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Abstract. In this Letter, we develop geometry from a spectral point of view, the geometric data being
encoded by a triple (.4, K. /D)) of an algebra _d represented in a Hilbert space H with selfadjoint
operator /). This point of view is dictated by the general framework of noncommutative geometry
and allows us to use geometric ideas in many situations beyond Riemannian geometry.
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0. Introduction

The notions of manifold and of Riemannian metric play a basic role in our usual
formulation of geometry. The obtained notion of geometric space is fiexible enough
to encompass not only the Euclidean and non-Euclidean geometries, but also the
space like hypersurfaces in general relativity. The tools of the differential and
integral calculus allow us to develop the general theory of Riemannian manifolds.
These tools are replaced in noncommutative geometry by the quantized calculus
(cf. below).

In mathematics, one meets many natural spaces such as the space of Penrose
tilings of the plane, spaces of leaves of foliations, spaces of irreducible represen-
tations of discrete group, fractal spaces, etc., which are not Riemannian manifolds
but to which one would like to apply geometric ideas. Such spaces give rise in a
natural manner to an associative algebra .4 that plays the role of the algebra of
functions f: .X' — T with the product: ‘

fifap) = filp)falp). Vpe X (1)

and involution = given by

fr(py=fip). v¥peX. (2)

In general, the algebra .4 associated to the above spaces is not commutative, this
accounts for the difficulty in identifying the notion of point in the above spaces. In
simple examples such as manifolds or fractals, the algebra 4 is commutative and is
the algebra of functions on .Y, but allowing noncommutative algebras is essential
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in order to deal with more elaborate examples such as quotients of manifolds by
a pscudogroup of transformations. It 1s the relations between different points that
generate the noncommutativity. For instance, if one considers a set '} consisting
of two points {1, 2} and the relation which identities 1 and 2, then A(Y . rel) is the
algebra MH( ) of 2+ 2 complex matrices with the product

‘)

(/)= ik falko gy icjokee {1.2). (

r.e. the usual product of matrices.

In this simple example, the ordinary space {1.2}, given by the two points
without any relation, Is described by the subalgebra of diagonal matnices. It is the
‘off-diagonal” matrices, such as

0 1 0 0
iz = or =

0 0 I 0

which describe the relation. This type of construction of an algebra 4 is rather
ceneral. It extends to a pseudogroup of transformations of a manifold and also to
the holonomy pseudogroup of a folation (see | 1]). The resulting noncommutative
algebra encodes the structure of the “space with relations’™. It also applies to a
smooth manifold together with its full diffeomorphism group.

As another simple example, we can consider the case of a single point divided
by a discrete group 1. Then the corresponding algebra A is the group ring attached
to I, whose elements [ are functions (with finite support) on I,

with the product given by hinearization of the group law ¢1. 9> — 19> 1n 1

/I Z flf/l_fjg- (

qr4:=1

)]
-

So fur, in describing the algebra A associated to an ordinary space X we have
ignored the degree of regularity of the clements [ € A as functions of p € Y. To
various degrees of regularity correspond various branches of the general theory of
noncommutative associative algebras. The latter are assumed to be algebras over
S which, morcover, are involutive, 1.e. endowed with an antilinear involution

=7 (hly =L/ (6)

The two kinds of regularity assumptions for which the corresponding algebraic
theory 1s satisfactory are

measurability, which corresponds to the theory of von Neumann algebras;
continuity, which corresponds to the theory of ( ™™-algebras.
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The Hilbert space plays a key role in both theories. Indeed, both types of algebras
are faithfully representable as algebras of operators in Hilbert space with a suitable
closure hypothesis. One can trace the role of Hilbert space to the simple fact that
positive complex numbers are those of the form

A=z (7

In any of the above algebras, functional analysis provides the existence, via Hahn-
Banach arguments, of sufficiently many linear functionals I which are positive

LOf7f)=0. (8)

From suchan L, one easily constructs a Hilbert space together with a representation,
by left multiplication, of the original algebra.

Next, many of the tools of differential topology, such as the de Rham theory
of differential forms and currents, the Chern character, etc., are well captured (see
[[]) by cyclic cohomology applied to pre-C "™ -algebras, i.e. to dense subalgebras of
¢ ""-algebras which are stable under the holomorphic functional calculus

I hiz
f—Mﬂ:;:j#%¢. (9)

where /v 1s holomorphic in a neighbourhood of Spec( f). The prototype of such
an algebra is the algebra ¢~ (X') of smooth functions on a manifold \'. The
cyclic cohomology construction then recovers the ordinary differential forms, the
de Rham complex of currents, and so on. More significantly, this construction also
applies to the highly noncommutative example of group rings, in which case the
aroup cocycles give rise 1o cyclic cocycles with direct application to the Novikov
conjecture on the homotopy invariance of the higher signatures of nonsimply con-
nected manifolds with given fundamental group. (For a more thorough discussion,
see [1].)

If one wants to go beyond differential topology and reach the geometric structure
inselt, including the metric and the real analytic aspects, it turns out that the most
fruttful pointof view is that of spectral geomerry. More precisely, while our measure
theoretic understanding of the space .\ was encoded by a (von Neumann) algebra
of operators A acting in the Hilbert space M, the geometric understanding of the
space X will be encoded, not by a suitable subalgebra of .4, but by an operator in
Hilbert space

1) = D7, selfadjoint unbounded operator in 'H. (10)

In the compact case, i.e. X compact, the operator 1) will have discrete spectrum,
with (real) eigenvalues A, |\, | — ~x, when n — x.
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TABLE 1L
Classical Quantum
Complex vanable Bounded operator in Hilbert space 'K
Real variable Selfadjoint operator
Intinitesimal Compact operator
Infinitesimal of order Compact operator whose charactenistic

a >0 values gy, satisty i, = O(n™")

DifTerential di'=(F.1T)=¥F1=-1TF

Integral of infinitesimal of order I Dixmier trace Tr. (1)

Formulating the precise conditions to which the triples (A. H. 1)) should be
subjected 15 tantamount to devising the axioms of noncommutative geometry. 1f
we let /7 and | 1] be the elements of the polar decomposition of 1),

D= F|D|. |D]* = D> I = Sign D. (11)

then the operators [ and | D] play a similar role to the measurements of angles and,
respectively, of length in Hilbert’s axioms of geometry. In particular, the operator
I = Sign 1) captures the conformal aspect, while 1) describes the full geometric
situation,

Considering I alone, the quantized calculus was developed (cf. [1]) based on
the dictionary produced in Table 1.

We refer to | 1] for a thorough treatment of the Dixmier trace. For a host of
applications of the quantized calculus, including Julia sets, the quantum Hall effect
and the analysis of group rings, the reader is referred to [1]. A further application,
namely the construction of a four-dimensional conformal invariant analogue of the
two-dimensional Polyakov action, 1s discussed in [3].

Our goal in this Letter is to use the quantized calculus to develop geometry from
a spectral point of view. In more precise terms, our initial datum (called spectral
tripley will be a triple (AL H. D), where 4 is an involutive algebra represented in
the Hilbert space 'H and 1) is a selfadjoint operator in 'H with compact resolvent,
which alimost commutes with any « € 4, to the extent that [ D, «] is bounded for
any a € A,

The basic example of such a triple is provided by the Dirac operator on a
closed Riemannian (Spin) manifold. In that case, 'H is the Hilbert space of 12
spinors on the manifold M, A is the algebra of (smooth) functions acting in H by
multiplication operators and D 1s the (selfadjoint) Dirac operator. One can easily
check that no information has been lost in trading the geometric space M for the
spectral triple (AL H. D). Indeed (see [ 1)), one recovers

(1) the space M, as the spectrum Spec{ .A). of the norm closure of the algebra A
of operators in 'H;
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(i1) the geodesic distance « on A, from the formula:

d(p.q) = Sup{|f(p) = FIQEND. Il < 1} Ypoge M.

The right-hand side of the above formula continues to make sense in general
and the simplest non-Riemannian example, where it applies, is the O-dimensional
situation in which the geometric space is finite. In that case, both the algebra A
and the Hilbert space ‘H are finite-dimensional, so that D is a selfadjoint matrix.
For instance, for a two-point space, one lets A = 2% act in the two-dimensional
Hilbert space 'H by

B Sfla) 0
ftf‘l—‘ii 0 f(b)]

and one takes

0
= s .
jpo 0

The above formula gives d(a.b) = 1/p.

As a slightly more involved O-dimensional example, one can consider the alge-
braic structure provided by the elementary Fermions, i.e. the three families of
quarks (and leptons). Thus, one hets H be the finite-dimensional Hilbert space
with orthonormal bdsls labelled by the left-handed and right-handed elementary
quarks such as uj . u” . (and similarly for leptons). The algebra A in T & ]
where the complex numbu Ain (A.q) € A acts on the right-handed part by A on
‘up’ particles and A on *‘down’ particles. The isodoublet structure of the left-handed
(up, down) pairs allows the quaternion ¢ to act on them by the matrix

0 3 ]
.og=a+ .3 a.de
—3 a

Then the Yukawa coupling matrix of the standard model provides the selfadjoint
matrix /).

In [4]. the theory of matter fields was developed within the above framework,
under the finite-dimensionality hypothesis that the characteristic values of D~ " are
O(n=""y for some tinite .

This allows us to define the action functional of quantum electrodynamics at
the same level of generality (cf. [1]). The striking fact there is that if one replaces
the usual picture of spacetime by its product by the above O-dimensional example,
the QED action functional gives the Glashow—Weinberg—Salam standard model
Lagrangian with its Higgs fields and symmetry-breaking mechanism. This shows
that our geometric framework of spectral triples is flexible enough to encompass the
‘effective geometry’ of spacetime at the energy levels that we can probe at present.
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Of course, no one believes that the standard model 1s the ultimate answer, but the
fuct is that we can interpret the three additional terms to the QED Lagrangian,
provided by the weak forces and Higgs mechanism, as coming from a simple
modification of the texture of spacetime at short distances (cf. [1]). The latter,
instead of being purely the continuum, becomes a mixture of continuum and finite
discrete, the geometric space being the product of the ordinary continuum by a
finite space (cf. [1]). In the development of this theory, the tools of the quantized
calculus, in particular the Dixmier trace as the substitute for the Lebesgue integral,
played an essential role.

The matter field Lagrangian which we have just discussed involves the metric
4, but does not involve any derivative of g,,,,. This indicates that the difficulty
involved in developing the analogue of gravity in the above context is of a different
scale. In order to overcome it, one needs both a good list of examples of spectrally
detined spaces and a difficult mathematical problem to solve. By a spectrally
detined space, we mean a triple (A H. 1)) as above, the involution algebra A is
not necessarily commutative. We shall also refer to them as spectral triples.

Let us give a list of examples

1. Riemannian manifolds (with some variations allowing for Finsler metrics and
also for the replacement of | D] by | D] a €]0.1]).

2. Manifolds with singularities. For this, the work of J. Cheeger on conical singu-
larities is very relevant. In fact, the spectral triples are stable under the operation
of "coning’, which is casy to formulate algebraically.

3. Discrete spaces and their product with manifolds (as in the discussionin [ 1] of
the standard model). The spectral triples are, of course, stable under products.

4. Cantor sets. Their importance lies in the fact that they provide examples of
dimension spectra which contain complex numbers (cf. Section 2).

5. Nilpotent discrete groups. The algebra A is the group ring of the discrete group
I'. and the nilpotency of 1 is required to ensure the finite-summability condition
=" e £Y ) We refer to [ 1] for the construction of the triple for subgroups
of Lic groups.

6. Transverse structure for foliations. This example, or rather the intimately relat-
cd example of the Diff-cquivartant structure of a manifold is treated in detail
in [6].
Let us now state the mathematical problem which will be the guide to develop
geometric concepts:
compute by a local formula the cvclic cohomology Chern character of
(A H. D).
More specitically, the representation of A in 'H together with the operator 1) allows

us to set up an index problem Ind;): i, (A) — T.. where j = 0 in the 7./2-graded
(oreven case) and j = 1 otherwise. The index map turns out to be polynomial and
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given, in the above generality, by the pairing of A",(.4) with the following cyclic
cocycle

rlaat a') = Trace(a"[F.a']. . [F.a"]). Va' € A,

where n has the same parity as j and n > d — 1. In the even case, one replaces the
trace by the supertrace, i.e. one uses the 7. /2-grading 7 of H to write

rla at a') = Trace(ya"[F.a'] . [F.a"]). Va' € A

The class of 7 in the cyclic cohomology HC"(.4) 1s the Chern character of
(A.H. D). We refer to [1] for more details as well as for the appropriate nor-
malizations.

The general problem is to compute the class of 7 by a local formula. A partial
answer to this problem was already obtained 1n [1], by means of a general local
formula for the Hochschild clasy of 7 as the Hochschild n-cocycle:

~(a a'l) = Trw,(u”[/).(ll].‘.[/).(1”]1/)|_”). Ya' € A. (12)

where 1 is as above and, in the even case, with ¥ inserted in front of al.

In the above formula, Tr,, is the Dixmier trace, which when evaluated on a given
operator 1" only depends upon the asymptotic behavior of its eigenvalues. More
precisely, for T = 0. with 4, (1) the nth eigenvalue of 7' in decreasing order, one
has (et [ 1]);

N

PNIERE

0

Tr (7)) = Iim

< log .V

this is insensitive to the perturbation of i, by any sequence =, = o(1/n), 1.e. such
that s, — O.n — x.

For a classical pseudodifterential operator /7 with distributional kernel k(. y),
the Dixmier trace is given by the Wodzickiresidue Tr_ (1) = [ a(2). where k(.. y)
has an asymptotic expansion near the diagonal of the form ‘

b(aoy) = alae) log(d(e.y)) 4+ bla.y).

with h bounded [10)].

In particular, when one evaluates Tr,. on a product 1 ... T}, of such operators,
the result is expressed as an integral in a single variable r of a local quantity. This
is in sharp contrast with what happens for the ordinary trace, which when evaluated
on 1.1, involves a multiple integral, of the form

/ /|'|(.l'|..l‘j_)/n':(.l'z..l'}) . /.',,(.I'”..I‘| )
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where the ., 's vary arbitrarily in the manifold.

While the expression (12) of the Hochschild cocycle o 1s tocal in full generality,
itonly accounts for the Hochschild class of the Chern character of (A, H. D). which
is not sufticient to recover the index map. In the manifold case, for instance, it only
gives the index of ) with coefficients in the Bott A'-theory class supported by an
arbitrarily small disk.

In Section 3 of this Letter, we shall describe a general local formula for all the
components of the cyclic cocycle 7. This will be achieved by adupting the Wodzicki
residue, the unique extension of the Dixmier trace to pseudodifferential operators
of arbitrary order, to all our examples. For spectrally detined spaces (A. H. D), we
shall see that the usual notion of dimension is replaced by a dimension spectrum
(Section 2), which is a subset of . Under the assumption of simple discrete
dimension spectrum, the Wodzicki residue makes sense and defines a trace on
the algebra of the pseudodifferential operators of (4. H. D). The latter algebra is
obtained by analyzing the one-parameter group o, = | D}*-| D|~*" in a manner very
similar to Tomita’s analysis of the modular automorphism group of von Neumann
algebras (Section 1), When the dimension spectrum is discrete but not simple,
the analogue of the Wodzicki residue is no longer a trace; it satisfies, however,
cohomological identities which relate it to higher residues (cf. Section 2).

Under the sole hypothesis of discreteness of the dimension spectrum, we shall
obtain (Section 3) a universal local formula for the Chern character of a spectral
triple (.4.H. D). expressing the components of the Chern character in terms of
finite linear combinations, with rational coefficients, of higher residues applied
to products of iterated commutators of D* with [D.a'].a’ € A. A noteworthy
feature of the proof is the use of renormalization group techniques to remove the
transcendental coefficients which arise when the dimension spectrum has multi-
plicity (Section 4). In the manifold case, this formula reduces, of course, to the
classical local index formula. In general, however, it 1s necessarily more intricate,
in several respects, because of its large domatn of applicability, which encompasses
for instance the diffeomorphisms-equivariant situation described in [6]. Finally, in
the last section, we shall describe the analogue within our framework of the usual
scometric notions of cotangent space, geodesic flow, and Levi-Civita connection.
The justitication for these notions is that they play an implicitrole in the elaboration
of proof of Theorem 2 and are not just mere analogues of the classical notions.

1. Pseudodifferential Calculus for Spectral Triples

Let (A0 H. 1)) be a spectral triple. For each s € ¥, we let H® = Domain (| D]*)
and

H™ = ﬂ’H”. H™™ =dualof H™.
.s'}()
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In this way we obtain a scale of Hilbert spaces, and for each r we define op” to be
the linear space of operators in ™ which are continuous for every s

Opl: H5 . ‘H.S‘—?“

We shall use the following smoothness condition on A: Va € A, both ¢ and [D. ]
are in the domain of all powers of the derivation ¢ = [| D], ].

LEMMA |. Then a.[D.a)are in op" and

b—IDWDI" eop™ (b=aor|D.a]).
Proof. Let us first check that | D" D|~" is bounded for n > 0. With o(-) =
D] -], one has

o=id+:. <(b)y=as0) D7

Since #(b) is bounded, equal to &¥(b)|D|~%. we get the result using ¢" =
Nk

Moreover, o~ (b) = |D|~'b|D| = b—|D|~'4(b) and the same argument shows
that #” (b} 1s bounded for n < (. Then onc uses interpolation.
For the second part, one applies the above argument to 4(b); thus,

sthyeop’.  s)DIT e op.

It is important to note that the above smoothness hypothesis can be replaced by
a and [D.al € nDom LXK, L(b)y = [D|7'[D>.b]. R(b).=[D.b)|D|7".
Indeed, assuming the above, one has
Liby = | DI (|D]e(h) + &(b)| D)) € op”. R(b) € op”
and the same applies to L¥ ().
COROLLARY 1. Under the above hypothesis, one has

(D2 (D [D*b])--]€op. ¥be Aor[D.A]
~—

H

Let us now show that if b € N Dom L*RY, then b € Dom é. The proof is more
subtle than one would expect, because the obvious argument, using

~ 1’)3 ,
D :w“‘/ — "4y,
1 I Jo 1)2_+_l“:“ :“
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requires some care. Indeed, one gets from the above
(D) =77 /”\u)2 )T DA ON DT 4 0 i P
We can replace [D2.b] by | 1], which has the same size, and get
/(;“‘(1)1+/:)*2|/)I/1'“d/z - /0\<1 O,

- - 7 . ~ ~ . .
For this to work, we need to move [ /). b] in front of the above integral, 1.e. use the
finiteness of the norm of

/”‘ (D4 ) (D20 (D 07w du

—(I)3+/1)"[[)3,[/)2‘5]](1)34-;1)_'

This finiteness follows from

(1) (D2 4 )" [D?.[D*.b]] bounded since b € Dom 12,
Q) [y D2 )2 2 dp < O fg P dp 4 7 Y dp <

Once [D?.h] is moved in front the above calculation applies.
It follows that b € Domé and applying the same proof to #(b}.... we get
h € r Dom &% We thus obtain the following lemma.

LEMMA 2. 1y, Dom LERT =, Dom é".
We shall define the order of operators by the following filtration:
P e OP" ff |ID|7" 1" € N Dom é".
Thus, OP” = N Dom ¢" and we have
OP" < op" Vo
Let us now describe the general pseudodifferential calculus.
We let ¥ be the derivation: ¥'(7°) = [D*. 1] and consider the algebra generated
by the V' (1). T € Aor[D. A
We view this algebra D as an analogue of the algebra of differential operators.
In fact, by Corollary 1, we have a natural filtration of D by the total power of ¥
applied, and moreover
D" C OP". (N

We want to develop a caleulus for operators of the form:

MD|T e AeD. (2)
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We shall use the notation A = [)° and begin by understanding the action of =
given by

A= AT (3)
By construction D is stable under the derivation ¥ and

S(pryc Pt (4)
Also for .4 € D" and = € , one has

DT e OprRe), (5)

We shall use the group > to understand how to multiply operators of complex
order modulo OP~* for any k. One has o2 = 1 4+ &,

S(y=N(T)a ! (6)

LEMMA 3. Let T € D7 then E5(1T) € OPT™% . Yk > 0.
Proof.

EROry = SRATR e OPTTR AR c opi R, O

We just wish to justify the formal expansion:

2

Yoo . . (r=1 L7 e
) = (1+:¢.+¥z,—+...>(1).

It should give a control of a37( 1)y modulo OP/ k=1 if we stop at 67"( ).
To do this, we need to control the remainder in the Taylor formula:

(14 &yt
1 - - 3
S T I Kl ;:)(" Der
o t‘lx+l
+(Il+l—())"'(ll-+-]41\'—1))m+'-'
—|~(u+l—n)~-~(2—u)("+
n!
S ! - —u(l - [)”
+ & /(n+14n)~~(l711)(|+/t.) —|—dl. (7
Jo n!

The main lemma is the following:
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LEMMA4. Letav € .0 < Rea < land 3 > 0. 4 < a = Re a. Then the
Jollowing operator preserves the space OP? for any o

1
Vo= / (14187 (1~ 1) dt.
JQ)

Proof. This will be done by expressing ¥ as an integral of the form
b= /rrz’”d//(.x'). Il < x. (8)

One writes

TERTIRE SN T /'\ 1 SR )
¢ = . 1 !
T o 1 +18+ ;1/ f

using the standard formula

. sin 7o | _
rT = / - dye (1)
e S S

Let us then consider the resolvent of —a*, namely
RONY = (A + a5y,

One has, with .3 €]0. 1] as above,

l{(l\) _ ]_ / n_](.i+l.c)/\,i+t.s—]__(j'<_7 (]])
2/ sinw(. 34 1s)

which follows from

1 [ _ ds
= — / .1/_('%"”)———, —. (12)
1+ y 2/ sin (. + 1s)

(With y = ¢" this means thate”’" /{ 1 +¢" ) is the Fourier transform of | J{sin 7(.3+
1=)). which also follows from (10) written as

- ~ =)
_ . = / du. a=1-4—15))
sin{a{l — .9 —1s)) . 1 +en

Thus, from (11}, we get

A -~ Y, /\\'5 S
RN = / prhspimt__ATdy (13)
JoA sin 7 (.3 4 1)

to| —
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t9
O

where the measure A7 ds/(sin (.74 /s}) is well controlled by e blds. By (9) we

have
. sin wav + 1 _
(14+18)7" = / —l{’< >/I " dpe.
T Jo ! f

a4 E)T

sinwal [0 [~y S AT ds
B Y (S A R
m 2Ju b J-o l sin w7 (.4 4 1)

For tixed s, we are thus dealing with the size

[ i A=l
7/) </1T “) o= 1
N

One has O < 1 < 1 so that the behavior at jr = O is tine, also the integral converges

for g — ~ as U707 dince 4 < a.
We get

P -l
| = —/ <u+——]> T du
I Jy
e (R I (R
= - - - " - - " - — de
o { {
= /7"<——1> | /‘(/"+])"’—]r7“d1'
{ J0

= (1 =07 eta 3y,

Finally, we get an equality

'l A 1 — )" o I
/ a4+ tET" (—)— dt = / a-de(s).
Jo n! S

where the total mass of the measure 17 1s finite.
Let us check this in another way, by looking directly at the 1'-norm of the
Fourier transform of the function

_{il
u—/ 1L+ (e l))_”L—)—d/.

!
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Thus, it 1s enough to check that the following function of « 15 in the Schwartz space
S(=):

<o)

= (" — 1)_(”+|)C‘ﬂl <c(u+]—n)u —1 - (” 4] = (l)(C“ _ ])_

(n+1—a)n—a)

- &Y (e =10
o (n+1—=0n)n —u)---(?_—(x)(eu B 1)”> v
1!
First, for v — x, the size 18

ﬁ(u+l)uc‘fuc(rl+]—u)u _ C(.f—n),‘ Y

~ ¢
For v — —~ it behaves like ™ — (). We need to know that it is smooth at
= () but this follows from the Taylor expanston. The same argument applies to
all derivatives. Thus, this gives another proot of the lemma. O

We are now ready to prove the following theorem.

THEOREM 1. Let I € Dt and n €11 Then, forany = €

v - A =1) ..
(1) — <l +:t(l)+(74|)t.“(l)
+~-+ﬂ:_ly'f:_"+lhwu0>eOPP““%
e

Proof. Firstferany = € Zand & € 11 one has

Ty e OPTE (14)
Indeed, by (8) we know that @27 leaves any OP" invariant; as £ o 727 = 777 0 &5,
we just use Lemma 3.

One has, forQ < Rea << 1. Jasaboveand - = (n + 1) — o
FA =)y
ARPT > =1 c—=n+1) 550,
*(”'(/)+“ﬂ‘ic‘(/)+ + ) (! )ﬂ“'é(/)>
.
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If we apply this equality to a**(7") and use (14) and Lemma 4, we see that for any
s, there exists a polynomial /(o) of degree n in o such that

a5y — poay e OpiT et 4 <Rea < 1.

The polynomials (o 4 s) have to agree modulo OP?~("+1) on the overlap of
the bands .7 < Re v < 1 and, thus, the differences between the two will belong to
OP=U+1) for all =. It follows then that there is (=) which works for all =. To
obtain its coefficients, one takes the integral values = = 0.1... .. n which yields
the formula of Theorem 1. O

2. Dimension Spectrum

In this Letter, we shall describe a general local index formula in terms of the
Dixmicer trace, extended to operators of arbitrary order, for our spectral triples:

(A HOD). ()

Contrary to the standard practice, we shall focus on the odd case, the point being
that in the even case, there is a natural obstruction to express the (cyclic cocycle)
character (cf. [1]) of the triple (1) in terms of a residue or Dixmier trace. Indeed.
the latter vanishes on any finite rank operator and, thus, will give the result 0
whenever 'H is finite-dimensional. Since it is easy to construct finite-dimensional
(i.e. dimH < ~) even triples with Ind( 1)) # (), one cannot expect to cover this
case as well. However, one can convert any even triple into an odd one by crossing
it with S', i.c. with the triple

X .
cshy LS. ):——>_ 2
<( (S LS 00 (2)

Thus, there is no real loss of generality in treating the odd case only. The next
point is that the usual notion of dimension (cf. [1]) for spectral triples, provided by
the degree of summability

p-teclrl, (3)

aives only an upper bound on the dimension and cannot detect the dimensions of the
various picces of a space constructed as a union of pieces of different dimensions

(A Mo Dy) k=1 V.
A=A H=-He o D=1Dy (4)

In [1]. we gave a formula for the p-dimensional Hochschild cohomology class of
the character, namely:

ra'. ... a’y = Tr(a"[D.a']---[D.a"|D]7"). (5)
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Clearly, this Hochschild cocycle cannot account for lower-dimensional pieces in a
union such as (4).

As it turns out, the correct notion of dimension is given not by a single real
number p but by a subset

Sd < = (6)

which shall be called the dimension spectrum of the given triple. We shall assume
that Sd is a discrete subset of Z, a condition which can be incorporated into the
definition of Sd, as follows:

DEFINITION 1. A spectral triple (1) has discrete dimension spectrum Sd, if SdC
s discrete and for any element of the algebra B generated by the " (a).a € A,
the function

(1) = Trace(b| D]™7)
extends holomorphically to 2\ Sd.

Here & denotes the derivation 8(7) = [| D]. 7] and we assume that A C N, s gDom ¢
(sce also Section 1). The operator b 1|7 of Definition [ is then of trace class for
Re = > p, with p as in (3). On the technical side, we shall assume that the ana-
Ivtic continuation of . is such that I'(2)¢( =) is of rapid decay on vertical lines
- = s+, forany s with Re s > (). Itis not difficult to check that Sd has the correct
behavior with respect to the operations of sum and product for spectral triples:

Sd (Sum of two spaces) = USd(Spaces). (7)
Sd (Product of two spaces) = Sd(Space, ) + Sd(Spacea ), (8)

more precisely, (8) holds with the exception of Sd N —11.

It is easy to give many examples of spectral triples with discrete dimension
spectrum, all examples listed in the introduction do, but we shall now concentrate
on the general theory of such spaces.

Our first task will be to extend the Wodzicki residue to this general framework,
or equivalently, to extend the Dixmier trace to operators /’[ )]~ of arbitrary order,
where 7 isanelement of B. In fact, itis more convenient (cf. Section 1) to introduce
the algebra W™ (.A) of operators which have an expansion:

P~ b D) by [ D) b, € B 9)

where the equality with X2 v, o, b, | D] holds modulo opP~—.

To see that it s an algebra, one uses Theorem 1 of Section 1, which gives an
dentity of the form

e gt D (10)

0

D
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where ¢, ¢ 1s the coefticient of =% in the expansion of

ol =)o~k 1),
(4 =3 C 5 )k, (1)

)

with =(h) = &(0)| D]~

We shall say that the dimension spectrum Sd is simple, when the singularities
of the functions (»( z) of Definition 1 at = € Sd are at most simple poles. Similarly,
we say that Sd has finite multiplicity & when ¢, has, at most, a pole of order k. We
shall assume for simplicity that Sd has finite multiplicity in this section.

PROPOSITION 1. Let p < ~x be the degree of summability of .

() For I' € V(. A) the function h{z) = Trace( P| l)\‘zf) s holomorphic for
Re = > YOrder P + p) and extends to a holomorphic function on the complement
of a discrete subset of .

(by Let m.( P be the residue at () of SKh(s). k>0 then

_|)/1—|
TPy Py~ Py =y SalE

'
>0

Then (PUL7 (1),

1.

where I is the derivation I, = 2 log(1 + =),

Proof. (a) The statement follows immediately from Definition | for any finite
sum of operators b, | )" Furthermore, if I”1s of order less than — V' then Ai(z) is
holomorphicif Re = > £(p — V) and, for any given =, this is achieved for .\ large

enough.

(b) First, the derivation [, = 2 log(1 4 ) makes sense as a power series in £
and can be viewed at the formal level as implemented by log | D]

For any /°, one has an expansion near ()

Trace(P]D]77) = > m(£):~ "D 101, (12)

k20
We can then write
Trace{ 5 D) 77) = Trace( (1 4+ )75 ( /)| D]77) (13)
and, since
(14 2) 2" =exp(—z1). (14)
we get

Trace( l’g[’lll)['ZT) = Z (=)

Trace( 5 L7 ()| D] 7). (15)

nt
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By (13), we can expand

Trace( 14 L (PO D7) = D m (I L)z~ 4ooq)

and, when multiplied by =", we see that we get the exponent = =5+ forn—y = — .
Thus. the coefficient of =~ *+1) in the expansion (16) 1s

_I n A] 1
S S = S S ),
u:y*k ’ :

Therefore, we obtain

_] 1
Tl ) =l D) =) %THH( Py L (). (16)
>0 e
a

It follows, of course, that if ¢ i1s the multiplicity of Sd, i.e. the highest order of
poles, then 7, 1s a trace.

I the case of a simple spectrum, the trace 7 = 7y 1s an extenston of the Dixmier
trace, the latter being defined only when the operator 77 € ¥™{.4) belongs 1o
op~7.

3. Local Formula for the Chern Character

Before giving the general local formula for the Chern character of a triple (A H. D)
with discrete dimension spectrum, we need to recall a few basic definitions from
[1].

First, the cyclic cohomology HC(A) 1s detined as the cohomology of the
complex of cyclic cochains, 1.e. those satistying

-
-~
N
~
[l
|
2
~
<
2
M
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Equivalently, HC" (.A) can be described in terms of the second filtration of the
(h. B) bicomplex of arbitrary (noncyclic) cochains on A, where /3¢ — (=1
1s given by

=21 a oo a"mhy = Ly s(at a1 (3)
= ABy. (Ae)a. . (l”"')—Z( Y= s a1

To an n-dimensional cyclic cocycle 1, one associates the (h. /3) cocycle €
JU(FC) = p— 2q given by
(_])[,1/2](,,!)—“_,: 2 -

P

where 2, 1s the only nonzero component of .
Given a spectral triple (A H. D). with D" ¢ £ jts Chern character in
cyclic cohomology is obtained from the following cyclic cocycle 7,.0 2 p. n

odd,

moa a'y = A, TO([Foa') [ Faat]). Vel € AL (5)
where

Fo=Sign Do\, = V24(= 1) <% + 1)
and

T T) = i—Trace( FOET+TH)Y). (6)

In [ 1], we obtained the following general formula for the Hochschild cohomology
class of 7, 1in terms of the Dixmier trace:

ol ay = N Te (a[Doa ] [Doa" DT Vel & A (7)

o

Our local formula for the evelic cohomology Chern characer, i.e. foracyclic cocycle
cohomologous to (5), will be expressed in terms of the (b, 17) bicomplex. Bearing
this in mind, we see that if we want to regard the cochain ~,, of (7) as a cochain of
the (. 13) bicomplex, we should use, instead of A,,, the normalization constant
(5 + 1)
= (=TI = V2i—=2—— (for n odd). (8)
n.

Let us now state the result. We let A H. [)) be a spectral triple with discrete
dimension spectrum and =" € £17™) We shall use the following notations:

da = [D.a]. Ya operator in H. (9)
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N(a) = [I)l.u]; alfh = Tk(u). Ya operator in H. (1)

THEOREM 2 [6]. (a) The following formula defines a cocvele in the (b )
bicomplex of A:

T‘,,(u” ..... a')
= V2 ST gm0 da)ED L dat )R sl
r/}(),lij>()
where

2

ok = (=1 e, T "( TR s ﬁ) <
I
b — (k4 Dk + ka4 2) (k4 e by )

with ') the gth derivative of the 1 function.
) The cohomology class of the coevile (2,), 1 odd, in HC"M( A) coincides
with the evelic cohomology Chern character cho (A H. D).

Let us note that the term 1 ‘x{‘“ I8 with coefticient Co b in the above sum
1 R K
vanishes when

N%—Z/.'»,/\f/). (rn

. Ly .o NI .. . - .
since the operator /', 4 1sin L.f, " when (11) holds. This implies that, for fixed n,
the sum involved contains only finitely many terms. (We assume that Sd has finite
multiplicity so that only finitely many ¢'s are involved.) It also implies that

S, =00 1> (12)

Assertion (b) is the cyclic cohomology analogue of Theorem IV.2.8 of | 1].
Note also that all the operators 1, ;. involved in the above formula are riomoge-
neous of degree (yin 1), Le. they are unaffected by the scaling

D — D, Ae =7, (13)
Finally, let us remark that assertion (a), i.e. the equality
by + Beug =00 Vo (14)

s actually a consequence of our proof of (b). However, 1t 1s an instructive exercise
to check 1t directly. This is done [6] (in the case of a simple spectrum) by making
use of the following properties (with 7 = 7y):

D da 4+ da 1) = X(a).Va operator in H (15
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T((du)(k)|l)]_") =0. Vae A Vk>20.Vy (16)
H(N(D)DIT)y =0, Y1 Vyg (17)
™ (_1)/' )

Digh = =0 Dpy. vhe B, (18)

0

where, by definition, D) = C(k)| D=2,

The meaning of (15) is that, if we view the graded commutator with D as a
graded derivation in the appropriate way, then d> = ¥. The meaning of (16) and
(17) is that integration by parts is possible, since both « and \" are derivations.
Finally, (18) follows from Theorem | of Section 1.

4. Renormalization

There is one unpleasant feature of the formula of Theorem 2(a) for the cyclic
cocycle 2, namely the occurrence of the transcendental numbers which enters in
the Taylor expansion of the I' function at the points I‘(% + ¢).q € 11 Also the
sum

(] 4 2yt

>

1s an infinite sum when ¢ 1s not meromorphic at s = (. We can, of course, rewrite

Res(s7((+)) (1

q! s=0

1t as

to] =

Res T <|A-| + -+ > Gls). (2)

We shall, however, proceed to show how to obtain a modified cyclic cocycle ',
giving the same result Theorem 2(b) as 2, but involving a finite linear combination
with rational coefficients of the terms

V2i 1'( ! )T,,((l”(dul )(k') o (da” )(k"‘)|/)|_IXk1_“ ). (3

to|

To achieve this, we shall exploit the freedom of replacing the operator /) by
TN PN = 2. without affecting Theorem 2(b). The effect of this transformation
on the functionals 7, 15

IOG I i
= Z (—L)‘Tq-km- (4)

m!
This implies that for any integer 1 > 1, the following formula defines the compo-
nents of a cyclic cocycle which pairs trivially with cyclic homology

‘7:(,,”1)(”” ..... a" )

= Z (-,,.k,,,T,IJr,,,((1()(d(1| )(k‘) o (da” )(k”)|1)|_(”+2|k|) ). (5)
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What we shall do now is add a suitable linear combination of counterterms (") in
order to cancel all the transcendental coefhicients occurring in the Taylor expansion
of 1'(1/2)7 1 («) at half integers. Even though we could right away write down the
list ofthe coefficients .4, needed i front of - -] we shall rather explain mrdullv
how they are obtatned. To begin with, there is no problem at all if Sd s simple,i.¢

it one has, at most, a simple pole. In that case, one simply writes

I'( - 1)l<5) (6)

to] —

kY
+:/)—5’5 =

to] —

and, since all 7,’s with ¢ > 1 vanish, one gets the desired answer.
Let us see \Vhdl happens when Sd has multiplicity two, i.e. when we have, at
most, a double pole. In that case by Proposition I we know that ry 15 a trace, while
= O for ¢ > 2. This means that the formula for -, involves the combination

. n g n

where 1 is some operator. Now since the Hochschild coboundary 6 7y 1s given ratio-
nally in terms of 7y (cf. Proposition 1), we do not expect to need the transcendental
cocfticient

105 4+ m)
LS + )

(8)

o=t —

in order o cmnpcnx’atc for the lack of trace property of 7. It we replace the term
R4+ (0 /2) yby U(|&]+ (1 /2)) 7( ). then we get exactly the components
of ;f, "which we can subtract from o~ wnhout affecting Theorem 2(b). Thus, we

shall look for a coefficient A such that
l"(]; +n) = /\I‘(lf + )+ (',,ll‘(l— +om). o el (9

where the ¢, are rational numbers.
To obtain (9), one just uses the equality

1= l/(

F'CE + o+ 2) Z
l'(%+m+ - + a4+ 1(

T
. (1
e

tal—

which we write with = for later use.
Thus, the constant A 1s

= —(7p + 2log2).
H%) (71 g2)

where ~ 18 Euler’s constant.
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If we replace 2 by » — A1, then using (9), we find that in the formula giving
2~ the terms [ (n/2)) 7( 1) should be replaced simply by

“‘l+” II ‘/"}‘” Tl( ‘)

where

(1

Let us consider the next case, when Sd has multiplicity 3, t.e. when we have triple
poles. This time we shall get the combination:

) I y n I
! <|/-'1 + ;) To() + 1 <|/"| + ;) A+ 55 <“\'

We want to use a further subtraction, s Lly of Aa2'=) to get coefficients for 7( 1)
and (1) of the form I'( (n/2)) = 2. Proxn (1()). we get the formula

n N
+5> (1), (12)

l‘/(;—-}—m+:‘): l?,,l(f)l‘(%+m+ e +m+ ). (13)

where 7, 1s the rational fraction

III—I l

Il)m(f) = Z I__ (14)
im0 2 Tate

and where the function [ is given by
[

Je) = ———. (15)
If we differentiate (13), we get

l'”(if 4+ m 4 7)

= RS+ b )+ R (S + o+ 2)
+f'(5)l‘(1;+1n+ )+ [z +n1+ ). (16)

We have to transform the term /1’,,,(5)1"'(% 4+ m 4 2) because, at the same time,
it involves a function of m. 2,,(<) and a derivative of 1'. To do this, we replace
['(5 + m + <) by its value (13) which yields

Rl PECE 4 2) 4 Ry (2[5 4 m+2) (7
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and we use again (13) to replace the second term of the formula by

JEN 5+t 2) = f() (5 +m 4 <), (18)
Coming back to all the terms of (16), we have thus proved

1705 + 4 )

= (R () + Ry + 4 2)

4

F ) JEPI + w4 )+ 205 4+ 2). (19)

This shows that, if we replace = by = — A D) — /\3;(3), where A\ = A = [(0)as
above, and

| 5
Arv= 5 L0) fle) = JE) = Sle) (20)
then the combination (12) gets replaced by
o/ i
1 <Ifil + :) T()(,-‘) + (‘l“‘lﬁLg
‘ 1 n
I <i/.'| + 5) )+« IAI+” I <|L'l + 3 (). (21)
where the rational number ¢/, s ( 1/2!)H(,,II)(())‘ with
RO = R+ B2 (22)

We can now proceed by induction to the general case. One proves by induction on
(. the following formula on the {th derivative 1) of the T function:

['(‘)(i;+u/+f)
= BTV 4+ ) +Z(/ ('_’)( +m ). (23)

where £') and [, are defined, inductively, by
A N U E N ST BN (24)

1

Lsls) = [is) = fia) [ (2). (25)
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The proof uses the same pattern as above and 15 straightforward. It shows that if
we replace by

N
+

== At = e S (26)

v

where A, = %f, (0}, then the combination of terms

] )
> (m ¥ ;) () (27)

in the expression of the cocycle o, gets replaced by

. n ] o n— 1
[ ( k| + 3> > IRE,{ Doy, (00 m= k| + 5 (28)
Now the functions l:‘,(,};)( £) are easy to compute, since
/I/—l l
Ry = T0e) withTj(e) = =1, () T, = 7 ——.
) ;, % + a4+

One gets that if’f,’,)(:‘) is the (¢ + 1)th symmetric function of the 1 terms l/(% +

(1 + f):

e —1
H (l + _;_) = Zlf’,’,(:')fl+l. (29

a=0 % T+l

We can then eastly compute the product ['( % +m) R )((l) which appears in (28)
and get

I‘(;— + u/)lf(,,’,'_”(()) = l'(é—)rr,,l_,l(ln). (30)

where (1) is the jth symmetric function of the first 7 odd 1/2 integers:

/ll*l 2( l l

=) -

What is remarkable now is that these coefticients vanish if ¢ is larger than 1 s0
that not only have we transtormed them to elements of I'( %)L;. but we have also
climinated all but a finite number.

We note that the function f, () is not difficult to compute, and by induction we
cet the formula

(s)
]
(= Ut ) — ) . (32)
I (; )<1‘<§+;>>
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as can be seen by interpreting the transformation

Tehy="0 —fh (33)
as 1 I'(/i/1'), and using (25).
It 1ollows then [hd[
\ B l( I ) 1 l (/‘)5:() (34)
N 2 {! I‘(% + ',:.) N

and that the above operation of subtraction has a very simple interpretation, namely
the following. In the proof of Theorem 2(a), we are applying the linear form Re «,_g
to meromorphic functions of the form

I’ <[/| + ’7—] + s) Trace( A} D] 7)) = (%), (35)

where -1 1s an operator. But any other linear form such as
g- — RC.\'S:().(/(H)g.(H). (3())

with y holomorphic at ), would have worked equally well. What the subtraction of
VA, s doing s exactly 1o take

If we combine this with

LT =1
T*— = H +a+ s (37)

- |tel—

we can summarize the above discussion by the following variant of Theorem 2 [6].

THEOREM 3. The statements of Theorem 2 are true for the cocvele 2 given, for
n-odd, 1< p, by the formula

e (D

= V2 ——a—,, )T,
. S (Il ! !

X (”()(d”l )“;I)...(d(l”)(k“)ll)l_(:lkl_’\‘”)).
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with

n— 1

T T apl =k Dy ke + 2 e )

and a defined in (31).

Not only the coefticients are all rational multiples of the overall factor 271, but
also the total number of terms in the formula is now finite and bounded in terms of
» alone and not the order of the poles. Indeed,

-1
k4 [—{3— and A+ 0 < p.

q <

so that the formula does not involve more than p terms in the Laurent expansion.
Let us see what this formula looks like for small values of p.

p = 1. Then only 2 is nonzero; we have k = 0 and ¢ = 0, also

;'l(u().(ll) = \/ﬁm(u“ dul|l)|_l). (38)
This shows that, even if we had poles of arbitrary order for the function (&) =
Trace(«" da'|D|7'7**) at « = 0, they do not contribute to .=} except for the residue
of Cats = 0.

If we had used the formula of Theorem 2, we would be taking the residue of
el o+ S)Cs) ats = O which involves infinitely many of the functionals ;.. Note
also that here Ty 18 atrace.

p = 2. Again. only | is nonzero, but now we can have Ay = Tand also g = 11f
iy = 1. Thus, we get three terms

/
Slan.ay)

= \V2ri(rp(a da' | D7) = 5ﬂ)(““(dﬂl D -

— ;—T|((1()(d(l|)(1)1/)|_'1)). " (39)

This time 7 is no longer a trace, as one can see using Proposition 1, and the
. . . e - N . .

formula involves 71, 1.e. the coefticient of s~ in some (-function. However, no
higher-order coefficient is involved, unlike the formula for > in Theorem 2(a).

p = 3. Let us fook at o5 in this case. Here, we must have & = 0 but since
g o [k + S(n = 1), we can have ¢ = 1. Thus, we get two terms for 2%

;lx((l(). .. a1y)

= V2l rla’ da! da? d(l}“)‘_'l) + 1(a” da' da? d(13|l)['3)). (40
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This shows that, even for 25, the coefficient of 572 in the expansion of the (-
function is playing a role, i.e. that r; enters into play.

5. Local Index Formula

To get more insightinto the content of Theorems 2 and 3, we shall now write down a
corollary whose statement does not involve cyclic cohomology or noncommutative
geometry but computes a Fredholm index (called spectral flow) as a sum of residues
of (-functions attached to the problem.

To formulate the problem, we just need a pair (D, (") of operators in Hilbert
space, where D is selfadjoint with discrete spectrum, while {- is unitary. The main
assumption that we need is that [D. '] is bounded, which implies immediately that
the compression U I? of U of the positive partof D (P = Loy £y} =Sign D)
15 a Fredholm operator. The index i

Index P07 = dimKer PU'P — dimKer PU7 P (1)

can be interpreted as spectral flow, 1.e. as the number of eigenvalues which cross
the origin in the natural homotopy between D and "Dl = D + U[D. 7). In
any case, 111s an integer, and we shall compute it as a sum of residues.

We make the following hypotheses:

(2a) It 5 15 the spectrum of /) (with multiplicity), then

Z IN|7" <~ for some finite «.
\ES
(We call p the lower bound of such «.)
(2b) The operators { " and (). ] are in the domain of 6%, & = [[D|.-]for | < k <
NoN 0
(2¢) The following functions, holomorphic for Re s ™» (), are meromorphic, with
finitely many poles for Re s > —=,

Clkan(s) = Trace(C (D U E0 =N (D ]tk | 2lkl=n=sy

where we use the notation X ¥ = YA V). T(V) = [/)2. AQ)

In (2¢) only finitely many functions are involved because of the inequality [A| 4 1 <
p. Atthe technical level, we need to assume that ['( 5)¢( «) restricted to vertical lines
1s of rapid decay.
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COROLLARY 2. Let D and 17 be as above. Then

Index PPU° D

_Z H(I;l)!:«

/l\]‘

(— 1)kl ] ..
Z; k A';;ﬂm—q(”’)RC-*s:()'“lg(k.”)(s)‘

S —1).

Proof. Wc Just apply Theorem 3 to the special case when A = ("™ (51) acting
on 'H by the unique representation which sends the function f(e'”) to f({7). We
use the formula for the pairing between A '-theory and odd cyclic cohomology,
together with the index formula (cf. [1]),

(A1) = 7'__2(-1)"%'(";1>,”(1‘l (Y AL A (3)

=T, udd

The proof of Theorem 2(b) shows that the hypothesis (2) is sufficient to con-
clude. =

At this point, we should stress the considerable freedom that one has in applying
Corollary 2. The data is a discrete subset (perhaps with multiplicity) of =,

S = Spectrum . (4)

together with a unitary matrix, u{A. A")\ ey which signifies a ‘unitary corre-
spondence’ on the list 5. The main hypothesis is that when D is shifted by this
correspondence (i.e. {7 DI 1s considered), it stays at bounded distance from D.
Then one writes down a finite number of ¢-functions, the ¢ ,,) above, which can
be expressed as Dirichlet series of the form

Z(I,:,t /\f - (5)

when one computes the trace in the basis of eigenvectors

Dt =2t (6)
for the operator ).
The statement is that a certain rational combination of residues of these functions
gives the index of PU7F or spectral flow. In particular, one has the following
corollary.
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COROLLARY 3. If Index U # 0, at least one of the functions (., (s) has a
nantrivial pole at s = ).

6. Geodesic Flow and Covariant Differentiation

In this section, we shall explain the geometric content of the ingredients of the
Jlocal formula of Theorem 2. This will yield the analogue within our framework
of the unit sphere of the cotangent bundle, of the geodesic flow und of covariant
differentiation.

First of all, the computations involved in Theorem 2 all take place within the
algebra U7 (.A) of pseudodifferential operators (cf. Section 2 (1())). Let us consider
first only “scalar’ pseudodifferential operators, 1.e. those which have an expansion
of the form (Section 2 (10))

P~ b DT+ b, DI 4l b € B (1

where 5 1s the algebra generated by the ¢ (a).a € A € 11 We say that P is of
order o« when 7 € OP” as defined in Section 1, 1.e.

e OP it PID|7" € N Domé#". (2)

Except for the nuance between scalar and nonscalar pseudodifferential operators,
i.e. allowing coefficients like [ ). a]. a € A, all the computations of Theorem 2 are
done within the following algebra € with derivation &

C = 0P Nnur(A). Ay =1[ID]. ). (3)

Morcover, with | D] ! € £ for some finite p, the functionals 7. (Proposition 1)
all vanish on the two-sided ideal C,, = OP™" N W~ (.4) of € for a > p. This ideal
1s mvariant under ¢ and, thus, the relevant algebra for our computations is the
quotient of € by (,,. The derivation é continues to make sense on this quotient as
well as the functionals ..

Any clement of QP 4 < 0, in C/C., is now nilpotent. To capture the ‘semisim-
ple” part of this algebra we just pass to the associated ¢ "-algebra:

DEFINITION 2. We let 574 be the ¢ "-algebra 5* A = (/A

Here we let € be the norm closure of € acting in the Hilbert space 'H and we divide
it by the compact operators, 1.e. we take its image by the quotient map

LUHY = COH)N (4)

of L{H) to the Calkin algebra.
We endow 5™ A with the one-parameter group of automorphisms given by

a (1) = e!IPlpe— il (5)
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One has to be careful about domain problems with the unbounded derivation é
which is the infinitesimal generator of the group o, and, in the nonanalytic case,
one may have to saturate 5= by (5).

In any case, we thus obtain a (" dynamical system

STAC (o )es. (6)
It 1s casy to check in the Riemannian case with the Dirac spectral triple, that

PROPOSITION 2. Let (A H. D) be the Dirac spectral triple associated to a com-
pact Riemannian manifold M. Then the (" -algebra 5= A is canonically isomorphic
to the algebra C'(S™ M) of continuous functions on the unit cosphere bundle of
MoS™M = {(e &) € T7M|E]] = 1}, Moreover, the one-parameter group o is
wiven by the geodesic flow.

Proof. The proof follows from Egorov’s theorem on pseudodifferential oper-
ators of order 0. First, our algebra W*(.4) is contained in the algebra of usual
pseudodifferential operators. The principal symbol map thus yields a homomor-
phism

C =St (7)

which extends to the norm closure € and vanishes on compact operators. Thus, one
obtains a homomorphism

STA S ST, (8)
One uses Egorov's theorem to show that this homomorphism o is equivariant with
respect to the actions of = given by «, (5) on 574 and by the usual geodesic How
on 5" V. The latter flow appears as the restriction of a Hamiltonian flow to the

space of tunctions on 1M /M, (the complement of the ()-section in the cotangent
bundle of 3/), which are homogeneous of degree O

The Hamiltonian flow is generated by the function
(&) = 1€, &eT™M/M (10)

which comes from the symbol of |DI. Thus, for any function f on 7= /M
homogencous of degree 0, (9), one has

I .
(%(;,(f):{ll“.j}. (1)

where (/4 is the geodesic flow.
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The final step of the proof of Proposition 2 1s to show that the homomorphism o
of (8) is surjective. This follows from the Stone—Weierstrass theorem by observing
that the subalgebra of ('(5™ 3/ ) generated by the functions

FIpGe 8. fe ™My tes (12)
(where (¢ is the geodesic flow and p: 5* M — ) is the canonical projection) does
separate the points of 571/, 0

The spectral triple associated ([6]) to hypo-elliptic operators provides a more
sophisticated example where the analogue of Proposition 2 holds (Example 6 of
the introduction).

Another very interesting example is provided by nilpotent discrete groups
(Example S of the introduction) where our cosphere bundle (Definition 2) is the
Gromov compactification (cf. Remark 5(b) below).

Let us now describe within our general framework the action of the geodesic
flow on the complement of the O-section in 77}/,

First, the analogue of the algebra of continuous functions vanishing at X on
17 M/ M s the suspension of 574

SUSTA) = ST A (B, (13)

On the right-hand side, one could use any of the pairwise isomorphic ¢ "~ -algebras

('w(1)where [ is an open interval but the choice of 27 corresponds to the descrip-
tion:

T=M/M = 57M x5 (14)

The ¢ -algebra (13) admits a very natural representation by asymptotic operators
in H. An asymptotic operator is a norm continuous map ¢ — k(<) from |0, 1] to
the algebra A of compact operators on A such that:

Hm Sup {|A{=)]] < ~. (s

=—1)
We endow the algebra of asymptotic operators with the ('™ norm given by (15).
(More pedantically, we are taking its quotient by those k(<) with ||[A(£)]| — 0 —
().} The following representation of 5(.97A) as asymptotic operators in ‘K 1s canon-
tcally associated by [1] to the exact sequence of ('“-algebras

H—A — ) — 57 (A4) — 0. (16)

where W20 A) is 771957 (A)) using (4).
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PROPOSITION 3. There exists a unique representation p of S{.5°A) as asvmprotic
operators in M such that

(/)([’ f))f = l)_/-(:“)i) Vi e, fE ('()(“;)

Proof. This follows from [ 1], since the homeomorphism

|
wE =000 u(r) = I (17)

transforms | D] into a quasicentral approximate unit u. = u(z|D|) for ¥'(4). O

In particular, the class of the asymptotic operator F’f(:|D]) only depends upon
the class of I’ modulo compact operators. Thus, Proposition 3 gives us a good
representation of the analogue of the algebra of functions on 7771/ /M . It remains
to identify the action of the geodesic flow on this algebra. The usual geodesic
flow on 13/ /M is not defined by the Hamultonian /1), whose only merit was to
preserve homogeneity, but by the Hamiltonian //,

Hir €)= 5lI€1F V(&) e 170l (18)

The effect of this normalization is that on the invariant submanifold S* .V « {A} =
{(r .8y e 1M €] = A}, one replaces (4 by (4.

Thus, in our context, the analogue of the geodesic flow on ™3 /M is given
by

(A(D))A) = av(bA)). Wb S(S7A) = C(5.57A). (19)

The one-parameter group of automorphisms (.3 );es of S(.57A) is very simply
implemented in the representation p,

PROPOSITION 4. Foranv b € 5(5"A) one has

5

D? N

pAD)) = (5T plh)e €75 oo

In other words, the action of the ‘geodesic flow’ ., on asymptotic operators is
obtained by conjugation

Jo(s) — T R(s) e T (20

The proof of Proposition 4 is done by a direct calculation using the invariance of
the algebra of asymptotic operators by the fow (20).
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In the classical Riemannian case, the knowledge of the geodesic How n ity
intinitesimal form 1s that of the equation of geodesics:

d e daok de!
i T R de de

and this is equivalent to the knowledge of the Levi-Civita connection I/,
In our cuse, the infinitesimal generator of the geodesic flow 1s given by (20),
i.c. by the operation

{

k() = 52D k(). (22)

to)

We shall thus end this section by pointing out the general properties of the deniva-
tion

18]
(8]
-

Tik) = 5[D7 4] (

used repeatedly in the proof of Theorem 2. which allows us to get a relevant
general analogue of the Levi-Civita connection. The latter, when acting on spinars,
is churacterized by the differential operatars v of cavariant differentiation with
respect to arbitrary vector fields Y. These operators Ny are densely delined

U LIMOS) — LAMLS) (24)

and depend on X ina ¢ (M) linear way

Viy =aVy. Vae ' (3M). (

[g®]
N
~—

Within our framework, we shall define covariant differentiation operators V' .- H —
H forany « € 2'(.A) in the following way. We recall that 27(A) denotes the uni-
versal differential aleebraof Aand #: Q{4) — L£{H) its canonical representation
as operators i H (ef [T,

la'da' L da) = (I“[l).(ll] o Doat) Yal € A (26)
Forany « € Q'(.A4) we let

V. = s(Da(w) + 7lw)D) — 7(dw)). (27)

tof—

This is intimately related to (23) since, for any « € A, ane has

i

S = 5D a). (28)
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One easily checks the following general rule

Y =aN_h. Ya.be A oe Q). (29

g

In the case of the Dirac spectral triple of a Riemannian spin manifold, a simple
calculation gives for any « = M fdg, € Q'(A), with associated vector field
N = ¥/, Grad(g,) and scalar field p = Y(d/,.dg,). the general equality

V.=V + %div( N)—p. (30)

In this equality, the left-hand side is given by definition (27) and depends
only upon the classical form 7(w) associated to w and the ‘auxihary field” p |1]
involved in w(dw). The right-hand side Yy 18 the covariant differentiation of
spinors with respect to the vector field X as 1n (24), while the two other terms are
scalar multiphication operators by the functions div(.X' ) and p on M/, The following
normalization allows us to detine V4 as a function of 4 = =x(«x) alone and to
eliminate the term %div( X)) = pinformula (30).

(aN4 DT 1) =0, Yo =a(dd).w(3)=0.

Remarks 5. (a) Proposition 3 gives a general construction of the tangent groupoid

of manifolds (cf. | 1]) for arbitrary spectral triples.

(b) In the case of discrete groups, with 4 = ZI' and H. |D]) given by the
regular representation and word length function, the fundamental scaling 1) — =D

used throughout this section is the same as the method of M. Gromov [8] of looking
at the group from a very far distance.

{¢) In a number of examples such as the Dirac spectral triple of a Riemannian
manifold or the spectral triple of the standard model [1], the following additional
condition (pointed out to me by H. Moscovici) 1s fulfilled:

L€ 7 (Q"(A))  (forsome even integer n). (31)

(Inn the odd case the analogue 18

1 e x(Q°(.A)) (for some odd n).) (319
This condition is quite interesting because it allows us to prove that the 7(Q~(.A))
bimodule D! of differential operators of order | (cf. Section 1), i.e. the 7(Q7(A))
bimodule generated by the operators

HDPa) =Yy a€Ad (32)

is in fact finitelv generated. It is indeed generated by the finitely many operators

HINAN (33)



238 ALAIN CONNES

where the (rL enter the formula for +,

Z v (D. (IA [ Deal]. (34)
k

The proof 1s straightforward using the equality

where the notation Y, of (27) has been extended to arbitrary elements o of 27(_A)
following the rule

o = (Vo e + (= 1)1 Vo, (36)

P puse]

References

. Connes, A Noncommutative Geometry, Academic Press, New York, 1994,

- Connes, A Cyche cohomology and the transverse fundamental class of a foliation, in Geometric
Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes in Math. 123, Longman, Harlow,
1986, pp. 52-144.

. Connes. A Noncommutative geomeltry and physics, Les Houches, Preprint ITHES M/93/32,

1993,

4. Connes, A. and Lott, J.: Particle models and noncommutative gecometry, Nuclear Phvs. B 18
(1990), suppl. 2947 (1991).

. Connes. A, and Moscovici, H.: Cyclic cohomology. the Novikov conjecture and hyperbolic
groups, Topology 29 (1990), 345-38%.

6. Connes. AL and Moscovicl, H.: The local index formula in noncommutative gecometry. To appear
in GAFA.

7. Gilkey. P Invariance Theory, the Heat Equation and the Ativah-Singer Index Theorem, Math.
Lecture Ser. 11, Publish or Perish, Wilmington, Del., 1984,

8. Gromov, M.: Groups of polynomial growth and expanding maps. LH. LS. Publ. Math. 53 (1981),
5373

9. Seeley. R T Complex powers of elliptic operators, Proc. Symp. Pure Math. 10 (1967), 288-307.

10. Wodzicki, M. Noncommutative residue. Part 1. Fundamentals, in K-Theor, Arithmenc and
Geometry (Moscow, 1984-86), Lecture Notes in Math, 1289, Springer, Berlin, 1987, pp. 320~
399,

to

N



