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Abstract. It is shown that the [JLO] entire cocycle of a finitely summable un-
bounded Fredholm module can be retracted to a periodic cocycle. Moreover, the
retracted cocycle admits a zero-temperature limit, which provides the extension of
the transgressed cocycle of [CM1] from the invertible case to the general case.

Introduction

The Chern character theory of K-cycles over an algebra A, developed as an
analogue of the classical index theory of elliptic differential operators on a closed
smooth manifold M, plays a fundamental role in non-commutative geometry
([Cl, C2]). In this paper we are concerned with finite-dimensional K-cycles, i.e.
with the K-cycles represented by unbounded finitely summable Fredholm modules
over A.

Such a K-cycle (H, D) admits both a periodic Chern character, which is a class
in the periodic cyclic cohomology //C*per(A), and an entire Chern character,
belonging to the entire cyclic cohomology //C* e n t(^). The periodic cyclic cohomo-
logy is much better understood than the entire cohomology, and is explicitly
computed for many interesting algebras. On the other hand, the Jaffe-Lesniewski-
Osterwalder cocycle [JLO], representing the entire Chern character (cf. [C3]), has
some computational advantages over the periodic cocycle.

This tension can be detected already in the case when A = C*°(M\ with
M a spin manifold, and D = the Dirac operator on M. Indeed, it is then known (cf.
[Cl, Part II, §6]) that HC*\er(C™(M)) s H e v

d R (M, <C), resp. HC^^C^M)) s
Hodd

dR(M, <C), whereas the similar isomorphism for HC*cni{Cco{M)\ expected to
hold as well, was proved so far only for M = S 1. By contrast, it is relatively easier
to recover the ^4-class of the manifold M from the entire JLO cocycle (cf. [BF])
than from the periodic cocycle (cf. [Cl, Part I, Thm. 6.5]).
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In this article we resolve the above issue by producing a formula which
preserves the advantages of the JLO cocycle but still represents the periodic Chern
character. This formula is obtained by means of a "transgressive" retraction of the
entire JLO cocycle to a periodic cocycle. A remarkable feature of the "retracted"
cocycle is that it admits a "zero-temperature" limit, which coincides with the
transgressed cocycle constructed in [CM1] when D is invertible.

A brief outline of the paper is now in order. The basic definitions are recalled in
Sect. 1. Section 2 begins with the retraction of the JLO cocycle to a periodic
cocycle. We then prove the existence of the zero-temperature limit for the retracted
cocycle, thus extending the construction of the transgressed cocycle of [CM1] to
the general case. The "correction" needed for this extension is provided by the
zero-temperature limit of the components of the JLO cocycle, which in turn is given
by cochains reminiscent of the cocycles associated to algebra extensions ([Cl, Part

I, §3], [ β ] ) 1 .
The fact that the cocycles constructed in Sect. 2 represent precisely the same

periodic Chern character as the one originally defined in [Cl], is proved in Sect. 3.
In the same section we give the corresponding formula for the index pairing.

Section 4 deals with the "infinite-temperature" limit, which may no longer exist
in general. We show that if one postulates the existence of large temperature
asymptotic expansions for the components of the JLO cocycle and their trans-
gressed versions - modelled after the case of an elliptic pseudo-differential operator
on a closed manifold - the Chern character can be represented by a "local" formula,
i.e. by an expression which is a direct generalization of the current representing the
index class of an elliptic operator. In particular, one recovers the ^4-class of a spin
manifold M as precisely the periodic Chern Character of the Dirac operator. We
end with a non-commutative illustration of the present formalism, by identifying
explicitly the Chern characters of K-cycles over the Toeplitz algebra of the circle.

1. Cyclic Cohomology and the Chern Character

For the convenience of the reader, and also to set the notation, we recall in this
section some basic definitions.

7.7. The Cyclic Complex, (cf. [Cl, Part II, §1]). Given a Banach algebra with unit
A over C, let

Cn(Λ) = the space of continuous (n + l)-linear forms on A, if n ^ 0

Cn(A) = 0, if n < 0 .

Furthermore, let

Cλ

n(A) = the subspace of Cn(A) satisfying the cyclicity condition

φn(an, a0,. . . , αM-i) = ( - 1)" φn(a0,. . . , an).

1 Another interesting analogy, with the treatment in [BGV, Chap. 10] of the local family index
theorem, was pointed out to us by Ezra Getzler
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The Hochschild coboundary operator b: Cn~1(A) -* Cn{A\

j+u. . . , an)

preserves the invariant subspaces of the cyclic permutator, so that

Cλ{A) = {Cλ»(A),b)

is itself a complex. Its homology groups Hλ

n(A) form the cyclic cohomology of A.

1.2. The (ft, B)-Bίcomplex. (cf. [Cl, Part II, §4], also [LQ]). Let Cn>m(A) =
Cn~m(A). The Hochschild operator defines horizontal differentials
b: Cn'Um{A) -» Cn*m(A)9 while the operator B: Cn+1{A) -> Cn(A),

+ ( - l ) M 0 n + 1 ( « n - j + i , . . . , αΛ, α o , . . . , On-J9 1)) ,

defines vertical differentials B: Cn>m{A) -> Cn>m+1{A). O n e has

b2 = B2 = bB + Bb = 0 ,

therefore C(>1) = (Cn'm(A), 5), 5 is a bicomplex.
Consider now the "first quadrant" subcomplex C + (A) = {Cn'm{A\ b,B)n^Oftn^o.

It can be shown that the inclusion of the cyclic complex Cλ(A) into the total
complex Tot+(A) of C+(A) is a quasi-isomorphism. Therefore, it induces an
isomorphism between Hλ

n(A) and the corresponding homology groups HCn(A).
There is an obvious shift identifying Cn>m(A) with Cn + Um + 1(A\ which defines an
embedding of degree two of the total complex into itself. This, in turn, induces on
cyclic cohomology the periodicity operator S: HCn(A) -> HCn + 2(A).

For the full bicomplex C(A) there are two ways of forming a total complex,
depending on whether the n-cochains are defined as the direct sum or the direct
product of CPA{A\ with p + q = n. If one uses the direct product, the resulting total
complex Totπ(A) of "infinite" cochains has trivial homology: HCinί

n{A) = 0. If one
uses the direct sum, the resulting total complex ΎotΣ(A) of "finite" cochains gives the
periodic cyclic cohomology HCper

n(A). The "periodicity" shift mentioned above
shows that, in effect, there are only two kinds of periodic cyclic cohomology
groups: even and odd.

1.3. The Entire Complex, (cf. [C2]). In order to obtain an interesting cohomology
out of the total complex of infinite cochains, one needs to restrict the "growth" of
these cochains. This can be achieved by considering the subcomplex Cent(A) of
entire cochains, i.e. of those cochains {<^n}n̂ o s u c h that the series
Σ»^o(«0 1 / 2 II Φn IIz" defines an entire function of z. It is a Z2-graded complex, whose
cohomology ίfCent

±(^4) is called the entire cohomology of A.

1.4. Fredholm Modules, (cf. [Cl, C2]). An odd (ungraded) unbounded p-summable
Fredholm module over A consists of a Hubert space H equipped with a continuous
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representation A -• «3?(H), together with a densely defined unbounded self-adjoint
operator D on H, satisfying the following properties:

(i) 3 p e [ l , oo) such that Tr(J + D2yp/2 < oo

(ii) VaeA the operator [D, α] (is densely defined and) extends to a bounded
operator on H; for future use, we note that 3CD < oo such that

\\a\\ + \\lD,ά]\\£CD\\a\\Λ.

An even (Z2-graded) unbounded, p-summable Fredholm module over A is defined
by the same data with the addition of a self-adjoint involution y e «S?(H) satisfying:

(iii) Dy = —yD and ay = γα, V'aeA .

Replacing the p-summability condition (i) by the weaker, S-summability
requirement

(ϊ) Tτe'tD2 < oo, V ί > 0 ,

one obtains the notion of S-summable Fredholm module.

1.5. The (Periodic) Chern Character, (cf. [Cl]). If (H, D) is an even p-summable
Fredholm module with the property that D is invertible, its nth Chern character is
defined as the class

chM(H, D) = [φD"] e HCn(A)9 ϊovn = 2k ^ p - 1 ,

of the cyclic cocycle

ΦD>O, . , On) = ^ S t r φ - ^ D , α0] . . . β^DD, α«])

where cn are suitable normalizing constants, depending only on n.
One has

which makes possible to define, independently of n, the periodic Chern character of

Let us also recall that in [CM1] we constructed, by a process of transgression,
another cocycle representing the same Chern character, namely:

τ o "(α 0 , . . . , βB) = Σ sgn(A) J Aί» + 1 f S t r φ e " ' " ' ^ [ A α λ ( 0 ) ] e " ( t l " t")tlD\ . .
λ 0 Δn+ι

. . . [A « A W ] e " ( 1 -φ2D2)dt0 . . . dtH9 n = 2k>p-l,

where λ runs through the cyclic permutations of {0, 1,. . . , n} and An + 1 is the
standard (n + l)-dimensional simplex.

These definitions can be extended to the general case in the following canonical
fashion. Let (h, F) be the graded O-summable Fredholm module defined by
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the module structure over C being that for which 1 e (C act on h as . Form

the graded tensor product H ®gr h, viewed as an A = A ® (C-module, and consider
the operator Dm = D ®grJ + ml ® g rF, meR. For m Φ 0, (H, ®grh, Dm) is an
invertible p-summable unbounded Fredholm module, and its Chern character
ch"(H ®grh, Dm)eHCpQΐ

ev(A\ n = 2k^p~lis independent of m (cf. [Cl, Part I,
Prop. 6.4]).

Furthermore, the odd case can be reduced to the even one by a standard
procedure: first, one extends the above definition, in a straightforward way, to the
case of graded algebras; then, one replaces the ungraded Fredholm module (H, D)
by a canonically associated Z2-graded Fredholm module over A ® g r C l 5 C^ being
the complex Clifford algebra over the 1-dimensional Euclidean space. (See [Cl,
Part I, §7].)

1.6. The Entire Chern Character, (cf. [C2], also [JLO]). The Chern character of
a θ-summable Fredholm module (H, D) was defined in [C2], as an entire cyclic
class in HCtni

±(A). We shall need here the equivalent (cf. [C3]) but more conve-
nient [JLO] version, which we proceed now to recall.

L e t Δ n = { ( t l 9 . . . 9 t n ) e W ; O g ί ^ . . . ^ ί B ^ l } . G i v e n A θ 9 . . . , A n e
S£ (H), we set

(Ao,. . . 9An>D= ί ΎriyAoe-^A.e-^-^2 . . . Anβ^'^dt, . . . dtn ,

with the convention y = I (the identity operator) if (H, D) is ungraded. In this
notation, the [JLO] cocycle representing the entire Chern character of (H, D) is
given by the following components:

Ch"(D)(α0,. . . , an) = <α 0, [D, a,\ . . . , [D, an]>D, aθ9. . . , aneA ,

where n runs through all positive integers of the same parity as (H, D). The fact that
it gives a cocycle is expressed by the identity

bChn~1{p) + BChn+1(D) = 0 . (1.1)

In addition, it satisfies the transgression formula

- d/dtChn(tD) = bφ^HtD, D) + Bφhn+ι{tD, D) , (1.2)

where, for an operator V on H of degree [F] eZ 2 , we have denoted

(-l) ί I κ l<flo, [Af l i ] [A flil K, [ A f l ί + i ] [A

2. Conversion of the JLO Cocycle

In this section (H, D) will denote an arbitrary unbounded p-summable Fredholm
module over A.
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2.1. The Retracted Cocycle. We shall show here that the JLO entire cocycle can be
converted into a periodic cyclic cocycle, by replacing its tail with a finite-length
transgression. First, we need some simple estimates which follow from the p-
summability assumption.

Lemma 1. Let n> p. Then

(a) lim^o Ch"(ί£) = 0;

(b) the function t -» || φn(tD, D) \\ is integrable on [0, Γ] , VΓ < oo .

Proof, (a) The Holder inequality for operators gives

\\Chn(tD)\\ £ (π)!" 1 CD

n+1tnΎτ(e-t2D2).

On the other hand, since

Txe~t2D2 = Tr((/ + D2)pl2e-t2D\l + D2)~p/2)

^ (p/2e)p/2rpet2Tv(I + D2)~p/2 ,

one sees that

Tτe't2D2 = O(Γp) as t->0+ .

(b) A more judicious use of Holder's inequality (see [GS, Lemma 2.1]), gives

Uhn(tD,D)\\ £ {ή)Γ\n + l)CD

nδ'll2fι'1ττ{e-{1-δ)t2D\ V0 < δ < 1 .

Therefore,

\\φn(tD,D)\\ =O(tn~p-1) a s £ ^ 0 + ,

which ensures integrability on [0, T~\. D

In view of (b) above, we can define for Vn > p and t < oo a continuous
(n + l)-linear form on A by setting

Ttht

n(D)(aθ9. . . , an) = } φn(sD, D)(aθ9. . . >an)ds .
o

Proposition 1. For any n> p — 1, n ofthe same parity as (H, D), and any t > 0, the
formula

cht

n(D)= X Chπ- 2 k(ίD) + flT|ίhf

n+1(Z))

defines a cocycle in Tot+ (̂ 4); its cohomology class in HCn(Λ) is independent oft > 0.
Moreover, 5(ch"(D)) and ch r

n + 2(D) are cohomologous in TotΓ(^4); in particular, the
corresponding periodic cyclic cohomology class is independent of n.

Proof Integrating the transgression formula (1.2) from ε > 0 to t > 0 gives

Chn{εD) - Chn(tD) = b]φhn-\sD, D)ds + β]φn+ί(sD, D)ds . (2.1)
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Therefore, using the cocycle property (1.1),

ί

b(Chn{tD) + B j f f t i "- 1 ^, D)ds) = bChn(εD) = - BChn + 2(εD) .

In view of Lemma 1, we can let ε -»0 to obtain

b(Chn(tD) + BT<βDht

n + 1(D)) = 0 .

It follows that

-Bcht

n(D)= - £ BChn~2k(tD)= £ bChn-2k~2(tD)

b(Chn(tD)

i.e. chf

M(D) is a cocycle.
Furthermore,

r

cht

n(D) - chτ"(D) - Σ (Ch""2/C(ίi)) - Ch"-2/c(τD)) + 5j0h" + 1(5D, D)ds

= - (b + B) Σ J ί S h 1 1 " 1 * " 1 ^ D)ds . (2.2)

To prove the second assertion we note that, after replacing n by n + 2 in (2.1), we
can let ε -» 0 to get, again by Lemma 1,

Ch" + 2(ίD) = - bΎφht

n+1{D) - BΎφht

n + 3(D) . (2.3)

Hence,

ch t

Λ + 2(D) - cht

n(D) = Chn +2(tD) + BT<£ht

n + 3(D) - BΊφht

n+1(D)

1(D) . D

2.2. The Zero-temperature Limit. In order to relate the above cyclic cocycle to the
transgressed cocycle of [CM1], we need to prove existence of the "zero-temper-
ature" limit. This will be a consequence of the following result.

L e m m a 2. For any n^l and ao,...,aneA,

£hn(tD, D){a09. . . , an) = O(Γ2) ast^π;

if n is odd, one has in fact

φhn(tD, D){a0, ...,an) = O(Γ3) as t -> oo

Proof. W e reca l l t h a t φh"(tD, D)(a0, ...,an) = Σo^Λ~ l ) ' ϊ ί , w h e r e

Γ, = <α 0, \tD, α j , . . . , ltD, α ; ] , D, [ίD, α ί + 1 ] , . . . , [tD, α n]> t I )

= f" I T r ( y α 0 e ~ " t 2 l ) 2 [ i ) > α 1 ] e - < t 2 - t l ) t 2 β 2 . . .
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Integrating with respect to ds, tx ^ s <Ξ ti + ί9 7] takes the form

Tt = tn ί ( ί i + 1 -

LDiai']De'{tt + ί'ti)tlD2ίD9ai+1^ . . . iD9an2e'{1'tn)t2D2)dtx . . . dtn .

It will be convenient to reparametrize the n-simplex by the coordinates

so = ti 9 - - - j sj = tj +1 — tj,. . . , sn = 1 — tn ,

and thus regard it as the set {(s0, s l 5 . . . , S W ) G ( R + ) " + 1 ; S 0 -f Sx -f * * + sn = 1},
but still equipped with the Lebesgue measure dnσ = dt1 . . . dtn. Then

Tt = f J SiΊτ{ya0e-s°t2D2[_D, α j e " 5 1 ^ 2 . . .

We now split T{ into a sum, by decomposing each heat operator into compo-
nents corresponding to the orthogonal projection H onto KerD and to its
complement:

Since H[D, aβH = 0, only the terms containing no more than [n/2] + 1 copies of
H can give a non-zero contribution. On the other hand, the term containing no
copy of H at all corresponds to the case of an invertible operator, which was treated
in [CM1, §6] and was shown to have exponential decay.

Thus, we are left to treat the terms containing at least [w/2] (resp., when n is
odd, [w/2] -f- 1) copies of / — H, as well as at least one copy of H. Consider such
a term, 7].;Wl>> 7q, where j 0 is the index corresponding to one of the copies of H and
jii - Jq

 a r e Λe indices corresponding to those heat kernels which are followed by
I - H; note that i is necessarily one of the latter, say j h . Thus, 7̂  ; ; W l > . . . Jq is of the
form

where 1 ^ k ^ q. In particular, the variables s, with j =¥jθ9ji,. . . ,7€, as well as 57O,
do not appear in the integrand. Also, all the remaining heat operators correspond
to the invertible part of D.

It will be convenient to reparametrize once more Δn by identifying it with its
projection along the sJO-axis, i.e. viewing it as the set

O , S 1 ? . . . , S J o _ 1 , 5 J o + 1 , . . . ,

and then perform the substitution

uk = t2sjk for k = 1,. . . , q and Vj = sj for j *jo,ju Jq

If one integrates first in the variables υj9 over the simplex

Σ vj^\-Γ2(u1+ '- +uq),
J+JoJi,- • • ,jq
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and then one integrates over

Λq(t) = {{ul9. , u β ) e ( R + ) β ; uγ + + uq£ t2} ,

one obtains

T f j o J u . . . j q = ( n - q ) r 1 t n - 2 ^ 2 J u h ( l ~ r 2 ( u 1 + ••• + t t β ) ) " - *

x Tr(y . . . e-UkD\l - H) . . . H . . . [D, α i h ]

xDe~UhD\l -H). . . ) 4 σ .

Remark that when ί-*αo the domain of integration becomes (1R+)9, with the
standard Lebesgue measure and the integral is dominated by

J u h | l + (Ml + + tte)r-«Tr(y . . . β-"kί)2(/ - H) . . .

. . . ί ί . . . ID, ajJDe~UhD\l - H) . . . )\duγ . . . duq < oo .

So, to complete the proof it only remains to note that, since q ^ [n/2] (resp.
[n/2] + 1 for n odd), the exponent of the outside power of t is at most —2
(resp. -3) . D

As a consequence, it follows, using the identity (1.3), that the limit

Chn(oo D) = lim Chn(tD)
ί->oo

exists for any n. We shall now compute it explicitly. Let pH denote the compression
of A to KerD, i.e.

pH(a) = HaH, Mae A,

where H = the orthogonal projection on KerD, and let

ωH(a, b) = ρH(ab) - ρH(a)ρH(b\ a.beA

be the corresponding curvature (see [Q]).

Proposition 2. (a) Ifn is odd then Ch"(ooD) = 0.

(b) If n = 2k then Vα0,. . . ,

Ch2\cx)D)(a0,. . . ,α2 f c) = (-l) k/c!- 1Str(p i f(fl 0)ωH(fl 1,α 2) . . . ωH{a2k-l9a2k)) .

Proof. By definition,

Chn(tD)(a0, . . . , an) = (a0, [tD, α j , . . . , [ίD, an^)tD

= tn$ Ύr(γa0e^t2D2[D,aΛe-^y2D2 . . . [A«n]^" ( 1" ί n ) ί 2 | ) 2)d»σ

= t-J T r ( r α o < Γ s o ' 2 β 2 [ β , α 1 ] e - s > ί 2 I ) 2 . . . [D, a^e'^^d^ .

As above, we shall split the integral into a sum of terms obtained by decomposing
each heat operator according to the complementary orthogonal projections H and
I — H. Again as above, only the terms containing no more than [w/2] + 1 copies of
H may contribute nontrivially. On the other hand, using the Holder inequality, one



112 A. Connes and H. Moscovici

can easily see that the term containing no copy of H decreases exponentially. Thus,
as before, we are left to handle only the terms containing at least one copy oϊH and
at least [n/2] (resp. [π/2] -f 1, if /t is odd) copies of / — H.

Let SjojUm j be such a term, with j 0 corresponding to one of the copies of
H andyΊ,. . . Jq corresponding to those heat kernels which are followed by / — H.
Thus,

In particular, the variables Sj withj ΦjoJi,. . . Jq, as well as sjo9 do not appear in
the integrand and all the remaining heat operators correspond to the invertible
part of D. Identify Δ n with the set

o , S ! , . . . , s J o + l 9 s j o - l 9 . . . , s M

and then perform the substitution

uk = t2sjk for fc = 1,. . . 9q and Vj = Sj for j Φ W i , ,jq

Integrating first in the variables vj9 over the simplex

X p ^ i - r V +•••+««),

a n d t h e n o v e r

zl€(ί) = { M 1 9 . . . , M g ) e ( R + )«; M l + + uq^ t2} ,

o n e o b t a i n s

When ί -• oo the integral is dominated by

f | l + ( t t l + .-• +uq)\n-*\τr(γ...e-u*D2(I-H)...

. . . H . . . [ A α Λ ] β - " f c l ) 2 ( / - / / ) . . . )\dUί . . . duβ < oo .

O n the other hand, the exponent n — 2q is always :g 0, since g ^ [n/2] (resp.
[n/2] + 1 for n odd). Moreover, the equality n = 2q occurs only when n is even,
q = n/2 and

So,i,3,...2 ί-i = « ! " 1 ί (l-Γ2{u1+ . . . +uq)Y
Δqlt)

xΊτ(ya0HlD, α 1 ] e - " ' ί ) 2 ( ; - H)\D, a{\H . . .

...[_D, a2^{\e-^^D\l - H)ID, alq\H)dUl . . . duq.
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The limit for t -> oo of this term is

qΓι J
+

β d « 1 . . . duq

= 4 ! ~1 Tr(y Ha0H[D, α, ] D " 2 ( / - H) [D, α 2 ] fl

- H)a2qH))

. D

2 J . 27ie Transgressed Cocycle. In conjunction with Lemma l(b), Lemma 2 en-
ables us to define, for n > p, the "transgressed" cochain

00

Tth^DUoo, . . . , « „ ) = J 0h"(sί», D)(ίio,. . . , an)ds .
o

An easy calculation gives

0,. . . , a,) = τ"D(α0, , α,) = (see 1.5)

J

where λ runs through the cyclic permutations of {0, 1,. . . , n).

Theorem 1. Let n > p — 1, n = 2k or 2k + 1, of the same parity as (H, D). Then

J
Δn+1

in the even case, respectively

dttn+ί J
0 Δn+1

in the odd case, defines a cocycle in Tot +(̂ 4) cohomologous to chf

M(D), Vί > 0, and
therefore representing the same cohomology class in HCn(A).
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Proof. In view of the results in 2.2

ch^(D) = limί_,oocht«(D).

Now letting τ -> oo in (2.2) one obtains

00

ch,"(D) - c h ^ D ) = (b + B) X ί φh" ~2k ~x (sD, D)ds . D

Remark 1. If we make the assumption that D is invertible (as in [CM1]), then

both in the even and in the odd case. In particular, this gives a direct proof to the
fact that τn

D is a cyclic cocycle. (The proof given in [CM1] relies on transgression in
Quillen's superconnection formalism and the Loday-Quillen isomorphism [LQ].)

Remark 2. Still under the assumption that D is invertible, one can give the
following alternate interpretation to the above cocycle, which is closely related to
the 77-cochain of [Wu]. The total complex Tot+ (̂ 4) can be viewed as a subcomplex
of the complex T o t ^ ^ ) of infinite cochains. The corresponding quotient complex
Qot(^l) = {CQn(A\ d) can be described as follows:

CQn(A)= Π Cn + 2k(A),

d{φ\ . . . , φn + 2\ ...) = {bφn + Bφn + \ . . . , bφn + 2k + Bφ

Now the exact sequence

0 -• Tot + *(v4) -+ Ύotπ*(A) -> Qot + * + 2(v4) -> 0 ,

gives rise to a long exact cohomology sequence

where HQ*(A) denotes the homology of Qot(>l). But the cohomology with infinite
supports HCinί

n(A) = 0, therefore the connecting homomorphism

n + 1{A)->HCn(A)

is actually an isomorphism; moreover, it can be explicitly described as follows:

Returning now to our cocycle, observe that, by letting t -> 00 in formula (2.3), one
gets for any n > p — 1,

2(ooD) = 0 .

This shows that the cochain

is actually a cocycle. Moreover, from the above description of the connecting
homomorphism, it follows that
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3. Identification with the Chern Character

3.1. Homotopy Invariance. In order to prove that the cohomology class of the
completed transgressed cocycle coincides with the Chern character of [Cl], we
need to establish its invariance under special homotopies of the operator D.

We begin with some notation. Given an operator V (possibly unbounded) on
H, and Ao,. . . , >4ne JSf (H), we set

l(V)(A0,...,An}D

and then extend this definition by linearity. Note that, in particular,

φhn{D, V){a0,. . . , an) = ι{V)(a0, [A aj,. . . , [£>, α J > D .

We further define, for V and W as above,

φ"{D, V, W)(ao, ...,an) = ι{W)ι(V)(a0, [D, flj,. . . , [D, αn

a"(D, V, W)(ao,...,an)

Remark that

φn{D, V, W) + 0hπ(Z), W,V) = 0.

Lemma 3. With the above notation,

bftf-^D, V, W) + Bφn + 1(D, V, W) = 0hn(D, [D, V\ W) - φn{D, [D, W\ V)

- αn(D, V, W) + αM(D, fF, V) .

Proof. The verification of this equality uses the identities (l)-(4) of Lemma 2.2 in
[GS] (or, equivalently, Propositions (IV.4)-(IV.6) of [JLO]). It is lengthy and
tedious but rather straightforward, so we omit the details. D

We now consider a one-parameter family (H, Dτ) of bounded perturbations of
a fixed p-summable, unbounded, Fredholm modules (H, D\ of the form:

Dτ = D + τA, with A bounded, selfadjoint and also odd in the graded case .
(3.1)

Lemma 4. The p-summability property is stable under perturbations by bounded,
selfadjoint operators.

Proof. Replace the function e~x in the proof of [GS, Theorem C] with the function
(1 + x)~pl2 and use the Mellin transform. D

Lemma 5. With Dτ as above,

(a) (d/dτ)φn(tDτ, Dτ) = φn(tDτ, A) - φn(tDτ, [tDτ, tA\ Dτ) + a\tDτ, tA, Dτ);

(b) (d/dt)thn(tDτ, tA) = φhn(tDτ, A) - φn(tDτ, \tDτ, Dτ~], tA) + an(tDτ, Dτ, tA);

(c) {d/dt)φn(tDτ, tA) - (d/dτ)φn{tDτ, Dτ) = bφ^^tD,, Dτ, tA)

+ Bφhn+1(tDτ,Dτ,tA).
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Proof. The identities (a) and (b) can be easily checked by using DuhameΓs formula
for the derivative of the heat operator, while (c) follows by subtracting them and
applying Lemma 3. D

Proposition 3. Let (H, Dτ)be a one-parameter family of the form (3.1). Then for any
n > p — 1, n of the same parity as (H, D), one has

cV(Do) - c h ^ i ) = (b + B)} ( Σ ίh»-2k-\tDτ, tA)
0 \ k>0

t

+ b j φn(sDτ, Dτ, sA) ds)dτ . (3.2)
o /

Proof. The transgression formula for the JLO cocycle with respect to the para-
meter τ gives, for any t > 0 ,

- {d/dτ)Ch\tDτ) = bφti-^tDτ, tA) + Bφι + ί{tDτf tA) .

Thus,

- (d/dτ)cht

n(Dτ) = - Σ (d/dτ)Ch"-2k(tDτ) - B(d/dτ)Tφht

n+1(Dτ)

1(tDτ, tA) - (d/dτ)Ύφht

n+1(Dτ)) .

On the other hand, integrating the identity (c) of Lemma 5 from 0 to t one obtains

t

φn + 1(tDτ, tA) - (d/dτ)Ύφht

n + 1(Dτ) = bjφn(sDτ, Dτ, sA)ds
o

o

Here we have taken into account that, by (the proof of) Lemma 1, when t -> 0+,

Uhn + 1(tDτ,tA)\\ = ί|| φn + 1(tDτf A)\\ =O(tn + 2~η,

whereas

ί| |0h"(ίD τ,D τ, A)\\ = O(tn~p) .

Therefore,

B(φn + 1(tDτ, tA) - (d/dτ)Ύφht

n+1(Dτ)) = (ft + B)b j
o

It follows that

- (d/dτ)cht"(Dτ) = (b +

which completes the proof. D
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Remark 3. The assumption (3.1), which suffices for the purposes of this paper, can
be considerably relaxed. Along the same lines, but with additional technical effort,
one can establish the homotopy invariance under much more general conditions,
e.g. those discussed in [EFJL].

3.2. The Chern Character Theorem. We are now ready to prove the main result of
this article.

Theorem 2. Let n > p - 1 , n = 2k or 2k + 1, of the same parity as (H, D). Then the
cocycle c h ^ D ) represents the Chern character ch"(H, D)eHCn(Λ).

Proof. As explained in 1.5, it suffices to treat the even case. Let (H(x)grh, Dm)
be the "Hamiltonian amplification" of (H, D) (see 1.5). We need to show that,
for m + 0,

= ch"(H <χ)grh, Dm)eHCn(A) .

Since Dm is invertible for m Φ 0, by Remark 1 and [CM1],

On the other hand, since

Dm = D<g)gtI + mI®grF ,

Proposition 3 is applicable and ensures that

[ch0 0"(Dm)] = [ch00»(2>o)].

Finally, a simple inspection of the definitions shows that

ch00"(Z)). D

3.3. The Index Pairing. Let us first recall the construction of the Chern character
map in cyclic homology. Given an idempotent matrix e = e2eMr(A\ the formal
sum

ch(β) = tro(β) + Σ (-I)fc(2fc)!//c!(tr2ft + 1(e®2fe + 1 ) - 2 - 1 t r 2 i + 1 ( l ®e® 2 *)) ,

where trfc: Mr(A)®k -+A®k is the generalized trace map, defines a cycle in the
periodic (fo, 2?)-bicomplex, and its homology class ch(e)eiϊCper

ev(^4) depends
only on the K-theory class eeK0(A) of e (cf. [HJ]). Furthermore, there is a
natural pairing

Let now (H, D) be an even p-summable unbounded Fredholm module over A.
Let e e X 0 ( 4 e = e2eMr(A) and form the Fredholm operator

De

+ = e(D+ (x) I)e: e(H+ <g> <Cr) -> e(H~ ® <Cr)

According to the index theorem of [Cl],

Index D / = <ch(H, D\ ch(έ?)>, Vn = 2k > p - 1 . (3.3)
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This also follows, along the lines of [C2; Sect. 7], from the preceding results.
Indeed, without loss of generality but passing to a larger algebra, one may assume
e to be self-adjoint. Then, by means of the homotopy

Dτ = D + τ ( 2 e - l ) [ D , e ] , τe[0, 1] ,

one reduces the general case to the situation when D and e commute, in which case
the above formula becomes obvious.

As a consequence of Theorems 1 and 2, and assuming for simplicity r = 1, (3.3)
takes the form:

Index/)/ = StrpH(e) + £ (2j)l/(jl)2Stv((pH(e - l/2)ωH(e, e)j)

+ (-l)*(2fc)!/*!£sgn(A) J dtf+1

λ 0

x J Tx{yDe~nt2D2[_D,e']e-{t2-t')t2D2 . . .

. . . [ D , e ] e ~ ( 1 ~ t n + ί ) t 2 D 2 ) d t 1 . . . dtn+1 , Vn = 2 / c > p — 1 . (3.4)

4. Infinite Temperature Limit

4.7. Large Temperature Expansion. We shall now make the following assumption:

For each I ^ 0, the vector valued functions φ(t) = Chι(tD) or φι(tD, D) can be
expressed on (0, Γ], T > 0, in the form

+

Σ

Σ \βk+ Σ

w/ί/z ι/f(ί) continuous on [0, 7"], αfc =f= 0, 1, 2, 3,. . . , φ(t) and all the coefficients in
C\A). (4.1)

Let us recall that for such a function φ(t) one defines its finite part at 0 + as
Pf ί = 0 + φ = Ψ(0+). Similarly, one defines the finite part integral Vi\τ

oφ(t)dt by
removing the divergence at 0 + .

Thus, in the presence of the above hypothesis, we can extend the definition of
the cochain T0h"(D) to all n ̂  0, simply by replacing the ordinary integral with the
finite part integral:

PfW(D)( f l 0 , . . . , * „ ) = Pf ί Φn(sD, D)(a09 ...,an)ds.
o

Similarly, replacing the limit at 0 + by the finite part at 0 + , we define

PfChπ(D) = Pfr=o + Chn(tD\ V n ^ 0 .
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Note that, by Lemma l(a), one has

PfCh^D) = 0, V r c > p .

Proposition 4. For any n> p —\,n of the same parity as (H, D), the formula

Pfchπ(D)= X PfCh n " 2 k (D),

defines a cocycle cohomologous to cht

n(D), V 0 < t ^ oo .

Proof. Indeed, by integrating (1.2) from 0 to ί, one obtains:

PfCti(D) - Cti(tD) = bCPfTtW'^D)) + B(Pπtht

ι+1(D))9 V/ ^ 0 .

Therefore,

Pfch"(D) - chf

n(D) = X (PfCh""2fe(D) - Chn~2k(tD)) - BT£ht

n+l(D)

= (b + B) Σ P f T ^ " - 2 * " 1 ^ ) •

In particular, the index formula (3.4) takes the "finite" form:

Index D β

+ = P f ί = o + T r ( y ^ - ί 2 l ) 2 )

V 2 / c > p - l . (4.2)

Remark 4. The assumption (4.1) is satisfied when D is the Dirac operator £> on
a closed spin-manifold M (or even a generalized Dirac operator on a closed
manifold) - see [BF] and [Wu]. Moreover, Pfch"(£>) can be explicitly computed by
means of Getzler's asymptotic calculus (cf. [Ge], [CM2; §3]) and gives precisely the
current representing the homology class chil.(£)). Indeed, one has

PfCh2k(£))(αo,. . . , 02fc) = ck J A(M) A a0 A άaγ A . . . Λ da2k,
M

V α o , . . . , α 2 4 e C » ( M ) ,

where ck are certain universal constants and

)

J
is the ^4-genus form of the manifold M with respect to the Riemannian curvature R.

4.2. A Non-commutative Example. Let T°(S 1) be the algebra of pseudodifferential
Toeplitz operators on the circle. We recall that a Toeplitz operator (with continu-
ous symbol) on the circle is an operator of the form 7} = PMfP, where Mf is the
multiplication by feCiS1) on L 2 (§ x ) and P is the orthogonal projection onto the
Hardy space H 2 (§ 1 ) . The Toeplitz operators generate a C*-subalgebra Ύ(SX) of
jSf(fί2(S1)). Thus,

T°(S 1) = T ( S 1 ) n y ° ( S 1 ) ,
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where ίFk(§1) denotes the algebra of (classical) pseudodifferential operators on
the circle of order equal or less than k. The algebra T°(§ 1) is included into an
extension

0 -> Ψ ~ ̂ (S 1 ) -» T ^ S 1 ) -» CS° + (S1) -> 0 ,

where CS° + (S1) = {oc = Σ ^ o O / f ; α / e C ^ S 1 ) , £ > 0} is the "positive half" of
the complete symbol algebra CS°(§1).

The characters {εk; εk(x) = eikx, keZ+} form an orthonormal basis of H 2 (§ 1 ) ,
identifying it to ^ ( Z 1 ) . Let S denote the unilateral shift Sεk = εk+ x and let N be the
"number operator" Nεk = kεk. For each n e N , we define an even unbounded
Fredholm module over T°(S1), of index n, as follows: H = H + φ H ~ , with
H 1 = 12{Έ + ), α e T ^ S 1 ) acts as α~= a ® a and

D-\° D - Ί

where Dn~ = N 1 / 2 S n , DM

+ = (Dπ"*)*. In particular D^ (resp. D Γ ) is the "annihila-
tion" (resp. "creation") operator of the simple harmonic oscillator in one dimen-
sion.

Clearly D n

± 6 * r l / 2 ( S 1 ) , in particular (H, Dn) is (2 4- ε)-summable. Moreover,
from the standard symbolic calculus it follows that (H, Dn) satisfies the assumption
(4.1) and we proceed to compute its "local" Chern character.

One has

*•'-»]!*-'• 'HI ?]•
where Pn denotes the orthogonal projection onto Yj0<k<n-1<Cεk. Hence

By an easy calculation one gets, for any fleT0(S1),

Tr(yα~exp(- tDn

2)) = Ίr(aPn(I - e"tN)) + (1 - ^-

which implies

( - tDn

2)) = nPf ί = 0 + tΎv(ae'tN) .

In turn, this can be computed by means of an appropriate zeta-function. Indeed, let
us note that

Pf ί = o + ίTr(^~ ί Λ r ) = P f ί = 0 + ί T φ e x p ( - ί ( Λ Γ + P±)))

= P f t β 0 + ί T r ( α e x p ( - ί A ) ) ,

where A = (A + P x ) 1 / 2 = A1/2 + Pu with A = - d2/dx2 = the Laplacian of the
circle. Denoting by ζ(A + ua, s) the zeta function of the first-order elliptic operator
A + ua, one has

Pft=0 + ίTr(ae-' w ) = - d/du\u=oζ(A + ua, 0) .
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Following Seeley's recipe [S; p. 290, formula (II)], the value ζ(A -f ua, 0) can be
explicitly computed from the complete symbol of A + wα,

σ(A + ua)(x, ξ) = \ξ\ + uσ(a){x, ξ) = \ξ\ + u Σ σ_7(α)(x, ξ)

as follows:

Therefore,

ζ(A + no, 0) = - w/2π f σo(α)(x)

tJV) = l/2π ΐσo(a){x)dx ,
o

which shows that

Pff=o+Ch°(Z)J(α) = n/2π f σo(a)(x)dx , VαeT^S 1 ) . (4.3)
o

Because the right-hand side is a trace, one has

(b + B)PfCh°(DB) = ί>PfCh°(Dn) = 0 ,

so PfCh°(DJ represents a class in flC°(T°(S1)).

At this point let us pause to note that, according to Wodzicki [Wo],

HC2*(T0(S1)) ^ ffC2*(CS° + (S1)), Vfc ^ 0

and moreover there are canonical isomorphisms

£ΓC0(T°(S1)) s ί f o ί S ^ Θ ^ i ί S 1 ) ,

where ^ ( S 1 ) = the space of ^-currents on S1. In addition, the periodicity operator

S: H C ^ T 0 ^ 1 ) ) ^ ^ ( S 1 ) Θ ^ ( S 1 ) -• H ^ f Γ ^ S 1 ) ) s* ffo^ίS1)

is the operator sending any 0-current to its homology class and any 1-current to 0.
Under the above isomorphism, [PfCh°(i) 1)]6^C 0(T 0(§ 1)) identifies to the

0-current of integration over S1. It follows that 5[PfCho(DJ]ef/C2(To(§ 1))
identifies to n times the canonical generator of H Q ^ S 1 ) .

On the other hand

PfCh2(A,) = Pfch2φw) - PfCh°(DJ ,

is also (b + 5)-closed and hence represents a class [PfCh2(Z)n)] e HC2(T°(§1)). But
since HC2^0^1)) is one-dimensional, it follows that

[PfCh2(DJ] = cS[PfCh°(DJ] ,

for some constant c. Furthermore, the index pairing with an idempotent
T°(§1)) reads as follows:

2π

Index(Dn

+)e = (1 + c)n/2π J Ύτσo{e){x)dx .
o
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) identifies to the nth mul-
Taking e = I, one sees that c must be 0.

In conclusion, ch2(H, D J e H C ^ T ^ S 1 ) ) ^ //(
tiple of the canonical generator of HQCS1).
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