
of HCIXmP(RN )). For any I'-invariant smooth form w € H j(f’ : T') the same
construction works and yields the following cocycle of dimension j + (N -
dim }3) =gq

(70,45 %q) =/A Paf‘*ﬁ(ﬁxw) .
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One can easily remove the orientation hypothesis on P and work with
twisted I'-invariant forms on P. We thus get a map an : Hy(P : ') —
HN-{(T).

1.B Families with a variable target. Here the I'-manifold P comes
along with an Euclidean, oriented I'-bundle "= P. This means, as above,
that T is a vector bundle over P which is I'-equivariant, the I'-action pre-
serving both the metric and the orientation. The map « is now a continuous
section

oa:P-T

of the bundle T on P, which satisfies the following two conditions:
(I)* Displacement bound:

dist (ya(p),a(yp)) <|7ll, Vyel,peP.

(I1)* Properness: The function p — ||a(p)“ is proper on P.

Note that we do not impose the condition that would normally follow from
L.7.B, i.e. that o(p) is fixed by the isotropy subgroup {yv € ', yp = p}.
It turns out to be unnecessary both for the construction of an and for the
Novikov conjecture.

To construct an let us consider the classifying space BT, together with
the universal I'-principal bundle:

ET — BT

with ET a contractible I'-space on which I' acts properly and freely. Let
then Pr = P xp ET, Tr = T xp ET be the corresponding induced bundles
over BI', and 7y : Tt — Pr be the corresponding projection. The fibers of
p:Pr — BT, t:Tr — ET are naturally isomorphic to P and T respec-
tivelv and the bundle Tr =5 Pp is an oriented Euclidean vector bundle. In
particular it has a Thom class which we can view as a cohomology class:

u € Hé\l"oper(TF) »

where the projection 71 is proper on the support of u; in fact we can assume
that the support of u is contained in the unit ball bundle of Tt.

Next, using the local triviality of the I-principal bundle ET' — BT, we
get sections a; : p~H(U;) — Tr | p~H(U;) for open sets U; C BI', and we
can, using a partition of unity {\;}, combine them into a section s(q) =



54 A. CONNES, M. GROMOV AND H. MOSCOVICI GAFA

Y- xi(p(g))ei(q) of Tr I8 Pr. The displacement bound shows that the
norm, “ s(q) “ of this section is a proper function on each fiber of the fibration
Pr 4 Br.

It thus follows that the pull-back of the Thom class u is a cohomology
class

s*(u) € H;ﬁoper(PF)

in the cohomology of Pr with proper support for the projection p : Pr — BI.

If P is oriented and I' preserves this orientation we can now define the
class an[P] € HN=4(BT) = HV~4T), where d = dim P, by integrating
s*(u) along the fibers of the fibration Pr % BT. More specifically, when
evaluated on an N —d dimensional singular simplex f : A — BT, the cocycle
¢ = pls*(u) is given by fPA f*s*(u), where Pa is the pull-back to A by f of
the bundle Pr 5 BT, while f : Py — Pr is the corresponding map.

In general, given a I' invariant current of order 0, i.e., a current given
locally by a differential form with measures as coefficients, w € H¥(P : T'),
we define an(w - [P]) € HVN~4+i(BT) = HNV=4(T) as p!((w xr 1)s*(u)).
Here w xr 1 is the extension of w as a cohomology class on Pr = P xp ET.

As above, we thus get a well defined map

Hiy(P:T) 2% HN-5(T) .

1.C DEFINITION. A cohomology class ¢ in H*(I') with real coefficients is
called Lipschitz if there exists P,T — P and a as above, such that ¢ = an(b)
for some b€ H, (P :T).

The main result of this section will be that any Lipschitz cohomol-
ogy class satisfies the Novikov conjecture. Before embarking on the proof,
which will rely on cyclic cohomology, we shall exhibit interesting examples
of Lipschitz classes for which the I'-action is not proper.

2. Examples.
The first two examples will be trivial but not the third one whose
generalization will show that Gelfand-Fuchs classes on Diff are Lipschitz.

EXAMPLE 1: Any 0-dimenstonal class is Lipschitz, with P = the one-
point ['-space and N = 0. Note that if we insisted that the I'-action on P
be proper it would not be clear at all that such a class is Lipschitz.
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EXAMPLE 2:  Any 1-dimensional class h € H*(I',R) is Lipschitz. Indeed,
it comes from a group homomorphism h : I' — R, being a group 1l-cocycle.
We then let P = R be endowed with the action of T’ by translation: v-p =
h(7) + p. Vy € T, p € R. We let a be the identity map from R to RV,
N =1and let b € Hy(P : I') be the homology class of dimension 0 given by
Lebesgue measure p = dp, i.e., with the notation of 1.A by the translation
invariant 1-form w = dp. For vg,v; € I" one has:

(0 71) = /A aplwx )

1 1
where ax (Y. Ajvi.p) = (p. 3 Aj(h{x;) + p)); thus. with 8(p) = f(p)dp,
0 0
Jfdp=1.and \g =1— A X\ = X\ we get

1
ar(w x 3) = (dp AdN\)(h(11) — h(70)) Z Xj(h(vj) +p) -
0

Hence. integration in dp eliminates f and integration in A gives h(y1)—h(7o)
as expected.

EXAMPLE 3: We consider the group Diff 7 (S!) = T of orientation preserv-
ing diffeomorphism of the circle (or any countable subgroup) together with

the Godbillon-Vey class, viewed as an element of H*(I',R) thanks to the
following formula of Bott and Thurston:

Ag'g*) = [ g3ldria) o).

Here ¢ is a group 2-cocycle, ie. ¢(g'.¢%) = (1,9, g'¢?) with ¢’ a left
mvariant straight cocycle; also ¢(g). for ¢ € T, is the logarithm of the

Jacobian:
dgl{z
{(g) = Log (—-—Z(l )) :

We shall now show that this 2-cocycle on I is Lipschitz. In fact the same
proof will work for Gelfand-Fuchs cohomology classes.

Let us carefully construct the triple (P, a,w). The I'-space P is the
3-dimensional manifold Ji = P of 2-jets of diffeomorphisms of a neighbor-
hood of 0 € R with an open set of S'. With S! = R/Z any j € JJ can be
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written j(t) = y + ty1 + t?y2, where y € S, y; > 0 (this is the meaning
of the + in Ji}) and yo € R. The group I' = Diff*(S!) acts on J; by
composition, thus, with v € I’ one has

(vo)(®) =) + ty¥ () + (Y W)y + %@yl) .

This action commutes with the natural structure of G-principal bundle on
J, where the Lie group G is the group of 2-jets of orientation preserving
diffeomorphisms of R? fixing the origin, i.e. the 2-dimensional group of upper
triangular unimodular matrices.

Obviously the action of I' = Diff*(S') on P is not proper. The proper
map « : P — R? is constructed as follows: the principal G-bundle Jif
is trivial (since G is contractible) as is obvious from the choice of section
Joly) =y+t ie yy =1, yo = 0. This gives us a map oy : P — G such
that ag(j - a) = ap(y)a, Ya € G. Now we endow G with a right invariant
Riemannian metric of negative curvature (and G is then isometric to the
Poincaré disk). We then take:

a(j) = expr ! (w(s)) = log, (aw(j)) € R?,

where log, is the inverse of the Riemannian exponential map at 1 € G,
exp; : R =T1(G) — G.

The map « is proper by construction, and we shall check that it satisfies
the displacement bound (with some constant c) for each finitely generated
subgroup of Diff*(S'). Since log, is a contraction, we just have to check
the bound:

distg (oo(vj), x0(j)) <cl(y), VjeP,veTly,

where {(7y) is the word length of v € I’y with respect to a finite set of gen-
erators. But such a bound follows from the finiteness of Sup ( dist, (77, D)
j€p

for any v € I', where we use on P any Riemannian metric which is invariant
under the right action of G.

Since P is oriented and T' preserves the orientation, to get an element
b of Ho(P : T') we look for a I'-invariant differential form w of degree 3 on
P. We take w = 2y1“3 dy A dy; Adys.

LEMMA. The 2-cocycle an(w - [P]) € H?(Diff*(S?),R) is the Godbillon-
Vey cocycle.
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Proof: Since our main concern is to show that an(w - [P)]) is non-zero,
we shall handle only the case when Ty C PSL(2,R) C Diff*(S') is the
fundamental group of a compact Riemann surface of genus > 1. The general
case follows along the same lines but is more cumbersome. Thus we identify
ETy with the Poincaré disk U and let T’y act oun U/ = ETy by isometries
with quotient M = BI'y. As above in 111.1.B, we let Pr;, — M = BT be
the induced bundle over M from the action of Ty on P = .JJ. This bundle
is a principal G-bundle over S}o = 81 xp, M. Since G is contractible, it is
trivial and admits G-equivariant smooth maps

a1 Pr, - G
whose composition with log, yields the map s,
s Pr, = R* . s = log, oa; ,

which is used in IIL.1.B. It follows that the cohomology class s*(u) €
H? per(Pr,) is the pull-back by s of the fundamental class of R? in co-
homology with compact support, and is hence Poincaré dual to any smooth
section of Pp, & Sk .

We want to compute an(w-[P]) evaluated on the homology fundamen-
tal class [M] € Ha(M,R). Thus, by III.1.B, we just need to compute

/ (w xp, 1)s™(u) ,
Pr

o

where the 3-form w has been extended to Pr, = P xp, ETy using its I'p-
invariance. But since s*(u) is Poincaré dual to (any) section o : S}O — Pr,

of p we get:
/ 0*(w><r0) .
S

1

To
We shall now check that this is the Godbillon-Vey invariant of the foliation
of S} = S' xr, ET which is the horizontal foliation of this flat bundle with
fiber S! over M. For this, it is enough to check that the pull-back p*(GV)
of the Goodbillon-Vey class of this foliation is given by the 3-form w xp, 1.
By naturality of the Godbillon-Vey class we just need to check that w xp, 1
1s the Godbillon Vey class of the pulled back foliation. However, this latter
foliation is defined by the closed non-vanishing 1-form 8 xr, 1, where 8 is
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the Diff*-invariant 1-form 6 = ‘—iy}f on JJ. Thus, the result follows from the

following classical equalities between Diff* invariant forms on J}:
d0=91/\9, w=d91/\91

where 6, = 2a;fgdy - %}/1;‘

We shall now extend the construction of example 3 to higher dimen-
sional Gelfand-Fuchs classes.

3. Higher dimensional Gelfand Fuchs classes are Lipschitz.

Let M be a smooth oriented, compact, n-dimensional manifold and let
I' = Difft (M) be the group of orientation preserving diffeomorphisms of
M. Let ke N and J ,': (M) be the positive higher frame bundle over M (cf.
[H], 1.8); an element of J;¥ (M) is the k-jet at 0 € R" of a germ of orientation
preserving local diffeomorphism of a neighborhood of 0 in R® with an open
subset of M. As above, the manifold J,:," (M) is a principal Gj bundle
over M, where G}, is the Lie group of k-jets of orientation preserving local
diffeomorphisms of R” fixing 0. Moreover I' = Diff ¥ (M) acts naturally on
JF(M) and its action commutes with the action of G;. The group SO(n)
sits in Gy as a maximal compact subgroup, so that we can consider the
quotient My = JF(M)/SO(n) as a -manifold. Now let 8 be a natural
map of the complex WO(n) (cf. [H] loc. cit.) to the complex of I'-invariant
differential forms on M =lim Mp. For any w € HY (WO(n)) let k be

large enough so that §;(w) is well defined on M}, then one obtains a group
cocycle on I, p(w) € HI™™(T,R) as follows.

The I'manifold M}, is the total space of a I'-equivariant bundle over
M whose fibers F}, are isomorphic to the quotient G/SO(n) of G by its
maximal compact subgroup. Let N = dim Fj, and fix an orientation of
F}.. The corresponding orientation of M}, is then [-invariant. One can then
consider the following fibration with fiber Fy:

M xr ET 5 M xp ET .

The Thom class u of this bundle with contractible fibers can be viewed
as an element of Hé\{foper(]\/lk’p), with My r = My xr ET and “proper”
meaning that p restricted to supports is a proper map. Thus it makes sense
to use the homology class 0 (w) - [My] of dimension n + N — ¢ to integrate
u over the fibers of the fibration My — BT and obtain a group cocycle
p(w) € H*(BT') of dimension N —(n+ N —¢) =¢q— n.

This is exactly what we did in example 3 above. In general we shall
prove:
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3.A THEOREM. Any c € pH*(WO(n)) C H*(T,R) is Lipschitz.

With the above notation, we take as a [-manifold the space P = M.
The problem is to realize the above Thom class u (which was on Pr) from the
suitable section a of a I'-Euclidean vector bundle T on P in such a way that
o satisfies the displacement bound for T' = Diff ¥ (M) acting on Mj. This
would be easy if one could endow the homogeneous space F' = G /SO(n) of
the Lie group Gy, with a left invariant Riemannian metric of non-positive
sectional curvature. Indeed, one would then take T as the tangent bundle
along the fibers of P & M and o(j) = expj—1 (sp(j)) where s is a fixed
smooth section of this bundle with contractible fibers. A left invariant
Riemannian metric of non-positive sectional curvature on F = G /SO(n)
exists for k = 1 or for & = 2, n = 1, which was the situation of example
3 above. However, it does not exist in general. We shall overcome this
difficulty by a technique of inductive construction of proper maps satisfying
the displacement bound which will apply to many other situations.

Since we want to deal with groups I' which are not necessarily finitely
generated we shall reformulate the displacement bound as follows:

3.B DEFINITION. Let I be a discrete group, P aT-space, T a I'-equivariant
Euclidean vector bundle over P and « : P — T a section of T. Then «
satisfies the displacement bound if

VgeTl, Sup Ha(gp) - ga(p)“ < 0o .
pEP

When T is finitely generated it follows immediately that for A small
enough A« satisfies the previous displaceinent bound.
Our key technical tool is the following lemma.

3.C LEMMA. Let ' be a discrete group, P a I'-space, T\ and Ty two Eu-
clidean T-equivariant vector bundles on P, oy a continuous section of T}

satisfying the displacement bound and as a continuous section of Ty such
that:

1) Vge G, 3Cy < o< with “O’g(gp) - g(\u_;(p)” < C'ge”“‘(”)” VpeP.

Then oy is homotopic among sections satisfving 2) to a continuous section
! . . .
oy of Ty which satisfies the displacement hound and:

2) o] + lob(p)]| = Log [|lca(p)|| VpeP.
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Proof: We look for a continuous function f(z,y) > 0 of two real variables
x> 1,y > 1, such that:

a) zf(r,y) <1 Vz,y; /3) yfle,y) > LOgJ Logz  Vaz,y;
7) ey defla.y)| <1 Va,y: &) |aydyfla.y)| < Va,y.

Let us check that the following function f fulfills these conditions:

1+ Logy — Logx
Y

flz,y) =

for y>=z
1

flz,y)=—- for y<ua.
x

It is clearly continuous since & > 1, y > 1 and the two definitions agree on
the diagonal.
a) It is clear from y < z, otherwise xr f(x,y) = 1—4—'5’5— where t = y/z > 1,
which is all right.

3) This is clear: for y < x, Log y — Log L is negative.

1) One has, for y > z, 8. f(z,y) = _Tg while for y < z, 0, f(z,y) =
—-L.. This shows that . f x,y) is a continuous function and also that
‘Jyd flx, y)| <1

6) Onehas.fory > x, 9y f(x,y) = —-;12— Log(y/x)andfory < z, 0, f(x,y) =
0. This shows that 9, f is continuous and xy 9, f(z,y) = —% Log(y/ x)
for y > z is of the form —3 ; Logt, t > 1, which is bounded by 1 in norm.
We shall now prove that condmons «). ), 8) are sufficient to get the

displacement bound for f(ell*1l |las]|), aa = of. It is clear that condition
J) insures that ab is homotopic to 2 among sectious of Ty satisfying 2).
Let g € T, there are constants C'1,Cy < oo such that

lar(gp) — g (p)|| < C1 VpeP
|2(gp) — gaa(p)|| < Caexp (lu(p)ll) .  VpeP.

Of course both C and C5 depend on g € I'. But we just need to show that
Sup ||ab(gp) — gas(p)|| < .
peP

We shall prove the following inequality:
[las(gp) = gab(p)|| < (2Cs + 1), VYpeP.

To do this, we let x = exp ”al(p)”, y = Ha;;(p)”, ' = exp ||a1(gp)”,
y = ||e2(gp)|-
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First, the diplacement bound for oy shows that ”a/g(gp) - ga(p)“ <Gy
and hence that:
a) |Logz — Loga’| < C .

Next, the inequality 2) of the lemma shows that with & = as(p), & =

g~ laa(gp) one has:

1€ =&l < Coz
which using a) we can replace by the symmetric condition:
b) Il€ = €|l < inf(x,2")Caer .
It follows then that y = ||¢]| and y' = ||¢’|| satisfy:
O ly- | < inf(x, 2)CeC

We have to estimate Hf(J:, Y& — fa', y")¢ ” Since conditions a),b),c)
are symmetric under the exchange of (x, y, &) with (', ¥, £’), we may assume
that y < y’. One then has

f@ e~ fle,y)€ =
= f@" y )& = O+ (fla'.y) = f@" )€+ (' y) = flz. )€ .
The first term f(2', y')(¢' — €) is bounded in norm by
NTHIE €l
using condition «) for f, and hence by Che®?, using the inequality b).
The second term (f(2’,y’) — f(2',y))€ is bounded in norm by

|f(a’,y") = fla' y)|y < y[Sup] |0:F (2", t)|ly" — yl .
Y.y

But the inequality &) on 9, f gives the bound (2')~! for y Sup(y,y1 ](9t fla, t)l,
and hence the bound Che®" for the second term, using inequality c).
The third term (f(z’.y) — f(x.y))€ is bounded in norm by

|72 y) = fla.y)|y < y[Sup] |0uf(w, y)||2" ~ =} .

Again, the inequality ) on 0, f gives the bound
(Inf(;c,;z:'))_1 for Sup |a flu, y)l
[z.2')

and hence the bound e®* for the third term using inequality a).

3.D CoroLLARY. LetI', P,T1,T», o and as be as in Lemma 3.C and ass-
sume that Hal II + HO‘) ” is a proper function on P. Then the section

o(p) = (a1 (p), ab(p)) for T = Ty & T» satisfies the displacement bound and
P — ||a(p)|| is a proper function on P.
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Proof: One has ||(1(p)“ = Hafl(p)l|+||aa'z(p)||| > Sup (Hal(p)“,Log ”a'g(p)”)
by condition 2) of the lemma.

This corollary gives us a tool to construct inductively proper maps
satisfying the displacement bound. The precise estimate in Log |jaz]| of
Lemma 3.C is important. Simple examples such as the following show that
this Log bound cannot be improved:

3.E EXaMPLE: Let P be the connected solvable 2-dimensional Lie group
of transformations t — at+n, a > 0 of R. Thus (a,n){¢’,n’') = (aa’,an’+n).
Let ' = P act on P by left multiplication and 7,75 be the bundles on P
with constant fiber R. Let o(a,n) = Loga,aa(a,n) = a~*n. Then clearly
ay being a group homomorphism satisfies the displacement bound while,
with v = (z,y) € T,

a2 (yp) — aa(p) = (xa) Nan+y)—an=atay

so that Ha('yp)-—a-z(p)n < C,exp ||a1 (p)“. Thus the conditions of Lemma 3.C
are fulfilled, but it is impossible to improve the growth of « since for a left

invariant metric on G = P, its restriction to unipotent subgroups [ 0 1l

n € R, is typically the metric d(n,n’) = Log (1 + |n — n’|).

3.F COROLLARY. Let G be a linear algebraic group (over R) and I\’ a
maximal compact subgroup. Then there exists a smooth section a of the
tangent bundle T' of G/, such that (for a fixed left G-invariant Euclidean
metric on T):
1) |la|| is a proper function on G/L\';
2) (S_;%) ||a(g])) - ga(p)” < oo for anv g € G:
\

3) the pull-back by « of the Thom class of T is the fundamental class in
H:omp(G/I{)'
Proof: We shall construct o by induction using Lemima 3.C. Recall that (cf.
[M1]) G = NxH (semidirect product) with N nilpotent simply connected
and H reductive. When N = {0}, the homogeneous space G/ admits
an invariant metric of non-positive curvature so that the answer follows
from section 1.9. Moreover the resulting section « of T(G /L) satisfies the
following further condition:

79| < exp (As]lalgl)|]) . VgeG,
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where the left hand side is the norm of the matriz 7(g) in an arbitrary finite
dimensional linear representation of G whose restriction on I{ is orthogonal.

In general, we shall assume that we have proved the lemma for any N
of dimension < d and with the following further condition fulfilled by the
constructed section «:

4) For any representation 7 of H in a finite dimensional space with 7| K
orthogonal, and for any polynomial P on the Lie algebra of N there exists
A= A(w, P) < oo such that

||7r(h)|||P(n)| < exp AHa(g)” , Vg=(n,h)€eG.

We have already seen how to fulfill this condition for N = {0}. Let us now
construct « for G = NxH, N of dimension d. Let Z be the center of N, it
is by construction a normal subgroup of NxH = G and we let G; be the
quotient group G/Z, p the canonical homomorphism form G to G;. One
has Gy = (N/Z)xH so that G has the same form as G with dim NV, < d.
The restriction of p to H C G is injective and we let Iy = p(K') be the
corresponding maximal compact subgroup of G;.

The induction hypothesis thus provides us with a smooth section «; of
T(Gy/Iiy) which satisfies 1),2),3),4).

Let us consider the G-equivariant fibration

G/K _p‘) Gl/I\—l

with p(gl\) = p(g)\, for any g € G.
Let us first understand the fibers p~t{z}, € G1/L';. The center Z of
N is a vector space and the fibers of

p:G— G

are, in a left G-invariant manner, affine spaces over Z (which acts on the
right). When one divides by I ~ I;, this affine structure is lost but not
the Euclidean metric coming from any A" invariant fixed Euclidean metric
on the vector space Z. With this choice we get a G-invariant metric on the
vertical bundle To = Kerp, C T(G/L'). We shall construct a section o of
T, using a section s : G1/K} — G/I of the map p by the formula

—_—

aa(x) = as(p(x)) € Top
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(or, in a more fancy notation, the inverse of the exponential map exp, along
the fibers, applied to the point s(p(z))). The lack of G-invariance of as,
i.e. Haz(gm) - gaz(a:)“ is governed by the lack of G-invariance of s, i.e. by
H(s(gz))_lgs(z‘)”, where s(gz)~lgs(z) € Z.

To construct s, we use the linear section Lie N; 2% Lie N and the re-
spective group exponential maps. We then extend it to Ny XH — NxH by
s(n1,h) = (s1(n1),h) Vn; € Ny, h € H.

Let g = (n,h) € G, z = (n1,hi\1) € G /L1 and let us compute
(s(g:z:))—lgs(a:) € Z in terms of s; : N — N. One gets:

hl—lh'l((sl (nh(nl)))—lnh(sl(m))) €Z.

Here g = (n, h) is fixed while & = (n1, hi 1) is the variable and we have to
estimate the size of the above expression in the vector space Z. But h; only
appears once and through its action by the representation 7 of H in Z, we
can thus bound it by ||7r( hl_l)”. Let us show that the remaining term, i.e.
81 (nh(nl))—lnh(sl(nl)) is bounded by a polynomial in exp~!(n;) € Lie
algebra of N;. This is clear since for fixed h and n the above expression
applied to n; = expaj, a; € Lie N; is a polynomial map of Lie N1 to Z.
This shows that we can bound the norm of the above element of Z by
(k] 1P eso= )|

Moreover, the dependence of P on g = (n,h) can be absorbed in an

overall multiplicative constant Cy. Thus, the section ay of T, satisfies the
bound

lea(gy) — gaa(v)|| < CyexpAllas (p(»))|| VyeG/K,

for a suitable A provided by the induction hypothesis.

Let us then fix a G-invariant Euclidean metric on the tangent bundle
T = T(G/K), whose restriction to T» is the previously chosen metric. We
have a natural G-equivariant isomorphism of T} C T, the orthogonal of
T, C T, with the pull-back p*(T(G; /L)) of the tangent bundle of G, /K.
Let &; be Ap*a, the pull-back of the section oy of T(G1/I;), then the
section o satisfies the bound

laa(gy) — gaa(y)|] < Coexpllai(y)] VyeG/K

and we can thus apply Lemma 3.C to P = G/ with the pair (a;, as). Let
then o) be as in Lemma 3.C: the section a(y) = (a;(y),ab(y)) of T(P) sat-
isfies the displacement bound and H(r(y)” is a proper functionon P = G/Is.
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In fact it clearly satisfies the stronger condition 4) since any polynomial is
bounded by a function exp(A Log t) for large t. Finally, « verifies 3) by con-
struction. We have thus shown how to proceed by induction, which proves

Corollary 3.F.

Proof of Theorem 111.3.A: As above, we let J,':(]\l) be the positive k-frame
bundle over M, and T' = Difft(M). Consider the I'-equivariant fibration
Y =J ,j" /SO(n) 5 M. It is induced from the Gy-principal bundle J,‘c" — M
and the left action of Gy on P = G},/SO(n), i.e. one has Y = J} xg, P.

Let V be the tangeut bundle along the fibers of 7; it is a I"-equivariant
bundle on Y and is induced from the action of G on the tangent bundle of
P. Thus we can endow it with the [-invariant Euclidean metric coming from
a G The local triviality of the G-principal bundle J;' and the compactness
of M give us a finite covering {U;} of M by open sets, and isomorphisms
1) B U; x P such that on U; N U;, 05,‘(25]-_1(:17,1)) = (2, gij(z)p), where
(g.,) is a 1-cocycle with values in G. Now since G, satisfies the hypothesis
of Corollary 3.F we let a be a smooth section of T(P) fulfilling the conditions
of the corollary, and using a partition of unity we get a corresponding section
a =Y (viop)aog;) of V. Since I acts by gauge transformations on J;, the
compactness of M and the displacement bound for « show that & satisfies
the displacement bound relative to the action of I

Finally, condition 3) of Corollary 3.F shows that & has the right proper
homotopy class.

Remark: Using Lemma 4.B below, one can actually extend Corollary 3.F
to almost connected Lie groups.

3.G THEOREM. Let G be an almost connected locally compact group, I'
a finitely generated discrete group and 1 : I' — G a homomorphism. Then
anv cohomology class in * (HY,,,(G,R)) is Lipschitz.

Proof: By a well-known theorem, G has a normal compact subgroup such
that the quotient G is a Lie group. By another well-known result (see
e.g. [M2]),

H:om(G,R} = H:ont(GLie« R) .

Thus, the statement follows from the above remark.

4. Lipschitz cocycles and Chern classes of I'-equivariant bundles.
Let T be a discrete group, P a Imanifold and « a proper section, sat-
isfying the displacement bound, of a T-equivariant Euclidean vector bundle
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T over P. In constructing the map an from H,(P : T') to group cohomology
we defined the homology H,(P : I') from invariant closed currents of order 0
on P. Our aim in this section is to show that the class of Lipschitz cocycles
is stable under multplication by arbitrary polynomials in the Chern classes
of I'-equivariant complex vector bundles E over P, without any hypothesis
of existence of a I'-invariant metric on E.

4.A THEOREM. Let (P,T,a,C) be a geometric group cocycle, E a I'-
equivariant complex vector bundle over P and Er the associated complex
vector bundle over Pr = P xp ET'. Let Q = Q(c1,...,c,) be an arbitrary
polynomial in the Chern classes of Er. Then the cohomology class p =
(C xr Qa*(ur)) € H*(T') is Lipschitz.

The first difficulty we meet in proving this theorem is the absence of a
I-invariant Hermitian metric on the vector bundle E. To deal with it, we
shall use the following two lemmas.

4.B LEMMA. Let P be a locally compact I'-space, f a positive continuous
function on P such that f(p) — oo when p — oo. There exists a continuous
positive function h(p) < f(p) such that h(p) — oo when p — oo and
satisfyving the displacement bound:

Vyel, Sup |h('yp) - h(p)| < 00 .
»

Proof: Let 3 > 0 be such that Y e™#%9) = Cy < oo where ¢(g) is the word
g€T

length relative to a finite set of generators Z C I'. Let then

6(p) = Ze—-/ﬂ’(g)e—f(yp) )
ger

.

One has by construction 0 < 6(p) < Cg < o0. Moreover the inequality
€g7'g) > €(g)—£(g1), V g, g1 € T shows that 6(gy, p) < eP491)0(p),V g, €T,
p € P.

It follows that the function Log 6(p) satisfies the displacement bound, as
well as — Log 8(p). Now the inequality 8(p) > e~#(?) shows that — Log (0(p))
< f(p). Since f(gp) — oo when p — oo, one has by the Lebesgue dominated
convergence theorem that 6(p) — 0 when p — oo, so that — Logf(p) — o0
when p — oo. Thus we can take for h the positive part h(p) =

(- Log8(p)™ = —Log™ 6(p).
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4.C LEMMA. Let (P, T,«a,C) be a geometric cocycle and E a I'-equivariant
complex vector bundle on P. There exists a [-equivariant fibration P, 2 P
and an equivalent cocycle (P, Ty, ;,Cy) such that the bundle p*(E) = F;
admits a I'-invariant Hermition metric.

Proof: The frame bundle of E is a I'-equivariant G-principal bundle over
P, where G = GL(n,C), n = dim¢ E.

Let P, 5 P be the bundle associated with the action of GL(n,C) on
the space H = GL(n,C)/U(n) of positive matrices. We endow H with its
canonical Riemannian metric which is G-invariant and of non-positive sec-
tional curvature. This yields a I'-invariant Euclidean metric on the vertical
bundle V" of the fibration P; L p.

By construction, the fiber p~!(x) over a point r € P is the space of
all Hermitian metrics on the fiber E,. of E, thus p*(E) has a canonical
“tautological” metric which is [-invariant.

We let Ty = p*T & 17 it is a I-equivariant Euclidean oriented bundle.
We already have the section p*« of the bundle p*T', we need a section a
of V7 which satisfies the displacement bound, is fiberwise proper, and pulls
back the Thom class of V' to the Thom class of P, 2 P, an oriented bundle
with contractible fibers.

We shall get ap as follows. First we take an arbitrary Hermitian metric
on E. i.e. a smooth section s of the bundle P, & P. To this section s we
associate the following bounded section ;3; of the vertical bundle V' on P

Buy) = (L+3w)) 7 3y)

= ;
where 3(y) = y,sP(y) € V.
The non-positive curvature of the fibers shows that

|139(y) = By)|| < d(s9(x). s(x)) . Vyep(x),
where one uses the action of g € I on both ;3 and s, and the Riemannian
distance in the fibers of P;.
It follows that for any compact Ik’ C P one has

Hﬁf(y) - 51(2/)“ —0 when y—oo in p HK).

Let then Z C T be a finite set of generators and

-1
St -awll)

9€Z

fly) = (
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Let h(y) be given by the formula of Lemma 4.B, it satifies the displacement
bound and h(y) < f(y), also

h(y) — oo in p~}(K) for any I compact of P .

Then an(y) = h(y)B1(y) is fiberwise homotopic among proper sections of V
to the original section 3. The norm of «- is fiberwise proper. Finally, let
us check that oo satisfies the displacement bound. One has, for g € Z,

llaf () — e2(m)|| < |hlgy) = RW)|||B1(gw)|| + BW)||B{ (v) = BE)]| ,

which is bounded since h(y)||8{(y) — Bi(v)|| < 1.

We now let oy = p*aPaq; it is a proper section of T). We let C; = p*C;
since a(uy) is the Thom class of the bundle P, & P associated to the
section s, we get the required equivalence (Py,T1,01,C1) ~ (P, T, ¢, C).

4.D LEMMA. Let (P,T,«,C) be a geometric I'-cocycle.

1) Let E be an oriented I'-equivariant Euclidean vector bundle over P.
Then there exists a [-equivariant fibration P, % P and a geometric
I'-cocycle (P, Th,a,,Cq)  with  associated  group  cocycle
(Cxy.e(Er)a*(ur)), where e(Er) is the Euler class of the bundle as-
sociated to E on Pr.

2) Let E be a Hermitian I'-equivariant vector bundle over P. Then there
exist a ' equivariant fibration P, 2 P and an equivalent geometric
I'-cocycle (P, Ty, a1,Ch) such that the pull-back p}(F) admits a I'-
equivariant subbundle of rank one.

Proof: 1) We let P, be the total space of E, we take T} = p*(T @ F) and

—_—
a; = p*aday, where as(y) = ys(p(y)), s being the T-invariant zero section
of E. Now instead of taking C; = p*C, which would yield an equivalent
cocycle, we take C; = s,C. It is a I'-invariant current, and the dimension
of the associated group cocycle is now increased by dim E. The equality
e(E) = s*(ug), where ug is the Thom class of E, yields the desired answer.

2) Let first Py 2% P be the I'-equivaraint fibration with fiber over z € P
the projective space P(FE,) of the fiber E,.

Let L be the canonical complex line bundle over FP,. The construction
of 1) applies to the real oriented bundle Eg = L & ... L, direct sum of
n — 1 copies of L, n = dimg F, and yields a triple (P, T}, «;), where P
is the total space of Ep, Ty is p} o pgT b piEp and a; is as above. We
let C7 = s.p5C. Since the pushforward pg. of the Euler class of Ej is 2
constant # 0 we get the conclusion.
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Proof of Theorem 111.4.A: Using Lemmas 4.C and 4.D we can assume that
the bundle F is a direct sum of I'-equivariant Hermitian line bundles E;.
We are thus dealing with a polynomial in the first Chern classes ¢;(E;), i.e.
in the Euler classes e(E;). The answer follows from the multiplicativity of
the Euler class combined with 4.D.1).

Let us now state and prove two propositions which are corollaries of
the above lemmas.

Let us recall from [C2] the following

4.E DEFINITION: An action of the discrete group I' on a manifold P is
almost isometric if there exists a I"-equivariant reduction of the structure
group of P to a group of block triangular matrices with orthogonal diagonal
blocks.

If we apply the proof of Lemma 4.C in the real context, i.e. with
GL(n,R) instead of GL(n,C), to the tangent bundle of P we get, using
[C2):

4.F ProposITION. Let (P,T,a,C) be a geometric I'-cocycle, then there
exists a D-equivariant fibration P, 2 P and an equivalent geometric T-
cocycle (Py, Ty, ay, C1) such that the action of T' on Py is almost isometric.

This reduction to the almost isometric case is crucial for the use of
cyclic cohomology and the proof of the Novikov conjecture for Lipschitz
cocycles.

The next proposition relaxes a bit the axioms in the definition of a
Lipschitz class.

4.G PROPOSITION. Let P be alocally compactT'-space with aI'-equivariant
Euclidean vector bundle T. Let o, be a continuous section of T' such that
a) “al(y)“ > ¢ > 0 outside a compact subset of P,
b) lea(y)|| <1, Vye P,
c) ”of"l’(y) - al(y)H — 0 when y — oo, for any g € .
Then there exists a proper, displacement bounded section o of T on P of
the form a(y) = h(y)ay(y), h(y) — oo, y — .

Proof: Let f(y) be a positive proper continuous function on P such that
fy< (e ||a§'(y) - ozl(y)H)_1 where Z C T is a finite set of generators
g€Z

of I', and with f(y) — oc when y — oc. (This is possible by c).) Let
h(y) < f(y) be given by Lemma 4.B. Then a{y) — h(y)ay(y) is the required
answer.
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5. Lipschitz cohomology and the Novikov Conjecture.

In this section we shall show how to remove the hypothesis that the
action of I' on P is proper in the proof of chapter I of the Novikov conjecture
for Lipschitz classes.

It is cyclic cohomology which will play a crucial role in this proof. This
is not surprising in view of Example 3 in [I1.2. Indeed, in that example,
the I-invariant form w of degree 3 on J;' (the space of higher 2-frames on
S') gives an invariant measure on the space J; and hence a trace ¢ on
the crossed product C* algebra A = CO(J; )X, Such a trace ¢ gives a
natural map from RAG{A) to € and it is this map which replaces in this
example the Chern character ch : A'(P/T') — H*(P : I') which we used in
the proper case. Traces are 0-dimensional cyclic cocycles and in general a
[-invariant differential form w of degree ¢ on the I'-manifold P provides us
with a cyclic cocycle ¢ of dimension d = dim P — g on a dense subalgebra 2
of the C'*-algebra A = Co(P)xI'. The very delicate problem of extension of
the corresponding map hy(A) — C to a map Lg(A) — C has been solved
in [C2] and we shall use this result to conclude.

5.A THEOREM. Let ' be a discrete group. Every Lipschitz cohomology
class ¢ € H¥(T',R) satisfies the Novikov conjecture.

We shall use as a tool in the proof of this theorem the natural “as-
sembly map” p from the geometric \-group of the pair (P,I') where P is
a ' manifold, to the (analytic) I'-theorv of the C*-algebra A = Co(P)nI,
crossed product of Co(P) by I'. This map (see [BC]) extends to group
actions the usual assembly map: N,(BT) — L (C*(T")) (cf. [K]). The geo-
metric group L*(P,T') of the I space P is by definition the I-homology of
the pair (BT, S7) of the unit ball, unit sphere bundle of the vector bundle 7
on Pr = P xr ET which is associated to the tangent bundle of P. (A more
refined version is necessary to take care of the torsion of I', but we shall not
need it here).

We shall now recall briefly the properties of the generalized assembly
map u: K*(P,T') = K,(Co(P)xT) which we shall need for the proof of the
theorem.

Using the Baum-Douglas description of ' homology ([BD]) (i.e. as a
quotient of Spin, cobordism) one gets that every element z € K*(P,T') can
be obtained from a quadruple (N, g, F, h) where N is a manifold, ¢ : N—=N
is a I-principal bundle over N, F is an element of N-theory with compact
support FF € K (N), and h : N — Pisal equivariant I -oriented map. The
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I -orientation of h is given by the choice of a I'-invariant Spin_ -structure
on the bundle TN & h*TP on N. This notion is well defined because the
action of I on N is proper.

Each such quadruple (N,q,F,h) defines an element of K*(P,T') =

K.(Bt,S7) whose image by p can be explicitly described (cf. [C2]). We
shall just need

5.B LEMMaA [C2). Ifh: N — P is a submersion, one has (N, q, F, h) = F&
h € K(Co(P)xT), where h! € KL (Co(N),Co(P)) is the I'-equivariant
family of Dirac operators along the fibers of h.

We have used here the natural map of N I(A, B) to KK (AxT, BxTI')
and the Morita equivalence C| O(N' XL ~ Co(N). We refer to [C2] for more
details.

Let us assume that P is [-invariantly oriented. Then the Chern char-
acter in A-homology:

ch, : K,(B1,57) — H.(Bt,57)
can be composed with the Thom isomorphism
¢®:H,(Br,St)~H,_,(Pr), with Pr=PxpET

and an explicit computation of ® ch,(z) for & = (N, q, F, h) gives the fol-
lowing

5.C LemMMa [C2]. Let @ = (N,q,F,h) € K*(P.T' ~ K, (Br,S7). Then
®och,(z) = hi(chF)Td(TN ¢ h*1) N[N]).

_ Here N is oriented since h is I\ oriented and 7 is oriented. Moreover,
h is a map from M to Pp associated to hr : N'p — Pr, since ]VF =N xr ET
is naturally homotopic to N.

We can now state the main result of [C2] which will be the key fact
used in the proof of Theorem 5.A.

5.D LEmMMA. Let T be a discrete group acting by orientation preserving
diffeomorphisms of the (not necessarily compact) manifold P. Let R be
the C subalgebra of H*(Pr,C) generated by the cohomology classes of T'-
mvariant closed currents of order 0 on P and by the Chern classes of T'-
equivariant bundles on P. Then for any y € R there exists an additive map
¢ of the K theory group K(A) of the C* algebra A = Co(P)xT, to C, such
that

¢(p(z)) = (@ ochy(z),y) , Vz e *V,T) .
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Proof: Since the result is not stated like this in [C2; Thm. 6.8] (it does not
involve I'-invariant differential forms), we need to explain how to prove it
using the technique of [C2]. One first uses Proposition 4.F to reduce to the
almost isometric case, i.e. the case where the action of I' on P preserves
a G-structure on the manifold P, where G is a group of triangular block
matrices with orthogonal diagonal blocks.

Next, given a I'-invariant closed current of order 0, w on P, one shows
exactly as in Lemma 4.4 of [C2] that the following cyclic cocycle on the
algebra A = C°(PxTI') defines an m-trace of the Banach algebra completion
B of 2 given in [C2; Thm. 3.7]:

(fo M= > /Pfgogod(fj,)/\gogld(fi)/\---/\go---gm_ldf;’;/\w
1

gO._'gm=

where m = dim P — degw, and fi € C>(PxT) is viewed as a family f,.
g € T of smooth functions on P.

The rest of the proof is then exactly the same as the proof of Thm. 6.8

of [C2].
Proof of Theorem 5.A: Let P be an oriented smooth I'-manifold, w a T’
invariant closed current of order 0 on P and « a section of a I'-equivariant
Euclidean oriented vector bundle T on P fulfilling conditions (I)* and (IT)*
of II1.1.B. We want to prove that the corresponding group cocycle ¢ =
an(w - [P]) on T satisfies the Novikov conjecture.

As a first step, let us show that we can assume that the [-bundle T
is endowed with a I'-invariant structure of complex vector bundle. For this
we use the suspension (I.7.C) with the bundle 7. Thus the new space P’
is the total space of T' and the new bundle T” is the pull back to T of the
complexification T¢ = T @41 of T. The new differential form «’ is the pull-
back of w to T which does not change its degree k = degw. In particular
the difference dim 7T — (dim P —degw) is equal to dim 7’ — (dim P’ — degw).
Finally the section o is o/(p.&) = o'(p) + i€ for p € P, £ € T,. As before
(1.8) one has o, (w'[P']) = an(w[P]) and the new bundle T” is now complex.

As a second step we use, asswning that T is complex, the bundle S =
AT, exterior algebra of the complex space T, and the natural representation
of the Clifford algebra ClLiff(Tg) of the underlying real vector bundle, to
construct as in 1.10, an element A'(a) € KLt (C.Co(P)). This is done as
follows. The C* module £ over Cy(P) is the space of continuous sections
vanishing at oo of § and the remaining formulas are identical with those of
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1.10. Thus the endomorphism F of £ is given by (F§), = Fp§,, VE €& =
Co(P, S) where F, = y(a1(p)) is the Clifford multiplication by

ai(p) = (1 + ||e®@)])) " alp) -

As before the displacement bound and the properness of ||a| show that
(£,F) defines an element K () of KK (C,Co(P)).

Using K(a) € KKr(C,Co(P)), or rather its image K'(a) in
KK (C*(T'),Co(P)xI), we obtain a natural map ¥, : K(C*(F)) —
K(Co(P)XT), Yu(y) = y ® K'().

As a third step we shall compute the composition ¢o @ p of 9, with
the assembly map p : K,(BI') — K(C*(I')). Let 2 € I,(BI') be given by
a geometric cycle, i.e. a compact Spin.-manifold V', a [-principal bundle
VAVonVandalk theory class E € K*(V). Then Lemma 5.B shows
that p(z) & K'(a) = yap(z) is given by the following geometric cycle:
(N,Q,F,h) = z, i.e. Yopu(x) = p(z). Here N is the manifold V xp P qis
the I-principal bundle over N given by N=VxP3%Vxr P, F is the class
in J¥(N), the \'-theory with compact support of NV given by the formula

F = n*(E)a*(t)

where 7 is the projection N — V associated to N — V the projection
on the first factor, t is the Thom class in L'-theory of the complex vector
bundle T on N associated to the I-equivariant bundle T on P, and & is a
section of T on N associated, using the local triviality of the bundle N 5 V
with fiber P, to the section « of T over P.

Finally the map h: N — P is the second projection.

Let us compute the Chern character ® och,(z) € H,(Pr), where Pr =
P xr ET, of the element z.

The K -orientation of h : N — P is given by the Spin,.-structure of
the fiber V. The Chern character ch(F) is equal, by the above formula, to
m*(ch(E))a*(cht) and, as is well known in the original proof [AS] of the
ndex theorem, cht is the product of the Thom class u of T by the inverse

of the Todd genus of this complex bundle. a characteristic class V(T) =
1+ higher degree. We thus have

Poch,(a)= h*(l/(T)a*(u)ﬂ*(A\(‘ ch(E))[N])

where h : N — Pr is obtained from hy : Ny — Pr and the homotopy
equivalence Np = N xp ET ~ N.
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If we express this in terms of ch.(z) = p, (A(V )chE(V]) where p: V —

BT is the classifying map of the T' principal bundle V over V, we get the
following formula

®och,(z) = V(T‘Z:;)é*(u)(ch*(;v) x [P])

where T is the complex vector bundle on Pr associated to T on P, dis a

section of T associated to the section «, and where the orientation of the
fibers P of the fibration Pr — BT, is used to define the product homology
class ch.(z) x [P]. It follows from this formula together with Lemma 5.D
that for any [-invariant closed current of order 0, w € H(P : T'), there
exists a linear map L : k' (C*(T")) — C such that

L(p(z)) = (chi({z),an(w-[P])) , Va € N, (BT).

It follows that the Lipschitz class an (w-[P]) satisfies the Novikov conjecture.

Epilogue. Lipschitz-Poincaré Dual of a Group

The construction of Lipschitz cohomology classes for a finitely generated
discrete group I' can be systematized by means of a “dual object” to BT,
consisting of a [-space equipped with a “Poincaré duality” map from its
I-invariant homology (with infinite chains) to H7(I'). We devote the con-
cluding section to this notion of “Lipschitz-Poincaré dual” of BT, which we
believe to be of independent interest.

Fix a word-length function |y|, v € T and let d(v,72) = W[ 12,
71,72 € I’ be the associated left-invariant distance on I'. For N € N, let

LT ={6:T = RY : |lo(n) — ¢(12)|| £ d(71,72) . V1,72 €T} .

Endowed with the product topology, LyT is a locally compact space. Indeed,

LnT is a closed subspace of RN x [] B,, where B, C R" is a ball centered
r#e
at the origin of radius |y|. " acts on LT by left translations. On the other

hand, SO(N) acts on LyT in the obvious way: u¢ = vo @, Vu € SO(N)
and ¢ € LyT". The two actions commute.

Consider now the subspace FyT' of LyT consisting of all Lipschitz
contractions ¢ : I' — R” such that RN = lincar span of ¢(T'). It is easy to
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see that F'yI' is precisely the union of all SO(NV }-orbits with trivial isotropy.
s such, it is an open subset of L yT" and therefore a locally compact space
itself. Moreover, the action of SO(N) on FyT is free.

Let PyT denote the quotient space of FyT under the action of SO(NV)
and form the vector bundle

TnT = FnT XS0(N) RN — PyT

associated to the principal SO(N)-bundle 7 : FyI' — PyI' and to the
standard representation of SO(/V). Evaluation at identity gives rise to a
canonical cross-section &y : Py — T T as follows:

an(m(@)) = o xso(n) ole) . Vo e Fyl.

E.1 Lemma. TwI — PyT is an Euclidean, oriented T'-bundle and the
continuous section oy : PyI' — TnT satisfies the following conditions:

() |lvan(y™'p) —an(p)]| < 141 ye€T ., pe PyT;

(II*) the function ||an]||(p) = “aN (p)H, p € PyL. is proper;
(IIT*) (TnT), = linear span of {7@1\/(7‘11)) Y E F}, Vpe Pyl

Proof: If p = n(¢). then yan (77 'p) = ¢ Xso(n) ¢(7). Thus, (I*) and (IIT*)
follew just from the fact that ¢ € FyT. Likewise, (II*) is a consequence of
the definition of FyT as a topological space. o

Note that (I*) and (II*) are the displacement bound and, respectively,
the properness conditions required in the definition of a family with variable
target (cf. 1.7.B, II1.1.B). On the other hand, (III*) is a non-degeneracy con-
dition which could have been added to that definition without altering any
of the subsequent developments. A family satisfying the extra assumption
(I1II*) will be called non-degenerate.

The point of the above construction is that it provides a universal
famaly with variable target.

E.2 ProposITION. Let (P,T,a) be a non-degenerate family with variable
target. There exists a proper, I'-equivariant map k : P — PyI', where
N = rank(T), such that (P,T,a) = &*(PyI,TnT,ay), ie. T = &*(TNT)
and Ky oa = an o k, where kp : T — TnT is the canonical lift of k.



76 A. CONNES, M. GROMOYV AND H. MOSCOVICI GAFA

Proof: Let F — P be the orthonormal frame bundle associted to T — P.
An element of F is a pair (p, f) with p € P and f : T, — R¥ as orientation
preserving linear isometry. Define ¢ = kp(p, f) : I' — R¥ by the formula:

o(7) = f(yaelv"'p)), Vyerl.

Since (P,T,a) satisfies (I*) and (III*), it follows that ¢ € FyI'. The
map kr : F — FNI thus defined is obviously SO(NN)-equivariant and,
in view of the fact that (P,T,«) fulfills the properness axiom (II*), kg is
proper. Therefore, it induces proper maps kK : P — PyI' and sy : T &
F xg0(n) RN — TyT. Moreover, kr provides a canonical identification
of F with k%(FnT) and, consequently, of T with x*(TnT). With these
identifications made, it is easily seen that k7 o = an 0 k.

Finally, x is I'-equivariant because kp is; indeed, if ¢ € T, p’ = gp,
f'=g-fand ¢ = kp(p,f'), then

¢'(7) = f'(va(y tap)) = (g~ va(r " gp)) = dlg™ ) =(g-¢)(v) . ©

Since (PyT,TyT,apn) is itself a family with variable target, one can
define, as in section 1.8, a duality map ooy : H Py : T) — HN'”*(F).

Namely, let A = A(vg,...,7) = { Y tiris 2 ty=1,t2> 0} be the
0<5<k 0<j<k

k-simplex spanned by vg,...,vx € I' and let aA—: A x PyT — ThT be the
map defined by aa( Y, tjv.p)= % tj'yj"la('yjp). Let Uy be the (I™-
0<5<k 0<i<k

invariant) Thom class of the bundle TxT' — PyT. Since Uy € HY(TnT,R)
(= compact vertical cohomology of TnT') and apa is proper, o (Un) €
HY(AxPyT,R). One can therefore evaluate o’ (Uy) on a cycle of the form
A x C, where C € Hy_i(PnT : T'). The resulting number, ¢(vo,. .-, V&),
satisfies the invariance property c(vvo,---,¥7k) = <(Yo5---,7k), ¥y € T.
Moreover, the assignment {(vq,...,vt) — ¢(70,-..,7k) defines a group co-
cycle; its class is, by definition, ayn(C) € H* (7).

E.3 COROLLARY. Let (P,T,a) be a non-degenerate family with variable
target and let k : P — PyT be its classifying map. The following diagram
is commutative:

H.(PT : T) L, H.(PyT:T)
an \ / ann
HN-*(T) .
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Thus, a natural definition for the Lipschitz cohomology of T is the
following;:

Hi(I) = | Image (onn : Hy—.(PyT :T) — H*(T)) C H*(T) .
N>1

Note, however, that in the body of the paper we have been using a “smoothed”
version of this cohomology, consisting only of Lipschitz classes which admit
a smooth realization, i.e. arise from geometric cycles (P,T,a,C) with P a
smooth manifold.
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