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Abstract. In this Letter, we develop geometry from a spectral point of vie~, the geometric data being 
encoded by a triple (.4, H, D) of an algebra .4 represented in a Hilbert space H with selfadjoint 
operator I). This point of viev,' is dictated by the general framework of noncommutative geometry 
and allows us to use geometric ideas in many situations beyond Riemannian geometry, 

Mathematics Subject Classifications ( 1991 ): 46L60, 46L80, 46L87, 19K56, 58H 15, 58A 12. 

O. Introduction 

The notions of  manifold and of Riemannian metric play a basic role in our usual 

formulation of  geometry.  The obtained notion of geometric space is flexible enough 
to encompass  not only the Euclidean and non-Euclidean geometries,  but also the 
space like hypersurfaces in general relativity. The tools of the differential and 
integral calculus allow us to develop the general theory of Riemannian manifolds. 

These tools are replaced in noncommutat ive  geometry by the quantized calculus 
(cf. below). 

In mathematics,  one meets many natural spaces such as the space of Penrose 
tilings of  the plane, spaces of leaves of foliations, spaces of ixTeducible represen- 
tations of  discrete group, fractal spaces, etc., which are not Riemannian manifolds 

but to which one would like to apply geometric ideas. Such spaces give rise in a 

natural manner  to an associative algebra .4 that plays the role of  the algebra of 

functions f :  X - -  '~ with the product: 

f L f 2 ( l ) ) =  f l (P ) f2 (P) ,  V p C  N ( l )  

and involution �9 given by 

f * ( p )  = f ( p ) ,  Vp C X .  (2) 

In general, the algebra A associated to the above spaces is not commutat ive,  this 
accounts for the difficulty in identifying the notion of  point  in the above spaces, In 
simple examples such as manifolds or fractals, the algebra A is commutat ive  and is 
the algebra of  functions on X,  but allowing noncommutat ive  algebras is essential 
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in order to deal with nlore elaborate examples such as quotients of manifolds by 
a pseudogroup of transformations. It is the relations between different points that 
generate the noncommutativity.  For instance, if one considers a set ) consisting 
of two points { I, 2} and the relation which identifies 1 and 2, then A ( ) .  rel) is the 
algebra .~le(7) of 2 ,. 2 complex matrices with the product 

( . f ~ f e ) ( i . j ) =  ~ f i ( i . # ) . f e ( i , ' . j ) .  i . j . l , '~  {1.2}. (3) 

i.e. the usual product of matrices. 
In this simple exanaple, the ordinary space {1,2}, given by the two points 

wilhout any relation, is described by the subalgebra of diagonal matrices. It is the 
' o f f - d i a g o n a l '  mat r ices ,  such as 

[<,,] [,, <,] 
f 1 2  ---- o r  f 2 1  z . 

() () I () 

vdlich describe the relation. This type of construction of an algebra A is rather 
general. It extends to a pseudogroup of transformations of a manifold and also to 
the hohmonay pseudogroup of a foliation (see [1]). The resulting noncommutat ive 
algebra encodes the structure of the 'space with relations'. It also applies to a 
smoolh manilk)ld together with its full diffeomorphism group. 

As another simple example, we can consider the case of a single point divided 
by. a discrete ~eroup I.  Then the corresponding algebra A is the group rim,e attached 
to 1, ,,,,hose elements f are functions (with linite support) on 1', 

9 --.['l  < ~2" (4) 

with the product given by linearization of the group law .ql-r --  .qi.q2 in 1": 

(.f, .fz ),, = ~[[] f ,  ..,,x fz.:l~,. (5) 

So liir, in describing the algebra A associated to an ordinary space . \  wc have 
ignored the degree of regularity of the elements f r A as functions of y q . \ .  To 
vari<ms degrees of regularity correspond various branches of the general theory of 
n o n c ( ) n l l l l U t a l i v e  associative al,,ebras The latter tire assutned to be aleebras over 
7 which+ moreover, tire invohitive, i.e. endowed with an antilinear involution 

f - -  f ' .  ( . f~.fz)" = .f~_ff.  (6) 

The tv,'o kinds of regularity assumptions for which the corresponding algebraic 
theory is satisfactory are 

mco.vurahility, v,,hich corresponds to the theory of yon Neumann algebras; 
COJltimfity, which corresponds to the theory of ( "-algebras. 
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Tile Hilben space plays a key role in both theories. Indeed, both types of algebras 
are faithfully representable as algebras of operators in Hilbert space with a suitable 
closure hypothesis. One can trace the role of Hilberl space to the simple fact that 
positive complex numbers are those of the form 

A - .~':. (7 )  

In any. of the above <ll,_,,-~'r' ,~<, as, functional analysis provides the existence, ','ill Hahn- 
Banach arguments, of sufficiently many linear functionals L which are positive 

l . ( . f ' . f )  ? (). (8 )  

F r o m  such a n  I,, one easily constrticts a Hilbert space together with a representation, 
by left multiplication, of the original algebra. 

Next, many of the tools of differential teleology, such as the de Rham theory 
of differential forms lind currents, the Chern character, etc., are well captured (see 
[ I ]) by, cyclic cohomology applied to pre-( "-alx, ehras, i.e. to dense subalgebras of 
( "-algebras which are stable tinder the holomorphic functional calculus 

I / D(:) 
�9 r - / ' ( f )  = d : ,  /9) 

where h is holomorphic in a neighbourhood of Spec(f). The prototype of such 
an algebra is the algebra ( ' " ( . \ ' )  of smooth functions on a manifold . \ .  The 
cyclic cohomology construction then recovers the ordinary differential forms, the 
de Rham complex of currents, and so on. More significantly, this construction also 
applies to the highly noncommutative example of group rings, in which case the 
group cocycles give rise to cyclic cocycles with direct application to the Novikov 
conjecture on the homotopy invariance of the higher signatures of nonsimply coil- 
netted manifolds with given fundamental group. (For a more thorough discussion, 
see I I l-) 

If one wants to go beyond differential topology and reach the geometric structure 
itself, inchiding the metric and the real analytic aspects, it turns out that the most 
fruitful point of view is that ofspectral,~,eometr3,. More precisely, while our measure 
theoretic understanding of the splice .\- was encoded by a(von Neumann) algebra 
of operators A acting in the Hilbert splice H, the ,~eometric understanding of the 
space .f will be encoded, not by a suitable subalgebra of A, but by an operator in 
Hilbert space 

1) -- /J=, selfadjoint unbounded operator in H. (10) 

In tile compact case, i.e. _\ compact, the operator 1) will have discrete spectrum, 
w i t h  ( r e a l )  e i g e n v a l u e s  , \ , , .  [ , \ , , [  - -  : ~ ,  w h e n  n - -  ~ .  
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Classical Quantum 

Complex variable 
Real variable 

Inlinilcsimal 

lnlinilcsimal of order 

n > 0 

Differential 

Iniegral of infinitesimal of order 

Bounded operator in Itilhcn space H 

Selfadjoint operator 
Compact operator 

Compact operator whose characteristic 

values H,, satisfy H,, = ()( n - " )  

a r - - [ 1 . ' ,  71 = ;."s - s v , '  

Dixmier trace Tr~ (I) 

Formulating the precise conditions to which the triples (A. H. IJ) should be 
sub iected is tantamount to devising the axioms of noncommutative geometry. If 
we let 1. and I /) /be the elements of the polar decomposition of 13, 

I) = /"ll)l, I I)l 2 = 13 2 , / " = S i g n D ,  (11) 

then the operators 1. and I IJI play a similar role to the measurements of angles and, 
respectively, of length in Hilbert's axioms of geometry. In particular, the operator 
I. = Sign t )  captures the conforrnal aspect, while 1) describes the full geometric 
situation. 

Considering /" alone, the quantized calculus was developed (cf. I1 I) based on 
the dictionary., produced in Table I. 

We refer to Ill for a thorough treatment of the Dixmier trace. For a host of 
applications of the quantized calculus, including Julia sets, the quantum Hall effect 
and the analysis of group rings, the reader is referred to I 11. A further application, 
namely the construction of a four-dimensional conformal invariant analogue of the 
lwo-dimensional Polyakov action, is discussed in [3]. 

Our goal in this Letter is to use the quantized calculus to develop geometry from 
a spectral point of view. In more precise terms, our initial datum (called spectral 
triple) will be a triple (A, 7f, tJ) ,  where A is an involutive algebra represented in 
tile Hilbcn space 'H and I) is a selfadjoint operator in 'H with compact resolvent, 
which almost conlnlutes with any a ~ A, to the extent that [I) ,  a] is bounded for 
a n y .  ~s A. 

The basic example of such a triple is provided by the Dirac operator on a 
closed Riemannian (Spin) manifold In that case, H is the Hilbert splice of I, 2 
spinors on the manifold ]1,  A is the algebra of (smooth) functions acting in H by 
muhiplicalion operators and /~ is the (selfad.ioint) Dirac operator. One can easily 
check that no information has been lost in trading the geometric space .ll for the 
spectral triple (A, H, IJ ). Indeed (see II ]), one recovers 

(i) the space )J,  as the spectrum Spec(A ), of the norm closure of the algebra A 
of operators in H; 
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(ii) the geodesic distance d on :1I, from the formula: 

d(p.(/)  = S u p { I f ( l , ) -  f(q)l:Jl[l) . f]ll  <, 1}. v],.(l E ).I. 

The right-hand side of the above formula continues to make sense in general 
and the simplest non-Riemannian example, where it applies, is the ()-dimensional 
situation in which the geometric space is finite. In that case, both the algebra A 
and the Hilbert space 'H are finite-dimensional, so that 1) is a selfadjoint matrix. 
For instance, for a two-point space, one lets A = .U,!, i; act in the two-dimensional 
Hilben space H by 

and one takes 

0 H ] 

H 0 

The above formula gives d ( , ,  b) = 1/H. 
As a slightly more involved (}-dimensional example, one can consider the alge- 

braic structure provided by the elementary Fermions, i.e. the three families of 
quarks (and leptons). Thus, one hers H be the finite-dimensional Hilben space 
with onhonormal basis labelled by the left-handed and right-handed elementary 
quarks such as u~. ,~r . . . .  (and similarly for leptons). The algebra A in U .!. '.~i, 
where the complex number A in (A. q) r A acts on the right-handed pan by A on 
"up" panicles and A on "down' panicles. The isodoublet structure of the left-handed 
(up, down) pairs allows the quaternion q to act on them by the matrix 

7 

q {t t l ,  q 

- - ,~  4~ J 

Then tile Yukawa coupling matrix of the standard model provides the selfadjoint 
matrix l ) .  

In 14l, tile theory of matter felds was developed within the above framework, 
under the finite-dinlensionality hypothesis that the characteristic values of 1) -  L are 
( ) (n-I / ' / ) .  for some fnite d. 

This allows us to defne the action functional of quantum electrodynamics at 
the same level of generality (cf. I I l). The striking fact there is that if one replaces 
the usual picture of spacetime by its product by the above 0-dimensional example, 
the QEI) action functional gives the Glashow-Weinberg-Salam standard model 
kaeraneian with its Hi,,,,s felds and symmetry-breaking mechanism. This shows 
that our geometric framework of spectral triples is flexible enough to encompass the 
'effective geometry' of spacetime at the energy levels that we can probe at present. 
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Of course, no one believes that the standard model is the ultimate answer, but the 
fact is that we can interpret the three additional terms to the QED Lagrangian, 
provided by the weak forces and Higgs mechanism, as coming from a simple 
modification of the texture of spacetime at short distances (cf. I11). The latter, 
instead of being purely the continuum, becomes a mixture of continuum and finite 
discrete, the geometric space being the product of the ordinary continuum by a 
finite space (cf. 11 I). In the development of this theory, the tools of the quantized 
calculus, in particular the Dixmier trace as the substitute for the Lebesgue integral, 
played an essential role. 

The matter field Lagrangian which we have +just discussed involves the metric 
:1/,,. but does not involve any derivative of r]/,,,. This indicates that the difficulty 
involved in developing the analogue of gravity in the above context is of a different 
scale. In order to overcome it, one needs both a good list of exalnples of spectrally 
delined spaces and a difficult mathematical problem to solve. By a spectrally 
defined space, we mean a triple (A./3' ,  1)) as above; the involution algebra A is 
not necessarily cotnmutative. We shall also refer to them as .~+pectra[ triples. 

Let us give a list of examples 

1. Ric,n~mnion mani /hh l . v (wi th  some variations allowing for Finsler metrics and 
also for the replacement of[I)[  by ]l) l" ,  n C](), 1]). 

2. k,l<.~ilblds ~rith sin~ularitie.v. For this, the work ofJ .  Cheeger on conical singu- 
larities is very relevant. In fact, the spectral triples are stable under the operation 
of "coning', which is easy to formulate algebraically. 

3. l-)i.~c#~,te .~poce.~ ~,#zU their product  Irith #na#lifi~ld,~ (as in the discussion in I l l  or 
the standard model). The spectral triples are, of course, stable tinder products. 

4. ( '~mt , r  sets. Their importance lies in the fact that they provide examples of 
dimension spectra which contain complex numbers (cf. Section 2). 

5. i\:ilp~tent Ui.vcrcte ,q, ro,l~.V. The algebra A is the group ring of the discrete group 
l ,  and the nilpotency of I is required to ensure the tinite-summability condition 
] ) - i  : L,{,. �9 ). \Ve refer to [ I I for the construction of the triple for subgroups 
t+l Lie groups. 

(+. 7}+m.~r~'r.~+e ,vtructur+'fi~r./++li+ltions. This example, or rather the intimately relat- 
ed example of the l) i[[equivariant structure of a manifold is treated in detail 

in I <+', I. 

Let t.s n o w  state the mathematical problem which will be the guide to develop 
geometric concepts: 

COml~Ztlc hv ~, Ioc~,l fi~tnntl~, the cyclic cohotnolotLv Chertz ch~trdcter o1" 
~A. H,  I)). 

More specifically, tile representation of A in H together with the operator 1) allows 
us to set tip an index problem Ind/~: I(./(,4) --  " where j = (I in the Z,/2-graded 
(or even case) and j = I otherwise. The index map turns out to be polynomial and 
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e iven,  in the above  general i ty ,  by the pair ing o f  I ( i ( A  ) with the fo l lowing  cycl ic  
cocyc l e  

r(  (,". ,, ' . . . . .  a" ) = Trace(  r,~ I". (, ~] . . .  [ 1". (,'+]). Va" E +4. 

w h e r e ,  has the same pari ty as. j  a n d ,  > d - 1. In the even case, one replaces the 
trace by the super t race ,  i.e. one uses the "L./2-grading ~ of  rH to write 

r ( ( , " . r l  . . . . .  ( , " ) = T r a c e ( ~ ( , ~  V(r' r  

The  class o f  r in the cycl ic  c o h o m o l o g y  HC'+(A is the Chern charac ter  of  
( A . H . / ) ) .  We refer  to [1] for  more  details  as well as for  the appropr ia te  nor- 
real izat ions.  

The  general  p rob lem is to c o m p u t e  the class of  r by a h+('alformuh+. A partial 
answer  to this p rob lem was already obta ined in 11 ], by means  o f  a general  local 
fo rmula  for the Hoc'hschild class of  r as the Hochsch i ld  , - c o c y c l e :  

() , l~ ,  l ]  . - r+  ; ( a  . . . . .  ) = Tr..( ,,"[ l) .  r, ..[/).,'+]1])1 ). v,,., A. 

where  , is as above  and, in the even case, with -'I inserted in front of  a ~ 
In the above  formula ,  Try. is the D ixmie r  trace, which when evaluated  on a g tven 

opera to r  T only  depends  upon the asympto t i c  behav ior  of  its e igenvalues .  More  
precisely,, for  7" >~ (). with i t , , ( ' / )  the , t h  e igenva lue  of  T in decreas ing  order,  one 

has (of. I I I); 

.\. 
1 

Tr (./ ') = lira,. 1o+,,\ I t " ( / ' ) :  

this is insensi t ive  to the per turbat ion  of / t , ,  by any sequence  z,, = o ( l / t t ) ,  i.e. such 

that ,:-,+ - -  ( ) . ,  - -  _-v. 
For  a classical  pseudodi f fe ren t ia l  opera tor  1' with dis t r ibut ional  kernel I,( .r..+] ), 

the l ) i xm ie r  trace is g iven by, the Wodzicki  residue Tr+(/+)  = / tt( .r ). where I,'(.r..~/) 
has an a sympto t i c  expans ion  near the diagonal  of  the form 

/,'(."..r = "( ." )  log(d(. , ' . .q))  + h(.r..~1). 

with b bounded  [ 1()]. 
In particular,  when  one evaluates  Try. on a product  /'i .. �9 /',, o f  such operators ,  

file result  is expressed  as an integral in a sinq, h' variable .r o f  a local quantity.  This  
is ill sharp contrast  with what  happens  for the ordinary  trace, which when eva lua ted  
on ./+1 . . .  7,, involves  a mul t ip le  integral,  o f  the form 

1"1( '"'l.."2 )/"2( .1'2. '""~ ) . . .  /",,( ""',+..rl ). 
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where the % 's vary arbitrarily in the manifold. 
While the expression (12) of the Hochschild cocycle ~ is local in full generality, 

it only accounts for the Hochschild class of the Chern character of (A. H,  t) ). which 
is not sufficient to recover the index map. In the manifold case, for instance, it only 
gives the index of I) with coefficients in the Bott K-theory class supported by an 
arbitrarily small disk. 

In Section 3 of this Letter, we shall describe a general local formula for all the 
components of the cyclic cocycle r. This will be achieved by adapting the Wodzicki 
residue, the unique extension of the Dixmier trace to pseudodifferential operators 
of arbitrary order, to all our examples. For spectrally defined spaces (A, H,  1)), we 
shall see that the usual notion of dimension is replaced by a dimension spectrum 
(Section 2), which is a subset of 7. Under the assumption of simple discrete 
dimension spectrum, the Wodzicki residue makes sense and delines a trace on 
the algebra of the pseudodifferential operators of (A, 'H, D). The latter algebra is 
obtained by analyzing the one-parameter group or, = I DI it . [Dl-i t  in a manner very 
similar to Tomita's analysis of the modular automorphism group of von Neumann 
algebras (Section 1). When the dimension spectrum is discrete but not simple, 
the analogue of the Wodzicki residue is no longer a trace; it satisfies, however, 
cohomological  identities which relate it to higher residues (cf. Section 2). 

Under the sole hypothesis of discreteness of the dimension spectrum, we shall 
obtain (Section 3) a zr l(~catfornlldafi~r the Chern character of a spectral 
triple ( , 4 ,H .  I)). expressing the components of the Chem character in terms of 
linite linear combinations, with rational coe/,licients, of higher residues applied 
to products of iterated commutators of l) 2 with [D,, ,~] ,a  ,j ~ A. A noteworthy 
feature of the proof is the use of renormalization group techniques to remove the 
transcendental coefficients which arise when the dimension spectrum has multi- 
plicity (Section 4). In the manifold case, this formula reduces, of course, to the 
classical local index formula. In general, however, it is necessarily more intricate, 
in several respects, because of its large domain of applicability, which encompasses 
for instance the diffeomorphisms-equivariant situation described in 161. Finally, in 
the last section, we shall describe the analogue within our framework of the usual 
geometric notions of cotangent space, geodesic flow, and Levi-Civita connection. 
Thcjustilication for these notions is that they play an implicit role in the elaboration 
of proof of Theorem 2 and are not just mere analogues of the classical notions. 

1. Pseudodifferential Calculus for Spectral Triples 

Let (A, H,  f)) be a spectral triple. For each .~ C :~, we let H ~ 
and 

= Domain (I1)I ~) 

'H '- = ~ H ~ . H -  ='~ = dual of H ~" D 

s>.l) 
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In this way we obtain a scale of  Hilbert spaces, and for each r we define op" to be 
the linear space of operators in H >: which are continuous for every .~: 

o p " : H  ~ - -  H .... . 

We shall use the fol lowing smoothness condition on A:Va E A, both a and [l).r 
are in the domain of  all powers of  the derivation b = [1I) l, .]. 

L E M M A  1. Thell a. [ I). ~;] are in op ~ arm 

t , -  lP lb l l ) l - '  e o p  -~ (t, = ~,o,-{t).,,]). 
P r o @  Let us lirst check that I I ) }"b l l ) [ -"  is bounded for n >/ O .Wi thc r ( . )  = 

I1)1 II)1 -I ,  one has 

cr = i d+~ - .  ~ ( b ) =  b(b)lDl -I 

Since 5l"(b) is bounded, equal to b~(b)l l ) l  -~,  we get the result using or" = 
~(  '~ :-t 

M o r e o v e r , ~ r - I ( b ) =  I I ) [ - Ib[ l ) [  = b -  l ) [ - I b ( b ) a n d t h e s a m e a r g u m e n t s h o w s  
that rr"(b) is bounded for n < 0. Then one uses interpolation. 

For the second part, one applies the above argument to b(b); thus, 

,s(z,) ~ op ~ ,~( t , ) l l ) l  -~ E op - I  [] 

It is important to note that the above smoothness hypothesis can be replaced by 

,, and [l) .a]  < A Dora Lk l? '', L(b) = I I ) l - l [ V 2 . b ] .  /g(b). = [I)2.b]IDI -~ 

Indeed, assuming the above, one has 

l .(t,) = I I ) l - ~ ( l l ) l a ( f , ) + ~ ( b ) l l ) l ) ~ o p  ", /?(b) < op ~ 

and the same applies to L ~ l~'1(b). 

C O R O L L A R Y  1. Umler  the above  hypothesis ,  (me has 

[i)2. [i)2 . . . .  [De.h i]  .. .] E op",  

II 

Vb < A o,-[D. A]. 

Let us now show that if b E Cl Dom L ~ R '~, then b E Dora b. The proof is more 

subtle than one would expect,  because the obvious argument, using 

]1)] = ~.-I s  1)2 
�9 I )  2 + t  tl I-I/2dH" 
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requires some care. Indeed, one gets from the above 

s [1131.l,3= ( l ) 2 + l , ) - 1 [ l ) 2 . b ] ( l ) 2 + l l ) - I i ,  I /2dtl.  

We can replace [132, b I by [I3[, which has the same size, and get 

( l ) 2 + l l ) - 2 1 1 ) [ t ~ t / 2 d t  I = (1 + l ) - 2 t t l 2 d t .  

For this to work,  we need to move [13 2. b] in front of the above integral, i.e. use the 
liniteness of  the norm of  

s !(/.3-'+,)-'.[/)=.q! 
_(IF+I,)- I [ I  2 [1~2 ] ] ( i )2+,)- I  

This l initeness fo l lows froth 

( 1 ) ( 13 e + r~)-t{13 2. {1)2 hi] bounded since b E Dom L 2, 
{2) /<,:" t1( 1)2 + r,)-21lr ,1/2 dr, <~ ( '  .1;I r ,t/2 dt, 4-./,~ r ,-~/2 dr, < ~.. 

Once [ 132, hi is moved in front the above calculation applies. 
It fol lows that b E Dorn~ and applying the same proof  to h(b) . . . .  we get 

h q Cl Dc, m b ~'. We thus obtain the following lemma. 

L E M M A  2. I-I,:, / Dora I, l~ 17 '/ = el, Dorn b". 

We shall deline the order of  operators by the following fil tration 

1' #_ OP" iff l l 3 l - "  1' E N Dora  b ' .  

Thus. OP ~ = A Dora b" and we have 

OP ~' C off '  Vn. 

Let us now describe the general pseudodifferential calculus. 
We let X be the derivation: ~- (7)  = [I) 2, I] and consider the algebra generated 

bv the Y '" (7 ) .  T ~ A o r [ I ) . A ] .  
We view this algebra P as an analogue of the algebra of differential operators. 

In fact. by Corollary I, we have a natural filtration o f D  by, the total power of  Y" 
applied, and moreover  

P "  C O P  '+. (1) 

We \v.:tnl tO develop a calculus for operators of the form: 

.11/.~1 ~ .: ~ " .I ~ P.  (2) 
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We shall use the notation .._N = 1) 2 and begin by understanding the action of 27 
given by 

cr 2~ - ._X: -__X-:. (3) 

Bv construction D is stable under the derivation V and 

V ( D " )  C /~,,+1. (4) 

Also fo r . I  E D"  and .: E 7, one has 

. i l l )  l- ~ OP ''+R~I:) (5) 

We shall use lhe group cr 2: to understand how to multiply operators of complex 
order nlodulo OP -~" for any/,'. One has cr 2 = 1 + ~7 

~7(1) = V ( I )  ', -J  (6 )  

L E M M A  3. L~,r T q D v tht,n ~Ta(/) E OP '/-a. VL. ~ O. 
Prool: 

,t'~"( 1 ) = ga(T)--N -a ~ OP'~+a-S -a- C O P  '~-a. [] 

Wc ust wish to justify the formal expans ion  

c r 2 ~ ( l ) =  (1 +--'~7+ - : ( ' -  1)c2 ) ~  ~ + . . .  (1"). 

It should eive a control of or2=(I') modulo OP ' / -a-  1 it" we stop at ~Ta(f). 
To do this, we need to control the remainder in the Taylor formula: 

(1 + ~C) ''+1 " 

1 + ( / ~ +  1 - ~)~7 + 9I  

+ ( , +  1 - , ~  . . . ( , +  1 - I c -  ~ ) - -  

+ ( , +  1 - ~ ,  . . . ( 2 - r  

~7~-+ 

(L.+ 1)! 
+ 

+ ~7 ''+ , s 1 6 2  (~)(I + I t ) - " - -  
1 - 1 ) "  

, !  
dl. (7) 

The main lemma m the following: 
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L E M M A 4 .  Let ~ E C.O < Re,-~ < 1 a n d  ,7 > (), ,# < ~J = Re +~. Then the 
.ibllowitu,, operator presdrve.~" the space O P "  / o r  a n y  <l.' 

qj dr2.,' (I + / i T )  " (1  - l ) ' d t .  

lboq/i T h i s  ,,viii be d o n e  by  e x p r e s s i n g  qJ as an in tegra l  o f  the f o r m  

s 

or- dp(.,<). Ih,tl < •  (s 
/ 

O n e  ,,,,;rites 

sin rr+t f ? "  1 
( I  + I~7)-'> - /~ P - "  dt.' (9 

. I -I- /~7 + P 

using the standard fo r tnu la  

sin a,,+ f " -  I 
~r . .r + 1 / t/ <' dt/" 

Let  us t h e n  c o n s i d e r  the r e s o l v e n t  o f  _dr2, n a m e l y  

h'(A) = (, \  + <,re) I 

O n e  has,  wi th  .-1 ~](). I[ as a b o v e ,  

l~( , \ )  = ~ rr-2(,++,.,) \ ,~+ .... 1 
, . . sin rr( .7 + i.,~ 

w h i c h  f o l l o w s  f r o m  

IL l 1 /_  /1_ (.++,,+~ d.'~ 

1 + .? 2 .  sin 7r(.t + ~.,~) 

(Wi th /1  = e" ,  this  m e a n s  that  e '~' ' /( I -t- e" ) is the F o u r i e r  t r a n s f o r m  
t.~)), wh i ch  also f o l l ows  f rom (10) wr i t ten  as 

77 

sin( 7(1 - , - ; -  M ) )  

Thus,  f rom ( l 1 ), we get 

,s dr-~'' 17( X ) ~ . 

o f  I / ( s i n  ~-( 

/-~i e(I ")" 

�9 . i + e "  

dr 2+.,;,\,~- I V '~ d.~ 

sin :r(,~ + i.~) 

I() 

11 

12) 

,~+ 

1 3 )  
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where  the m e a s u r e  A '~ d.~/( sin re( ,~ + i.~ )) is well  cont ro l led  by e - t q  d.~. By (9) we 

havc  

(1 + I , 5 ' ) - : '  - - -  7 1 ~  I t i - ' ' d t t ,  
7;- . l 

cr2'~'( I + t87)-"  

s i n  7r(~ 1 - 1 ~ - 2 , ~  t t + I 1 H - "  d H  

rc 2 .  7 .  . l sin 7r(,4 + i.~) 

w i t h  

A =  ( / . 4 - 1 /  1 ) .  

For  l ixed .~, we are thus dea l ing  with the size 

,+,  ,) , 
I .  l 

One  has () .< I < 1 so that the b e h a v i o r  at t t () is line, a lso the integral  conve rges  

ti~rl~ - -  x aSl t  ( '~- ' ' )  I s ince ,~  < ~ 

We get 

, L . ( , )  = ~t + - 1 l - " ~ t - " t  d l t  
I .  7 

'L(' (' 
- i ,  7 -  1 ( " +  l)~-~I-" 7 -  

) L  = I " - 1 ( r + l  I' d r  

= (I  - l) '~ " / - ' ~c ( l~ , .~ ) .  

Finallv,  we ,~et an equa l i ty  

or-";( 1 + I C ) - "  dl = cr2"~ d,"(.,),  
I I~! . . 

where  the total mass  o f  the measu re  ~, is finite. 
Let us check  this in ano the r  way, by looking  direct ly  at the Ll 

Four ier  l ransforn l  o f  the funct ion 

, - -  �9 1 + / ( e "  1) )  - ' ' ( 1  - 1)'' 
, / / !  

- n o r m  o f  t he  
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Thus,  it is enough  to check  that the fo l lowing  funct ion o f ,  is in the Schwar tz  space 

SI > ): 

r  

= ( e " -  1 ) - i " + l ) e  '~'" (e ( ' ' + 1 - ' ' ) ' ' -  1 - ( ,  + 1 - ~ ) ( e " -  I ) -  
k 

( ,  + I - , ~ ) ( , - , , )  
(e" 1) 2 

")1 

( ,  + 1 - , ~ ) ( , - , , ) . - - ( 2 - ~ )  

, !  
( e " -  1 ) " ) .  

First. f o r ,  - -  ~ ,  the size is 

e - ( , , + I ) , , e , ~ , , e ( , ~ + ] - , , )  ,, e ( , ~ - , , ) , ,  _ () .  

For , - -  N .  it behaves l ike e " "  - -  (). We need to know that it is smooth at 

, () but this f o l l ows  f rom the Tay lo r  expansion.  The same argument appl ies to 

all der iva t ives .  Thus, this g ives another p roo f  o f  the lemnla.  [ ]  

We are now ready to prove the f o l l o w i n g  theorem. 

T t { E O R t s  1. Let I E P v a n d ,  ~ 1 !. 7hen, . lo r  any .: E " 

or2:( 1 ( T  + . : ~7 (7 ' ) +  : ( ' -  1)~72(.1. ) 
\ 2~ 

. . +  . : ( - -  I ) - - - ( : - , +  I)~7,,(7,) '  ~ r ()p,~-(, ,+ I ) 
I1! ) 

l ' roqL Viist  for  any -- E " and I," E l !  one has 

, (~- ( 7 ) )  ~_ ()W (14) 

Indeed, h\' (,'4) we know that n -2: leaves anv, OP"  invar iant ;  as ~7 ~" ~_ rT 2: = rT-~ ,:, t "s', 

\ re. just  use [ . e m m a  3. 
( )nchas .  f o r ( ) <  Re~, <i I .  .:~ as above and - = ( ,  + I ) - t ~  �9 

rT2( .:+( ,, + 1 )-,,  ) ( 1 )  

- @r2"(7 ' )  + ::-n2'~tT(1') + . . .  + 

, \qJ(C"+ ~ ( I ) ) .  

: ( . : -  1 ) . . . ( : - , +  1)2.~C,,(,I.)" ~ 
) 

(15) 
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I f  we app ly  this equa l i t y  to rr2'~(7') and use (14)  and L e m m a  4, we see that for  any 

.~, there exists a p o l y n o m i a l  I ' ~ ( n ) o f d e g r e e  ;~ in n such that 

rr 2( ..... ) (7 ' )  - / ' ~ (n )  E OP v - ( ' ' + l l  .:~ < R e n  < I. 

The  p o l y n o m i a l s  f'~(<~ + .~) have to agree m o d u l o  OP 'J ( , ,+l)  on the over lap  o f  

the bands .~' < Re<~ < 1 and, thus, the d i f fe rences between the two  w i l l  be long to 

OP v - ( ' ' + i )  for  all .~. It f o l l o w s  then that there is 1 ' ( : )  wh ich  works  for  all : .  To 

obta in its coef f ic ients ,  one takes the integral  values .:- = 0, 1 . . . . .  n wh ich  y ie lds  

the f o rmu la  of Theorem 1. D 

2.  D i m e n s i o n  S p e c t r u m  

In this Letter, we shall describe a general local index formula in terms of the 
l)ixmier trace, extended to operators of arbitrary order, for our spectral triples: 

( A .  H .  1.~ ). ( 1 ) 

Contrary to the standard practice, we shall focus on the odd case, the point being 
lhat in the even case, there is a natural obstruction to express the (cyclic cocycle) 
character (cf. 11 ]) of the triple (1) in terms of a residue or Dixmier trace. Indeed, 
the latter vanishes on any finite rank operator and, thus, will give the result 0 
whenever H is finite-dimensional. Since it is easy to construct finite-dimensional 
(i.e. d i m H  < -v) even triples with Ind(1)) r 0, one cannot expect to cover this 
case as well. However, one can convert any even triple into an odd one by crossing 
it with 51 , i.e. with the triple 

(( '"( ,~, '~) /,2(.h '~), 1) - 1 i) ) 
�9 i 0 0  " ( 2 )  

Thus, there is no real loss of generality in treating the odd case only. The next 
point is that the usual notion of dimension (cf. [I 1) for spectral triples, provided by 
the degree of  summabili ty 

I, ~-~ C L " ( v "  / (3) 

gi \'es only an upper bound on the dimension and cannot detect the dimensions of the 
various pieces of a space constructed as a union of pieces of different dimensions 

(.4;., Hs., /)s,.), I,' = 1 . . . . . .  V, 

A A;,. ,  H = ,./-h,., 1) = ,  !, I)~.. (4) 

In [11, we gave a foNnula for the/~-dimensionat Hochschild cohomology class of  

the character, namely: 

r( o . . . . .  rF') = Tr,.( o[i) . , t] . . .[ l) . , , , ,] l l ) l  -/'). (5) 
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Clearly, this Hochschild cocycle cannot account for lower-dimensional pieces in a 

union such :+is (4). 
,,ks it turns out, the correct notion of dimension is given not by a single real 

number 1; but by ;..i subset 

Sd I- U (6) 

which shall be called the d i m e n s i o n  s p e c t r u m  of  the given triple. We shall assume 
that Sd is a discrete subset of  7, a condition which can be incorporated into the 

delinition of  Sd, as folloves: 

DEFINITION 1. A spectral triple ( 1 ) has discrete dimension spectrunl Sd, if SdC 

7 is discrete and for any element of the algebra ~r generated by the b " ( , ) . ,  ~ A, 

lhe function 

( ; , ( : )  = T r a c e ( b l l ) l - : )  

extends holomorphical ly  to 7 \Sd.  

Hereb denotes the derivation b ( 7 )  = Ill)l .  T} and we assume tha tA C r>,,>{iDom b" 
(see also Section I ). The operator 611Jl-: of Definition 1 is then of trace class for 
1Re : > p, with p as in (3). On the technical side, we shall assume thai the ana- 
lytic continuation of (,, is such that 1"( = )(;,( ..-- ) is of rapid decay on vertical lines 
.: .~ + it, for an t' ., with Re .'~ > (). It is not difficult to check that Sd has the correct 

behavior with respect to the operations of sum and product for spectral triples: 

Sd (Sum of two spaces) = USd( Spaces ). (7) 

Sd (Product  of  two spaces) = Sd(Space I ) + Sd(Space3 ); (8) 

more precisely, (8) holds with the exception of Sd C3 -1 !. 
It is easy to give many examples of  spectral triples with discrete dimension 

spectrum, :+ill examples listed in the introduction do, but we shall now concentrate 

cm the general theory, of such spaces. 
Our lirst task ,,,,,ill be to extend the Wodzicki residue to this general framework.  

or equivalently,  to extend the Dixmier  trace to operators I ' l  1 )1-  ~ of  arbitrary, order. 
,.,.'here 1' is :+in element of Z"L In fact, it is more convenient  (of. Section 1 ) to introduce 
the algebra ~ ' ( A )  of operators which have :+in expansion: 

l '  6.;1101'; + + . . . ,  #,.; 

where the equality wi thN \.<,,:<,;b,,]l)l'+ holds m o d u l o O P  - \ .  
To see that it is an algebra, one uses Theorem 1 of Section 1, which elves an 

identity of the form 

I/)1"/, -- <,+,,+,';<(;,)I/)I ̀'-;< (to)  
() 
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where ~.,,.~. is the coefficient of ~" in the expansion of  

~2_~ ~(,~ - 1) . . - ( (~  - 1,'+ I).~. 
(I + - ) "  = ].! 11) 

w i t h  _:-(t;) = ~(6)11)1 -~ 
We shall say that the dimension spectrum Sd is simple, when the singularities 

of the functions s : ) of  Definition 1 at :- ~ Sd are at most simple poles. Similarly, 
we say that Sd has finite multiplicity 1,' when k~, has, at most, a pole of order 1,'. We 
shall assume for simplicity that Sd has finite multiplicity in this section. 

PROPOSITION I. Let p < _~ he the degree o f  summahi l i ty  o.f 1). 
(a) For I' C q)'(~4) the Jimctiotl t~(.:) = Trace( I '  I I)1-2:) is holomorphic  fi~r 

Re - ;:- ~(Order  t' + p) and extemts to a holomc~rphicJ~mctiotl on the complement  
q / a  discrete .sttb.s'et o f  ~. 

(b) Let 7~( I ~) he the residue at 0 (![7_l" h( : ). l," >~ 0," then 

rl,.( I'1 1'2 -- /'2/'1 = 

n!  
- -  n,-+,,( l'l 1,"(I '2)). 

~ ~ l/~ ( ) ~I~) l, is the derivatton 1, = 2 log( I + ~-). 
lboqL  (a) The statement follows immediately from Definition I for any finite 

sum of operators b, ,[l)l".  Ftmhermore,  if l '  is of order less than - . \ ,  then f~(.:) is 
holomorphic  if Re .: > ~ ( p -  . \ )  and, for any given :,  this is achieved for . \  large 

enough. 
(b) First, the derivation l, = 2 log( 1 + c) makes sense as a power series in 

and can be viewed at the formal level as implemented by log I I)[ 2. 
For any l ' ,  one has an expansion near 0 

Trace( 1' 1 I)[ -2: ) = E rl:(1') - ( k + l )  + O( 1 ). (1 2) 

We can then write 

) - 2 :  - 2 : Trace( t '2 t 'h l l ) t  -2: )  = T r a c e ( t ' l ( t  + ~  (t'2)11)1 ) (13 )  

and, since 

) 2:  (I + :  = e x p ( - - L ) .  (14) 

w e  get 

Trace(1 '2t ' ,11)1-2:)  = ~ ( - : ) "  I," -2~ n! Trace( I'L ( l q ) [ l ) [  ). (15) 



..} -.) 
____0 A L A I N  C O N N E S  

By(13).  we can expand  

Trace ( f ' l t . " ( l ' ) j l ) j  2:) ~ r , i ( l ' l l , " ( t q ) ) . : - ( ' t + l )  + 0 ( I )  

and, when mu ltipl led by, -" ,  we see that we get the exponent  - - (~'+ I) for n - q = -/ , ' .  

Thus ,  the coeff icient  o f  .: (;,-+1) in the expans ion  (16) is 

,,----~-r,t(l'l ( / ' 2 ) )  = ~ ,,! r,,+l..(l'jl."(l~)). 
,, = , /  ,q. 

Therefore ,  we obtain 

ra . ( l '~ l ' l ) -  r~.(t ' , [ ' ,) = ~ ( q [ ) "  
- - I 1 !  

- - r , , + ~ . (  I'l I ."(/ '2)). (16) 

[] 

It IkHIows, of course, that i f  q is the mult ipl ici ty of Sd, i.e. the highest order of 
poles,  then v,~ is a trace. 

In the case o f  a s imple  spect rum,  the trace r = ro is an ex tens ion  o f  the D ixmie r  

trace, the latter be ing defined only  when the opera tor  I '  r ~ ' ( A )  be longs  to 

O p - r .  

3. l.ocal Formula for the Chern Character 

Before eivin~ the general local formula for the Chem character of a triple (A. H. 1) ) 
with discrete dimension spectrunl, we need to recall a few basic definitions from 
I l l .  

First, the cyclic cohomology H C " ( A )  is defined as the cohomology of the 
c o m p l e x  o f  cyc l ic  cochains ,  i.e. those sa t is fying 

~.'C I . . . . .  . ' . . " )  = ( -1 ) "~ . ' (  I I  . . . . .  . " ) .  V .  ~ E A .  (1) 

under the coboundary operation b given by: 

11~.')( o . . . . .  , , + J )  

~ (-1) '~. ' (  o ..~a.j+l , , + l )  
() 

+ ( - 1 ) " + ~ . ' ( . ' + 1 .  ~ . . . . .  . " ) .  v . j ~  A. (2) 
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Equiva len t ly .  H C ' ( . 4 )  can be descr ibed  in terms o f  the second filtration of  the 
(h. 1{) b i complex  o{" arbi t rary (noncyc l ic )  cochains  on ..4, where  /.~: ( ..... _ ( . . . . . .  i 
is g iven by' 

( 1t1~.7)(~1 ~ . . . . .  u . . . .  I) 

= # (  l ,~ i I~  . . . . .  ~ . . . .  I )  _ ( - I ) ' " r : ( ~ l  r . . . . .  ~l . . . .  l ,  l ) ,  ( 3 )  

/~ = .l/~l~. (..l~.')(~/~/ . . . . .  ~/ . . . .  I) = ~ ( - 1 ) (  . . . .  ~).'~.'(~1-' . . . . .  u . ' - I ) .  

To an ,~-dimensional  cycl ic  cocyc le  ~.., one associates  the (b./.r cocyc le  ,.~ E 

/ r (  l .V( , ) .  ,~ = 1, _ 2q given by 

( - 1 ) [ " / 2 ] ( 1 ~ ! ) - I  ~.' = '2~,.,/ ( 4 )  

where  r is the only  nonzero  c o m p o n e n t  of .7 .  

G iven  a s p e c t r a l t r i p l e ( A . H . / ) ) . w i t h  I) - I  ~ L~ (~''~ ), its Chern character in 

cycl ic  c o h o m o l o g y  is obta ined  from the fo l lowing  cycl ic  cocyc le  r,,. n >/ p. n 

odd,  

r , , ( , , "  . . . . .  , , " )  = , \ , ,  Tr'(,,"[ l"., t ' ] . . . [ l".u"]). Vr , "  q A .  ( 5 )  

where  

(,,) 1 " =  Sign I).  ~\" = v2/27i(-1)"("-1)/21" 2 + 1 

and 

I 
T r ' ( I )  = 7Trace ( / " (  1 . 7 +  7 / . ) ) .  (6) 

In [ 1 l, we ob ta ined  the fo l lowing  general  formula  for the Hochsch i ld  c o h o m o l o g y  
class of  r,, in terms o f  the D ixmie r  trace: 

V,,(, ,  ~ . . . . .  , , " ) = , \ , , T r ~ . ( , , " [ l ) . , , ' ] . . . [ l ) . , , " ] ] l ) l - " ) ,  V , , - ' ~ A .  (7) 

()t i t  local fo rnmla  for the cyclic cohomoh)~y  Chern characer,  i.e. for  a cycl ic  cocyc le  
c o h o m o l o g o u s  to (5), will be expressed  in terms of  the (h. t3) b icomplex .  Bearing 
this in mind.  we see that if we want to regard the cochain  ?, ,  o f ( 7 )  as a cochain  of  
the tlJ. /7) b i complex ,  we should use, instead of  A,,, the normal iza t ion  constant  

/l,, = ( - 1 ) { " / 2 ] ( n ! ) - l , \ , ,  = vJ2i l ' ( - ~ g  + 1) ( for  t~ odd ). (8) 
n!  

Let us now state the result. We let . d . H .  I))  be a spectral triple with discrete  
d imens ion  spec t rmn and 17-~ ~ k'~ (p '>) .  We shall use the fo l lowing  notations:  

d,~ = [ I ) . r  Vr o p e r a t o r  i n H .  ( 9 )  
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V((~)  = [/)-~,o]" r; (x) = g '~(r  'v'a o p e r a t o r i n  H .  (1()) 

T H E O R E M  2 161. 
tficc~mplc.v q / A .  

"Z,, ( '/~ . . . . .  "" ) 

,,/2U ~ c,,.t..,l T,, ( ,,0( dr, I ) (*'') 
,t) 0,/Q }() 

(a) The fol lowing./brmtda d<fines a cocvcle itl the (I,. t~) 

| ~ \ ' 1  
. . .  (da")(k,,)[ l )[-I  ,~--~ ,, )). 

n ' h d r d  

I 
::' ~((/ , '1 + 1 )(/,'l +/,'2 + 2). . . ( / , '1 + . . .  + / , ' ,  + , ) ) - 1  

with l "('t) thd qth derivative q f  the I' j imct ion.  
(b) 771~' co/lomo/(~,~43' cla.~s o f  the cocvle (~:,,), n odd, in HC"da(,4) coinc'idex 

with thd cyclic cohcmlolo,~,, 3' Chern character  ch. (A.  ]l'. 1)). 

Let us note that the term r,r with coefficient c,,.x..v in the above sum 

vanishes when 

II § ~ l,'j > p. (11) 

since the operator/ , , .~,  is in L~I) I .... ) when (I l )  holds. This  impl ies that, for f ixed t~, 
the surn revolved contains only finitely nlany terms. (We assume that Sd has finite 
multiplicity so that only finitely many q's are involved.) It also implies that 

~,, = (), if ~ > p. (12) 

Assertion (b) is the cyclic cohomology  analogue of Theorem IV.2.8 of  ll ]. 
Note also that all the operators /',,,a. involved in the above formula arc homo t,,~'- 

m',H.~ qld<vrc~" () in 1), i.e. they are unaffected by the scaling 

I) - -  k l ) .  k ff 17.+. (13)  

Finally. let us remark that assertion (a), i.e. the equality 

/ , ; , ,  + 1~.7,,+2 - (). Vf~. ( [ 4 )  

is actual ly a consequence of  our proof  o f (b ) .  However .  it is an instruct ive exercise 
to check it directly. This is done [6] (in the case of a simple spectrum) by making 
use of the rollowing properties (with r = T0): 

I) d~l + d~l I) = g'(~/). W/ operator in H (15) 
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r((da)(a)[I)l  - '~)=() ,  Va E A ,  VL'>~O. Vq 16) 

7-(X-(l)[I)l -~) = O. VF, Vq 17) 

7"4 

l)(k) b =  Z ( - 1 ) r  (i  b(') l)(~+l)" Vb E H, 18) 
0 

where, by definition, 1)(~. ) = I(l,')[ I)[ -2~. 
The meaning of  (15) is that, if we view the graded commutator  with 1) as a 

graded derivation in the appropriate way, then d 2 = ~ .  The meaning of (16) and 
(17) is that integration by pans is possible, since both d and V are derivations. 
Finally, (18) fol lows from Theorem I of Section 1. 

4.  R e n o r m a l i z a t i o n  

There is one unpleasant feature of the formula of Theorem 2(a) for the cyclic 
cocycle ~, namely the occurrence of the transcendental numbers which enters in 

I the Taylor expansion of the 1 function at the points I'(~ + q),r I E i!. Also the 
S U 111 

lI I/,l + Z q - Res(.~ ~(.~)) (1) 
q! .~=ll 

is an infinite stun when ( is not meromorphic at .~ = 0. We can, of course, rewrite 
it as 

(, , , )  Resl"  L' I +  ~ + . ~  ((.~). (2) 
s = 0  

W e  shall, however,  proceed to show how to obtain a modified cyclic cocycle v:', 
giving the same result Theorem 2(b) as ,~, but invoh, ing a.finite linear combination 
with rammal  coe[ficients of the terms 

x/~_i 1'( ~ )r,r 1 . . .(d(~" I)[- ). (3) 

To achieve this, we shall exploit the freedom of replacing the operator l) by 
it i l).t~ ~ i{+ without affecting Theorem 2(b). The effect of this transformation 
on the functionals r,~ is 

T'/ ' ,3;i T,,+,,,. (4 )  

This implies that for any integer m > 1, the following formula defines the compo-  
nents of  a cyclic cocycle which pairs trivially with cyclic homology 

,; !)" )( r, II . . . . .  , " )  

= ~ c,,.t.,~r,~+,,,(,~ I ) ( t") . . .  (d,")( t")[ l)[-1"+21kl)) .  (5) 
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W h a t  v,'e shall do now is add a suitable linear combination of counter terms I~ ( ',j ) in 
order to cancel all the transcendental coefficients occurring in the Taylor expansion 
of l'( 1,/2 ) - l  I( .,~ ) at half integers. Even though we could right away ,.,,,rite do`+vn the 

List of  the coefficients .+,,, needed in front of.-2 ( ' ' , ) ,  we shall rather explain carefully 
how the,,' are obtained. To begin `frith. there is no problem at all if Sd is simple, i.e. 
if one has, at most, a simple pole. In that case, one simply ,+,,,rites 

1 1 3  I I 
1 ( 7  + q) = 7 ~ ' " ( 7  + q - 1 ) 1 ( 7 )  (6 )  

and, since al l  T,;'S with q ~> 1 vanish, one gets the desired answer. 
Let us see what happens ,.,,,hen Sd has multiplicity t`+vo, i.e. when we have, at 

most, a double pole. In that case by Proposition 1 we know that rt is a trace, `+vhile 
,.] - () for q > 2. This means that the formula for g,+ in`+,olves the cotnbination 

( ) ( " )  1" n I I],1 + +7 +-,,(.I)+ li,l + _7 T~(.t), 7) 

v,'here .I is some operator. No`+v since the Hochschild coboundary b q~ is given ratio- 

nally in terms of Q (cf. Proposition 1 ), we do not expect to need the transcendental 

coefficient 

I I " (  ~ + h i )  

I(1~ + n,) 
(8) 

in order to compensate  for the lack of trace property of co. If we replace the term 
l " ({ l , ' l + (n /2 ) )  Q( . I )  by l ( l l , ' j + ( n / 2 ) )  Tl(.t),then`+ve get exactly the components  

of  g!l)  which `+re can subtract from -2 without affecting Theorem 2(b). Thus, we 
shall look for a coefficient k such that 

I 1"( J+ + ,,, ) = ,',l( + + ,, ,)  + ,.,,, I( I+ + ,,, ). ,,, + t+, (01 

where the +',,, are rational numbers. 
To obtain (9), one .just uses the equality 

I m -  I 1 I"(~ + m + s) 1 1"(~ 4-:-) 
Z I ---- I + I 

1( : + n+ + _-- ) ,,--~1 _ ~ + '+ + +- 1( _ ~ + .:- ) 
( t ( ) )  

which v.'c `+vritc with -- for later u s e .  

Thus, the constant .\ is 

I'(~) 
I - - ( ' ~ ' r  + ~  

where :,/. is Euler 's  constant. 
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If we replace  'r: by ,r~ - A,F {i}, then using (9), we lind that in the formula  giving 
/ the te rms I"( ]l,'] + ( ; ; / 2 ) )  71( ..I ) should be replaced s imply  by 

; 'la-I+"~-'l(I/"l-I- " ) r l ( A ) .  

w t3 e re 

I 
1 

r"  = ~ I ( 1 1 )  
, ; = n  _3 + n' 

Let us cons ide r  the next case, ,,,,'hen Sd has mult ipl ic i ty  3, i.e. when \re have triple 
poles. This  t ime we shall get the combina t ion :  

(:-) l I I , l+ n,(A)+l" l; , l+ [/"1+ (12) 

2) We w a n t  tO use ;.1 f u r t h e r  subtract ion,  say of  A2.r~ ( , to get coeff ic ients  for r l(  .1 ) 
and re( .1)  of  the fo im I'( I/,'l + ( ; ; / 2 ) )  .< .~. From (10), we get the fo rmula  

I I I 
I"( v 4- m + _) = /~,,( _)1.(7 + n; + - )  4- f ( ~ ) l ( v  + n; + e).  (13) 

where  h',,; is the rational fract ion 

, n -  I 1 
t~,,, g ) =  ~ I (14) 

,,=ll _3 + r; + g 

and where  the funct ion  f is g iven by 

I 1"(3 + : )  
. f (  -- ) - ( 1 5 )  

I 1 " ( 3 + - )  

If we di f ferent ia te  (13), we get 

1-,;(  I 3 + ;;; + ~) 

I I 
= h",,,(m)l( 7 + ;;; § m) + h ' , , , (g ) l " (3  + ;;; + :-) 

I + . f ' ( s ) l ' ( v  + ;,; + e ) +  f ( c ) l " (  l 7 + ;n + : ) .  (16) 

I We have to t rans form the term h),,,( - )1"( 3 + ;;; -t- ~-) because,  at the same time, 
it involves  a funct ion of  n;. h',,,(~) and a der ivat ive  of  1". To do this. we replace 

I l"( 3 + ;n + ~) by its value (13) which yields  

)2 I 1 h',,,(~ l ( 7 + n ; + e - ) +  h ' , , , ( : - ) / ( ~ - ) l ( v + ; n + - )  (17) 
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and we use again (13) to replace the second term of  the formula by 

. f ( : ) l " (  I - v + m + ~ ) .  (18) + ' , ' + ~ )  f (~-)21( I  

Coming back to all the terms of (16), we have thus proved 

I " (  I + . ,  + ; )  

t I = (17 , , , (~ )+  l? , , , (z )2) l (~  + m + ~-) 

I I 
+ ( f ' ( z )  f ( z ) 2 ) l ( ~  + n~ + z) + 2 . f ( s ) l " ( ~  + m + s). (19) 

This shows that, if we replace g by g - ,\1.~ (I) - ,\2g(2), where ,\1 = ,\ = f ( ( ) )  as 
above, and 

A2 = 1./ '2(()). f2(:-) f '(c-) f(z)2 = - , (2O) 

then lhe combinat ion ( 1 2) gets replaced by 

1 (]t," l + TO(.-t) + "F"I+ " - '  

( , , )  , 1 I J , l + ~  Tl("l)§ I~1+ T2(.-I), (21) 

where the rational number ,'~,,, is (1/2!)17!,1,1(0). with 

i t ! ) ) ( _ )  _ /~,,,,(_) + / ~ , , , ( : ) 2 .  ( 2 2 )  

\Vc can now proceed by induction to the general case. One proves by induction on 
t. the folh~wing formula on the [th derivalive 1 ( ' )  of  the 1 function: 

I I ( ' ) ( ~  § m + ;) 

1 = If'If ' ~)( ; )1(  ~ §  (23) 
j = l  

where h'!,', ) and ./~j are delined, inducl ively, by 

/ ( ,+b) (  1r  I ( ')  - ?,,, ; )  = + l?, , , (s)  ?,,, ( : ) ,  (24) 

.( ,+ i (~-) = .(i(  ~- ) - -f( ~ ) f , (  ~ ) ( 2 5 )  

AI.AIN C()NNES 
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The  p roo f  uses the same pattern as above  and is s t ra ightforward.  It shows that if 
v,,e replace .;  by 

? '  = . . , . : -  k l . , . :  ( I )  - , \ 2 ?  (2) . . . . .  ..\, .,.:(J ) �9 . �9 ( 2 6 )  

where  ,\, = I f~ (()), then the combinat ion of  terms 

( ] I 11,I + %(..I)  Z 
iil thc express ion  of  tile cocyc le  .~, gets replaced by 

( " ) _  l ( , , - l)  
i It , . l+ 7 ~ , z ! n , , ,  (o)~ . , ( . - l ) .  , ,  -- It,I + - -  

(27) 

n - 1 
(28) 

No,.'.' tile funct ions  t'.'!/,)(~-) are easy to compute ,  since 

,,,- 1 [ 
, _ _ _ ~ - [  )2 h , , , ( :  ) l ) , ( c )  with li',(~-) = -1~,(:-  . 11,(~) - i ' 

., =~l ] + a + ~- 

t?  ( ~ ) t  " ] ( )ne gets that . . . . . .  ) i s t h e  [ + 1 ) thsy rn ine t r i c  funct ion o f  the m terms I / ( ~  + 
, + :-): 

r n  - -  ] / ~ 

II n+ [ 
.,=o 4 + n + e 

= ~ i ? ,  ( g ) : , + i  (29) 

, /e!;l-'~(()) We can then easi ly  c o m p u t e  the product  l (  ~ + m)  which appears  in (28) 

;.Ill d oc t  

_ I 1( i + m l? ( , f - i ) ( ( ) )=  l , ( v ) c  r ..... ~(m).  (3()) 

\', here or, I ra )  is the j t h  sytnrnctr ic  funct ion of  the lirst m odd 1/2 integers: 

'" t ( 2 ~  1 ) )  

rI ( :+  + 
J =11 

._ ( .... . , ) ( m ) .  (31) 

What  is r emarkab le  now is that these coeff icients  vanish if q is larger than m so 
] . .  

that not on ly  have we t rans formed  them to e lements  of  1"(~) but we have also 

e l imina ted  all but a linite number.  
We note that the funct ion f / ( : )  is not difficult to compute ,  and by induct ion we 

get tile foril]ula 

I 
f ( . : ) =  - l ( ~ -  + . ' )  

(1) 
1 I ' (~ + :-) 

(/) 

(32) 
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as can be seen by interpreting the transformation 

l ' ( h )  = h '  - f h  ( 3 3 )  

as l(h) l ( h / l ' ) ' ,  and using (25). 
It follows then t h a t  

i 1 ( 1 ) ( ' )  . . . .  
_ i (34)  A, - I( v )7.' I(w + e-) 

and that the above operation of  subtraction has a very, simple interpretation, nan~ely, 

the following. In tile proof  of  Theorem 2(a), we are applying the linear form Re .~.,=() 
to meronaorphic functions of the form 

/ " )  1 I1,1 + ~ + ,~ T r a c e ( - l l / ) 1 - 2 ~ )  = (( .~)-  (35)  

where .-I is an operator. But any other linear form such as 

( - -  Res.~=ll.q( .~ )s .~ ), (36) 

with f /ho lomorph ic  at (), would have worked equally well. What the subtraction of 
~ , \ , / I , )  is doing is exactly to take 

l( l /2) 
~/(., ) 

i ( 1 / 2  + . , )  

If v,'c combine this with 

I , n -  I 
l ( s  + m + , ~ )  i 

- = 1 - [  ( s- + n + ,~). ( 3 7 )  
I ( _ ~ + , ~ )  ~I - 

~ e  can summarize the above discussion by, the following variant of Theorem 2 16]. 

T H E ( ) R E M  3. 77m ,',ltlldllldllt,S" ({]" t]ld(Irdttl 2 gird lrlld.fiH l]ld {(~{'~'('[~' .r2t,, ,k'ivdll../}~l 
n-udd,  n ":: p, hy thufcnmula 

,..",, (U I . . . . .  n " )  

., ( - 1 I*,1 I 
z -- (t,~. (Tin _ , f  ( I l l  

L'. , /  

. (~iIi(d~t i )( *', .(d(l")(*',,)ll)l-(elS<l+,,)). 



( ;E ( )METRY FR( )b,] r i l e  SPECTRAL P()INT ()F VIEW 229 

wif l ;  

- I  "; = I1"1 + ,~ a- = (1,'1 + 1)(I,'1 + A'2 + 2) . . . ( I , ' 1  + . . .  + l,', + ;,) 

a ; ; J  cr Je./ i ;u 'd in (31). 

Not only the coeff ic ients are all rational muhip les of  the overal l  factor ~ ,  but 

also the total number  o f  terms in the l 'ormuht is now finite and bounded in terms of  
p alone and not the order o f  the poles. Indeed, 

,; -<- I#l + - 7 -  and if," 1 + ;; ~< p. 

so that the fo rmula  does  not involve  more  than p terms in the Laurent  expans ion .  

Let us see what  this fo rmula  looks like for small values o f p .  

p I, Then  only, ';'1 is nonzero ;  we have I,' = () and q = (), also 

/ L ( . ' .  ~) V~T,~(,/d.~l/#l-t) .  (3s) 

This shows that, even i f  we had poles of  arbitrary order for the funct ion k(.~) - 

Trace( u d a l l / J  I -  ~ - >  ) at .~ = (), they do not contr ibute to '-ft except for the residue 

o[  ,,,- at .,, - (). 
I f  ~e  had used the formula of  Theorem 2, we would be taking the residue of  

I (  +3 + .~) v(.~) at., - () which involves inf in i te ly many of  the funct ionals T~.. Note 

a l s o  that here q) is a trace. 

p 2. Aga in ,  only  ?'l is nonzero ,  but now we can have/ , ' i  = 1 and also q = 1 if 

l.'t I Thus, we oct three terms 

/ 

- ; l ( ' l l . " l )  

I , u , ~  I ) ( l )  . ) _  = x / 2 ; ~ i ( T u ( a t ~ d a l t l ) [  -1 ) - ~n) t r l  tua  I / ) l  -~ 
~ 

~ r l ( . U ( d . I  )(I)] P l - 3 ) ) .  ( 3 9 )  

Ti l ls t ime q~ is no longer a trace, as one can see using Proposit ion I, and the 

formula involves r l ,  i.e. the coeff ic ient of  .~-2 m some q-funct ion. However,  no 

higher-order coeff ic ient is involved,  unl ike the formula for r in Theorem 2(a). 

~; in this case. Here, we must have 1,' = () but since p = 3. Let us look at r3  
~1 [/.[ + I(1; - 1 ) , w e c a n  haveq  = 1.Thus,  we get two terms for y'~: 

; '~(  % .  r; t .  a 2 ,  r;3 ) 

x2/~Ti(q~(<; I) da I d,; 2 dr l31 l ) l  -~ )  + TI(r/) dr; I d a  2 d . 3 1 1 ) l - 3 ) ) .  (4()) 
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"1 
This shows that, even for ~ the coefficient of  .~ ~ in the expansion of  the (-  'r" 3, 

function is playing a role, i.e. that T1 enters into play. 

5. Local Index Formula 

To ,,el more insight into the content of  Theorems 2 and 3, we shall now write down a 
corollary whose statement does not involve cyclic cohomology  or noncommutat ive  

geometry  but computes  a Fredholm index (called s p e c t r a l  flo~') as a sum of  residues 
of <-functions attached to the problem. 

To formulate the problem, we just need a pair ( D , / : )  of operators in Hilbert 
space, where D is selfadloint with discrete spectrum, while [ is unitary. The main 
assumption that we need is that [D, I7] is bounded, which implies immediately that 

lhecompress ion  I ' I I '  o f l  : of  thepositi~'e part of I ) ,  ( I '  = 4( 1 + I.'). 1. = Sign 1)) 
is a Fredholm operator. The index 

Index 1 ' I 1 '  = dim Ker 1 ' I I  ~ - dim Ker 1'1'"  1' (1) 

can be interpreted as spectral flow, i.e. as the number of eigenvalues which cross 
theor ig in  in the natural h o m o t o p y b e t w e e n  I) and I 1 ) I "  = I) + I [ 1 ) , I " ] .  In 
any case, it is an integer, and we shall compute it as a sum of residues. 

We make the following hypotheses: 

(2a) If 5 is the spectrum of  I) (with multiplicity), then 

P ~  I ~'IIAI -I~ < ?,C for some finite .~. 
I 

\ E s '  

(we call p the lower bound of such .~.) 

(2b) The operators I and [1), I ]  are in the domain of b ~, b = [I 1)1, ] for 1 ~ ,1,' 
. \ . . \  ~ (). 

(2c) The following functions, holomorphic for Re .~ >> (), are meromorphic ,  with 
finitely many poles for Re .~ > -~-, 

~(,,. ,,)(.,,) = T r a c e ( / - I l l ) ,  l ' ] ( : " ' ) [ l ) , / - - I ] ( < ~ ) . . .  [1), ~"](a,,)l f:1 -elal ..... ), 

where we use the notation X(t )  = y-re(.\-). V ( X )  = [I) 2 , . \ ] .  

In (2c) onl~, ' f initely m a n y  functions are involved because of the inequality I I,'l+ i~ <~ 
p. At the technical level, we need to assume that 1( .~ )q( .~ ) restricted to vertical lines 
is of rapid decay. 
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COROLLARY 2. Let 1) and  I' he as above. Then 

Index 1'I I' 

, ,  .~ i ,  

(_7 1 )lai 1 

q. 
/c.,/ 

W # h  ,,, = I#1 + 4( ,, - 1) 
l)roo,/: We just apply Theorem 3 to the special case when A = (': '-( ,5 '1 ), acting 

on H by the unique representation which sends the function f ( e  '~ to f ( l  ~). We 
use the formula for the pairing between h l - t heo ry  and odd cyclic cohomology, 
together with the index formula (cf. [1 ]), 

I "-~ ( n ~ l ) , . ,  . - 1  . 1 < / . l ) -  ~ - ~ ( - l ) ~ - k  ' / ~ " ( /  ,t . . . .  / - , / ) .  

n odd 

(3) 

The proof of Theorem 2(b) shows that the hypothesis (2) is sufficient to con- 
clude. [] 

At this point, we should stress the considerable freedom that one has in applying 
Corollary 2. The data is a discrete subset (perhaps with multiplicity) of ;}:., 

.S' = Spectrum 1). (4) 

together with a unitary matrix, ,(A,)d)\.\,r which signifies a 'unitary corre- 
spondence" on the list 5,'. The main hypothesis is that when D is shifted by this 
correspondence (i.e. I: I ) I "  is considered), it stays at bounded distance from 1). 

Then one writes down a finite number of (-functions, the q(<,,) above, which can 
be expressed as Dirichlet series of the form 

Z ")F'\)I 
when one computes the trace in the basis of eigenvectors 

for tile operator 1). 
Tile statement is that a certain rational combination of residues of these functions 

gives the index of I ' I I '  or spectral flow. In particular, one has the following 

corollary. 
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C()ROLLARY 3. 11 Index l ' l  l '  # O. at lea.st one q f the  f imc t io , s  ((*,,,,)( '~)has a 
m m t r i v i ~ d  p . l e  at .', = (). 

' 6. G e o d e s i c  F l o w  a n d  C o v a r i a n t  D i f f e r e n t i a t i o n  

In this section, we shall explain the geometric content of the ingredients of the 
local formula of Theorem 2. This will yield the analogue whhin our framework 

of the unit sphere of the cotangent bundle, of the geodesic flow and of covariant 

difl~+renliation. 
First of all, the computations involved in Theorem 2 all take place within the 

algebra qJ "(A) of pseudodifferential operators (cf. Section 2 (I ())). Let us consider 

first only "scalar' pseudodifferential operators, i.e. those which have an expansion 

of the form (Section 2 (I())) 

/ '  z,.,I/>l' + ' + . . . .  z,,, z-r (1) 

where/~? is the algebra generated by the ? ' " ( , ) . ,  E A . ,  ~ I!. We say that 1' is of  
~rcler,~ when / '  r  as defined in Section I, i.e. 

1' q O P '  itT 1' I1>1 " ~- r~ l ) o m  b".  (2) 

Except for the nuance between scalar and nonscalar pseudodifferential operators, 
i.e. allowing coeflicicnts like [1). , ] . ,  ~ ,4, all the computations of Theorem 2 are 
done within the following algebra C with derivation b 

d = o P "  n q , ' ( A ) .  = [I/>1..].  (3) 

Moreover, with I1>1-  ff s for some finite p, the functionals va- (Proposition 1 ) 
all vanish on the two-sided ideal C,, = O P - "  N qJ '(A) of C for ~ > p. This ideal 
is invariant under g~ and, thus, the relevant algebra for our computations is the 
quotient of (' by t?,,. The derivation b continues to make sense on this quotient as 
wcll as the functionals r,,.. 

Any element o f O P  '~, ,-] < 0, in C/C~, is now nilpotent. To capture the "semisim- 
pie" parl of this algebra we just pass to the associated ("-a lgebra :  

DEFINITION 2. We let 5%4 be the ( " -a lgebra  ,S"A = (,/A.. 

Here we let C be the norm closure of C acting in the Hilbert s p a c e H  and we divide 
it by the compact operators, i.e. we take its image by' the quotient map 

L'(H) -- C( ~H )/A, (4) 

of L~( H ) to the Calkin algebra. 
We endow ,S'A with the one-parameter group of automorphisms given by 

~t(7") = e't/l*ll 'e ,tllq. (5 )  
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One has to be careful about domain problems with the unbounded derivation b 
which is the inlinitesimal generator of the group r and, in the nonanalytic case, 
one may have to saturate ,SI'd by (5). 

In any case, we thus obtain a (" " dynamical system 

,S"A. (~l)l~:~. (6) 

It is easy to check in the Riemannian case with the Dirac spectral triple, that 

PROPOSITION 2. Let ( A .  "H. 1) ) he the Dirac spectral triple associated to a com- 
pact R icmammm manifold 31. Then the ('" -algebra S" A is canonically isomot7~hic 
to the algehra ('( ,S'" 3I) of  contitmotc~.ftmctions on the unit c'osphere bundle of  

,vivun hv the A, uodesiu.lh)w. 
Pr~)o.ll The proof follows from Egorov's theorem on pseudodifferential oper- 

ators of order (). First, our algebra qJ'(A) is contained in the algebra of usual 
pseudodifferential operators. The principal symbol map thus yields a homonaof 
phism 

C '" ~'(,5".XI) (7) 

which extends to the norm closure C and vanishes on compact operators. Thus, one 
o b t a i n s  a homon]orphism 

.s"A ~ ('( ,S"3I ). (8) 

()he uses Egorov's theorem to show that this homomorphism cr is equivariant with 
respect to the actions of:~: given by ,~ (5) on ,'4%4 and by the usual geodesic flow 
{m 5".~I. The latter flow appears as the restriction of a Hamiltonian tlow to the 
space of functions on /'* .AI/M, (the complement of the ()-section in the cotangent 
bundle of 3/), which are homogeneous of degree 0: 

f ( ) , c ) _  f (c ) ,  g,\ E 7.+. (9) 

The t~Iamiltonian ltow is generated by the function 

which comes from the symbol of It)}. Thus, for any function f on I".AI/31 
honlogeneous of degree 0, (9), one has 

d 
- < ; , ( f )  = { / / o , J } ,  (11) 
d/ 

where (,'~ is the geodesic flow. 



234 A L A I N  C O N N E S  

The final step of the proof of Proposition 2 is to show that the homomorphism cr 
of (8)  is suriective. This follows from the Stone-Weierstrass theorem by observing 
that the subalgebra of ( '( 5".~I ) generated by the functions 

. f(l ,(( , ' t( .r.c))).  f C ( .... (AI ) . t  ~ : (12) 

(where (,' is the geodesic flow and p: ,S'" .1I - -  ,1I is the canonical projection) does 
separate the points of ,S'" .~I. 121 

The spectral triple associated ([6]) to hypo-elliptic operators provides a more 
sophisticated example where the analogue of Proposition 2 holds (Example 6 of  
the introduction). 

Another very, interesting example is provided by nilpotent discrete groups 
(Example 5 of  the introduction) where our cosphere bundle (Definition 2) is the 
Gromov compactil ication (cf. Remark 5(b) below). 

Let us now describe within our general framework the action of the geodesic 
ltow on the complement  of the 0-section in T' .~I.  

First, the analogue of the algebra of continuous functions vanishing at -,,: on 
1" .~I/.~I is the suspension of .~'%4 

5 ( > ; ' A )  = ,b"A :.: ('0(:~::+). (13) 

On the right-hand side, one could use any of the pairwise isomorphic "-a lgebras  
( 'o( 1 ) where / is an open interval but the choice of 5:.+ corresponds to the descrip- 
tion: 

7":~I /M = ,b"31 • :~.+. (14) 

The ( " -a lgebra  (13) admits a very natural representation by asymptotic operators 
in 7(. An asymptotic operator is a norm continuous map e- - -  1,(~) from ]1), 1] to 
the algebra ~," of compact operators on H such that: 

l imSupilL'( ;) l l  < x .  ( t 5 )  

5--1) 

We endow the algebra of asymptotic operators with the ( '"  norm given by (15). 
(More pedantically, we are taking its quotient by those/, ' (c) with III,'(~-)11 - -  () ~- - -  

0. ) The following representation of  ,b'( .b"A ) as asymptotic operators in H is canon- 
icallv associated by [ 1 ] to the exact sequence of ( " - a lgebras  

( ) -  k - -  qJ:>(A) - -  ,S"(A) - -  0, (16) 

where ~11(.4)is ;r- l( ,b"( .A)) using (4). 
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PROPOSITION 3. There exists a unique representation p o.[.b'( ,b"A ) as usymprr~tic 
<q~craror,~' in H s1r lhat 

( / ,(1'  : f ) )~  = I ' f ( ~ l l ) l ) ,  V I ' 6  C, f C ('o(i-::+). 

lboq/i This follows from [11, since the homeomorphism 

,,. :~ + - ] , 1 . 1 [ .  I I  ( ,1' - -  
1 + , r  

17) 

transforms :~1 I)1 into a quasicentral approximate unit ~,~ = ~/(g I 1)1) for ,ptl(A) 12 

In parlicular, the class of the asymptotic operator l ' f ( s  only depends upon 
the class of I' modulo compact operators. Thus, Proposition 3 gives us a good 
representation of the analogue of the algebra of functions on T" .1I/.11. It remains 
to identify the action of the geodesic flow on this algebra. The usual geodesic 
ltow on 7 " . l l / ~ I  is not delined by the Hamiltonian lira whose only merit was to 
preserve homogeneity, but by the Hamiltonian If ,  

I 
H ( . , . . < )  : ~11<112. v ( . , . , < ) ~  /".x/. (~g) 

The effect of this normalization is that on the invariant submanifold 5" AI "~ { A} = 

{(.,. . ,~) ~ 7 " . x , :  I1,~11 -- ~\}, one replaces (,'r by (,'\r 
,eodeslc flow on I" .~I /AI  is given Thus, in our context, the analoeue of the ,j 

by 

(. 'r = r~xr(b(,\)). Vb ~ ,%'(.b'=A) = ('1/([k+,,%'%4). (19) 

The one-parameter group of automorphisms (.:r162 of ,S'(5"A) is very simply 
implemented in the representation / 7, 

PROPOSITION 4. For any b E 5'(,b"A) one has 

13 2 1 ~2 
1 1 r  - i,(.3t(b)) = (e't~-Tp(b).  e-  - )_~]0.1]. 

In other words, the action of the 'geodesic flow' .:~t on asymptotic operators is 
obtained by conjugation 

#(- - )  _ e"-~@/, . (~  - } e - , ' - ~ @ .  (20) 

The proof of Proposition 4 is done by a direct calculation using the invariance of 
the algebra of asymptotic operators by the flow (20). 
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hi the classical Riemannian case, the knowledge of the geodesic flow in its 
inliilitesimal form is that of the equation of geodesics: 

d-.r d.r ~" d.H 
dl 2 1 's 

- ;"' dl dl 
(21) 

, , /  
and this is equivalent to the knowledge of the Levi-Civita connection 1 ~.,. 

In our case, the infinitesimal generator of the geodesic flow is given by (2(I), 

i.e. hv the operation 

vs,+{:) = ~:-[s)2,11(s {22) 

We shall thus end this section by pointing out the general properties of  the deriva- 

tion 

v/s, .)  = +'- [1):.  I,.] (23) 

used repeatedly in the proof  of Theorem 2, which allows us to get a relevant 
general .:tn.:ilogue o f t he  Levi-Civita connection. The latter, ,,'+'hen acting on spinors, 
is characterized by the differential operators V'v of covariant differentiation v,,tth 
respect to arbitrary vector fields .Y. These operators T+\. are densely defined 

T . \ .  1.2( 31. >,') - -  L2( .~1. ,S') (24) 

and deperld on . \  in a ( .... (.~/) linear v,'ay 

T,.\ .  = oT. \ . .  V:~ E ( " ( . 1 I ) .  (25) 

Within our framework,  we shall define covariant differentiation operators V_ : H - -  
h'  for any.,:  ~ G+I(A) in the fol lowing way. We recall that ~+'(.A) denotes the unl- 
�9 ,'ersal dift~'rentiat algebra of  A and +r: G~'(,J.) -- L:(H) its canonical representation 

as operators in H (of. I1 I). 

: ( , I ' d , , ' . . .  d , " )  = < / ) [ I ) . , , ' ] . . .  [1).,,"]. V,,-' ~ A. ~2(,) 

For any ~' #~ [.))(A) ,,re let 

t 
Y-~ = T(1)7(, , :)  + ~(,.,.,')/) - a(d,,,,')). (27) 

This is intimately related to (23) since, for any a E A, one has 

v < , . ,  = ~I]/-.,,]. ('2_8) 
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One easily checks the following general role 

(29) 

In the case of the Dirac spectral triple of a Riemannian spin manifold, a simple 
calculation gives for any ' - \ ' f ,d.(h ~ ~ J ( A ) ,  with associated vector field 
. f  = ~Zf, Grad(y/,) and scalar field p = E ( d f , . d g , ) .  the general equality 

I �9 

V .  = V\" + 7 d l v ( . \ ) - p .  (30) 

In this equality, the left-hand side is given by definition (27) and depends 
only upon the classical form 7r(~') associated to ~ and the 'auxiliary field" p ]1] 
involved in 7r(d~). The right-hand side T \ .  is the covariant differentiation of 
spinors with respect to the vector field X as in (24), while the two other terms are 
scalar multiplication operators by the functions div( . \  ) and p on ),/. The following 
normalization allows us to define ~'.4 as a function of .-1 = rr(~,) alone and to 
eliminate the term 4div(_\) - p in formula (30). 

n~(,~V.~l/)]- l ) = 0 .  V,~ = rr(d. 'J) .7r(.~)=0. 

Remarks  5. (a) Proposition 3 gives a general construction of the tangent groupoid 
of manifolds (cf. l l 1) for arbitrary' spectral triples. 

(bY In the case of discrete groups, with .4 = 71' and "H. ]I)1) given by the 
regular representation and word length function, the fundamental scaling I) - -  ~ 1) 
used throughout this section is the same as the method ofM.  Gromov [81 of looking 
at the group from a very, far distance. 

(c) In a number of examples such as the Dirac spectral triple of a Riemannian 
manifold or the spectral triple of the standard model [11, the following additional 
condition (pointed out to me by H. Moscovici) is fulfilled: 

2' ~ ; r(~t"(A))  ( for some even integer , ). (31) 

(In the odd case the analogue is 

1 r : : ( l~"(A))  ( for some odd /t ). ) (31') 

This condition is quite interesting because it allows us to prove that the 7(~l*(A)) 
bimodule D l of differential operators of order 1 (cf. Section I), i.e. the 7(~.~*(A)) 
bimodule generated by the operators 

I )~ 
5[1 -.rl] = Td , .  a ~ A (32) 

is ill fact f initely ,~,enerated. It is indeed generated by the finitely many operators 

1 7[1) 2 ,~.]. (33) 
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where the ~;~. enter the formula for ",,, 

~,, = ~ ,/;l[/).,,~.]...[l).r,;'.]. (34) 
,k. 

The proof is straightforward using the equality 

I 1) -9(X-- ,  + 3~(d9 )), (35) 

where the notation X--~, of  (27) has been extended to arbitrary elements ~' of  ~ ' ( A )  
following the rule 

Y'~., .2 = (X-~.,),-,-'2 + (-1)"~"~.'1K-~:. (36) 

References 

1. ('oilncs. ,,\.: N(mc(mlmuldtivc CcomrtrY, Academic Press, New York, 1094. 
2. ('onnes, A.: Cyclic cohomology and the transverse fundamental class of a foliation, in Geometric 

Mcthod.s in OperatorAlgehra,v (l(yom. 19k'3), Pitman Rcs. Notes in Math. 123, Longman, ttarlow, 
19,'q6. pp. 52-144. 

3. Connes, A.: Noncommutative geometry and physics, Les Houches, Prcprint IHES M/93/32, 
I t#)3.  

4. Connes, A. and Loft, J.: Particle models and noncommutative geometry, Nuch'ar Phys. B 18 
(1990). suppl. 29-47 (1991), 

5. ( 'onnes.  A. and Moscovici, H.: Cyclic cohomologv, the Novikov conjecture and hyperholic 
groups, 7opologv 29 ( 1990), 3 4 5 - 3 8 8  

b. Connes, A. and N|~sc~,.ici. H.: The local index lommhl in noncommutative geometry. "I'~ appear 
ira GA t'A. 

7. Gilkev, P.: Im'ari~mcc Theory', the lh'~t [:'qtt~ui(m ~uld flu' Ativ~d~ Smeer  huh, v Theorem, Math. 
Lecture Ser. I 1. Publish or Perish, Wilmington, DeI., 1994. 

S. ( ;mmov.  M.: Groups of polynomial growth and expanding maps, LH.ILS. Pull .  M~lth. 53 ( 19~ 1 ), 
53-73. 

9. Seelev. R. T.: Complex powers of elliptic operators, Prec. Symp. Pure Math. I0(1967) .  2;-;S-3()7 
I(L Wodzicki. M.: Noncommutative residue. Part I. Fundamentals. in K-Thcot3'. Arilhnu'ttc ~md 

(;cmnctrvIMo,scow, 19k'4 S6),Lecture Notcsira Math. 12~9. Springer, Berlin. 19.~7, pp. 320-  
399. 


