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Our aim in this paper is to give a general introduction to noncommutative 
geometry and describe in some detail an example of the quantized calculus.

Many of the tools of the differential calculus acquire their full power when 
formulated at the level of variational calculus where the original spaqe X  one 
is dealing with, is replaced by a functional space F(X)  of functions or fields on
X . The original space X  is involved only indirectly in F(X)  to write down for 
instance the right hand side F{ip) of a non linear evolution equation, ^  = F(y>), 
(p £ F(X). In F(tp) the partial differentiation and the pointwise product of 
functions <p on X  are being used.

The essence of noncommutative geometry is the existence of many examples 
of situations in which F(X)  makes perfectly good sense while X  is no longer a 
usual space described in the set theoretic sense of points p G X  and coordinates. 
The basic structure on the space F(X)  of (real or complex valued) functions on 
a set X  is the pointwise product of functions. Given two functions / 1, /2  we can 
form a new function / 1/2 given by:

(/i/a)(p) =  / i ( p ) / 2(p) V p e x .  (1)

In noncommutative geometry we still have a product on F(X)  but we drop the 
commutativity property of (1):

/ 1/2  = / 2/! V/, € H X )  ■ (2)

It is this commutativity property which signals that X  is an ordinary set. When 
we drop it we are no longer dealing with a set X  but essentially with a set 
endowed with relations between different points. For instance if we consider a 
set Y  consisting of two points 1,2  and the relation which identifies 1 and 2 then 
^(Y, rel) is the space M2(C) of 2 x 2 complex matrices with the product

( / i /2) ( i j )  = £ / i ( a ) / 2( M  (3 )

which is the usual product of matrices.
In this simple example the space {1,2} given by the two points without any 

relation is described by the subalgebra of diagonal matrices and it is the “off

diagonal” matrices such as ei2 = 0 1 
0 0

or e2i = 0 0 
1 0

which describe the
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relation. This construction of the algebra F(X)  extends easily to a pseudogroup 
of transformations of a manifold and to the holonomy pseudogroup of a foliation 
([Co]). It encodes by a non commutative algebra the structure given by the space 
and relations, and applies in particular to the case of a smooth manifold with 
its full diffeomorphism group [C-M].

As another simple example we can consider the case of a single point divided 
by a discrete group T, then the corresponding algebra T  is the group ring, whose 
elements /  are functions (with finite support) on T,

i - / 9 e c  (4)

with the product given by linearization of the group law gi,g2 —► in JH:

( /1/ 2)9 = ^ 2  fl,gi / 2,92 • (5)
9192=9

When we described the functional space F(X)  associated to an ordinary space 
X  we have been careless in fixing the degree of regularity of the functions 
f  £ F(X)  as functions of p £ X .  To various degrees of regularity correspond 
various branches of the general theory of noncommutative associative algebras. 
The latter are assumed to be algebras over C and to be involutive, i.e. endowed 
with an antilinear involution

/ - / *  . ( / i /2r  = /2  /1  • (6 )

The two degrees of regularity for which the corresponding algebraic theory is 
satisfactory are:

Measurability. It corresponds to the theory of von Neumann algebras.

Continuity. It corresponds to the theory of C* algebras.

In both theories of von Neumann and C* algebras, the Hilbert space plays a 
key role. Both types of algebras are faithfully represented as algebras of operators 
in Hilbert space with suitable closure hypothesis (cf. [Co]). One can trace this 
role of Hilbert space to the simple fact that positive complex numbers are those 
of the form

\  = z*z . (7)

In any of the above algebras functional analysis provides the existence (by Hahn 
Banach arguments) of sufficiently many linear functionals L which are positive

L(f* f)  > 0 (8 )

and a Hilbert space is easily constructed from such an L, together with a repre
sentation, by left multiplication, of the original algebra.

Next, many of the tools of differential topology such as the de Rham theory 
of differential forms and currents, the Chern character etc..., are well captured
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by cyclic cohomology ([Co]) applied to pre C* algebras, i.e. to dense subalgebras 
of (7* algebras which are stable under the holomorphic functional calculus:

where h is holomorphic in a neighbourhood of Spec(/). The prototype of such 
an algebra is the algebra C°°(X) of smooth functions on a manifold X.  The 
cyclic cohomology construction then gives back the usual differential forms, the 
de Rham complex of currents etc—  But it also applies to the highly non com
mutative examples of group rings, in which case the group cocycles give rise to 
cyclic cocycles, with direct application to the Novikov conjecture for the homo- 
topy invariance of the higher signatures of non simply connected manifolds with 
given fundamental group (cf. [Co]).

If one wants to go beyond differential topology and reach the geometric struc
ture itself, including the metric and the real analytic aspects, it turns out that 
the most fruitful point of view is that of spectral geometry.

What we mean by this is that while our measure theoretic understanding of 
the space X  was encoded by a (von Neumann) algebra of operators A  acting in 
the Hilbert space H the geometric understanding of the space X  will be encoded, 
not by a suitable subalgebra of A , but by an operator in Hilbert space:

In the compact case (i.e. X  compact) the operator D will have discrete spectrum, 
with (real) eigenvalues An, |An| —> oo, when n —> oo.

The first example of such a triple is provided by the Dirac operator on a 
compact Riemannian (Spin) manifold. In that case H is the Hilbert space of L2 
spinors on the manifold M, A  is the algebra of (smooth) functions acting in H 
by multiplication operators and D is the (selfadjoint) Dirac operator.

One can easily check in this case that no information has been lost in trading 
the geometric space M  for the spectral triple (A,H,D) indeed (cf. [Co]) one 
recovers:

1) The space M  as the spectrum Spec(*4), of the norm closure of the algebra A  
of operators in H.

2 ) The geodesic distance d on M  from the formula:

The right hand side of 2 ) continues to make sense in general and the simplest 
non Riemannian example where it applies is the O-dimensional situation in which 
the geometric space is finite. In that case both the algebra A  and the Hilbert 
space H are finite dimensional, so that D is a selfadjoint matrix. For instance 
for a two point space one lets A  = C © C acting in the 2-dimensional Hilbert 
space H by

(9)

D = D* selfadjoint unbounded operator in H . ( 10)

d(p,q) = Sup{|/(p) — /(g)| ; ||[i),/] || < 1} , V p ,q £ M .
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while D = 0

» 0
. Formula 2 gives d(a,b) = l//x.

As a slightly more involved O-dimensional example, one considers the alge
braic structure provided by the elementary Fermions, i.e. the three families of 
quarks (and leptons). Thus one lets H be the finite dimensional Hilbert space 
with orthonormal basis labeled by the left handed and right handed elementary 
quarks such as urL) ubR —  The algebra A  is C © H where the complex_number A 
in (A, q) G A, acts on the right handed part by A on up particles and A on down 
particles. The isodoublet structure of the left handed (up, down) pairs allows 
the quaternion q to act on them by the matrix

a (3
(3 â q = a + (3j ; a,/3 G C .

Then the Yukawa coupling matrix of the standard model provides the selfadjoint 
matrix D.

In [C-L] we went along and developed the theory of matter fields in the above 
generality, with the finite dimension hypothesis that the characteristic values of 
D~l are 0(n~l!d) for some finite d.

This allows to define the action functional of Quantum Electrodynamics in 
the above generality (cf. [Co]). The striking fact there is that if one replaces the 
usual picture of space time by its product by the above O-dimensional example, 
the QED action functional gives the Glashow Weinberg Salam standard model 
Lagrangian with its Higgs fields and symmetry breaking mechanism.

In developing this theory we made use of the tools of the quantized calculus, 
in particular of the Dixmier trace which replaces the Lebesgue integral in this 
context.

Writing the exact conditions that one requires for the triples (A , H, D) is a 
bit like writing the axioms of noncommutative geometry. If we let F  and \D\ be 
the elements of the polar decomposition of D,

D = F\D\ , \D\2 = D 2 , F = Sign D (11)

these operators F and \D\ will play the role of the measurements of angles and 
of length in Hilbert’s axioms of geometry.

In particular the operator F  = Sign D captures the conformal aspect while 
D describes the full geometric situation.

Considering F  alone we developed (cf. [Co]) the quantized calculus which 
replaces the usual differential and integral calculus.

This new calculus can be succinctly described by the following dictionary. We 
fix a pair (H, F) where H is an infinite dimensional separable Hilbert space and 
F  is a selfadjoint operator of square 1 in H. Giving F  is the same as giving the 
decomposition of H as the direct sum of the two orthogonal closed subspaces:

i t  € H ; F i = ± fl.

Assuming, as we shall, that both subspaces are infinite dimensional, we see 
that all such pairs (HyF) are unitarily equivalent. The dictionary is then the 
following:
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CLASSICAL QUANTUM

Complex variable Operator in H

Real variable Selfadjoint operator in H

Infinitesimal Compact operator in H

Infinitesimal Compact operator in H whose characteristic
of order a values \in satisfy = 0(n~a) n —> oo

Differential of real
or complex variable df = [F, /] = F f  -  f F

Integral of infinitesimal 
of order 1

Dixmier trace
Trw(r).

Let us comment in some detail each entry of the dictionary.
The range of a complex variable corresponds to the spectrum Sp(T) of an 

operator. The holomorphic functional calculus for operators in Hilbert space 
gives meaning to f(T)  for any holomorphic function /  defined on Sp(T) and 
only holomorphic functions act in that generality. This reflects the need for 
holomorphy in the theory of complex variables. For real variables the situation 
is quite different. Indeed when the operator T  is selfadjoint, f(T )  now makes 
sense for any borel function /  on the line.

The role of infinitesimal variables is played by the compact operators T  in
H. First JC = {T e C(H) ; T  compact} is a two sided ideal in the algebra C{H) 
of bounded operators in H , and it is the largest non trivial ideal. An operator 
T  in H is compact iff for any e > 0 the size of T  is smaller than e except for a 
finite dimensional subspace of H. More precisely one lets for n E N:

pn(T) = Inf{||T -  R\\ ; R  operator of rank < n} (12)

where the rank of an operator is the dimension of its range. Then T  compact 
iin{T) —s► 0 when n —y oo. Moreover the /tn(T) are the eigenvalues, ordered 

in decreasing size, of the absolute value \T\ = (71*T) 1/ 2 of T. The rate of decay 
of the iin(T) as n —► oo is a precise measure of the size of the infinitesimal T.

In particular for each positive real a  the condition:

fin(T) = 0 { n -a) n->  oo (13)

(i.e. there exists C < oo such that pn{T) < C n~a Vn > 1) defines the in
finitesimals of order a. They form a two sided ideal as is easily checked using 
the formula (12) for fin{T). Moreover if T\ is of order oq, of order 0:2 then 
T1T2 is of order ol\ + <22.
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It could seem at this point that since the size of an infinitesimal is governed 
by a sequence —► 0 we could dispense with operators and take the algebra
£°°(N) of bounded sequences as the notion of real or complex variables together 
with its ideal Co(N) of sequences /xn, \in —► 0 when n —> oo as infinitesimal 
variables. The first possibility that we would loose in doing so would be to have 
variables with a continuous range (and even with a Lebesgue spectrum). Indeed 
there are bounded operators in C(H) with arbitrary spectral measure while the 
elements of ¿°°(N) all have pure point spectrum.

The second very important point that would be lost is the use of commuta
tors, crucial in the following notion of differential.

The differential df of a real or complex variable, usually given by the differ
ential geometric expression:

<i4)

is replaced in the new calculus by the commutator:

df = [FJ\. (15)

The passage from the classical formula to the above operator theoretic one is 
analogous to the quantization of the Poisson brackets {/, g} of classical mechan
ics as commutators: [/, g). This is at the origin of the name “quantized calculus”. 
The Leibnitz rule d(fg) = (df)g + /  dg still holds.

The equality F2 = 1 is used to show that the differentials df have vanishing 
anticommutator with F .

The next key ingredient of our calculus is the analogue of integration, it is 
given by the Dixmier trace. The Dixmier trace is a general tool designed to read 
in a classical manner a data of quantum mechanical nature. It is given as a 
positive linear form Tru, on the ideal of infinitesimals of order 1 and is a trace:

Tr„(ST) = Tr^CTS) VT of order 1 , S bounded. (16)

In the classical differential calculus it is a great fact that one can neglect all 
infinitesimals of order > 1 . Similarly, the Dixmier trace does neglect (i.e. vanishes 
on) any infinitesimal of order > 1 , i.e.

Trw(T) = 0 if tin(T) = o in '1) (17)

(where the little o means, as usual, that nfin —► 0 as n —> oo).
This vanishing allows considerable simplifications to occur, similar to those 

of the symbolic calculus, for expressions to which the Dixmier trace is applied.
The value of T r^T ) is given for T > 0 by a suitable limit of the bounded 

sequence:

S53f t
It is then extended by linearity to all compact operators of order 1 .

( 1 8 )
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In general the above sequence does not converge so that Tr^ a priori depends 
on a limiting procedure u. However, in all the applications one can prove the 
independence of Tra;(T) on u. Such operators T  will be called measurable. For 
instance when T  is a pseudodifferential operator on a manifold it is measurable 
and its Dixmier trace coincides with the Manin-Wodzicki-Guillemin residue com
puted by a local formula. In general the term residue (T ) for the common value 
of Trw(T), T  measurable, would be appropriate since for T  > 0 it coincides with 
the residue at s =  1 of the Dirichlet series £ (s )  =  Trace(T5), s G C, Re(s) >  1.

We have now completed our description of the framework of the quantized 
calculus. To use it for a given non commutative space X  we need a representation 
of the algebra A  of functions on X  in the Hilbert space H. The compatibility 
of this representation with the operator F  is simply that all operators /  in Ti 
coming from A  have infinitesimal differential:

[F,f]eJC V / € A  (19)

Such a representation is called a Fredholm module, and these are the basic cycles 
for the AMiomology of A when A is a C*-algebra.

To see how the new calculus works and allows operations not doable in dis
tribution theory we shall start by a simple example. There is a unique way to 
quantize in the above sense the calculus of functions of one real variable (i.e. for 
X  = R) in a translation and scale invariant manner. It is given by the represen
tation of functions as multiplication operators in L2(R) while F  is the Hilbert 
transform. Similarly for X  = S 1 one lets L00(Sfl) act in L2(51) by multiplication, 
while F is again the Hilbert transform, given by the multiplication by the sign 
of n in the Fourier basis (en)nez •k2(*S,1)> w^h en(9) = exp(inO) V0 G S'1.

The first virtue of the new calculus is that df continues to make sense, as an 
operator in L2(SX) for an arbitrary measurable /  G L^ (S 1). This of course would 
also hold if we define df using distribution theory but the essential difference is 
the following. A distribution is defined as an element of the topological dual of 
the locally convex vector space of smooth functions, here C°°(S1). Thus only the 
latter linear structure on C0O(S1) is used, not the algebra structure of C°°(S1). It 
is consequently not surprising that distributions are incompatible with pointwise 
product or absolute value. Thus more precisely while, with /  non differentiable, 
df makes sense as a distribution, we cannot make any sense of \df\ or powers \df\p 
as distributions on S 1. Let us give a concrete example where one would like to use 
such an expression for non differentiable / .  Let c be a complex number and let J  
be the Julia set given by the complex dynamical system z —► z2 + c = (p(z). More 
specifically J  is here the boundary of the set B  = {z G C; sup \<pn{z)\ < oo}.

n€ N
For small values of c, the Julia set J  is a Jordan curve and B  is the bounded 
component of its complement. Now the Riemann mapping theorem provides us 
with a conformal equivalence Z  of the unit disk, D = {z G C, \z\ < 1} with 
the inside of B , and by a result of Caratheodory, the conformal mapping Z 
extends continuously on the boundary S 1 of D to a homeomorphism, which we 
still denote by Z, from S 1 to J. By a known result of D. Sullivan, the Hausdorff 
dimension p of the Julia set is strictly bigger than 1 , 1 < p < 2. This shows that
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the function Z  is nowhere of bounded variation on S 1 and forbids a distribution 
interpretation of the naive expression:

J f ( Z ) \ d Z \ >  V/€C(J) (20)

that would be the natural candidate for the HausdorfF measure on J.
We shall show that the above expression makes sense in the quantized cal

culus and that it does give the HausdorfF measure on the Julia set J. The first 
essential fact is that as dZ = [F, Z] is now an operator in Hilbert space one 
can, irrespective of the regularity of Z , talk about |dZ|, it is the absolute value 
\T\ = (T*T)1!2 of the operator T  = [F, Z], This gives meaning to any function 
h(\dZ\) where A is a bounded measurable function on R + and in particular to 
\dZ\p. The next essential step is to give meaning to the integral of f(Z)\dZ\v. 
The latter expression is an operator in L2(Sl ) and we use a result of hard anal
ysis due to V.V. Peller, together with the homogeneity properties of the Julia 
set to show that the operator /(Z)|dZ |p belongs to the domain of definition of 
the Dixmier trace Tr^, i.e. is an infinitesimal of order 1 . Moreover, if one works 
modulo infinitesimals of order > 1 the rules of the usual differential calculus 
such as:

|# ( Z ) r  = W'{Z)\* \dZ\p (21)

are valid and show that the measure:

f -+ T rM (Z ) \d Z \p) V/ G C(J) (22)

has the right conformal weight and is a non zero multiple of the HausdorfF 
measure. The corresponding constant governs the asymptotic expansion for the 
distance, in the sup norm on S 1, between the function Z  and restrictions to S 1 
of rational functions with at most n poles outside the unit disk.

Let us now pass to the higher dimensional case.

1 Quantized calculus and conformal manifolds

Let V be an even dimensional oriented compact manifold endowed with a con
formal structure. We shall now show how to quantize in a canonical manner the 
calculus on V by constructing a natural even Fredholm module (H, F, 7 ) over 
the algebra C°°(V) of smooth functions on V.

For the construction we shall just need the Z/2 grading of the vector bundle 
AnT*, n = 7}dimV, given by the * operation. Recall that given a Euclidean 
oriented vector space E  of dimension m, the * operation, * : A*F —► A*E is 
given by the equality:

*(ei A ... A 6k) = e*;+i A ... A em (1.1)

for any orthonormal basis e i , . . . ,  em of E  compatible with the orientation. When 
m  is even, m  = 2n, the restriction of * to AnE  is unaffected if one replaces the
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Euclidean metric of E  by its scalar multiples. Moreover one gets a Z/2 grading 
on Aq E  given by the operator 7  = (—1) n(n2_1) in* which is of square 1 .

Let Ho be the Hilbert space L2(V, Aq T*) of square integrable sections of the 
complex vector bundle A q T*, with the inner product given by the complexifi
cation of the real inner product

(cji,cc72) = Í  u>i A 2 Vcji, û 2 € L2(VyAnT*). (1.2)
Jv

By construction Ho is a module over C°°(V) (and also L°°(V)) with:

(/w)(p) = f(p) w(p) V/ € C°°(V) , c; G Ho , p 6  V. (1.3) 

It is Z/2 graded by the above operator 7  of square 1,

(7 v)(p) = 7 M p )) Vp G V , u  G Ho. (1.4)

To construct the operator F  we need the following:

Lemma 1 . Let B  C Ho be the closure of the image of d : C0O(V)Aç71T*) —> 
C°°(V, Aq T*). Then B is the graph of a partial isometry S : Hq —> Hq (resp. 
S * : Ho’ —► and 1 — (SS* + S*S) is the orthogonal projection on the finite
dimensional space of harmonic forms.

Proof. This follows in a straightforward manner from the Hodge decomposition 
([Gi]) of Ho as the direct sum of the kernel of d + d*, i.e. harmonic forms, and 
the image of d + d*. Thus any u e Hq , orthogonal to harmonic forms, can be 
written as u = da, a  G L2(V, Aj^"1! 1*), using the formula d* = -  * d* for
the adjoint of d. Moreover the equality cj = -Mp da determines da uniquely since 

Il H 2 dall2 = Il á a ll2 G Aq "1 T*). (1.5)

We can now define the Fredholm module (?f,F,7 ) over C00(V'). We let H = 
7-fo 0  H n(V, C) be the direct sum of Ho with the finite dimensional Hilbert 
space of harmonic n-forms on V, which we identify with the n dimensional 
cohomology group H n(V, C). We endow H n with the opposite Z/ 2  grading - 7  
and with the 0-module structure over C°°(V). The direct sum H = Ho © H n is 
thus a Z/ 2  graded C°°(V) module. We let then F  be the operator in H, direct

^ ^  acting in Ho © H nsum of S* 0
o' s 

_s* 0
projection on H C Ho © H n.

and acting in H n © H n. Note

that acting in Ho © H n is equal to 2P  -  1 where P is the orthogonal

Theorem  2 . a) The triple (H,F,*f) is a Fredholm module over C°°(V)y canon
ically associated to the oriented conformal structure of V. It is p summable for 
any p > 2n.
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b) The character cft*(7Y,F,7 ) is 2n times the Atiyah-Hirzebruch £ genus multi
plied by the fundamental class [V].

c) The Fredholm module (H^F^) uniquely determines the oriented conformal 
structure ofV.

We refer to [Co] for the proof.
Let us work out in more detail the simplest example of the construction of 

the Fredholm module (H, F, 7 ) associated by theorem 2 to an oriented conformal 
manifold. Thus let V = Pi(C) be the Riemann sphere. The Hilbert space Tt is 
the space of square integrable 1-forms, i.e. the direct sum H = 0  H~ of the
spaces of square integrable forms of type (1,0) and (0,1). Using the complex 
coordinate 2 in Pi(C) = C U {0 0} we can write any element £ 6  H± as £(z)dz 
(resp. t(z)dz) where £ is a square integrable function on C. With these notations

the unitary operator 5, H 
Hilbert transform, given by:

H+ such that F  = 0
S*

S
0

, is the complex

(SO(z') JL  f  fl*)
2m J c  (z -  z')2

dz dz (1.6)

where the integral is defined as a Cauchy principal value, i.e. as the limit for 
e —> 0 of the integral over \z — z'\ >e.

The operator S is canonically associated to the conformal structure of Pi(C). 
Thus the differential form (z -  z ' ) ~ 2 dz dz1 on Pi(C) x Pi(C) is SX(2 , C) in
variant.

Rem ark
(1) The construction of theorem 2 applies to arbitrary quasi-conformal topo

logical manifolds ([Co-S-T]) and yields local formulae for rational Pontrjagin 
classes.

(2) This construction extends to an arbitrary local field such as the p-adic 
number field Qp. It is interesting in that respect to relate the Polyakov action dis
cussed below with the p-adic string action discussed in []. The latter is obtained 
using the usual trace instead of the Dixmier trace, due to the O-dimensionality 
of the p-adic situation.

1.1 P erturbation  of Fredholm modules by the com m utant von 
Neum ann algebra

Let M  be a von Neumann algebra and M2(M) = M2(C) O M. Let

a b 
b a G M2(M); a*

- 6*

- 6*

a*
a b 
b a

a b 
b a

In other words a, b are elements of M  which fulfill the conditions: 

a*a -  b*b = 1 , a*b = b*a , aa* -  bb* = 1 , 6a* = ab\ ( 1.8)
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Proposition 4. a) G is a subgroup o /G I^ M ), and is isomorphic to Glq(M)
b) Let p, = p* € M, ||/x|| < i. Then g(fi) G G where

M  = , a = (1 -  fi2) 1/2 , b = n(l -  n2)' 1/2

c) Let U - { [ ;  «1 ; u G M  , u*u = uu* = l |  be the unitary group of M
viewed as a subgroup of G. Then every element g G G is uniquely decomposed as 
g = u g(p) for some u eU , ¡i G M , p = p*, \\p\\ < 1.

Proof, a) Let gu g2 G G, with g, = aj
[bj £

Then one has

9 i 92 =
a\0,2 H" b\b2 o>ib2 ~h b\a2 
a\ b2 + b\ a2 a\ a2 + b\ b2

a2 2̂ - a\ -b \ a^al 4- &2&Î -i>2aî ~ a2 î
—62 a% 1-&Î «1 J - b l a \ - a lb l  a^a\ + b*2b\

These equalities show that g\g2 G G. They also show that the map 

a + b is an isomorphism G ~  GLi(M).

a
b

b
a

b) Since ||//|| < 1, (1 — p?) 1/ 2 makes sense. By construction a = a*, 6 = 6* all 
commute with each other and a2 -  b2 = 1. Thus g(p) G G.

a b 
b a 

invertible and we

c) Let g = G G. One has a*a = 1 + 6*6 > 1, aa* = 1 + bb* > 1. Thus a is 

et u be the unitary of its polar decomposition: a = u(a*a)1̂ 2.
u 0Replacing g by  ̂ i g, one can assume that a is positive. It follows

then, using the equalities 6*6 = a*a -  1 = aa* -  1 = 66*, that 6 is normal, and 
|6 | = (a2 -  l )1/2. Let 6 = ?;|6 | be the polar decomposition of 6. Then u commutes 
with |6 |, so that 6 commutes with a. The equality ba = a6* then shows that 
6 = 6*, and it follows that g = p(/x) where fi = 6a” 1. One has ||/z|| < 1 since 
|6 | = (a2 -  l ) 1/ 2 and a is bounded.

Definition 5. Let M be a von Neumann algebra. We let be the above
subgroup of GL2(M). If M  is Z/2 graded we let fj,ev(M) be the subgroup of 
p,(M) determined by the conditions:

9 =
a 6 
6 a G fiev i f f  & is even and 6 is odd.

Let now (7Y, F) be a Fredholm module over a G*-algebra A, and let M  be 
the commutant of A in H. By construction M  is a von Neumann algebra, and
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it is Z/2 graded when the Fredholm module is even. We shall now describe a 
natural action of the group g(M) (resp. gev(M) in the even case), on the space 
of F ’s yielding a Fredholm module over A.

Proposition 6 . Let g =

with F' = g(F) = (aF + 6
A. It is even if g G gev(M). Moreover for any x 
belongs to the two sided ideal generated by [Fyx\.

G g(M) (resp. pev(M) in the even case). Then

(feP+a)“ 1, the pair (H, F ') is a Fredholm module over 
G A, the commutator [F\x]

Proof. The equality g(F) = (aF + b)F(aF + b) 1 shows that g(F)2 = 1. To 
show that g(F)* = g(F) one has to check that

(aF + bY(bF + a) = (bF + a)*(aF + b).

But this equality follows from the relations a*b = b*ay a*a-b*b = 1. To conclude, 
we just need to compute [F1 yx] in terms of [F,x]. One has [(aF + b)(bF +
a)" \x ]  = a[Fyx](bF + a)~l -  (aF + b)(bF + a )"16[F,a;](6F  + a) " 1 = (a -  
F '6)[F,a;](6F  + a) “ 1 = (bF + ay^ lF ^x^bF  + a)-1 . We have used the equality 
( a - F 'b ) - 1 =(bF + a ) \

Example 7. Let (7f,F, 7 ) be the even Fredholm module on the C*-algebra 
C(P\(C)) associated by theorem 2 to the Riemann sphere, V = Pi(C). The 
commutant M  = A! of A = C(Pi(C)) in H is the von Neumann algebra of 2 x 2 
matrices:

where /  and g are measurable bounded functions on V = Pi(C) and u,v  are 
measurable bounded Beltrami differentials: u(z^z)dz/dz, v(zyz)dz/dz [Beri]. In 
particular the odd elements fx G M, p = p* with ||ja|| < 1 correspond exactly to 
a single Beltrami differential v(zyz)dz/dz with ||v ||oo  < 1, and v measurable, by 
the equality:

/z = 0 v* 
v 0

Now by proposition 4 c) all the relevant perturbations of a Fredholm module by 
the action of /xev(M) are obtained using the elements g(fi)y g, odd, of proposition 
4 c). (The action of U just conjugates the Fredholm module to an equivalent one.) 
One checks by a direct calculation that for any g(g) G gev(M) the perturbed 
Fredholm module (Hyg(g)(F)) over A = C(P\(C)) is canonically isomorphic to 
the Fredholm module over A associated to the perturbed conformal structure on 
Pi(C) associated to the measurable Beltrami differential v(zyz)dz/dz.

The same interpretation of the construction of proposition 6 holds for arbi
trary Riemann surfaces. But the above case of Pi(C) is particularly significant 
since the measurable Riemann mapping theorem ([Ber]) is equivalent in that 
case to the stability of (Hy F) under perturbations, i.e. the existence for any 
g G pev(M) of a unitary operator U(g) in H such that:
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a) U(g) A U(g)* = A 

V) U(g) F U(g)* = g{F).
(Such a unitary is uniquely determined modulo the automorphism group 

U(l) x PSL{2 ,C) of the module
We refer to [Beri] for a proof of the measurable Riemann mapping theorem 

based on the 2-dimensional Hilbert transform, i.e. on the above operator F.

2 The 4-dimensional analogue of the Polyakov action

We shall use the quantized calculus to find the analogue in dimension 4 of the
2-dimensional Polyakov action, namely:

I  = [  gu d,Xi A * dXj (2.1)
2tt Je

for a Riemann surface E  and a map X  from E  to a d-dimensional space M.
Our first task will be to write the Polyakov action (1) as the Dixmier trace 

of the operator:
E Vij dX{ dXj (2 .2 )

where now dX  = [F, X] is the quantum differential of X  taken using the canon
ical Fredholm module (W, F) of the Riemann surface E.

The same expression will then continue to make sense in dimension 4, i.e. 
with E  replaced by a 4-dimensional conformal manifold. The action we shall 
get will be conformally invariant by construction and intimately related to the 
Einstein action of gravity.

In general, given an even dimensional conformal manifold T, dim E  = n = 
2m, we let H = L2 ^E , Ajg T*^ be the Hilbert space of square integrable forms 
of middle dimension, in which functions on E  act as multiplication operators.

We let F — 2P -  1 be the operator in H obtained from the orthogonal 
projection P  on the image of d. It is clear that both H and F  only depend upon 
the conformal structure of i7, which we assume to be compact

In terms of an arbitrary Riemannian metric compatible with the conformal 
structure of E  one has the formula:

F = {dd*-d*d)(dd*+d*d)~1 on L2(E,Am T*) (2.3)

which ignores the finite dimensional subspace of harmonic forms, irrelevant in 
our later computations.

By construction F  is a pseudodifferential operator of order 0, whose principal 
symbol is given by:

Lemma 1 . The principal symbol cro(F) is given by:

*o(*,0 = (e€ *{ -* i  c{) |K ir2 , V (a,0 € T*(Z).

Quantized Calculus and Applications
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We have denoted by e$ (resp. i$) the exterior multiplication (resp. interior) 
by £•

When n = dimi? = 2, one has Ag T* = Tq  and cr0 associates to any 
£ ^  0, £ G T*(E)y the symmetry with axis £. For any function /  G C°°(E)y 
the operator [F, /] is pseudodifferential of order —1 . Its principal symbol is the 
Poisson bracket {oo,/},

{fro, /}(*, 0  = 2 (edf H + e* idf  ~ 2ec t* (£, df) HCH“ 2) ||£||-2 . (2.4)

For ||£|| = 1, decompose df as (d/,£)£ + V where 77 _L £. Then {ao,/}(£,£) = 
2 ^  and its Hilbert Schmidt norm, for n = 2, is given by:

trace ({<t0, /}(*,£)* Wo,f}(x,£)) = 8 ||i?||2 , V = df ~ W ,(,)£■

The Dixmier trace Tr^ (/o[F, / 1]* [F, / 2]) is thus easy to compute for n = 2, 
as the integral on the unit sphere S*E of the cotangent bundle of L1, of the 
function:

trace ( /0  {cr0, / 1}* {cr0 , / 2}) = 8 f 0(x) (dff,df£)  
where df1  = df -  (df,£)£ by convention. One thus gets:

Proposition 2. Let E be a compact Riemann surface (n = 2), then for any 
smooth map X  = (X*) from E to R d and metric rjij(x) on R d one has

¿ j U ,  A * dX* = -1 /2  Trw (%  .

Both sides of the equality have obvious meaning when the rjij are constants. 
In general one just views them as functions on E  namely rjij o X.

Let us now pass to the more involved 4-dimensional case. We want to compute 
the following action defined on smooth maps X  : E —> R d of a 4-dimensional 
compact conformal manifold E  to R d, endowed with the metric 77̂  dxl dx^.

/  = Trw(%  (2.5)

Here we are beyond the natural domain of the Dixmier trace Tr^ but we can 
use the remarkable fact, due to Wodzicki, that it extends uniquely as a trace on 
the algebra of pseudodifferential operators (cf. [Wo]). For practical purposes the 
local formula for this extension, which we still denote by Trw, is given as follows 
(up to normalization):

TrU P*)^ [  <r-i(x,0d4x d3£ (2 .6 )
JS*E

where PG is a pseudodifferential operator whose total symbol

fr( x , 0  = <T0(x,O + <T-i(x,£) + a - 2 (x,£) + ••• (2.7)

has <T_4(z,£), as the component of order -4 .
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This formula makes sense for scalar pseudodifferential operators, defined in 
local coordinates x* by the usual formula:

{Pa){x,y) = J a(x,t) d ^  (2 .8 )

but, by [W02] it is independent of the choice of local coordinates and defines a 
trace, TV,, on the algebra of scalar pseudodifferential operators.

When we consider a vector bundle E  over a manifold E y and a pseudod- 
ifferential operator P  acting on sections of E , we compute T r,(P ) as follows. 
Choose local coordinates xJ and local basis of sections a* for the bundle E. Then 
P  appears as a matrix P/ of scalar pseudodifferential operators:

P ( fk ak) = ( P * fk) a e.

The expression TV,(P) = Tr^P^) is then independent of the choice of the local 
basis (ak) of E  and defines a trace.

It is clear that to compute the action I  we just need to compute the following 
trilinear form r  on C°°(E).

r(/o ,/i,/2) = TV, (/0 [P,/i][P,/2]) v/,- G C~{E).  (2.9)

By construction r  is a Hochschild 2-cocycle on C°°(E). We let , /2) be the 
4-dimensional differential form on E  uniquely determined by the equation:

r{fo,h,h) = J  fo tf(/i,/2) V/0 € C°°(S). (2.10)

The existence of V follows from the general formula for the total symbol of the 
product of two pseudodifferential operators PGl) PG2y in terms of and

= E j dt  ^ (* > 0  D X (2.11)

where a = (011,0:2,0:3,0:4) is a multiindex, a! = oq! <22! «3! 04! and D% —
H ) N a?-

This formula, applied with Pax = /0, PG2 = [F, fi][F> /2] shows the existence 
of V.

Our task is to compute, given x G E y the value of the differential form 
I2(/i)/2) at x, in terms of /1, /2 and the conformal structure of E.

We shall take local coordinates xi around x and let u Q = dx1 A  dxj be the 
corresponding basis for our vector bundle E  = Aq  T* over E.

Let P  = [P,/i][F,/2]. It is a pseudodifferential operator of order -2  and in 
terms of its symbol up to order - 4:

a = a - 2  + (T- 3 + (J- 4 (2 .12)

where we have omitted the a, (3 matrix indices, we get the following formula for 
f?(/i,/2) at x:

fT(/i>/2) = trace (<r_4(x, £)) d3̂ j dx1 A  dx2 A  dx3 A  dx4 (2.13)
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where S 3 is the unit sphere in the £ variable and d3£ the normalized volume on 
S 3.

Next the total symbol <r, up to order —4 included, is obtained by formula 
(2.11) (and with more matrix indices) from the total symbols a([F, /i]), a([F, / 2]) 
which we only need to know up to order -3  included. To compute them we again 
use formula (2.11) for F f  -  f F  and we thus only need to know the total symbol 
of F  up to order -2 .

The computation is done using formula (2.3) and (2.11). What matters is 
the way the variables gij enter the formula:

Lemma 3. The total symbol <jF of F , up to order - 2  included, is a 6 x 6  matrix 
of the form:

F F , F . F  & — CFq + (J_ 1 -f &_2
where only invokes gij(x), aFx is linear in the 1-jet of the metric (at x) with 
coefficients depending smoothly on gij(x), aF2 25 linear in the 2-jet of the metric 
-f quadratic in the 1-jet of the metric, with coefficients depending smoothly on 
gij(x).

Proof. Both operators dd* — d*d and A  = dd* + d*d acting on Aq  T* = E  can 
be expanded in our local basis in the form:

cr{dd* — d* d) = qi + qi + (7o

a(A) =P2 +Pi+Po (2.14)
where p2, (72 only invoke the ^  (x), and p\ , q\ , po, qo have the properties indicated 
in the lemma for aFx, aF2 (cf. for instance [Gi] Lemma 2.4.2 p.118).

Now to compute the total symbol cr{A~l ) up to order - 2  let us denote by o 
the product of symbols as defined by formula (2 .11). One has:

^(4\-1) = p o (1 -  e-i -  e- 2 + e2_x) (2.15)

where, with p(x,£) = (#2(2 , £ ) ) -1  one lets

A o p  — 1 -{- £ —1 + 6—2 (2.16)

be the total symbol of A o p up to order —2 included. By construction p only 
depends upon the gij(x), so that by the formula (2 .11) the symbols £_i, 6 _ 2 
satisfy the conditions of lemma 3 (with e-k linear in the fc-jet of the metric + 
square of 1-jet for k = 2 ).

It thus follows from the formula (2.15) that a(A~x) has a similar expansion:

<t(A x) = 0*_2(Z\ 1) + a-^(A~1) + cf-^{A  x) (2-17)

with 0-_2_fc(Z\-1) linear in the fc-jet of the metric + eventual quadratic terms 
for k = 2 .

Finally when we compute the composition

a(dd* — d*d) o a(A 1) = aF 4- aFx + aF2
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we get, using formulas (2.14) and (2.11) the required property.

Now the total symbol of [F, /], up to order -3  included, is of the form:

E |« |= i 0? Da f  + £ m =2 ¿r d f d * f  + E |tt|=3 ¿T $f D* /

+ E W =1 %  ° h  Da f  + £ m =2 if ° h  Da f

+ Z \ a\= id ? o h D °  f.
(2.18)

Note that the differentiation d'* does not alter the properties of â _k stated in 
the lemma, so that for instance d^ is linear in the 1-jet of the metric.

To compute f?(/i,/2) we need the component of order -4  of the total sym
bol of [F, fi][F> /2]. This component a-4 is obtained by composition (i.e. using 
formula (2.11)) of the expressions (2.18) applied to /1 and /2. We thus get:

»-« = L ( s  «( «5» D " /■ ) » « f  o -l D“ h )  (2.19)

where the sum is restricted to |a| > 1, |/3| > 1, |a| + k + \(3\ + 1 < 4, and one 
takes in the composition o of the symbols, its component of degree —4 only. In 
other words, using (2 .11) and d^(Dafi)  = 0 we get:

*-«=E  h. i t  (D° h )  (a<+,+i w  ’ -<) ( ^ a ) <2-20>
where the sum is restricted to \a\ > 1, \/3\ > 1, M  + |/?| + |7| + |£| + A;-l-i = 4. The 
inequality k + I7I + t  < 2 allows to write a-4 as a sum of 3 terms according to 
the value of k + I7I + 1 G {0, 1, 2}. The term = Y  depends only upon

fc=*=|7|=0
the 9ij{x). The term cr^\ = ^  is linear in the 1-jet of the metric with

k+e+ |7|=i
coefficients depending smoothly on the gij. The term = Y  is the sum

k+t+\~f\=:2
of a linear term in the 2-jet of the metric and of a quadratic term in the 1-jet, 
both with coefficients depending smoothly on the gij. Since |a| + |/?| + |<$| = 2 if 
k 4- i  + |7 | = 2 we see that cr^l only involves the 1-jet of /1  and /2  at x.

These properties of <7^4 obviously persist after integration of the £ variable 
on the unit sphere S 3 of T*(U). Choosing the coordinates xj to be geodesic 
normal coordinates at the point x , we can assume that gij{x) = that the 
1-jet of g^ at x vanishes and that the 2-jet is expressed in terms of the curvature 
tensor Rijke, at x. We thus get:

Lemma 4. There exists a universal bilinear expression B (V a dfi , d/2) and
a trilinear form C(R, d/i, d/2) such that:

O ifu h )  = (B (V a dfu V0 df2) + C (R ,d fu df2)) dv
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where R is the curvature tensor, V the covariant differentiation and dv the 
volume form of a Riemannian structure compatible with the given conformal 
structure.

In order to determine the bilinear expression B we just need to perform 
the computation of in the flat case. Note that our notation V a is
ambiguous for \a\ > 1 since the covariant derivatives do not commute, but only 
|a| < 2 will be involved and the corresponding ambiguity is absorbed by the term 
C(R , dfi,df2 )• We shall determine C using conformal invariance of i?(/i, / 2), but 
let us begin by the computation of V in the flat case.

In the flat case we have:

Vo(®. 0  = (e£ H -  H ei) Ik ir2 » <r~k = 0 Vfc > 0. (2.21)

As <T(f is independent of x, the formula (2 0 ) simplifies to 

<r_4 (x ,0  = 2  1  1  i  (a“+i 4 )  (d0 a?) (Da / 1) (x) (D0+s f 2) (x) (2.22) 

where the sum is performed for multiindices a,(3,6 such that |a| + \/3\ + \S\ = 4,
M > 1 , \P\ > 1 .

Let us consider the function of three vector variables £,/x, v given by

/(i.M»*') = S  trace ( ( 5 i +i ao)  (d? ° o ) )  M* v0+S (2.23)

where the sum is performed with the same conditions as in (22). By construction 
we thus have in the flat case

f2(fu h )  = (£  (Da h )  (x) {D0 h )  (x)) dx1 A ... A dx4 (2.24)

where E  Aa>0 fj,a v0 = f g3 f({, n, v) d3£.
To determine the function /(£, \i, v) we use the equality:

/(£, /x, v) = g(£, p + v,v)+  terms not involving /x (2.25)

where g(£, /x, u) = S  jp trace (d* <Jq d^ crfi  ̂ /xa i/  ̂with the sum performed
for |a| > 1 , \/3\ > 1, |a| + \P\ = 4. Thus g(£,ii,v) reads of from the Taylor 
expansion of h(£ + [i, £ + v) with:

HZ,v) = trace (o f (£) cr£(v)) = 2 (f,J?)2 U\\~2 \\r)\\~2 + constant. (2.26) 

A straightforward calculation of the Taylor expansion of h on the diagonal gives: 

ff(C.M,^)= 2 ||M||2 (S ,v )-M Z ,» )2 (fit, v ) -4 (Z ,n )3 (t,v)

+ M 2- \ H 2 <S,m>2-M 2 <̂ >2 + IHI2 IHI2
+ 2|M|2 (t,v) (£,/z) -4 ( i , i / )2 (v,n) -4 (£ ,i/)3 (i,/i). (2.27)
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If we use on S3 the normalized volume element of integral one we have:
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/  (£,/*} (£>*') d3£ = j  {n,v) (2.28)
Js3 4

^ 3(£>m)3 (i,*') A  = g (m.*') IImII2- (2.29)

We thus get:

f  g ( t> w )  d3i  = -IMI2 M  + ( w ?  + \  M l2 IMI2 -  IMI2 M -  (2.30)

Using equality (2.25) we just need to determine the terms involving both \i and 
v in the expression:

-\\n + v f  (fl + I/,u) + (n + u,u)2 + ^ \\n + v f  |M|2 -|MI2 {n + v,v) 

and we get the desired result:

s  Aa,0 na v0 =  - IM I2 (m, v) -  M  ̂ )2 -  \ IM I2 IMI2 -  IMI2 M  «/>. (2.3i)

Using equality (2.24) we get the following formula for *f?(/i, / 2) in the flat case:

i i U u h )  = (¿{(d fudh))  + (Vd/i, Vd/2) -  i  Aft Afe) d ^ A .. .Ada;4 (2.32)

where A = - E  d? is the Laplacian and V the covariant derivative. We can thus 
use lemma 4 and summarize what we have found so far in the following:

Lemma 5 . There exists a universal trilinear form C(R> ¿/1,^/2) in the curvature 
R and the covectors df\ , d/2  such that, in full generality, one has:

n ( h , f 2) = ( ¿ m M )  + (Vd/x,Vd/2) -  \ { A h ) { A f2) + C(R,dfu df2)^ dv.

(2.33)

Our next task is to use conformal invariance of *f?(/i, / 2) to determine the 
term C(i?,d/i,d/2). Thus let us replace the metric Qij of S  by (1 + 6) where 
6 is a smooth function on E  and compute, to first order in <5, the variation of 
the various terms of formula (2.33).

The perturbation of the Levi Civita connection is given, up to order one in 
5, by the following bundle map T* —> T* <g> T*:

(V '_V)w = - i  (u>®d6 + d 6 ® u -  (d6,u>) g) eT * ® T *  (2.34)
¿i

where we used the symbol g for the metric viewed as an element of T* <g> T*.
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We can then compute the perturbation, up to order one:

(V'd/i, V'd/2)' -  (Vdfu Vd/2) =
((V' -  V)dfu Vdh) + W i , ( V ' -  V)d/2) + (Vd/X, Vd/2)' -  (Vd/x, Vd/2). 

The first term gives, using (2.34) and the equality

(Vd/, g) =  - A f  V/ € C°°(E). (2.35)

((d/i <g> d6 + d6® dfi -  (dd, d/i) 2 ), Vd/2)

= (2(d/i, Vdi(d/2)) + (dM/x) ^ / 2) •

We can thus rewrite the sum of the first two terms as

-  (dS,d(d/x,d/2)) -  i  (d<S,d/x) 4 / 2 -  i  (d<5,d/2) Z\/x. (2.36)

The last two terms just contribute

-26  (Vd/i, Vd/2). (2 .3 7 )

We thus have to add (2.36) and (2.37) to get the perturbation of the middle 
term in (2.33).

Similarly the general formula to order one in 6:

(A’ -  A)h = 6A(h) -  (dh, d6) Vh eC°°(Z)  (2.38)

shows that the perturbations of the first and third terms of (3 3 ) are respectively:

—Al (d/i,d/2)/ + A  (d/i,d/2) = (d6yd (d/i,d/2)) H-5Z\ (d/i,d/2) + A(6  (d/i,d/2))
(2.39)

{A 'h  A ' f2 -  A h  A f 2) = 6 A h  A h  + l  (dfu d6) A h  + l  (dh,dS) A h -
2 2 (2.40)

Adding (2.36), (2.37), (2.39) and (2.40) gives the following expression for the 
perturbation V  -  T  of the sum of the first three terms of (2.33)

T ' - T  = -2  ST -  2 {dfi, d (d/x, df2)) -  A (6(dh ,df2)) + 6 A((dfu  iff»)) • (2-41)

The general identity

A(fh) - f  A h -  (A f)h  = —2(d/,dh) V/,h  e C°°{S)  (2-42)

applied with f  = 6, h = {dh,df2) thus gives:

T ' - T  = -2 6 T - (A 6 )  {d/x,d/2). (2.43)
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Thus, as up to order one in S we have (dv)' -  dv = 28 dv, the differential form 
T dv satisfies, to order one in 6:

r  (dv)’ - T d v  = -A S  (dfu df2) dv. (2.44)

We hence just need to find C(R, df\,df2) such that

C’ dv’ - C  dv = AS (dfu df2) dv. (2.45)

The perturbation of the Riemannian curvature R  viewed as a linear map R : 
A2T* —> A2T* is given by:

R' - R  = - S R  + 1/2 A2 (VdS) (2.47)

where A2(Vd<$) is the natural action of the second derivative VdS on A2T*, at 
the Lie algebra level. The curvature scalar, r = trace R  thus satisfies:

r’ -  r -  -Sr  -  3 (ZW). (2.48)

We hence get the following natural solution of (45):

C(R,dfi,df2) = 1/3 r (dfu df2). (2.49)

What we know so far is that 1/3 r (dfi,df2) is a possible solution. It is in fact 
the only one since the only other invariant expression C(R,df\,df2) that could 
be added is a multiple of the Ricci tensor applied to df\ <g> df2 and one checks 
that it fails to give, when multiplied by dv, a conformally invariant answer.

We can thus summarize what we found as follows:

Theorem  6. Let E  be a 4-dimensional conformal manifold, X  : E  —> R rf a 
smooth map, 77 = 77MI/ dxv a smooth metric on R d. One has:

Trw M F i X » ]  [P1,*"]) = (lGTr2) - 1 { |  r  ( d X ^ d X 1')

+A {,dX>i ,d X v) + (V dX», V dX v) -  1 (AX>i)(A X l/)^ dv

where r is the curvature scalar of E, dv its volume form, V its covariant deriva
tive, A its Laplacian for an arbitrary Riemannian metric compatible with the 
given conformal structure.

Of course as we saw in the proof the various terms of the formula such as 
|  r (dX^,dXu) are not conformally invariant themselves, only their sum is. 
It is also important to check that the right hand side of the formula is, like 
obviously the left hand side, a Hochschild 2-cocycle. This allows to double check 
the constants in front of the various terms, except for the first one.

Theorem 6 gives a natural 4-dimensional analogue of the Polyakov action, and 
in particular in the special case when the 7 7 are constant, a natural conformally 
invariant action for scalar fields X  : E —> R,

I(X) = Tru ([F,X)2) (2.50)
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which by theorem 6 , can be expressed in local terms, and defines an elliptic 
differential operator P  of order 4 on E  such that:

This operator P is (up to the factor \)  equal to the Paneitz’ operator P  = 
Z\2 T d* {2Ricci-4/37"}<i already known to be the analogue of the scalar Laplacian 
in 4-dimensional conformal geometry.

Equation 51 uses the volume element dv so that P itself is not conformally 
invariant, its principal symbol is:

is that of (detP ) - 1 / 2 and can be computed (cf. [B-O]). The above discussion 
gives a very clear indication that the induced gravity theory from the above 
scalar field theory in dimension 4 should be of great interest, in analogy with 
the 2-dimensional case.

In this paper we only discussed the conformal aspect of noncommutative 
geometry. We refer to [Co] for the metric aspect and to [C-M] for the general 
local index formula in the above framework.
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(2.51)

(74(F) (*,*) = ¿IKI|4 (2.52)

which is positive.
The conformal anomaly of the functional integral


