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We construct a factor of type III, which has no almost-periodic state (or
weight). We exhibit a factor N of type Il and two automorphisms 8, , 8, of N
which are not in the same conjugacy class in Out N = Aut N/Int N though
76, = A, 70, = Ar with A €]0, 1[, 7 = Trace on N. We introduce and study
two invariants Sd and 7 for factors of type III, . We relate the closedness of
Int M in Aut M to the absence of central sequences in the von Neumann
algebra M.

INTRODUCTION

In [4] we proved that an arbitrary factor of type # III; is the crossed
product of a semifinite von Neumann algebra by the group Z of
integers. In [13] Takesaki showed that any factor of type III, is the
cross product of a semifinite von Neumann algebra by R, the additive
group of real numbers. Due to the obvious greater technical simplicity
of discrete cross products it was natural to ask whether a decomposition
as cross product of a semifinite von Neumann algebra by a discrete
abelian group was always possible for factors of type III, . We shall
show (Corollary 5.5) that such a decomposition may fail to exist,
even for factors acting in a separable Hilbert space, proving at
the same time that factors of type III, may fail to have any almost-
periodic state [4, Problem 4].

To study factors of type III; we define two invariants Sd and .
The point modular spectrum Sd(M) is the intersection of the point
spectra of all almost-periodic weights (if any) on M. It is always a
denumerable subgroup of R_*, when it is not R * and we shall see
(Corollary 4.4) that it can be any denumerable subgroup of R, *.
There is a large class of factors for which it is easy to compute and is
reasonably significant. In fact for any full factor (see definition below)
the following hold, with ¢ an almost-periodic weight on M.
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(1) Sd(M) = () point spectrum of 4, with e projection,
ecM,, e ~0.

(2) 'There exists an almost-periodic weight ¢, (1) = + oo such
that Sd(M) = point spectrum 4, .

(3) The ¢ of (2) is unique up to inner automorphisms and
multiplication by a scalar.

@) Sd(M) = S(M)

Property 1 does not hold in general (for nonfull factors), which then
makes the computability problem hard.

The class of full factors appears when looking for a topological
structure on the group Out M = Aut M/Int M. When M, is separ-
able, the group Aut M gifted with the topology of pointwise norm
convergence in M, (topology studied in [1] and [8]) becomes a polish
space as well as a topological group, which shows the significance of
this u-topology. Of course the topological group Out M is hausdorff
iff Int M is closed in Aut M. By definition, a von Neumann algebra M
is full when Int M is closed in Aut M.

Obviously all factors of type I are full, having no outer automor-
phism. A factor of type II, is full iff it does not have property I" of
von Neumann. For instance the hyperfinite factor of type Il;:

R, is not full, in fact Aut R, = Int R, , while the factor coming from
the left regular representation of the free group of two generators is
full.

An arbitrary factor M is full iff all sequences (x,,),en , || %, || bounded,
x, € M such that ||[x, , ¢]ll =n-x 0, Vo € M, are trivial.

Due to their description [4, Section V], factors of type III, are
never full, in fact they always have property L of Pukanszky and for

each teR, the modular automorphism o¢;° belongs to Int M, Ve.
For A€ ]0, 1], the Pukanszky’s factor P, is full. It then follows that
there exists a full factor N, (resp. N;) of type IL; (resp. 1I,) with
A e fundamental group G(N,) (resp. G(N,)). Whence G(N) # {1}
does not imply N & R, isomorphic to N.

It also follows that there exists a factor N; of type I, and two
automorphisms 6, , 8, of N; which both satisfy 70, = Ar, 70, = Az,
but are not in the same conjugacy class in Out N; . In particular
M, = cross product of N; by 6, , and M, are nonisomorphic factors
of type III, with M,~ = M,~ in the notations of [4, Section IV]. The
existence of full factors M of type III, having almost periodic states
gives a negative answer to a conjecture in [13]: the range of the
modular homomorphism §,, can be different from center of out M.
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Finally for full factors of type III; we show that the topology (M)
on R, coming from the modular homomorphism 6 of R in the topo-
logical group Out M, can be any topology associated with a unitary
representation of R. Let us first recall that an almost periodic weight ¢
on a von Neumann algebra M is a faithful semifinite normal weight ¢
whose modular operator 4, is diagonal: 4, = 3,4 AE, .

ProrosiTiON 1.1. Let A be a subgroup of R, *, B the canonical
injection of A in R, *, G the dual of A when A is gifted with its discrete
topology, and B the transpose of B. Let also M be a von Neumann algebra,
Y a faithful semifinite normal weight on M. The following conditions are
then equivalent:

(a) s is almost periodic and ( point spectrum 4,) C A

(b) There exists a (necessarily unique, because B(R) is dense in G)
representation o*4 of G in M such that o§f, = o, Vi€ R;

(c) 4 is strictly semifinite and there is a generating subset & C M
such that: Vx € & the function t — ot(x) extends to a *
strongly continuous map from G to M.

Proof.
(a) = (b) See [4] Lemma 2.7.3.
(b) = (c) is straightforward, using [2].
(c) = (b) By [2] the family (0,*);.g of maps from the unit ball of
with * strong topology, to itself, is equicontinuous.
Hence for each se€ G the x subalgebra of M: (I, = {x € M, o%(x)
converges * strongly when B(f) — s} is strongly closed. By hypothesis

each 7, contains & hence 0/, = M, for any s € G. It is then easy to
conclude, using the density of f(R) in G, that (b) holds.

(b) = (a) By [4] Lemma 2.1.6 the set of x € M which for some
A € A satisfy o%(x) = At'x V£ € R is total in M. This yields the desired
diagonalisation of 4, . We note moreover that

(1) Point spectrum 4, = Sp o4
A A-almost periodic weight ¢ on a von Neumann algebra is by

definition a faithful semifinite normal weight satisfying the equivalent
conditions in Proposition 1.1.

DerFiniTioN 1.2. Let M be a factor, then the point modular
spectrum of M is the subset of R, * defined by

Sd(M) = N point spectrum 4,

4 almost periodic weight on M
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THEOREM 1.3. Let M be a factor then:

(a) Sd(M)= (\T'(c*®") when ¢ runs through all almost-
periodic weights. (See [4], Section 2).

(b) Sd(M) is a subgroup of R_*.

Proof. *Clearly (a) = (b) using [4] Theorem 2.2.4. So we need only
to prove (a): Let G be the dual of R, * when R, * has its discrete
topology and let B be the transpose of /3 B(A) = A VieR, * Let U
be a representation of G on M, with U ~ o*R+", in the sense of [4]
Def. 2.3.3, for some almost-periodic ¢. Then ([4] Lemma 3.4.3)
UopB ~ 0% hence ([4] Theorem 1.2.4) there exists a semifinite
faithful normal weight ¢ on M such that ¢¢ = U< f. But (Proposx-
tion 1.1) ¢ is then R, *-almost periodic and (1), Sp U = Sp o¥'R+" —
point spectrum of A,,, From [4] Proposition 2.3.17 it follows that

p(a%m*) D) ﬂ point spectrum Aw
¢ almost periodic

As point spectrum 4, C I'(o®®+") the equality (a) follows.
Remark 1.4. 1f M, is separable and if Sd(M) #= R, * then Sd(M)

is countable.

Proof. The point spectrum /A of an almost-periodic weight ¢
on M is necessarily countable for 4, = Y AE, where the E, are pairwise
orthogonal projections in the separable Hilbert space 5, .

THEOREM 1.5. Let M be a countably decomposable factor of type
I1,, and I be a dense subgroup of R, *. Then the set of I'-almost-
periodic states on M is norm dense in the set of normal states on M.

Proof. Let (See [4] Corollary 5.3.6) N be a type II, von Neumann
subalgebra of M satisfying the following conditions
(a) N’ n M = Center of N.
(b) N is the range of a normal conditional expectation E.

(c) There exists an homomorphism € — u, of (Z/2)™ onto a
subgroup ¥ of the unitary group /#°(E), and a decreasing sequence of
projections (e;) k = 1, 2,..., ¢, € C such that N and ¥ generate M
and that e; = 1,

k
Y Ad#(0,..,0,¢,0,..) e =6,  VR=1,2,..

e=0,1
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Our first aim is, given a system (N, E, u, (¢;)) to build a faithful
normal trace 7 on N such that the weight 7' ¢ Eis I'-almost
periodic.

We let R be identified by the map B of Proposition 1.1 to a dense
subgroup of the dual group G of I'. Also for each & we put

k

E=(0,0,.,1,0,.)e(Z/2)™

Lemma 1.6. Let N be a von Neumann algebra of type 11, C =
Center of N. 0 € Aut N with 62 = 1, and e € C be a projection with
e + 0(e) = 1, also T a faithful semifinite normal trace on N and « > 0.
Then there exists a ke C, e~ < k < e such that, with ' = (k') the
Junction t — (D7 o 0, D7), extends to a x strongly continuous mapping
Jfrom G to the unitary group of C.

Proof. We have 7 = 7"(h’) where 7" is f-invariant and % is
affiliated to C. Let (f}), AeI" be a family of projections in C with
Zﬁ =1 and e (TH)AI<e. Put k= (Z/\f,\)h —1 then
7 = 7(k') is deduced from the f-invariant trace =" by the density
Y Af, hence the lemma follows.

Now let » be a semifinite faithful normal trace on N, and for
ke N, 0, be the restriction of Ad u, to N. Applying Lemma 1.6 to
the restriction of 6, to IV, proves the existence of a sequence (p,)nen Of
elements of C with

() Ad Ueriegsenstn_1:0..0P0 = Pn> €§ = 0,L,;j=12.,n
@) e <p <

(3) For each n the restriction 7" to N, of 7, = ([ Ty p;) is such
that (Dr,’ - 8,; Dr,’), extends to G as in Lemma 1.6. Let p = [Ty p; -
Condition (1) shows that [T, p; is 8, invariant for each #, hence that,
with ' = 7(p-) one has:

(D7’ 06, : D7) = (Dr, 00, : Dr,)

Moreover (3) shows that (Dr,oc 0,; Dr,) e, extends to G. An
induction hypothesis then yields for each € = (¢, , € ,..., €1 , 0,...)
that (Dr' o 8.0 0,; D’ - 6,) e, extends to G, with 0, =] 6% —
(D7' < 6, : DT') 6e,) hence extends to G.
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As (D7’ 0 8;; D7’y = (D7 o 6;; D7) extends to G, and as

20(51 Veen ,e"_l,o)(en) =1,

we see that (D7’ 0 §,,; Dr’) extends to G for all n.

It then follows from condition (c) on the %, and [4] Lemma 1.4.5(a)
that condition 1.1(c) is fulfilled by the weight ¢’ = 7’ o E hence that
@' 1s I'-almost-periodic.

Our next aim is to show that any normal state ¢ on M is a norm
limit of states ¢, on M such that ¢, o E is I'-almost-periodic. We let 7
be a faithful semifinite normal trace such that 7o E is I' almost-
periodic and % € L}(N, 1) such that ¢ = 7(h-). Let A > 1, Ae I, and
for neZ, let p, be the spectral projection of % corresponding to
JA%, A*+1]. We may assume ¢ to be faithful, hence % to be nonsingular.
Then ¥ p, =1, p,eN, A, < h, b — 3 A, < (A — 1)k and
with ¢, = 7((£ X*p,)) ") we have || @\/gx(1) — ¢ || < 2(A — 1). Using
the density of I" in R, * and the fact that ¢, o E is I'-almost-periodic
(it is deduced from 7o E by the density > A%p, affiliated to M,.z),
we get the desired conclusion.

We shall now end the Proof of Theorem 5. Let 4 be a normal state
on M, and ¢, be a faithful normal state on N. For each k = 1, 2,..,,
let N, be the von Neumann subalgebra of M generated by N and the
Ue,,....c,00.) > & = 0, 1. Then it is easy to check that each N,
satisfies condition (a) (b) (c) above and that UN,, is dense in M. Using
the Gelfand Segal construction relative to ¢, = ), o E we see that
is a norm limit of states of the form gy(x - x*), where x belongs to
UN,, . But ¢, commutes with E, (because EE, = E), and Ejx = x
for x € N, , hence any state gy(x - x*), x € N, is of the form ¢, o E;,
where ¢, is a state on N, . It is then clear that any state gg(x - x),
x € N is a norm limit of I'-almost periodic states of the form ¢, - E;, .

CoroLLARY 1.7. Let M be a factor, then Sd(M) C S(M).

Proof. We can assume that M is countably decomposable. Then
if M is of type I or I, it is clear that Sd(M) = {1} C S(M). If M is
of type III, then theorem 1.5 shows that Sd(M) = {1} is included in
S(M). If M is of type III, , A€ ]0, 1], then by [4] Theorem 3.4.1, one
has Sd(M) C {A*, n € Z}- = S(M). Finally if M is of type III,, the
above inclusion is obvious, for S(M) = [0, 4 oo[

COROLLARY 1.8. Let M be a Krieger's factor then Sd(M) = {1}.

Proof. Use [5]. This last corollary shows that the invariant Sd has
no interest for Krieger’s factors.
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II. AsympToTIC CENTRALISER OF VON NEUMANN ALGEBRAS

We generalize the construction of Mc. Duff [7] for Type III factors.
Let M be a von Neumann algebra, M, its predual. Forx e M, p € M,
let xpe M, , px€ M, , [x, 9] € M, be such that (xp)(y) = ¢(yx),
(px)y) = o(xy)Vy e M, [x, ] = xp — @x. Forxe M, p € M, we let
%o = (p(x*x))1/2 = || TTo(x) & || (On the Gelfand Segal construction
of g) and || #[}f = p(x*x + xxF)L,

LeMMA 2.1. (the verification is left to the teader). For x, ye M
and o € M, *, o(1) = 1 one has:

(@) lx eIl = lIlx*, #]

®) lxpll <lxl,

(©) Noxll <la*l,

(d) =y, @l < U= lILy> @l + 113 1l 1>, @1l

(&) e(y*x*xy) <Iylll=lP Ly, @]l + 1y 1Nl

) =l <Lyl <1then (|| 2y I5)* < lllx @]l + Iy, @l +
Tl + x5

PropPosITION 2.2. Let M be a von Neumann algebra, ¢ a faithful
normal state on M, BN the Stone—Chech compactification of the integers
and w € BN\N. Then:

(1) The subset A, of I°(N, M) of all sequences (x,,),.n Such that
I[x, » @Il = O when n — w is a norm closed x subalgebra of
I*(N, M).

(2) Let (x,)nen »(Yn)nen belong to I1°(N, M) and assume x,,— y,— 0
* strongly when n — oo then (%,)yen € Ay, < (Vn)nen € Ao.o -

(3)  The functional @, , @.((%,)nen) = lim,, @(x,) is a traceon A4, ,

(4) ng[(xn):eN(xn)neN] =0« Xp —> 0 Strongly when n — w

(5) The quotient of the C*-algebra A, by the two-sided ideal
oD Agisy Fo = {(®n)nen » %, — 0 x strongly when n — w},
is a finite von Neumann algebra noted M,, , .

Proof. (1) By construction A, , is a linear subspace of I*(N, M)
and using (2.1a) and (2.1d) it is a * subalgebra of I*(N, M). It is easy
to check that if (x,),en € 4,.., (norm closure) then lim,_,, |[[*, , ¢]l| <,
Ve > 0.

(2) Onehas| x, — y, I —0 when n—w hence ||[x, — ¥,,, ¢]|—0
when # — w, using (2.1b) and (2.1¢).
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(3) Let X = (% )pens ¥ = (¥n)nen be elements of 4, then
¢ (XY) = lim, o(x,y,), ®.(YX) = lim, ¢(y,x,) so the equality
follows from | ¢y, — y,¢]| -0 when n — w, using the uniform
boundedness of the sequence (x,)en -

(4) The * strong topology on bounded subsets of M is the same
as the topology defined by || |7, which gives the conclusion using (3).

(5) One hasfor XeA4, ,, the equivalence Xe€ £, <> ¢, (X*X)=0
so that #, N 4, , is a two-sided ideal in 4, , and is norm closed. Let
M,,=4,.,%.nA4,,and p,, (noted p, if no confusion can arise)
the canonical quotient map.

We just have to prove (using [11]) that the unit ball of the C*-algebra
M, ., is complete for the norm || x {; = ¢, (X*X)'/2 where p(X) = x;
as the functional v = ¢,0p;' is a faithful trace on M, ,. For
convenience, given x & M, , we call a sequence (x,),.n € I°(N, M) a
representing sequence of x when p,((%,)nen) = X. Let x® be a
sequence of elements of M, , such that:

2] < 1, || a0 — 0[], < 2-(24D)
Let (x),n be a representing sequence for @ such that | x| < 1
for any #n. Let (x'),.n be a representing sequence for x® such that
| 2 < 1VYn, and || 62 — 2 1* < 21 for all . Inductively choose
a representing sequence (x{), . of x" with:

fa ) <1 Y, a8 — 2P <27 Vjin
Put x, = * strong limit of xY’ when j — co. Then for any j, =
Il on, — xy)) e <2- 279 so that lim ||[x,,, ¢]| < 2% 279 and (%) nen € 4.0 -
As || pu((%,)nen — P ||, < 217 we see that ¥ = p,((x,)nen) 1s a limit
for the Cauchy sequence x'/, and finally that the unit ball of M, , is
complete.

ProposiTION 2.3. Let M be a von Neumann algebra, ¢ a faithful
normal state on M, and I a divected ordered set.

(1) Let (x;);c; be a bounded family of elements of M such that
% @]l — 0, j — © then || o(x;) — x;|lf = O uniformly

on bounded subsets of R.
(2) If 1 is an isolated point in Sp A, , and if E, is the conditional
expectation from M to M, then for any bounded sequence (x;);c; of
elements of M such that ||[x; , @]l — O one has || x; — E(x;)|[* — 0.
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(1) We shall provide several estimates which can be useful on other
occasions:

LEMMA 2.4. Let t€ R then there is an absolute constant C, such
that for any von Neumann algebra P, any couple @, 4 of faithful normal
states on P one has

|1 — (D : Dp))l < Gl — ol

Proof. Assume on the opposite that for each n there exists a
von Neumann algebra P, , and a couple ¢, , ¢, with

[ @n— ¥ull < 27| 1 — @u(Dify, : Depyy)dl
Using repetitions if necessary we can then assume that
Ylen—tall <o  while 3 {1 — (D, : Do)l =

Then consider the Gelfand Segal construction 5, , ¢, relative to ¢,
on P, and let nne'%ﬂn’ s én> =0, [0 — £, 1P < | @n — %n lls
Wy = Py - Put P = ®y (Pn)‘Pn)’ aCting in # = @7 ('%pn ’ gn)
Let D, = ; @ - ¢y @ gy @ - . Then when k& — 0, P, is
a norm convergent sequence in P, because (7, Q" @7, & &ri1)rer.0..
is a norm convergent sequence in 5.

So using [1] or [3] we see that (D®D,; Dg),is a strongly convergent
sequence in P, so that: :

(D¢ : Dgy); @+ @ (D : D)y ® 1 &) =+

has to be a strongly convergent sequence in P. But this contradicts the
divergence of the serie 3 | 1 — (D¢, : Do,);&, , €01

LemMma 2.5. Let te R, M and ¢ as in Proposition 2.3, C, as in
Lemma 2.4, then for any unitary v e M one has

(lo(x) — v [5) < 4C:|[v, ¢l
Proof. Apply Lemma 2.4 to ¢, = v*pv and ¢ on M, using the
equality (De, : Dp), = v*o(v). It yields |(v — o2(9)) & || <
2C, | ¢y — ol

LemMMa 2.6. Let teR, ¢ be a faithful normal state on a von
Neumann algebra M, C, as in Lemma 2.4.
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() VxeM,0 <x < 1/2onehas|[1 — #*)'72 o] < 2/3|[x, ¢]|
(b) VxeM,| x || < 1 one has || o2(x) — x|* < 16CY3|[x, @]L/2

Proof. (a) For each n one has [[a*, ¢l < nlx{"[x ¢l
(2.1d)) hence [[x7, g]| < # - 27+ |[x, ¢]|. Then

o«

QA — =2 9l < X

0

12012 — 1) - (12 —
(n 1)1

n) “[x2'n+2

» @]l

< ) 2700 ([, @]l = 213 [, ¢l
(b) Put||[x, ¢]| = €. Thenputa = (x + x*)/2,b = (x — «*)/2
One has |[[a, 9]l <e |bell<e 0<(1+a)/4<1/2, 0<
(1 + 5)/4 < 1/2. And with u;, = (1 + a)/4 + (1 — (1 + a)/4)?)'72,
uy = u,* it follows from (a) that ||[; , o]l < 2||[(1 + a)/4, ¢]l| < €/2
forj = 1, 2. Hence (2.5) we get:

I O-t‘”(uj) — u H: < 21/th1/2.€1/2,
4 . # ® 1+a _ 1 4+ a\W*
| o) — all? o, ( ; ) ( : )

@

= 2| 0wy + up) — (w, + wo)ll; < SC%/zfllz-
Also || o#(b) — b |z < 8C'2}/? and using x = a + ib we get (2.6b).

LeMMA 2.7. There exists a constant Cy << o0 such that for anmy
von Neumann algebra M, and any faithful normal state ¢ on M one has:

I o(x) — 27 < Co(1 + 1 2 ]) |, @l

Proof. Put K(t) = Inf A, || o2(x) — 2|7 < All[x, @]1/4 VM, ¢, x
Then K is lower semicontinuous, K(—t) = K(#) Vte R, K(0) = 0,
K+ 1) < K@)+ K(f') so that K(2) < Co(l + |t]), for some
Cy > 0. The proof of 2.3.1 is immediate using Lemma 2.7.

(2) LetfelYR),xe M, || x| < 1 then assume [ f(¢)dt =1
fo* (P — 21 = [ (e — 0 s ar]|
< [ Gt + @)1 7@ de s )

So for fe LY(R), [ | t | | f(¢)| dt < co we get an inequality
16°(f)x — %7 < Crlilx, @I, VeeM, |x| <1



ALMOST PERIODIC STATES AND FACTORS OF TYPE III; 425

Now choose f such that Support fn Sp 4, = {1}. It follows that
o%(f)x = E,(x) (Use o®(f) M C M,) for any x € M hence (2).

ProrosiTioN 2.8. Let M be a countably decomposable von Neumann
algebra, I be an ordered directed set, and (x;);c, be a uniformly bounded
family of elements of M then the following conditions are equivalent:

(a) There exists a faithful ¢ € M, * and a weakly dense subset
S CM with |[%, ]l =500, [%;,¥] =500 strongly
Vye &.
(B) There exists a total subset 2 C M, such that Ve 2,
[11%; > ) =5 O-
(v) x5, &)l =50 0, Vibe M and [x;, y]—;, o x O strongly, Vye M.
Proof. (y) = («) is clear. Let us prove (a) = (8). Take € > 0,

%,y € M such that ||[[x, ]|, < € and |{[x, ]| < € then for any 2 € M
we have:

lp(zxy — zyx)] <l 2lle, | (zyx — xzy)| < el 2]yl

hence |((y9)e)() — ((y)))| < (1 + [y} ]| 2] And it follows
easily that for each y € &, and ¢ = yp € M, we have |[[¢, x;]| > O
when j— oo, hence (B). (8) = (y) It follows from the following
inequality: a, xe M, |a|| < 1, |2 < 1

| #([a, x]* [a, #])| < 4 Sup [, ]I, [[ag, «]l], l[ap, x*]I, Ve e Mt

We assume that, with € > 0, we have |[p, ]| < ¢, [[ap, x]|] < ¢,
l[ap, x*]|| << € then for any y € M the following inequalities are true:

lplxy —yx)| < ellyll, | o(xya) — p(yxa) < eyl
| p(x*ya) — p(yx*a)] < eyl

hence | p(a*x*xa) — p(xa*x*a)| < ¢, | p(xa*x*a) — p(a*x*ax)] < e
which gives:

| pla*x*[x, a])| = | pla*x*(xa — ax))| = | p(a*r*xa) — pla*x*ax)| < 2e.
Moreover
| p(x*a*ax) — p(xx*a*a)l <e and |@(x*a*xa) — p(xx*a*a)| < e

so that | p(x*a*[a, x])| < 2e.

THEOREM 2.9. Let M be a countably decomposable von Neumann
algebra and o e BN|N.
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(1) The quotient of the C*-algebra A, C I°(N, M) of all sequences

(x Y\ curh thot Tx aolll 0 25 ... Yoy M hay #ha
\Fnjnen SHER lhRal ¥ > Pl > Y, %> w, VpE i, oy tne

two-sided ideal of sequences converging x strongly to 0 when
n — w, is a finite von Neumann algebra M, (called asymptotic
centraliser of M at w).

- (2) For any automorphism 6 € Aut M, the automorphism (x,) —
(0(x,)) of A, defines an automorphism 6, of M, , and 6,
depends only on the canonical image €(0) of 0 in Out M.

(3) For any teR one has (8(t)), = 1 where § is the modular
homomorphism.

Proof. (1) By construction 4, = (| 4,.., , ¢ faithful normal state
on M. Let ¢ be a given faithful normal state on M and 2 the set of
faithful normal states on M with ap << ¢ < alp for some o > 0.
Then 4, = Nyeo As.. (Use 2.8). Moreover considering M, as a
subset of M, , we get, using (2.2.2):

Mw = m Pw.w(Aw,cu N Anl:,w)
YeP

As on p, (4, ., N 4,,) the norms corresponding to lim, (x, *x, )1/
and lim, ¢i(x¥x,) are equivalent it is easy to conclude that M, is
a weakly closed x subalgebra of M, hence a von Neumann algebra.

(2) We just have to show that for any unitary « € M and any
sequence (x,),.n € 4, one has ux,u* — x, —,_, 0 * strongly, which
follows from Proposition 2.8.

(3) Follows from Proposition (2.3.1).

As an application we shall prove:

TuroreM 2.10. (a) Let A€]0, I[ then there exists a factor of
Type 11, N, acting in a separable Hilbert space, having A in its funda-
mental group but 1 ¢ r(N,) (i.e., Ny @ R, not isomorphic to N,).

(b) Let A€ )0, L[ then there exists a factor of type 11, such that
the set C, of conjugacy classes in Out N of elements j such that y(f) = A
contains at least two elements.

Proof. (a) Let P, be the Pukanszky’s factor of type III,. By
construction there exists a finite measure space £2, x and an ergodic
group % of non singular transformations of Q, u such that P, =
W*(%, Q). Now let I(L*(£2, u)) be the canonical abelian maximal
subalgebra of P,, E the corresponding conditional expectation from
P,, ¢ = pol-1c E the faithful normal state on P, corresponding
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to u, and for s€ ¢, U, the corresponding unitary in P,. From [4]
page 207 and [12] page 193 it follows that if g,, g,are the two generators
of the free group G, and s; = @, , s, = P, ([4] page 207) are the
corresponding elements of & one has:

(1) Spd, = " nez}
2) Vee Py, |o)® > xs — 5.14% sup;_y 5 lI[x, U, JI?
3 Uye®P) =12

Let Ny = (P,), then in P, ® Z(Jf )y Ny @ Z() is the centraliser
of the weight ¢ ® Trace which is generahzed trace on P, Q Z(¥)
(see [4]), hence by [4] 4.4.5, we have A € Fundamental group of N, .
Let w € BN\N and (x,.),en € 4o(N,). Then by Proposition 2.8 one has
[#, s ¥] = pse O * strongly, Vy e N; .

But as the U, , j = 1, 2 belong to N, it is easy to conclude from (2)
that there exists a sequence A, € C such that x, — A, — 0 x strongly
hence that N, , = C. Assertion (a) follows easily [7].

Lemma 2.11.  Let Q, be a factor, g, ..., @, be faithful normal states
on Qy, b ,.. b be elements of Q, such that for some K > 0, and any
« > 0, any £€ 0 % bk, < &V = Lo p = || 5 — g, < Ke
then

(a) For any von Neumann algebra with separable predual Q,
and any faithful normal state ¢ on Q,, any X € Q, & Q, one has

1 X — (1 ® p)(X)gey < K2 3 11X, 1 ® ] 00,

k=1

(b) For any Q, like in (a) and any o € SN\N the canonical homo-
morphism m,, corresponding to w: x € Qy — 1o & x is an isomorphism of

0s.. onto (Q; @ Qo). -

Proof. (a) Let a,,a,,..., a,,... be an orthonormal basis of the
pre-Hilbert space Q, with scalar product (x, y) — ¢(y*x), such that
the linear span of the a; is a x subalgebra of Q, (Use the Schmidt
orthogonalisation process).

The algebraic tensor product of this x algebra by Q, is a dense
subalgebra of Q, ® O, hence we can assume that:

n
X=Zai®xi’ %,€0Q,, j=12..,n

=1
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Then

n

[X, 1 ®b] = Z a; @ [%;,6] and [[X,1 ®bk]”3®wk = i il bk]H:k
i=1

i=1

2p
As for any x € Q; we have | x — gy(®)[l5, < K Z [I[», bl , it yields
1
Z I| 5 — ‘Po(xa‘)ano < KZZ Z [IEZ bk]”fak
; P
hence

Y1 e ® (% — pox Moo, < KEY X, 1 ® belll2 0o
7 %

and hence conclusion (a).
(b) Let (X,).en be a uniformly bounded sequence of elements

of O ® QO such that |[[X,,, ]| - O,..,, Vb € (O @ Q1) » then by
Proposition 2.8, one has [X, , Y] — 0 * strongly for any Y € O, ® O,
hence by (a) X,, — (1 ® @) X;, —n-e 0 strongly. Also

Xo* = (1 @ o) Xp* — 0

strongly so that the sequence Y, = (I & ¢,) X,, which belongs to
0, ® C yields the same elements of (Q, @ O,)., as the sequence

(Xn)neN .

(2.10b) From (2), using the equality ||x — gp(x)[} = g(x*x) —
| (x)? it follows that N, satisfies the hypothesis of Lemma 2.11.
Let F,, be a factor of type I, (¢;); ;ez be a system of matrix units in
F. and for x € F,, (%4); jez be the matrix components of x. Then the
following inequalities show that F, satisfy the hypothesis of Lemma
2.11, with A; =277, 7 > 0, A, = 271172 j < 0.

Y 2 |23 5 Y (N — )220

i#] .3

Z | 255 — %o,0 122721 << Z | %i41,500 — %3,5 1227201

3 (2%
So let N = N, ® F., ® R, where R, is the hyperfinite factor of
type II,, it follows from Lemma 2.11 that for each w € N\N the
homomorphism 7, x € R; — Iy, ® 1y & x defines an isomorphism
m, of R, onto N, . Let 6, be an automorphism of Ny ® F, such
that y(6,) = A (See a)), and 6 = 6, @ 1 the corresponding auto-
morphism of N. Clearly using , one has §, = 1. Let o be an auto-
morphism of R, such that o, 7 1 (For instance write R, = R, ; ® R, ;
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and take o(x @ ¥) = y @ x) then put 8" = B0 (Identityy o5 &),
we get 8, 1 using =, , though (') = A.

THEOREM 2.12. Let M be a factor of type 111, then for any w € BN/N
ond has M, * C and even Center of M, = C.

Proof. 1dentify M with P Q F,, where P is a factor isomorphic
to M. Let [4] Lemma 5.2.4, ¢, be a faithful normal state on P such that
1 is isolated in Sp 4,, . Let (x,),n be a uniformly bounded sequence
of elements of M such that |[x, , $]llpow — 0, Ve M, . Then
Lemma 2.11 shows that there exists a sequence (¥, ),en Of elements
of P such that x, — (¥, ® 1),.. > 0 * strongly. It follows that
[ ¥ > Polllnse — O hence (Proposition 2.3) that there exists a sequence
(B)nen s 2n € P, such that x, — (2, ® 1),,., — 0 * strongly. Let
Py = @y & Trace, itisa falthful semifinite normal weight on M which
satisfies the conditions of Lemma 5.3.2 of [4] on M. It hence follows
from [4] p. 235-238 that the centralizer M, = N of ¢ in M satisfies
conditions (a)(b)(c) in the proof of Theorem 1.5.

To finish the proof of 2.12 we need only construct a sequence
(Vp)nen Of elements of the center of M, = N, a faithful normal state
¥ on M such that (a) ||[[2, , Yolllnse — 0, (b) there exists a strongly
dense subset & of M such that [v,,y],.. — O strongly Vye &,
(¢) ¥o(v,) = O for all n. We use the same notations as in the proof
of Theorem 1.5 and we let ¢ be a faithful normal state on N =
and ¢, = o E. For each n there exists a unitary v, € C such that
l)&(‘vn) = O and Ad Ue,..... €.0....,0,....)0n = Uy for all € = 0, 1. Then as
v, € M, (because v, € N,) the sequence (v,) satisfies requirements

(a)(b)(c)-

ITI. COoMPLETENESS OF THE GROUP OF INNER AUTOMORPHISMS

THEOREM 3.1. Let M be a von Neumann algebra with separable
predual, C = Center M, then the following conditions are equivalent

(a) Int M s a closed subgroup of Aut M where Aut M has the
topology of pointwise norm convergence in M, .

(b) The homomorphism u — Ad u from the unitary group U(M),
gifted with strong topology, to Aut M, gifted with topology of pointwise
norm convergence in M , is open on its range (Int M).

(c) For any strong neighborhood ¥ of 0 in M there exists
@1 300> P € My and € > O such thatVu e U(M), || upu* — ;|| < e =
ue#C)+ 7.
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(d) For any ordered directed set I and any bounded family (x;);e,
of elements of M such that |[[x; , ¢]| — O, j — co there exists a bounded
Sfamily (2;);¢, of elements of C such that x; — z; —; ., 0 * strongly

(e) Same statement as (d) with I = N, the integers in their usual
order.

The topology of pointwise norm convergence in M, on Aut M,
coincides with the topology of uniform weak convergence in M. It has
already been fully discussed in the literature [1], [8]. Following [8]
we shall call it the u-topology. It is clear that gifted with the u-topology,
Aut M is a topological group.

Lemma 3.2. Let M be a von Neumann algebra with separable
predual, and on Aut M let the u-uniform structure be the sup of the right
and left uniform structures of Aut M with u-topology. Then with
u-uniform structure Aut M is a complete separable metric space.

Proof. Apply the results of [1] and [8].

Lemma 3.3. Let M be a von Neumann algebra with separable
predual, let U (M) be the topological group of unitaries of M with the
strong topology, let u — u be the canonical open homomorphism of U(M)
onto U(M) = U(M)|U(C) where C = Center of M.

(a) Let (¥})n-1.,0... be a basis of neighborhoods of O in M for the
strong topology, then (W.)ys . W — {tu€ UM) N ¥, + UCY
is a basis of neighborhoods of 1 in U(M).

(b) There exists on %(M) a metric, compatible with the topology,
which makes it into a complete separable space.

Proof. (a) The typical neighborhood of 1 in % (M) is #  where
W = UC) x UM)N (1 + ¥") where ¥ is a strong neighborhood
of 0 in M. As one can assume that #¥" = ¥, Vue #(M) we get
W = UM)N(UC) + 7).

(b) Let d be a metric on (M) corresponding to the sup of left
and right uniform structures. Then #(M) is a complete separable
metric space. Then clearly d(x, v) = Inf,_, ,_, d(u', ¢') is a metric
on %(M), yielding the quotient topology, under which #%(M) is
complete and separable. We now state a known lemma whose proof is
included for completeness.

LemMmA 3.4. Let G, and G, be topological groups, polish as topological
spaces and f be a continuous bijective homomorphism of G, onto G,,
then 1 is continuous.
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Proof. For each Borel subset 4 of G, , f(A) is analytic as well as
f(A) hence f(A4) is Borel. In particular f~! has the Baire’s property:
there exists a meager subset # C G, such that f~1/.#¢ is continuous.
Take v, >,.,0 7y, where v,€G,, n=0,1,2... There exists
# € (Vo1 H,", hence such that wv,¢#, n=0,1.. Then
S H0n) = f TH(u,) hence Y (2,) —usw f (D))

Proof of (a) = (b). Assume that Int M is closed in Aut M. Then
the u-topology makes it into a polish topological group and the map
uecY(M)— Adueclnt M is a bijective homomorphism of #%(M)
onto Int M which is obviously continuous. So Lemma 3.4 shows that
this mapping is open on its range hence that (a) = (b).

(b) = (¢) By hypothesis when Adu— 1 in AutM, u—1 in
%(M). Hence (c) holds using Lemma (3.3a).

(c) = (d) One can assume 0 << x; < 1/2 Vjel, and writing
2%; = (x; + V1 — x*) + (x;, — V1 — x®) one can then assume
that x; is unitary for each j (use the estimate (2.6a)). But then
llx;, ll = || poAd x; — @, Vo€ M, , hence Adx; — 1 in Aut M
so that, using (c), there exists a sequence (2;), z;€ C such that
x; — 2; — 0 strongly when n — co.

(e) > (a) Let M act in the separable Hilbert space s with
(€;)j=1.2 a dense in . Let ¥, = {xe M, || x§; — &|| <27 j < n}
and for each # let #, be a neighbourhood of 1 in Aut M, such that
(using e)

ueUM), Aduc¥#,=>uc¥UC)+ 7,

Let 0eIntM, and v,e#%(M) be such that Adv;}0,e%,,
Vn=1,2,. and Adv, - 0 when n-— 0. Choose for each n, a
u, € %(M)such that », = v, and u, ., — u, € ¥, . Then u,, converges
strongly to some u € M, and u is an isometry such that ux = 6(x)u.
Vx € M so that 8 is inner ([4] 1.3).

DeriNITION 3.5. A von Neumann algebra satisfying equivalent
conditions in 3.1 will be called a full von Neumann algebra.

This name refers to the completeness of the group of inner auto-
morphisms.

CoROLLARY 3.6. Let M be a factor with separable predual then:
M 15 full < M, = C for some w € BN\N <> M, = C Ve € SN\N.

Proof. 1f M is full then condition 3.1(d) immediately implies

580/16/4-6
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M, = CVweBN\N. If M is not full, let ¢ be a faithful normal state
on M, e > 0, (x,),-1.2 be a bounded sequence of elements of M such
that ||[x, , ]| —,.» O for all ye M, but [[x, — C|[Z = ¢ for all
n e N. Then Vw € BN\N, p,((x,)) is a non scalar element of M, .

CoroLLARY 3.7. Let M be a factor with separable predual then
(all central sequences in M are trivial) = M is full.

Proof. We shall prove that M satisfies (3.1¢). By Proposition 2.8
%, s @l —noe 0, Ve € M* implies that (x,,),.n is a central sequence so
that for some sequences of scalars (A,),cn, %, — A, — O strongly
when 7 — o0, x,* —p, —>,,00 strongly hence x, —A, >0
* strongly using an auxiliary state to show that A, — &, —,., 0.

CoroLLARY 3.8. Let M be a factor of type 11, with separable
predual then M is full < M does not have property I'.

Proof. If M has property I" there are non trivial central sequences
on M hence non trivial sequences (x,),.n , such that ||[x, , ]| —=»-% 0,
Vo € M, (Proposition 2.8). Conversely assume that M is not full, let
w € BN\N we want to show that M, does not have any minimal
projection (See [7]). As M,, # C, let e € M, be a non trivial projection,
let = be the canonical trace on M and 7, the corresponding trace on
M,, . Then 7,(e) = A€ ]0, 1] and there exists a representing sequence
(én)nen for e with e, projection of M, Va, and =(e,) = A, Vn (See [7]).
Obviously for each x € M and each central sequence (x,),cn One has
r(xx,) ~ 7(x) (x,) when n — co. Applying this we can choose a
subsequence (ey, ),—1,2 Of (€;)n—1.2 such that:

(@) e, e lls < 1/nVn, (b) | 7(ener,) — 22| < 1/n
(©) lllex, » @]l > 0 when n — w, Vo € M .

Then p,((e4€s )aen) 18 2 projection in M, which is strictly between 0
and e, hence showmg that e cannot be minimal. It follows that an
arbitrary maximal abelian subalgebra of M, is non atomic and hence
that there exists a projection f € M, with 7,(f) = 1/2. Then 2f — 1
is a unitary u € M, which has trace 0. Let (f,) be a representing
sequence for f, with f,, projection Vz. Then (,),en , Withu, = 2f, — 1
is a sequence of unitaries in M, [u,, , v] —,.., O strongly Vo e M, and
(1,) —pow 0. It follows immediately that M has property I' of
von Neumann. In the general case we do not know if M is full < M
does not have property L of Pukanszky.

PrRoPOSITION 3.9. Let M be a factor of type 111y, then M 1is not



ALMOST PERIODIC STATES AND FACTORS OF TYPE III, 433
full, in fact, for any semi-finite faithful normal weight ¢ on M, one has:
o’elnt M

Proof. There exists (see the proof of Theorem 1.5) an increasing
sequence of von Neumann subalgebras N;, C M such that:

(1) N, is semifinite and N, " M C N,

(2) N, is the range of a (necessarily unique) normal conditional
expectation E,,

(3) Upgo1 N, is strongly dense in M.

Let ¢ be a faithful normal state on NV, , and ¢, = ¢ ° E,, then o%
leaves N, globally invariant and is inner on N, (because ¢, ° E;, = ¢,)
so that there exists a sequence of unitaries u; € N;, N Mg, such that

Ad u,(x) — of*(x) * strongly Vxe |J N,

k=1

It follows easily from ¢, Adu; = ¢, that o% = lim,_ ., Ad », in
Aut M.

PrOPOSITION 3.9. Let P be a von Neumann algebra acting in a
separable Hilbert space S, with cyclic and separating vector &, . Let G,
be the free group of 2 generators s, , s, and N = Ry, (P, &), 7, for
s € Gy, being the canonical injection x — - 1 @ x @ 1 --- of P in N.
Let 0 be the representation of G, on N such that:

esﬂsl(x) = 77-ss'(x) VS, s'e GZ .

Finally let M = % *(Gy, N) be the cross product of N by G, , let I be
the canonical injection of N in M; s — U, the canonical injection of G,
in the unitary group of M and E the conditional expectation of M onto
I(N).

(a) For each s€ Gy, Ug is in the centraliser of the state s e M,
Px) = @, (I7(E(x)), Yo € M where 7y = Qseq, £o -

(b) Vxe M one has || x — (), < 28 iy l[x U, ]l -

(c) The modular operator 4, ,, of ¢ relative to M is, up to multi-
plicity, the infinite tensor product of the A, , acting in Rrec, (', o)

Proof.  (a) By construction w, is ,-invariant for each s € G, hence
([4] Proposition 1.3) ¢ is Ad U, invariant for each s € Gyand U,e M, .
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Lemma 3.10. Let A = Qyeo, (5 £0)5 M0 = s, €0 thenVx e N

<m0, moy Mo — #mo [l < 14 Y |I(8s,(%) — %) m

i=1,2

Proof. Let # be an orthonormal basis of J# containing &, and
26 be the set of all maps g from G, to # which except on a finite
subset of G, satisfy g(s) = &, . For each g € % put £, = R0, £(5)
and note that (¢,),cgy is an orthonormal basis for . For g € %2
and s € G, , put g, , gt) = g(s %)Vt € G, . Then g — g, is a bijection
of #'¢2) onto #'¢Y and it defines a unitary V, in X5 V,§, = &
Vg € 62, 1t is easy to check that 8(x) = VxV *, se G,, as well as
Ve = mo . Now the action of G, on #'¢? is free except on g = &,
for, assume ge #C), g(s,) #~ &, g =g Wwith s5,, s€ G, then
g(s7%sy) # & YR = 1,2..., which if s £ 1 contradicts (g(f) = &,
except on a finite subset of G,). Let g€ #¢2, g £ £, . As 5y 5% 55 =
&, # 8, = &, L &, we have fe*(G,) where f(s) = Camg, €,0, Vs.
Then Lemma 4.3.20 in [12] yields:

z l<x7’0 ’ ggs>|2 < (14)2 Z Z KVij"]o ’ fg,> - <x7)0 ’ gv,>|2

$€G, $€G, j=1,2

Adding the inequalities corresponding to each orbit of G, in #'G
yields:

Z Kx"lo ’ §a>|2 < (14)2 Z K(Vs,’“?o) ) §a>|2

ge @GP, g6, i=1.2ig#¢,
Hence

[l mg — <Xm0, Moy Mo 12 < (14)* Y. 1I(8,(%) — ) 7o 1%

7=1,2

Proof of (b). To avoid cumbersome notations we put I(x) = x
Vx € N. Let y € M, then y is a sum of a strongly convergent sequence,

where x, € N, ¥ = Yoeq, #,Us and || y [y = T[] 0s(x5) 7m0 [P = X || 2570 |
(We have used the 0-1nvar1ance of w, ). Then

I3, U8 = 1 UV, — 313 = | £ 0,2 Ui, = 2 |

= Z [I(xs — 03,(‘”3,‘133,)) 7o 2.

For s € G, we put f(s) = || x;m0 ||
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Clearly f € I¥(G,) and
Y f(s77ssy) — FOF = Y U xamo | — Il %s7256m0 | I°
= 2 xsmo [l — 11 0 (%55155,) 70 | 12
< Yl xgme — 05 (Forss) M0 |2 = Iy, Uy JIP

hence Lemma 4.3.3 of [12] yields:

Y lame* < (14 Y Iy, ULl

s#1 j=1,2

which means that Vy € M one has:

Iy — EOs < 14 Y 1y, Uy

i=1,2
Moreover one has:
51~ B ), < 135 Us e

hence by Lemma 3.4
1 #1m0 — @a(x) o[l < 14 3 [y, Uyl
=12

which implies

I E(y) — HEOy < 14 Y 1Ily, Uyl

=12
and as o E = ¢ we get
[y —#(s <28 3 Iy, Uy llly -

j=1,2

Proof of (c). Let M act in a Hilbert space 5 and ¢, € 5, be cyclic
and separating for M with w,, = ¢. Put

Hy =IN)&, H,=UN; VseG,.

Then for s 5 §', 5, s € G, , XA, is orthogonal to ¥}, , moreover

# =D 4,

#€G,
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As I(N) is globally invariant under ¢, Vi € R, we see that ] is
invariant under 4, and that the restriction of 4, of ] is unitarily
equivalent to 4, , using the unitary equivalence of the triplets
(U, N,mg) and (X, ,I(N), &). As U, commutes with 4,, Vse G,
(Use a)), we see that, up to multiplicity, 4, is equivalent to 4, , =
®ver AEO,P

CoRrOLLARY 3.10. There exist full factors of type 1, 11, , 11, , III, ,
A#£0.

Proof. Obviously from 3.9(b) the von Neumann algebras con-
structed in 3.9 are full factors. Moreover as M, contains U, and U,
it is a factor hence it follows from [4] Corollary 3.2.5b) that for each
A€]0, 1] there exists a full factor of type III, . The cases II,, II,
follow from section 2 and the other cases are trivial.

1V. FuLL Factors wiTH ALMOST PERIODIC STATES

In all this section, M is a full factor with separable predual. To
Compute Sd(M) we shall use the following :

THEOREM 4.1. Let I' be a denumerable subgroup of R, *, ¢, an
I-almost periodic weight on M, then:

Sd(M) = I'(e>") = () point spectrum 4,
e projectione M, , e # 0.

This formula is to compare to [4] 3.2.1. However, it is not true in
general, for non full factors. The fundamental lemma is:

LeMMA 2. Let M and I' as in Theorem 3.1, B8, G, B as in 1.1, and
@1, o be I-almost periodic weights on M. Let G act on the unitary
group U(M) by means of o>7.

Then there exists a cocycle v e ZYG, U(M)), strongly continuous in
s.€ G such that 67" = Ad v, - o¥vT Vs e G.

Proof. Letse G, t, € R be such that f(z,)— s. Then oft;, — agvf
in the topology on Aut M of pointwise norm convergence in M,
Hence o2"(c3+7)~? is the limit in this topology of o%” (ofr")! =
Ad u, where u; = (D@, : Dgy); (See [4]). But by Theorem "3.1, the
group of inner automorphisms of M is closed, so that Vse G,
0?27 (o?rT)~1 e Int M. For each s € G, let F be the set of unitaries in M
such that o%»" = Ad ve?1'”. We know that F, is non empty for any s,
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hence there exists a Borel map s — w, from G to (M) (with the
strong topology) such that w, € Fy, Vs € G (See [6]). For 5, 5’ in G one
gets w, 0% T (w,) w}k, - € Center of M, hence there exists a Borel map y
from G2to T, = {z€C, | 2| = 1} such that:

(1) Wers = 'y(s) S') wsoizl.r(ws') V(s’ S’) € G*
(2) y(s, ) y(r + 5, ) p(r, s -+ t) ¥, syt =1,Vr,s5,teCG

We shall now show that (s, s') = y(s, 5), Vs. "€ G. To see this let
H#,, » 4, correspond to ¢, , as usual, and let u, = (Do, : Dgy),, for
teR For t,, t, € R one has:

u. Aty Aztg —u a""(u A’(t1+‘2) —u Ai(t1+t2)
t oty @ @, B+t oy

u, A;tlz“t A;tll = Uyt A;(tﬁtz) lAnl ¢ A::tf

so that the u, 4% generate an abelian von Neumann subalgebra 7 of
L(HA,)- LetseG t, € R be such that s, = f(t,) — s when n — c0.

Then Ad u ;, — Ad v, for the topology of norm pointwise convergence
in M, so ‘that (Theorem 3.1b)) there exists a sequence (A,),cn »
A, € T such that A,u, — v, * strongly when # — co. It follows that,

w1th 4, = Toer AEy, A‘s Saer (8, A) E, , one has:

v, 4y = lim Ay, A% — lim A u, Al et
Hence
vsAisl)vs,Aisl') _ vsz (s") sA(s)
for any s, ' € G and
s, s') = (s, 5), Vs, s5€G

Now this means that the extension of T; by G corresponding to vy is
Abelian and hence splits ([10]). It follows that one can choose the v,
forming a 1-cocycle, hence 4.2 follows.

Proof of Theorem 4.1. Let ¢ be another almost periodic weight
on M, and let I' be a denumerable subgroup of R,* containing
point Spect. 4, and p. Sp. 4,; then ¢ and ¢ are I'-almost periodic and
Lemma 3.2 shows that ¢®:7 ~ ¢*7 in the sense of [4] def. 2.3.3. Then
by Theorem 2.2.4 of [4] one has I'(0*:7) = I'(¢*:T) hence Theorem 3.1
follows from formula 1.
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Remark 4.3. Let M, I, ¢, ¢, and v e ZYG, %(M)) be as in
Lemma 4.2, and let u, = (Dg, : Dg,);, Vt € R. Then there exists
A€ R, *such that vg(;) = A%y, . In particular (DA, : Dg,) then extends
to G, but it is not true in general that (D, : Dg,), itself extends to G.

CoRrOLLARY 4.4. Let A be an arbitrary denumerable subgroup of
R, * then there exists a (full) factor M acting in a separable Hilbert
space such that

Sd(M) =

Proof. In fact we shall construct explicitly a map A — M(A).
Let A be given, put (P4, ¢4) = Qaea (Ry, ) Where R, is the Powers
factor of type III, and ¢, is the canonical product state on R, .

Each ¢, is almost perlodlc with Sp 4, = {A", n € Z}, hence it is easy
to conclude that ¢, is almost periodic w1th

point spectrum dg, = /1.

Now let M, be the full factor corresponding to the couple P, ¢, by
Proposition 3.9 with w, = ¢,. Let also ¢, be the corresponding
faithful normal state on M, .

By Proposition 3.9, 4, is a diagonal operator so that i, is almost
periodic. By Proposition 3.9(c) one has point spectrum i, = 4.
Finally by Proposition 3.9 the relative commutant of the centraliser
M, , of y,in M, is reduced to C hence M, , is a factor. Hence it follows
from [4] 2.2.2(b) that I'(¢*4:T) = Sp(c¥4:T) = A and from Theorem
4.1 that Sd(M,) = 4

CoroLLARY 4.5. The Borel space of isomorphism classes of factors
of type 111, acting in a separable Hilbert space is not countably separated.

Proof. Let % be the Borel space obtained dividing R by the relation
t, ~ b iff @t + Q@ = Qf, + Q. Then & is not countably separated.
Put I'; = {¢*, « € Qt + Q}. We shall admit that the map ¢ — M, is
Borel. Now if #, ¢ 1, the factor Mr, is not isomorphic to M,- for
Sd(My) = I'y. If 4, ~ ¢, by [9]. theorem 4.1 p. 111 the couples
(PF‘ » Pr, ) (Pr, , (ppt) are isomorphic so that Mr is isomorphic to
M, . . Hence t > M r, defines an injection of # into the Borel space
of isomorphism classes of factors of type III, .

COROLLARY 4.6. There are type 111, factors for which
Center of Out M = 3,,(R)
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Proof. Let I" be a dense subgroup of R, *, M a full factor of type
III, and ¢ a I'-almost periodic weight on M. As M is full, Out M =
Aut M/Int M is hausdorff. Put 8,(s) = lim,, 8,(t) for all seG
(where B is noted as identity).

Then §,/(G) C Center of Out M is a compact subgroup of Out M
so that Lemma 3.4 prevents the injective map t € R — 6,,() € 8,,(G)
to be surjective.

THEOREM 4.7. Let M be a full factor with separable predual, with
SdM) =TI # R.

(1) There exists an almost periodic weight ¢ such that
Sd(M) = point spectrum 4,

(2) Let ¢, and @, be two I'-almost periodic weights on M such that
@1(1) = @y(1) = + 0 then there exists a unitary u € M and an a € R_*
such that o, = ap,(uu*).

In the proof we shall show the following analogue of Theorem
4.2.6 [4].

LeMMA 4.8. Let M be a full factor with Sd(M) = I" 5¢ R, *, let ¢
be an almost periodic weight on M then the following conditions are
equivalent.

(a) @ is a I'-almost periodic weight.
(b) Point spectrum 4, = Sd(M).
() M,)NnM=_C.
(d) M, is a factor.
() (M,C M,,  faithful semi-finite normal weight) = = ap
for some « > 0.
Proof. (a) <> (b) is clear. (b) = (d) One has Sp(c®T) = I'(0®T)

hence by Theorem 2.4.1 of [4], M, is a factor. (d) = (c) follows from
the inclusion M "M, C M, .

(c) = (e) By hypothesis the u, = (D : Dg), belong to M,’ N M =
C hence 4 is proportional to ¢ (compare with [4] Theorem 4.2.1b)).

(e) = (d) Take ke[1/2,1], k € Center of M, then 4 = g(h*)
has a centralizer containing M, hence # = « for some « € R, * so that
M, is a factor.

(d) = (a) follows from Proposition 2.2.2(b) in [4] and Theorem 4.1

above.

580/16/4~7



440 A. CONNES

LemMA 4.9. Let M be a factor, ¢ be anI'-almost periodic weight on M.
Let B be the operator of multiplication by the function y — B(y) in ("),
and w = tr(B-) the corresponding weight in L(IX(I")) (Tr is the usual
trace). Then M Q L(IXI')) is isomorphic to the cross product of the
centraliser (M @ L(IX(I'))), 5. by an action of the group I (with discrete

topology).

Proof. The weight ¢ (9 w is I™-almost periodic on P = M Q) L(I¥I"))
hence P, is the range of a normal conditional expectation E from P.
Moreover the inclusion P,g, C P,q. follows from an immediate
modification of [4] Lemma 4.2.3.

For y € I' let u, be the unitary in [%(I") corresponding to translation
of y. Clearly y — U, = 1 ® u, is an homomorphism of I" in the
unitary group of P such that: o3®>7(U,) = (¢, y) U,, VteG. It
follows that Ad U, leaves P,y globally invariant, thus defining an
automorphism ¥, of this von Neumann algebra. Moreover using [4]
Part. 2 and the discreteness of I" we see that P, g, and the U, generate
the von Neumann algebra P.

Let 7 be the restriction of ¢ ® w to P,g,; it is faithful semifinite
normal trace and 7o V, = B(y)r (Use [4] Lemma 1.4.5(b)) so that for
any y # 1 the automorphism V, is outer and satisfies p(V,) = 0 with
the notations of [4] Proposition 1.5.1.

Now the conclusion follows from [4] Remark 4.1.3(d).

Lemma 4.10. Let A be a discrete Abelian group acting by automor-
phisms x — g - x on a von Neumann algebra N. Assume that the center C
of N is diffuse and that the action of A on C is ergodic. Then P =
W*(A, N)is not a full factor and has property L of Pukanszky.

Proof. The action of A on C is weakly equivalent to a free action
of (Z/2)N on C (result due to W. Krieger). Let ¢ be an arbitrary
faithful normal state on C. Then for each n = 1, 2... there exists a
unitary %, € C such that: ¢(x,) = 0 and

S(€1.€2....,€,,.0,...)u'n = Uy, VE;‘ =0,1 ] = L.,

Identifying N with its canonical image in P = W*(4, N), we note
E the canonical conditional expectation of P onto N and A — U, the
canonical homomorphism of A in the unitary group of P.

For A € A the restriction of Ad U, to C belongs to the full group of
the S., €€(Z/2)'V so that there exists a family of projections
(eMee(z/py™ in C such that UxU,* = 3 S(elx). Let then e, =
c o...) Sdel). When n — o0, e, tends to | strongly and as

e=(eg,.. 05,



ALMOST PERIODIC STATES AND FACTORS OF TYPE III, 441

U, U*e, = uze,?, Uu, Uy¥ — u, = uy(e,* — 1) + U, Uy*(1 —e,%)
tends to O strongly. Moreover for each n, u, € P, where s =¢- E.
Since [u, , xU;] —>,.0 0 * strongly for any xe N, we sec that
ey, » ]l — O for each y in the linear span of the NU, ,Ae A in P.

As the set of such yi is norm dense in M, , and as (u,) = 0, ¥z,
we conclude that P does not satisfy condition (d) in 3.1. Moreover
the sequence (#,),y is a central sequence in P (use the proposition

2.8) hence P has property L of Pukanszky.

Proof of (1) in Theorem 4.7. Let ¢ be an almost periodic weight
on M, with /1 = group generated by point spectrum of ¢. Assume
that the center of M, is diffuse. Let ¢ = ¢ X w be as in Lemma 4.9,
on P=MQ® L(¥I)) and for A€ let E, be the projection in
ZL(I¥(A)) corresponding to multiplication by the characteristic function
of {A}. Then ¢;gp, is isomorphic to S(A)p and hence the center of its
centraliser is diffuse.

As the (1 R E))\e4 form a partition of unity in the centraliser of
it follows that the center of this centraliser is diffuse. But using
Lemmas 4.8 and 4.9, it contradicts the fact that M is full. Now let
ec M, be an atom in the center of M, , then the weight ¢, on M,
satisfies condition (d) of Lemma 4.8. Now Theorem 4.7 being trivial
for factors of type II we shall assume that M is of type III, hence that
M, is isomorphic to M. Then the corresponding weight on M satisfies
condition (b) of 4.8 hence (1) of 4.7.

Proof of (2) in Theorem 4.7. Let o€ R, * be such that u, =
(Do, , Dagpy), extends to the dual group G of I Let 0 = M Q F,
be the von Neumann algebra of 2 X 2 matrices over M, and
@, (X %55 Q) €;7) = apy(®y;) -+ @o%,5) be the corresponding weight on Q.

By Proposition 1.1 we see that ¢ is I™-almost periodic on Q, and
as Sd(Q) = I' that the centraliser Q, of ¢ is factor (Lemma 4.8).
In particular the two infinite projections 1 &) e;,, 1 ® ey, of Q, are
equivalent and consequently there exists a unitary ue€ M, with
u* @ ey € Q, and it follows (as in [4] p. 221) that ¢, = ag, ,, .

CoroLLARY 4.11. Let M be a full factor with separable predual then
Sd(M) = S(M).

Proof. IfSd(M) = R, * the conclusion follows from 1.7, so we can
assume that SA(M) = I" 5 R_*. Let p be a I-almost periodic weight
on M (Theorem 4.7) then M, is a factor (Lemma 4.8) hence by [4]
2.2.2(b) we have S(M) = Sp 4, . But as 4, is diagonal its spectrum is
the closure of its spectrum and we get 4.11.
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CoRrOLLARY 4.12. Let M be a full factor with separable predual with
Sd(M) = I" = R_*. Then if M is not finite it is the cross product of a
factor N of type I1, by an action y — 0, of I" on N such that

08, = Bly)r Vyel.

Moreover in such a description the isomorphism class of N as well as the
conjugacy class in Out N of the 6, are uniquely determined by M.

Proof. Starting from a I™almost periodic weight ¢ on M such that
@(1) = 4+ o0 we consider § = ¢ Qw on P =M & L(IXTI')) as in
Lemma 4.9. Then ¢ is I-almost periodic and ¥(1) = -+ oo so that P,
is (use 4.8) a factor of type Il . So that the existence of N and 6
follows from Lemma 4.9.

Now assume M = WH*(I', N) where I acts on the type 1I,, factor
by 6: 708, = B(y)r, Vy € I'. Let N be identified to a von Neumann
subalgebra of M, E be the corresponding conditional expectation and
¢ = ro E. Then it follows from [4] and Proposition 1.1 that ¢ is
I'-almost periodic on M with ¢(1) = + o0, hence the uniqueness
statement (4.7(b)) implies the last conclusion of 4.12.

V. FurL Factors WiTHOUT ALMOST PERIODIC STATES
Our aim is to prove the existence of such factors.

DrriNITION 5.1.  Let M be a full factor of type III,, we note (M)
the weakest topology on R for which the modular homomorphism
R > Out M is continuous.

We shall from now on assume that M has a separable predual. Then
Out M is a metrisable topological group hence 7(M) is a metrisable
group topology on R, weaker than the usual one. Also 7(M) is entirely
determined by the knowledge of which sequences (¢,)zen » 2, € R are
(M) converging to 0.

THEOREM 5.2. Let p be an arbitrary injective separable unitary
representation of R then there exists a full factor M of type II1I, acting
in a separable Hilbert space such that v(M) = weakest topology on R for
which p is strongly continuous.

Proof. We can assume that there exists a finite measure x on R *
with [ A du(X) < oo such that for each ¢, p(t) is the multiplication by
Aitin L¥(R, *, du). Let P = L=(R *, u) ® F,, ¢ the unique state on P
proportional to the functional

F= Y o ®eq— [ Fa®) dud) + [ M) du¥)
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By [4] 1.2.3(b) we have, for f = Y f;; ® ¢;; and L€ R,
o(f) =fu @ ey + p(t) for Qe + P—(—tSflz @ gy + for & €29

(where p(2)(A) = ¥, VA e R, *). Hence we conclude that for sequences
(ta)nen » 2, € R 0DE has: 04 — 1in Aut P <> p(t,) — 1 strongly. Let P
act in 5, "and &, be cycllc ‘and separating with wg, = ¢. We now adopt
the notations of Proposition 3.9 and let M be the correspondmg factor.
By (3.9¢c) we have for any sequence (t,)nen » £, € R

(6! — lin Aut M) < (4%, — 1 strongly) < (4%, — 1 strongly)
hence of — 1 in Aut M < p(t,) — | strongly. Now assume that

Sult, )—> 1 when n— co. Let u, , n = 1, 2... be unitaries in M such
that Ad u, o 0% — 1in Aut M Wlth u topology. Then

Adu, oot (U,)— U,

strongly when 7 — oo hence [u,*, U] tends to zero strongly when
n — 0. Also 0¥, o Ad u,*(U,) — U, strongly so that

| Ad u,*U,, — U,,[l, —~ 0 whenn —> oo and [u,, U,] — 0 * strongly.

Applying Proposition (3.9b) we get a sequence A, of complex numbers
of modulus 1 such that u, — A, — 0 * strongly. Then for any x € M
we have:

ot (x) = w7 (Ad u, o %)) tp = Ayt *(Ad w4 © (%)) Ayt

which tends to x when n — o0 because Au,* — 1 strongly, and
Au, — 1 strongly. Using this we see that of =1 in Aut M. Tt
follows that 8,,(t,) — 1 when n — o© <> p(t,) =, 1 strongly.

CorOLLARY 5.3. There exists a factor acting in a separable Hilbert
space and which possesses no almost periodic state or weight.

Proof. 'Take p to be the regular representation of R in 5.2, then
let M be a full factor such that 7(M) = weakest topology on R making
p strongly continuous = usual topology of R.

In particular the completion of R with 7 topology (more precisely
the two-sided corresponding uniform structure) is R. If there were
any almost periodic weight ¢ on M this completion would be G = I’
where I' = Sd M, according to Section IV.
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CorOLLARY 5.4. There exists a finite measure space X, p and an
ergodic group 4 of non singular transformations of X, u such that for any
v ~ u the set of values dv(g, t)/dvt, g € 4, t € X is not denumerable.

Proof. All the factors constructed in the Proof of 5.2 can be

obtained by the group measure space construction from a triplet X,
© Z.

COROLLARY 5.5. There are factors of type 111, acting in a separable
Hilbert space and which are isomorphic to no cross product of a semifinite
von Neumann algebra by an Abelian discrete group.

Proof. Let M be a full factor without almost periodic state.
Assume M = W*(A, N) where N is a semifinite von Neumann
algebra and /4 an abelian group. Then by Lemma 4.10 the center C
of N has an atom and the action of /1 on C being ergodic, C is purely
atomic. So for any pair of faithful semifinite and normal traces on N
the map ¢ = (Dr, : D7), extends to the Bohr compactification of R.
Hence it follows from Proposition 1.1 that 7 E is an almost periodic
weight on M for any choice of 7, a contradiction.

CoROLLARY 5.6. Let G be a locally compact Abelian group, then the
Sollowing two conditions are equivalent

(1) Amny factor of type 111 has a decomposition Semi-finite R G
(2) G contains a closed subgroup isomorphic to R.

Proof. (2) = (1) is an easy consequence of [13]. Assume that G
does not satisfy the condition (2) above, then by classical structure
theorems G contains an open compact subgroup K. Moreover, it is
an easy exercise, using for instance [13] and conditional expectations,
that the cross product of a semifinite von Neumann algebra by an
Abelian compact group is still semifinite. As a full factor without
almost periodic state has no decomposition semifinite & discrete
Abelian, it does not belong to the class semifinite & G.
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