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We construct a factor of type III, which has no almost-periodic state (or 
weight). We exhibit a factor N of type IL and two automorphisms 0i , t$ of N 
which are not in the same conjugacy class in Out N = Aut N/Int N though 
~6~ = AT, +B, = XT with X E IO, l[, 7 = Trace on N. We introduce and study 
two invariants Sd and I for factors of type III, . We relate the closedness of 
Int M in Aut M to the absence of central sequences in the von Neumann 
algebra M. 

INTRODUCTION 

In [4] we proved that an arbitrary factor of type # III, is the crossed 
product of a semifinite von Neumann algebra by the group Z of 
integers. In [13] Takesaki showed that any factor of type III, is the 
cross product of a semifinite von Neumann algebra by R, the additive 
group of real numbers. Due to the obvious greater technical simplicity 
of discrete cross products it was natural to ask whether a decomposition 
as cross product of a semifinite von Neumann algebra by a discrete 
abelian group was always possible for factors of type III, . We shall 
show (Corollary 5.5) that such a decomposition may fail to exist, 
even for factors acting in a separable Hilbert space, proving at 
the same time that factors of type III, may fail to have any almost- 
periodic state [4, Problem 41. 

To study factors of type III, we define two invariants Sd and T. 
The point modular spectrum Sd(M) is the intersection of the point 
spectra of all almost-periodic weights (if any) on M. It is always a 
denumerable subgroup of R+*, when it is not [w+* and we shall see 
(Corollary 4.4) that it can be any denumerable subgroup of R+*. 
There is a large class of factors for which it is easy to compute and is 
reasonably significant. In fact for any full factor (see definition below) 
the following hold, with (p an almost-periodic weight on M. 
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(1) Sd(M) = n point spectrum of d, with e projection, 
eEM,, e #O. 

(2) There exists an almost-periodic weight 4, #( 1) = + co such 
that Sd(M) = point spectrum A,. 

(3) The # of (2) is unique up to inner automorphisms and 
multiplication by a scalar. 

(4) Sd(M) = S(M) 

Property 1 does not hold in general (for nonfull factors), which then 
makes the computability problem hard. 

The class of full factors appears when looking for a topological 
structure on the group Out M = Aut M/Int M. When M, is separ- 
able, the group Aut M gifted with the topology of pointwise norm 
convergence in M, (topology studied in [I] and [S]) becomes a polish 
space as well as a topological group, which shows the significance of 
this u-topology. Of course the topological group Out M is hausdorff 
iff Int M is closed in Aut M. By definition, a von Neumann algebra M 
is full when Int M is closed in Aut M. 

Obviously all factors of type I are full, having no outer automor- 
phism. A factor of type II, is full iff it does not have property r of 
von Neumann. For instance the hyperfinite factor of type II,: 

R, is not full, in fact Aut R, = Int R, , while the factor coming from 
the left regular representation of the free group of two generators is 
full. 

An arbitrary factor M is full iff all sequences (x,),,~ ,I1 x, 11 bounded, 
x, E M such that Il[x, , ~111 +n+m 0, Vg, E M, are trivial. 

Due to their description [4, Section V], factors of type III,, are 
never full, in fact they always have property L of Pukanszky and for 

each t E R, the modular automorphism utrn belongs to Int M, VT. 
For X E IO, 1[, the Pukanszky’s factor P, is full. It then follows that 
there exists a full factor N, (resp. NJ of type II, (resp. II,) with 
h E fundamental group G(N,,) (resp. G(N,)). Whence G(N) # (1) 
does not imply N @ R, isomorphic to N. 

It also follows that there exists a factor Ni of type II,,, and two 
automorphisms 0, , 8, of Ni which both satisfy ~0~ = XT, ~9, = hr, 
but are not in the same conjugacy class in Out Nr . In particular 
Ma = cross product of Ni by tia , and Mb are nonisomorphic factors 
of type III, with Ma- = Mb- in the notations of [4, Section Iv]. The 
existence of full factors M of type III, having almost periodic states 
gives a negative answer to a conjecture in [13]: the range of the 
modular homomorphism 6 M can be different from center of out M. 
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Finally for full factors of type III, we show that the topology T(M) 
on IF!, coming from the modular homomorphism 6 of R in the topo- 
logical group Out M, can be any topology associated with a unitary 
representation of R. Let us first recall that an almost periodic weight F 
on a von Neumann algebra M is a faithful semifinite normal weight y 
whose modular operator A, is diagonal: A, = CA,,, XE,, . 

PROPOSITION 1 .I. Let A be a subgroup of R+*, /3 the canonical 
injection of A in R +*, G the dual of A when A is gifted with its discrete 
topology, and /? the transpose of p. Let also M be a von Neumann algebra, 
$ a faithful semiJinite normal weight on M. The following conditions are 
then equivalent: 

(a) 1,4 is almost periodic and (point spectrum A,) C A 

(b) There exists a (necessarily unique, because b(R) is dense in G) 
representation o*J of G in M such that 08;; = ut*, Vt E R; 

(c) $ is strictly semiJnite and there is a generating subset Y C M 
such that: Vx E Y the function t -+ at*(x) extends to a * 
strongly continuous map from G to M. 

Proof. 

(a) =z=- (b) See [4] Lemma 2.7.3. 

(b) * (c) is straightforward, using [2]. 

(4 =+- (b) BY PI th e f amily (~~+)~~a of maps from the unit ball of 
with * strong topology, to itself, is equicontinuous. 

Hence for each s E G the ;i; subalgebra of M: CIS = {x E M, ‘J:(X) 
converges c strongly when j?(t) -+ s} is strongly closed. By hypothesis 
each OZs contains 9’ hence CY8 = M, for any s E G. It is then easy to 
conclude, using the density of j?(R) in G, that (b) holds. 

(b) * (4 BY [41 L emma 2.1.6 the set of x E M which for some 
h E A satisfy ut”(x) = hi”x Vt E R is total in M. This yields the desired 
diagonalisation of A, . We note moreover that 

(I) Point spectrum A, = Sp &>A 

A A-almost periodic weight zj on a von Neumann algebra is by 
definition a faithful semifinite normal weight satisfying the equivalent 
conditions in Proposition 1.1. 

DEFINITION 1.2. Let M be a factor, then the point modular 
spectrum of M is the subset of R+* defined by 

Sd(M) = n point spectrum A, 
$ almost periodic weight on M 
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THEOREM 1.3. Let M be a factor then: 

(a) Sd(M) = n r(omaw+*) when y rum through all almost- 
periodic weights. (See [4], Section 2). 

(b) Sd(M) is a subgroup of (w+*. 

Proof. ‘Clearly (a) + (b) using [4] Theorem 2.2.4. So we need only 
to prove (a): Let G be the dual of R+* when R+* has its discrete 
topology and let /? be the transpose of p: /3(h) = h, Vh E R+*. Let U 
be a representation of G on M, with U - c+~+*, in the sense of [4] 
Def. 2.3.3, for some almost-periodic y. Then ([4] Lemma 3.4.3) 
u 0 /!T - UQ, hence ([4] Th eorem 1.2.4) there exists a semifinite 
faithful normal weight 16 on M such that u$ = U 0 p. But (Proposi- 
tion 1.1) # is then 88, *-almost periodic and (l), Sp U = Sp &~a+* = 
point spectrum of d, . From [4] Proposition 2.3.17 it follows that: 

r(@+*) 3 (-) point spectrum A, 
4 almost periodic 

As point spectrum d, c r(‘~m,a+*) the equality (a) follows. 

Remark 1.4. If M, is separable and if Sd(M) # R+* then Sd(M) 
is countable. 

Proof. The point spectrum A of an almost-periodic weight q~ 
on M is necessarily countable for A, = C XE,, where the E,, are pairwise 
orthogonal projections in the separable Hilbert space X9 . 

THEOREM 1.5. Let M be a countably decomposable factor of type 
III,, , and r be a dense subgroup of R+*. Then the set of r-almost- 
periodic states on M is norm dense in the set of normal states on M. 

Proof. Let (See [4] C orollary 5.3.6) N be a type II, von Neumann 
subalgebra of M satisfying the following conditions 

(a) N’ n M = Center of N. 

(b) N is the range of a normal conditional expectation E. 

(c) There exists an homomorphism E -+ U, of (Z/2)tN) onto a 
subgroup 3 of the unitary group X(E), and a decreasing sequence of 
projections (e,) k = 1, 2,..., ek E C such that N and 9 generate M 
and that e, = 1, 

2 Ad U(h, E, 0 ,...) e,+l = ek Vk = 1, 2,... 
c=O*l 
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Our first aim is, given a system (N, E, U, (ek)) to build a faithful 
normal trace T’ on N such that the weight T’ 0 E is T-almost 
periodic. 

We let IR be identified by the map p of Proposition 1.1 to a dense 
subgroup of the dual group G of I’. Also for each k we put 

K=(Ok 1, O,...) E (Z/2)(N) 

LEMMA 1.6. Let N be a van Neumann algebra of type II,, C = 
Center of g. 13 E Aut & with d2 = 1, and e E C be a projection with 
e + e(e) = 1, also T a faithful semi$nite normal trace on u and E > 0. 
Then there exists a k E C, e-’ < k < e’ such that, with r’ = T(k.) the 

function t ---t (0~’ 0 8, 0~‘)~ extends to a * strongly continuous mapping 
from G to the unitary group of C. 

Proof. We have 7 = T”(h-) where T” is e-invariant and h is 
affiliated to C. Let (fh), h E r be a family of projections in C with 
C fA = 1 and e-’ < (C AfA) h-l < ee. Put k = (C AfJ h-l then 
T’ = T(k-) is deduced from the d-invariant trace 7’ by the density 
C AfA hence the lemma follows. 

Now let T be a semifinite faithful normal trace on N, and for 
k E N, fll, be the restriction of Ad ub to N. Applying Lemma 1.6 to 
the restriction of ek to Ne, proves the existence of a sequence (P&~ of 
elements of C with 

(1) Ad %l.6e ,..., a,+o...)~n = pn , I = 0, 1, j = 1, 2, . . . . n 

(2) e-2-R < , pn < e2-” 

(3) For each n the restriction T,' to Nem of TV = T(~Y pj) is such 
that (07,’ o 8,; DT,‘)~ extends to G as in Lemma 1.6. Let p = n: pi . 
Condition (1) shows that l-I:+,, pj is en invariant for each n, hence that, 
with 7' = I one has: 

(&’ 0 en : 07’) = (hn 0 en : DT,) 

Moreover (3) shows that (DT, 0 0,; DT~) e, extends to G. An 
induction hypothesis then yields for each E = (or , e2 ,..., ~,-i , 0 ,...) 
that (0~’ o 0, o 0, ; DT’ o 8,) e, extends to G, with 8, = n q - 
(0~’ o 8, : 0~‘) 0&J hence extends to G. 
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As (07’ o 8,; 0,‘) = (0~~’ 0 13~; 0~~‘) extends to G, and as 

Pkl ,...,6n-,,o)(%L) = 1, 
we see that (0~’ o 0%; 0~‘) extends to G for all n. 

It then follows from condition (c) on the u, and [4] Lemma 1.4.5(a) 
that condition 1.1(c) is fulfilled by the weight v’ = 7’ o E hence that 
y’ is r-almost-periodic. 

Our next aim is to show that any normal state y on M is a norm 
limit of states yk on M such that qua o E is r-almost-periodic. We let 7 

be a faithful semifinite normal trace such that 7 o E is r almost- 
periodic and h ELI(N, T) such that q~ = T(h .). Let h > 1, h E r, and 
for n E Z, let p, be the spectral projection of h corresponding to 
]h”, h”+l]. We may assume q~ to be faithful, hence h to be nonsingular. 
ThenCp,=l,p,EN, Ch*p,<h, h-zCnp,<(h-1)h and 
with P)~ = T((c xnpn) .) we have j/ yJq~(l) - v /I < 2(h - 1). Using 
the density of r in R+* and the fact that yn o E is r-almost-periodic 
(it is deduced from 7 0 E by the density C hnp, affiliated to MToE), 
we get the desired conclusion. 

We shall now end the Proof of Theorem 5. Let 16 be a normal state 
on M, and #,, be a faithful normal state on N. For each K = 1, 2,..., 
let Nk be the von Neumann subalgebra of M generated by N and the 

WI,..., q&0,0...) , l i = 0, 1. Then it is easy to check that each Nk 
satisfies condition (a) (b) ( ) b c a ove and that UN, is dense in M. Using 
the Gelfand Segal construction relative to q. = #o o E we see that + 
is a norm limit of states of the form yo(x * x*), where x belongs to 
UN, . But y. commutes with Ek (because EE, = E), and Elcx = x 
for x E Nk , hence any state yo(x * x*), x E Nk is of the form vi 0 Ek 
where ~~ is a state on Nk . It is then clear that any state yo(x * x*), 
x E Nk is a norm limit of r-almost periodic states of the form vA * E, . 

COROLLARY 1.7. Let M be a factor, then &l(M) C 5’(M). 

Proof. We can assume that M is countably decomposable. Then 
if M is of type I or II, it is clear that Sd(M) = (1) C S’(M). If M is 
of type 111, then theorem 1.5 shows that &d(M) = {I) is included in 
S(M). If M is of type III, , h E IO, l[, then by [4] Theorem 3.4.1, one 
has &i(M) C {A”, n E Z}- = S(M). Finally if M is of type III,, the 
above inclusion is obvious, for S(M) = [0, + co[ 

COROLLARY 1.8. Let M be a Krieger’s factor then Sd(M) = (1). 

Proof. Use [5]. This last corollary shows that the invariant Sd has 
no interest for Krieger’s factors. 
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II. ASYMPTOTIC CENTRALISER OF VON NEUMANN ALGEBRAS 

We generalize the construction of MC. Duff [7] for Type III factors. 
Let M be a von Neumann algebra, M, its predual. For x E iPI, v E M, 
let xp’ E M.+ , TX E M, , [x, ~1 E M, be such that (XT)(Y) = dyx), 
(TX)(Y) = I Vy E M, [x, ~1 = xv - ~3. For x E M, v E M, we let 
)I x /IQ = (~(x*x))‘l” = 11 n,(x) .&II (On the Gelfand Segal construction 
of 9)) and I/ x 11,” = v(x*x + XX*)~/~. 

LEMMA 2.1. (the verification is left to the teader). For x, y E M 
and y E M*+, ~(1) = 1 one has: 

(4 ll[% 9411 = II[x*Y Fill 
(b) II XT II < II x Ilm 
(4 II 9)x II < II x* /Iv 
(4 IlbY, dl G II x II NY? FIII + II Y II ll[x, dll 
(e) dY*x*xY) G II Y !I II x II2 NY, 941 + II Y II2 II x II II x I/w 
tf) If II x II < 1, II y II < 1 then (II xy II,“)” < ll[x, VIII + II[y, qlll + 

II x II# + IIY II,” * 

PROPOSITION 2.2. Let M be a von Neumann algebra, v a faithful 
normal state on M, PRJ the Stone-Chech compactijcation of the integers 
and w E flkI\IV. Then: 

(1) The subset A,,, of I”@!, M) of all sequences (x,),,~ such that 
Il[x, , v]II -+ 0 when n --+ w is a norm closed * subalgebra of 
P(N, M). 

(2) Let (x,),,~ , (y&N belong to I”( N, M) and assume x, - yn-+ 0 
*strongly when n -+ co then (x&~ E A,,, o (y&N E A,,,, . 

(3) The functionalq, , ~~((x,),,,) = lim, I is a trace on A,,, 

(4) 9Lh&&&.NI = 0 + x, + 0 strongly when n -+ w 

(5) The quotient of the C*-algebra A,,, by the two-sided ideal 
A n A?G 3 A = K%AEN 7 x, + 0 t strongly when n -+ o}, 
is a$nite von Neumann algebra noted MQ,, . 

Proof. (1) By construction A,,, is a linear subspace of Z”(fV, M) 
and using (2.la) and (2.ld) it is a * subalgebra of Z”(N, M). It is easy 
to check that if (x&~ E AO,, (norm closure) then lim,,, jI[x, , p)]I] < E, 
QE > 0. 

(2) One has II x, - yn II,” e-0 when n-to hence II[xn---yn,~]I]+O 
when n + w, using (2.lb) and (2.1~). 



422 A. CONNES 

(3) Let X = (x&~ , y = (yJnEN be elements of A,,, then 
FJXY) = lim, y(xnyn), qw( YX) = lim, cp(y,x,) so the equality 
follows from I/ yyn. - yny 11 -+ 0 when n -+ w, using the uniform 
boundedness of the sequence (x,),,~ . 

(4) The * strong topology on bounded subsets of M is the same 
as the topology defined by j( I\:, which gives the conclusion using (3). 

(5) One has for XE&,,,,, the equivalenceXE$U +p,,(X*X) = 0 
so that $,, n A,,, is a two-sided ideal in A,,, and is norm closed. Let 
Mm,, = &LA n A,,, and P~.~ (noted pw if no confusion can arise) 
the canonical quotient map. 

We just have to prove (using [ 111) that the unit ball of the C*-algebra 
Mw,, is complete for the norm 11 x \\a = ~w(X*X)r/z where pw(X) = x; 
as the functional 7 = yw o p;’ is a faithful trace on M,,, . For 
convenience, given x E M,,,, we call a sequence (x,),,~ E Z”(N, M) a 
representing sequence of x when P~((x&~) = x. Let x(P) be a 
sequence of elements of n/r,,, such that: 

Let (d!)Ld be a representing sequence for x(l) such that 11x2) jj < 1 
for any n. Let (x?))~.~ be a representing sequence for xt2) such that 
(1 x2’ (I < 1 Vn, and I] xh:’ - xc’ + I\ < 2-l for all n. Inductively choose 
a representing sequence (x$)~~~ of x(j) with: 

(1 xt’ (I < 1 Qj, ff, (, Jj+1) _ Jd # n A (IQ < 2-j Vj, n 

Put x, = * strong limit of x2’ when j + co. Then for any j, n 

p,, p)z G2 * 2; j so that lim II[xn, (PI\\ < 22 * 2-j and (x,),,~ E A,,, . 
S w x, neN - ~(7) & < 2r-j we see that x = pw((a+JnEN) is a limit 

for the Cauchy sequence x(j), and finally that the unit ball of M,,, is 
complete. 

PROPOSITION 2.3. Let M be a van Neumann algebra, v a faithful 
normal state on M, and I a directed ordered set. 

(1) Let (xJjGl be a bounded family of elements of M such that 
Il[xj , ~111 --+ 0, j -+ 00 then 11 ofrp(xj) - Xi 11: + 0 uniformly 

on bounded subsets of R. 

(2) If 1 is an isolated point in Sp A, , and if E, is the conditional 
expectation from M to M, then for any bounded sequence (Xj)j,, of 

elements of M such that ll[xj , ~)l(lj-tm -+ 0 one has (( xj - Ea(Xj)((’ -+ 0. 
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(1) We shall provide several estimates which can be useful on other 
occasions: 

LEMMA 2.4. Let t E IF! then there is an absolute constant C, such 
that for any von Neumann algebra P, any couple cp, # of faithful normal 
states on P one has 

Proof. Assume on the opposite that for each n there exists a 
von Neumann algebra P, , and a couple yn , #, with 

Using repetitions if necessary we can then assume that 

1 II pn - ~6, II < ~0 while C I 1 - ~,((D#, : Dv,$)[ = 00 

Then consider the Gelfand Segal construction Z% , 6, relative to v’n 
on P, and let rln E &??, (%a ? L> 3 0, II rln - 6, /I2 G II ?%A - lCIn II3 
%I = &. Put P = 01” (P,, &, acting in 9 = 01” (X%, 5,). 
Let Qk = $i @ *.* @ tik @ yk+r @ a** . Then when K -+ co, @, is 
a norm convergent sequence in P,, because (pi @ *** @qk @ &+&i,a.. 
is a norm convergent sequence in s. 

So using [I] or [3] we see that (D@,; 0~)~ is a strongly convergent 
sequence in P, so that: 

has to be a strongly convergent sequence in P. But this contradicts the 
divergence of the serie C 1 1 - ((Dh : DF,)&~ , (,)I. 

LEMMA 2.5. Let t E R, M and v as in Proposition 2.3, Cb as in 
Lemma 2.4, then for any unitary v E M one has 

(II utm(4 - ‘u lI:)2 < 4G III% 93 

Proof. Apply Lemma 2.4 to vV = v*qv and v on M, using the 
equality (0~~ : DF)~ = V*CT~Q(V). It yields Ij(v - a,@(v)) t, /I2 < 
2ct II 9% - F II. 

LEMMA 2.6. Let t E R, v be a faithful normal state on a von 
Neumann algebra M, C, as in Lemma 2.4. 
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(a) Vx E M, 0 < x ,< l/2 one has 11[1 - x’)l/‘, v]li < 2/3ll[x, v]II 

(b) ‘dx~M, II XII d 1 one has 11 utm(x) - x I/# < 16C~‘211[~, q~lll/~ 

Proof. (a) For each n one has Il[x”, VIII G n II x il”-YCx, ~)llI 
(2.ld)) hence II[x”, v]II < n * 2-“+l Il[x, ~111. Then 

/I[(1 - xy, p],lII < t 1 1’2(1’2 (nlyly - n, 1 llp+2, qJ]ll 

< f 2-(2n+1) II[X, VIII = 213 ih PIII 
?&=O 

(b) Put /[x, v]ll = E. Then put a = (x + x*)/2, b = (x - x*)/2i 
One has INa, ~111 < E, llh VIII ,< E, 0 < (1 + a)/4 < l/2, 0 G 
(1 + b)/4 < l/2. A n d with ui = (1 + a)/4 + i( 1 - (( 1 + ~)/4)~)l/~, 
ua = ur* it follows from (a) that II[uj, 9111 < 2 ll[(l + a)/4, ~111 < e/2 
forj = 1, 2. Hence (2.5) we get: 

11 Ut”(Uj) - uj 11,” < 21’“C3l’2, 

II %Ya) - a iI5 = 2 11 OtO, (J+) - (qq 

= 2 I/ qyU1 + u2) - (ul + u2)lg < 8c;‘2E1’2. 

Also /I a#) - b 11; < 8C1/2~;‘2 and using x = a + ib we get (2.6b). 

LEMMA 2.7. There exists a constant CO < CO such that for any 
von Neumann algebra M, and any faithful normal state q~ on M one has: 

II Ut”(X> - x II5 G cl41 + I t I) IIL? ?3 112 

Proof. Put K(t) = Inf h, 11 U~Q(X) - x 11,” < h lj[x, ~]/jl/~, VM, y, x. 
Then K is lower semicontinuous, K(-t) = K(t) Vt E R, K(0) = 0, 
K(t + t’) < K(t) + K(f) so that K(t) < C&l + I t I), for some 
C,, > 0. The proof of 2.3.1 is immediate using Lemma 2.7. 

(2) Let f EL1(R), x E M, II x ]I ,< 1 then assume j’f (t) dt = 1 

II ~‘Yf)x - x II,” = 11 J‘, (cQ%) - 4.N) dt //+ 
m 

< I iw Co(l + (9) I f(t)1 dt lfx, ~111~‘~. 

So for f EL1(R), j I t 1 If (t)l dt < cc we get an inequality 

II qf)x - x II,” < c, Il[% dV2, VXEM, I/XI/ < 1. 
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Now choose f such that Support p n Sp A, = (1). It follows that 

df b = K44 V-J se am(f) M C M,) for any x E M hence (2). 

PROPOSITION 2.8. Let M be a countably decomposable van Neumann 
algebra, I be an ordered directed set, and (x~)~., be a uniformly bounded 
family of elements of M then the following conditions are equivalent: 

(a) There exists a faithful v E M*+ and a weakly dense subset 
Sp C M with ll[xj , ?I// jj,, 0, [xi , y] +j+c4 0 strongly 
VYEY. 

(8) There exists a total subset 9 C M, such that V# E 3, 

llh 9 411 --+j+m 0. 
(Y) ll[~i,~lll~~~m~,~~~~~~~~[~~,~l-t~,~*~~~~~~g~y,~~~~. 

Proof. (y) G- (a) is clear. Let us prove (a) * (@. Take E > 0, 
x, y E M such that II[x, y]l\, < E and i/[x, v]II < E then for any z EM 
we have: 

I V@XY - ZYX)l 6 II z II 6, I dZYX - XZYI G 6 II 2 II II Y II 

hence l((~dxX4 - MYFJW)I < 4 + II Y II> II z II. And it follows 
easily that for each y E 9, and 4 = yp’ E M, we have II[z,b, xi]11 + 0 
when j --+ co, hence (p). (/3) * (y) It follows from the following 
inequality: a, x E M, 11 a jl < 1, II x /I < 1 

I ~([a, xl* [a, 41 G 4 SUP Ilh 41, llhh XIII, lIh-3 x*lll, Qq E M,+ 

We assume that, with E > 0, we have ]I[?, x]il < E, Il[av, XIII < E, 
Il[ay, x*]ll < E then for any y E M the following inequalities are true: 

IdXY -YX)l G 4YlL I dxra) - dY4 < E IIY II, 
I dx*ra> - dyx*a)l G E II Y II 

hence I v(a*x*xa) - v(xa*x*a)I < E, / v(xa*x*a) - g,(a*x*ax)j < E 
which gives: 

I p(a*x*[x, a])] = I p(a*x*(xa - ax))/ = I v(a*x*xa) - q(a*x*ax)l < 2~. 

Moreover 

1 qJ(x*a*ux) - p(xx*a*a)l < E and I v(x*a*xa) - ~(xx*u*u)l < E 

so that I y(x*u*[a, x1)1 < 2~. 

THEOREM 2.9. Let M be a countably decomposable von Neumann 
algebra and w E/?IW/N. 
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(1) 

(2) 

(3) 

Proof. 

A. CONNES 

The quotient of the C*-algebra A, C I”@, M) of all sequences 

bJ?EN such that [l[x,, r+1]1/ -+ 0, n --+ w, VP, EM, by the 
two-sided ideal of sequences converging * strongly to 0 when 
n -+ W, is a Fnite von Neumann algebra M, (called asymptotic 
centraliser of M at w). 

For any automorphism 8 E Aut M, the automorphism (xn) -+ 
(0(x,)) of A, defkes an automorphism 0, of M, , and 9, 
depends only on the canonical image ~(8) of 0 in Out M. 

For any t E Iw one has (s(t)), = 1 where 6 is the modular 
homomorphism. 

(1) By construction A, = 0 A,,, , y faithful normal state 
on M. Let q~ be a given faithful normal state on M and 9 the set of 
faithful normal states on M with CX~J < 4 < a-$ for some (y. > 0. 
Then A, = he9 4, (Use 2.8). Moreover considering M, as a 
subset of M,,, we get, using (2.2.2): 

As on Pwd4uJ n AtiL,J the norms corresponding to lim, p(xn*xn)li2 
and lim, #(~fxJ are equivalent it is easy to conclude that M, is 
a weakly closed * subalgebra of M, hence a von Neumann algebra. 

(2) We just have to show that for any unitary u E M and any 

sequence hJneH E A, one has ux,u* - X, --+lz+w 0 * strongly, which 
follows from Proposition 2.8. 

(3) Follows from Proposition (2.3.1). 

As an application we shall prove: 

THEOREM 2.10. (a) Let X E IO, 1[ then there exists a factor of 
Type II, N,, acting in a separable Hilbert space, having A in its funda- 
mentalgroup but 1 $ r&N,) ( i.e., N, @ R, not isomorphic to N,,). 

(b) Let X E IO, l[ then there exists a factor of type II, such that 
the set C, of conjugacy classes in Out N of elements j such that y( f ) = h 
contains at least two elements. 

Proof. (a) Let PA be the Pukanszky’s factor of type III, . By 
construction there exists a finite measure space Q, TV and an ergodic 
group 9 of non singular transformations of Q, p such that P,+ = 
I%‘*($?, Q). Now let I(L”(sZ, p)) be the canonical abelian maximal 
subalgebra of P,, , E the corresponding conditional expectation from 
P ,, , y = p 0 1-r 0 E the faithf u normal state on PA corresponding 1 
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to p, and for s E %‘, U, the corresponding unitary in Ph . From [4] 
page 207 and [12] page 193 it follows that if g, ,g,are the two generators 
of the free group G, and s1 = @81 , ss = Qg2 ([4] page 207) are the 
corresponding elements of Y one has: 

(1) sp d, = {An, n E z>- 

(2) vx E p* f I dx)l” 3 II x 11: - 5.142 SUPj=l,Z Il[x, usJll” 

(3) usj E (PA), j = 1, 2 

Let N,, = (P,&, then in P,, @ g(X), No @ p(Z) is the centraliser 
of the weight IJI @ Trace which is generalized trace on PA @ Z(8) 
(see [4]), hence by [4] 4.4.5, we have h E Fundamental group of N, . 
Let w E flN\N and (x,),,~ E A,(ZV,). Then by Proposition 2.8 one has 
h 3 Yl -+n-+w 0 * strongly, Vy E No . 

But as the Usj , j = 1,2 belong to IV,, it is easy to conclude from (2) 
that there exists a sequence X, E @ such that x, - h, + 0 * strongly 
hence that N,,, = C. Assertion (a) follows easily [7]. 

LEMMA 2.11. Let Q1 be a factor, 4p0 ,..., qua be faithful normal states 
on Ql > b, ,..., bp be elements of Q1 such that for some K > 0, and any 
E > 0, any x E Q1: II[x, billI,, < E, vj = l,..., P * II x - ~,@)Ilmo < Kc 
then 

(a) For any von Neumann algebra with separable predual Qz 
and any faithful normal state ‘p on Q2 , any X E Q2 @ Ql one has 

k=l 

(b) For any Q2 like in (a) and any w E @\RJ the canonical homo- 
morphism VT, corresponding to n: x E Q2 ---f lo1 @ x is an isomorphism of 

Qzsw onto (Q1 0 Q2L . 

Proof. (a) Let a, , a2 ,..., a, ,... be an orthonormal basis of the 
pre-Hilbert space Qs with scalar product (x, y) -+ ?(y*x), such that 
the linear span of the ai is a * subalgebra of Q2 (Use the Schmidt 
orthogonalisation process). 

The algebraic tensor product of this t algebra by Q1 is a dense 
subalgebra of Qz @ Q1 hence we can assume that: 

X=faj@xj, xi~Q1, j = 1, 2 ,..., 71. 
j=l 
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Then 

[X, 1 0 bkl = i q 0 [Xj , bk] and IIE 1 0 ~klll&wk = 
j=l 

As for any x E Q1 we have II x - ~o<x>ll~o < K $ Il[x, bklll~k , it yields 

hence 

c II %i 0 (Xi - %W>ll :mo < K”C IILK 1 0 ull:@~k 
ci k 

and hence conclusion (a). 

w Let KJneN be a uniformly bounded sequence of elements 

of Qs 0 Q1 such that IILXp $1111 -+ L,, ‘+ E (Q2 0 Qd* , then by 
Proposition 2.8, one has [X, , Y] -+ 0 * strongly for any YE Qs @ Qi 
hence by (a) X, - (1 @ y,,) X, -fn+ 0 strongly. Also 

strongly so that the sequence Y, = (1 @ v,,) X, which belongs to 
Q2 @ @ yields the same elements of (Q2 @ Q&,, as the sequence 

Fu%.N * 

(2.10b) From (2), using the equality jl x - ~(x)l]~ = y(x*x) - 
I y(x)]” it follows that N,, satisfies the hypothesis of Lemma 2.11. 
Let F, be a factor of type I, , (e&.a be a system of matrix units in 
F,andforx~F,, (xii)i,iez be the matrix components of x. Then the 
following inequalities show that F, satisfy the hypothesis of Lemma 
2.11, with hj = 2-j, j > 0, hj = 2jf1J2, j < 0. 

1 1 xij 12 2-3P < 5 c 1 x,,(h, - xjy 2-14 
i#j 6.j 

C 1 Xjj - X0.0 I2 2-31” < C 1 Xi+l,j+l - Xi,j I2 2-21’1 
i i,j 

So let N = N,, @F, @ R, where R, is the hyperfinite factor of 
type II, , it follows from Lemma 2.11 that for each w E /3fV\RJ the 
homomorphism 7~, x E R, + lNO @ lFm @ x defines an isomorphism 
rTT, of R,,, onto N, . Let 8, be an automorphism of No @F, such 
that ~(0,) = h (S ee a)), and 8 = 13, @ 1 the corresponding auto- 
morphism of N. Clearly using 7~, one has 8, = 1. Let (y. be an auto- 
morphism of R, such that 01, # 1 (For instance write R, = R,,, @ R,,, 
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and take ol(x By) = y @ X) then put 8’ = 19 0 (IdentityNOiF, @a), 
we get 19,’ f 1 using r, , though ~(0’) = h. 

THEOREM 2.12. Let M be a factor of type III, then for any u E /IN/N 
ond has M, # @ and even Center of MU # C. 

Proof. Identify M with P OF, where P is a factor isomorphic 
to M. Let [4] Lemma 5.2.4, y0 be a faithful normal state on P such that 
1 is isolated in Sp A@0 . Let (x&~ be a uniformly bounded sequence 
of elements of M such that il[x, , #]li,+, -+ 0, V# EM, . Then 
Lemma 2.11 shows that there exists a sequence (y&N of elements 
of P such that x, - (yn @ 1)7L+w -+ 0 J strongly. It follows that 

FLY; Y %lln+w -+ 0 hence (Proposition 2.3) that there exists a sequence 
z 12 12EwI, a, E PW, such that x, - (zn @ I)n+w --+ 0 * strongly. Let 

v,, = y0 @ Trace, it is a faithful semifinite normal weight on M which 
satisfies the conditions of Lemma 5.3.2 of [4] on M. It hence follows 
from [4] p. 235-238 that the centralizer M, = N of v in M satisfies 
conditions (a)(b)(c) in the proof of Theorem 1.5. 

To finish the proof of 2.12 we need only construct a sequence 

hAEN of elements of the center of Ma = N, a faithful normal state 
&, on M such that (a) Il[v, , ~+$,]lj++~ + 0, (b) there exists a strongly 
dense subset Y of M such that [vn , y],+ -+ 0 strongly Vy E 9, 

(4 loo = 0 f or all n. We use the same notations as in the proof 
of Theorem 1.5 and we let 4 be a faithful normal state on N = M, , 
and #,, = # 0 E. For each n there exists a unitary v, E C such that 
#(4 = 0 and Ad ufel ,... .En,O,. . . ,o,. ..,)s = vn for all Q = 0, 1. Then as 
V, E M*, (because V~ E N$) the sequence (vJ satisfies requirements 

(a)(b)(c)* 

III. COMPLETENESS OF THE GROUP OF INNER AUTOMORPHISMS 

THEOREM 3.1. Let M be a von Neumann algebra with separable 
predual, C = Center M, then the following conditions are equivalent 

(a) Int M is a closed subgroup of Aut M where Aut M has the 
topology of pointwise norm convergence in M, . 

(b) The homomorphism u -+ Ad u from the unitary group e(M), 
gifted with strong topology, to Aut M, gifted with topology of pointwise 
norm convergence in M, , is open on its range (Int M). 

(c) For any strong neighborhood V of 0 in M there exists 
v1 ,..., vn E M, and E > 0 such that Vu E e(M), )I uyju* - yj /) < E S- 
u E a(c) + v-. 
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(d) For any ordered directed set I and any bounded family (xj)j~, 
of elements of M such that li[xj , p)]II -+ 0, j ---t co there exists a bounded 
family (x~)~., of elements of C such that xj - Zj ~j,, 0 + strongly 

(e) Same statement as (d) with I = N, the integers in their usual 
order. 

The topology of pointwise norm convergence in M, on Aut M, 
coincides with the topology of uniform weak convergence in M. It has 
already been fully discussed in the literature [l], [8]. Following [8] 
we shall call it the u-topology. It is clear that gifted with the u-topology, 
Aut M is a topological group. 

LEMMA 3.2. Let M be a van Neumann algebra with separable 
predual, and on Aut M let the u-uniform structure be the sup of the right 
and left uniform structures of Aut M with u-topology. Then with 
u-uniform structure Aut M is a complete separable metric space. 

Proof. Apply the results of [I] and [8]. 

LEMMA 3.3. Let M be a von Neumann algebra with separable 
predual, let a(M) be the topological group of unitaries of M with the 
strong topology, let u 4 u be the canonical open homomorphism of e(M) 
onto 9!(M) = &(M)/@(C) where C = Center of M. 

(4 Let KiL2... b e a basis of neighborhoods of 0 in M for the 
strong topology, then (WJnzl 2 , 9 ..I Wn = {g, u E 6(M) n Vn + e(C)) 
is a basis of neighborhoods of 1 in ‘J?(M). 

(b) There exists on g(M) a metric, compatible with the topology, 
which makes it into a complete separable space. 

Proof. (a) The typical neighborhood of 1 in g(M) is ?V where 
W = g’(C) x e(M) n (1 + 9’) w h ere V is a strong neighborhood 
of 0 in M. As one can assume that UV = V’-, Vu E e(M) we get 
%‘- = @(M) n (e(C) + V). 

(b) Let d be a metric on e(M) corresponding to the sup of left 
and right uniform structures. Then e!(M) is a complete separable 
metric space. Then clearly d(u, v) = Inf~=,,~=, d(u’, v’) is a metric 
on g(M), yielding the quotient topology, under which g(M) is 
complete and separable. We now state a known lemma whose proof is 
included for completeness. 

LEMMA 3.4. Let G, and G, be topologicalgroups, polish as topological 
spaces and j be a continuous bijective homomorphism of G, onto G, , 
then f -l is continuous. 
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Proof. For each Bore1 subset A of Gi , f(A) is analytic as well as 
f(A)” hencef(A) is Borel. In particularf-l has the Baire’s property: 
there exists a meager subset &Y C G, such that f-‘/AC is continuous. 
Take a, +n+m no , where o, E G, , n = 0, 1, 2... There exists 
24 E fin+1 ACv,l, hence such that UV, + JY, n = 0, I... Then 
f-'b%) ++Kc f -l(uq,) hence f -l(z+J -+~+mf-l(q,). 

Proof of (a) * (b). A ssume that Int M is closed in Aut M. Then 
the u-topology makes it into a polish topological group and the map 
u E g(M) -+ Adu lint M is a bijective homomorphism of 2’(M) 
onto Int M which is obviously continuous. So Lemma 3.4 shows that 
this mapping is open on its range hence that (a) * (b). 

(b) * (c) By hypothesis when Ad u -+ 1 in Aut M, u + 1 in 
g(M). Hence (c) holds using Lemma (3.3a). 

(c) 3 (d) One can assume 0 < X, < l/2 Vj ~1, and writing 
2Xj = (Xi + im) + (Xj - im) one can then assume 
that Xi is unitary for each j (use the estimate (2.6a)). But then 
Il[Xj , ~111 = 11~0 Ad Xj - v I/, V~J E M, , hence Ad xj + 1 in Aut M 
so that, using (c), there exists a sequence (zj), xi E C such that 
xj - Xj -+ 0 strongly when n -+ CO. 

(e) + (a) Let M act in the separable Hilbert space # with 
(~j)j=1,2 a dense in &‘. Let Vm = {X E M, II x.fj - & 11 < 2-n, j < T,J} 
and for each n let Wn be a neighbourhood of 1 in Aut M, such that 
(using e) 

Let 8 E Int M, and vu, E S(M) be such that Ad V&V, E W, , 
Vn = 1,2,... and Ad a, + 6 when n -+ co. Choose for each 11, a 
U, E 9!(M) such that gn = v, and u,+i - u, E Vn . Then u, converges 
strongly to some II E M, and u is an isometry such that ux = e(x)u. 
Vx E M so that ~9 is inner (141 1.3). 

DEFINITION 3.5. A von Neumann algebra satisfying equivalent 
conditions in 3.1 will be called a full von Neumann algebra. 

This name refers to the completeness of the group of inner auto- 
morphisms. 

COROLLARY 3.6. Let M be a factor with separable predual then: 
M is full e M, = C for some o E pN\N * M, = C VW E /3N\N. 

Proof. If M is full then condition 3.1(d) immediately implies 

580/16/4-6 
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M, = C V’w E /3l+l\N. If M is not full, let v be a faithful normal state 
on M, E > 0, (x,),=i,s be a bounded sequence of elements of M such 
that II[x,~ $111 -s+~ 0 for all # E M, but I/ X, - C 11,” 3 E for all 
n E lY. Then V’w E/~N\N, pw((xn)) is a non scalar element of Mu. 

COROLLARY 3.7. Let M be a factor with separable predual then 
(all central sequences in M are trivial) =F- M is full. 

Proof. We shall prove that M satisfies (3.le). By Proposition 2.8 
IIF% 2 VIII +n+m 0, VP, E M* implies that (x,),,~ is a central sequence so 
that for some sequences of scalars (hJnsN , X, - h, -+ 0 strongly 
when n-co, x,* - l-h -n+m 0 strongly hence x, - h, + 0 
* strongly using an auxiliary state to show that X, - ,i& -+Il+m 0. 

COROLLARY 3.8. Let M be a factor of type II, with separable 
predual then M is full o M does not have property r. 

Proof. If M has property r there are non trivial central sequences 
on M hence non trivial sequences (x,),,~ , such that Il[x, , ~111 -+m+11 0, 
VT E M, (Proposition 2.8). Conversely assume that M is not full, let 
o E /3iY\N we want to show that Mu does not have any minimal 
projection (See [7]). As M, # C, let e E M, be a non trivial projection, 
let r be the canonical trace on M and T, the corresponding trace on 
M, . Then TJe) = X E IO, 1[ and there exists a representing sequence 
(en)nEN for e with e, projection of M, Vn, and T(e,) = h, Vn (See [7]). 
Obviously for each x E M and each central sequence (a&+ one has 
T(XX~) N T(X) T(x~) when n --t 00. Applying this we can choose a 
subsequence (ek,&i,a of (e&i,a such that: 

(4 Ilk, y ekJl12 < l/n Vn, (b) I T(wJ - A2 I -=L l/n 
(c) ll[ekn, y]ll - 0 when n - w, Vg, E M, . 

Then ~w((ene+.,)nEN) is a projection in M, which is strictly between 0 
and e, hence showing that e cannot be minimal. It follows that an 
arbitrary maximal abelian subalgebra of Mu is non atomic and hence 
that there exists a projection f E M, with Tw( f ) = l/2. Then 2f - 1 
is a unitary u E M, which has trace 0. Let (f,) be a representing 
sequence for f, with fn projection Vn. Then (u&~ , with u, = 2fn - 1 
is a sequence of unitaries in M, [un , U] -+n+w 0 strongly Vv E M, and 
T(%) -WUJ 0. It follows immediately that M has property I’ of 
von Neumann. In the general case we do not know if M is full o M 
does not have property L of Pukanszky. 

PROPOSITION 3.9. Let M be a factor of type III, , then M is not 
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full, in fact, for any semi-finite faithful normal weight v on M, one has: 

utm E Int M 

Proof. There exists (see the proof of Theorem 1.5) an increasing 
sequence of von Neumann subalgebras Nk C M such that: 

(1) Nk is semifinite and N,’ n M C Nk 

(2) Nk is the range of a (necessarily unique) normal conditional 
expectation Ek 

(3) urzl Nk is strongly dense in M. 

Let 9 be a faithful normal state on Nr , and v,, = y 0 E, , then up 
leaves N, globally invariant and is inner on Nk (because v,, 0 Ek = v,-,) 
so that there exists a sequence of unitaries uk E N, n My0 such that 

Ad u,(x) -+ u?(x) * strongly Vx E fi N, 
k=l 

It follows easily from vO o Ad uk = p10 that up = lim,,, Ad I+ in 
Aut M. 

PROPOSITION 3.9. Let P be a van Neumann algebra acting in a 
separable Hilbert space 2, with cyclic and separating vector to . Let G, 
be the free group of 2 generators s1 , s2 and N = &o, (P, &,), rS for 
s E G, being the canonical injection x --t a** 1 @ x @ 1 *** of P in N. 
Let 13 be the representation of G, on N such that: 

Finally let M = W*(Gz , N) be the cross product of N by G, , let I be 
the canonical injection of N in M; s + US the canonical injection of G2 
in the unitary group of M and E the conditional expectation of M onto 

I(N)* 

(a) For each s E G, , US is in the centraliser of the state 4 E M, 
4(x) = c+(I-~(E(~)), Vx E M where Q, = BgEGa [,, . 

(b) Vx E M one has II x - J&)IIJ < 28 Ci”cl ll[x, U,JII+ . 
(c) The modular operator A,,, of 4 relative to M is, up to multi- 

plicity, the infkite tensor product of the Ae,,p acting in &aI(X, t,,) 

Proof. (a) By construction wqO is OS-invariant for each s E G, hence 
([4] Proposition 1.3) $ is Ad US invariant for each s E G, and US E Mti . 
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LEMMA 3.10. Let 2” = @seC, (2, toI; rlo = C3,,G, to, thenvx E N 

ll(x70 > 70) 70 - x70 II < 14 c IlP&> - 4 70 II 
i=l,k? 

Proof. Let B be an orthonormal basis of SS? containing to and 
SPc2) be the set of all maps g from G, to g which except on a finite 
subset of G, satisfy g(s) = to . For each g E SYtGg) put &, = BsEG, g(s) 
and note that ([ ) B ged~~II is an orthonormal basis for S?. For g E 99Gg) 
and s E G, , put g, , g,(t) = g(s-9) Vt E G, . Then g -+ g, is a bijection 
of @cz) onto g(oa) and it defines a unitary V, in X; V,[, = &,, 
Vg E A?(G2). It is easy to check that 8,(x) = V,xV,*, s E G, , as well as 
P’S70 = q. . Now the action of G, on SYc~) is free except on g = to , 
for, assume g E gtGa), g(so) # to , g, = g with so , s E G, then 
g(s-ks,) # to Vk = 1, 2..., which if s # 1 contradicts (g(t) = &, 
except on a finite subset of G,). Let g E &?(ce), g # to . As sr # ss S- 
gs, # gs8 * ‘&7., -L L8 we have f E P(G,) where f(s) = (~7~ , &J, Vs. 
Then Lemma 4.3.20 in [12] yields: 

$; I&70 9 SJ” 6 (1412 1 c W8,~70 9 I,,) - <x70 3 5J12 
2 seG8 j4.2 

Adding the inequalities corresponding to each orbit of G, in 9PG8) 
yields: 

c 
ssaW,gzc, 

Hence 

II 90 - <x70 9 70) 70 II2 B u4j2 c II - 4 70 l12. 
i=l.Z 

Proof of (b). T o avoid cumbersome notations we put I(X) = x 
Vx E N. Let y E M, then y is a sum of a strongly convergent sequence, 
where x, E N, y = xgEGO x&J, and II Y II: = C II 4(x8) rlo II2 = C II T-PI~ II2 
(We have used the d-invariance of o,,). Then 

For s E G, we putf(s) = 11 xsllo 11. 
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Clearly f E Z2( GJ and 

c If(S?~d -ml2 = 1 I II xsljlo II - II %;‘ssj?o II I2 

= 1 I II xsrlo II - II ~8j(~s:%s,) 770 II I2 

G c II x,710 - 4j(%pssj) 70 II2 = IN35 qil12 

hence Lemma 4.3.3 of [12] yields: 

which means that Vy E M one has: 

II y - Jwlle G 14 c lib, qllls 
j4.2 

Moreover one has: 

hence by Lemma 3.4 

II x1710 - w&I) 70 II G 14 c Ilbs ~~,lllU 
j=1,2 

which implies 

II E(Y) - Yw(rNll~ G 14 c Ilb, Qlllll 
i-1.2 

and as $0 E = 16 we get 

II Y - #Wlr G 28 c lb, K,lll~, . 
i-l.2 

Proof of(c). Let M act in a Hilbert space S+ and & E &$ be cyclic 
and separating for M with w+ = #. Put 

x, = W) 4* 9 s* = lJ,sq VssG2. 

Then for s # s’, s, s’ E G, , TS is orthogonal to Z,n , moreover 
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As I(N) is globally invariant under otJ, Vt E R, we see that X, is 
invariant under d, and that the restriction of d, of X1 is unitarily 
equivalent to dqO,, using the unitary equivalence of the triplets 
(,X, N, Q,) and (X1 , I(N), &). As U, commutes with d, , Vs E G, 
(Use a)), we see that, up to multiplicity, d, is equivalent to dvO,, = 
c&G2 4,,P * 

COROLLARY 3.10. There exist fuZZ factors of type I, II, , II, , IIIh , 
h # 0. 

Proof. Obviously from 3.9(b) the von Neumann algebras con- 
structed in 3.9 are full factors. Moreover as M* contains Us, and Us, 
it is a factor hence it follows from [4] Corollary 3.2.5b) that for each 
h E IO, l] there exists a full factor of type IIIA . The cases II, , II, 
follow from section 2 and the other cases are trivial. 

IV. FULL FACTORS WITH ALMOST PERIODIC STATES 

In all this section, M is a full factor with separable predual. To 
Compute Sd(M) we shall use the following : 

THEOREM 4.1. Let I’ be a denumerable subgroup of R+*, q~, an 
r-almost periodic weight on M, then: 

Sd(M) = r(a@J) = n point spectrum A,, 
e projection E Mv , e # 0. 

This formula is to compare to [4] 3.2.1. However, it is not true in 
general, for non full factors. The fundamental lemma is: 

LEMMA 2. Let M and r as in Theorem 3.1, /3, G, j? as in 1.1, and 
q1 , CJ+ be r-almost periodic weights on M. Let G act on the unitary 
group a(M) by means of CTWJ. 

Then there exists a cocycle v E Z1(G, 4%(M)), strongly continuous in 
s E G such that crppr = Ad v, * up*’ Vs E G. 

Proof. Let s E G, t, E R be such that &t,)-+ s. Then oFi<, -+ up*’ 
in the topology on Aut M of pointwise norm convergence” in M, . 
Hence ~Q*~(cr~‘~)-l is the limit in this topology of u;;*~ (Q*‘)-’ = 
Ad utn where uf = (0~~ : DvJt (See [4]). But by Theorem 3.1, the 
group of inner automorphisms of M is closed, so that Vs E G, 

‘p J- us2 (us vl*r)-l E Int M. For each s E G, let F, be the set of unitaries in M 
such that 02,~ = Ad va,l . ‘p J We know that F, is non empty for any s, 
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hence there exists a Bore1 map s + w, from G to s(M) (with the 
strong topology) such that eu, E F,, Vs E G (See [6]). For s, s’ in G one 
gets w.&**(w,~) w,*,,# E Center of M, hence there exists a Bore1 map y 
from Ga to Z’r = (z E C, 1 z / = l> such that: 

(1) W,+& = y(s, s’) w&‘r(w,f) V(s, s’) E G2 

(2) Y(SP 4 Y(’ + $9 m4 Y, s + t) y(~, s)-l = 1, VY, s, t E G 

We shall now show that y(s, s’) = y(s’, s), Vs. s’ E G. To see this let 
Xq, , dQ1 correspond to v1 , as usual, and let ZQ = (0~~ : Dql)t, for 
t E R. For t, , t, E R one has: 

so that the ub 0;’ generate an abelian von Neumann subalgebra a of 
9(&Q Let s E G, t, E R be such that s, = /?(&J -+ s when n -+ co. 
Then Ad z+, + Ad v, for the topology of norm pointwise convergence 
in M, so that (Theorem 3. lb)) there exists a sequence (&J,,, , 
X, E Tl such that h,u, -+ V~ t strongly when n -+ co. It follows that, 
with A,1 = CAEr hEn , A:’ = &ET (s, h) EA , one has: 

for any s, s’ E G and 

Y(S, s’) = I+‘, 4, vs, s E G’. 

Now this means that the extension of Tl by G corresponding to y is 
Abelian and hence splits ([lo]). It follows that one can choose the us 
forming a I-cocycle, hence 4.2 follows. 

Proof of Theorem 4.1. Let $ be another almost periodic weight 
on M, and let I’ be a denumerable subgroup of R+* containing 
point Spect. A, and p. Sp. A,; then v and IJ are r-almost periodic and 
Lemma 3.2 shows that uQlr - (~$3~ in the sense of [4] def. 2.3.3. Then 
by Theorem 2.2.4 of [4] one has r(omJ) = r(c+J) hence Theorem 3.1 
follows from formula 1. 
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Remark 4.3. Let M, r, yl, vz and v E Z1(G, 9!(M)) be as in 
Lemma 4.2, and let u1 = (&a : DF~)~, Vt E R. Then there exists 
X E IF!+* such that qtt) = Ai%, . In particular (D&I, : 0~~) then extends 
to G, but it is not true in general that (0~~ : DqQ1 itself extends to G. 

COROLLARY 4.4. Let A be an arbitrary denumerable subgroup of 
[w+* then there exists a (fuZZ) factor M acting in a separable Hilbert 
space such that 

Sd(M) = A. 

Proof, In fact we shall construct explicitly a map A -+ M(A). 
Let A be given, put (PA , qA) = Qen (RA , y,J where R,, is the Powers 
factor of type III, and p)h is the canonical product state on R,, . 

Each q~,, is almost periodic with Sp d, = {A”, n E Z}, hence it is easy 
to conclude that qA is almost periodic with 

point spectrum flyA = A. 

Now let MA be the full factor corresponding to the couple PA , yn by 
Proposition 3.9 with q, = qn. Let also #A be the corresponding 
faithful normal state on MA . 

By Proposition 3.9, d,A is a diagonal operator so that #A is almost 
periodic. By Proposition 3.9(c) one has point spectrum +n = A. 
Finally by Proposition 3.9 the relative cornmutant of the centraliser 
M&n of $n in MA is reduced to @ hence MtiA is a factor. Hence it follows 
from [4] 2.2.2(b) that r(uQJ) = Sp(oQJ) = A and from Theorem 
4.1 that Sd(M,) = A. 

COROLLARY 4.5. The Bore1 space of isomorphism classes of factors 
of type III, acting in a separable Hilbert space is not countably separated. 

Proof. Let a be the Bore1 space obtained dividing R by the relation 
t, - t, iff CM, + Q = Qt, + CD. Then &? is not countably separated. 
Put rf = {ea, 01 E Qt + Q}. We shall admit that the map t + M=, is 
Borel. Now if t, + t, the factor Mrt, is not isomorphic to M’;, for 
Sd(M,t) = rr. If t, - t, by [9]. theorem 4.1 p. 111 the couples 
(Prtl , q+J, (Prt, , CJ.+,,) are isomorphic so that Mpe is isomorphic to 
MI- . Hence t -+ MT, defines an injection of g into the Bore1 space 
of izomorphism classes of factors of type III, . 

COROLLARY 4.6. There are type III, factors for which 

Center of Out M # 6,(R) 
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Proof. Let r be a dense subgroup of RF*, M a full factor of type 
III, and q~ a r-almost periodic weight on M. As M is full, Out M = 
Aut M/Int M is hausdorfI. Put 6,(s) = lim,, s,(t) for all s E G 
(where fl is noted as identity). 

Then 6,(G) C Center of Out M is a compact subgroup of Out M 
so that Lemma 3.4 prevents the injective map t E 08 -+ s,(t) E 6,(G) 
to be surjective. 

THEOREM 4.7. Let M be a full factor with separable predual, with 
Sd(M) = F # R. 

(1) There exists an almost periodic weight q~ such that 

Sd(M) = point spectrum d, 

(2) Let v1 and qua be two r-almost periodic weights on M such that 
~~(1) = ~~(1) = +co thenthereetitsaunitaryu~Mandanor~R+* 
such that v2 = cu~~(u.u*). 

In the proof we shall show the following analogue of Theorem 
4.2.6 [4]. 

LEMMA 4.8. Let M be a fullfactor with Sd(M) = r # !R+*, let q~ 
be an almost periodic weight on M then the following conditions are 
equivalent. 

(a) q~ is a r-almost periodic weight. 
(b) Point spectrum A, = Sd(M). 
(c) MW’ n M = @. 
(d) M, is a factor. 
(e) (M, C M* , 4 faithful semi-finite normal weight) G- 1,6 = aq~ 

for some ar > 0. 

Proof. (a) + (b) is clear. (b) * (d) One has Sp(aQ) = r(@ 
hence by Theorem 2.4.1 of [4], M, is a factor. (d) z- (c) follows from 
the inclusion M n M,’ C M, . 

(c) 3 (e) By hypothesis the ul = (D# : &I), belong to M,’ n M = 
@ hence $ is proportional to F (compare with [4] Theorem 4.2.lb)). 

(e) => (d) Take h E [l/2, 11, h E Center of M, then 16 = v(h.) 
has a centralizer containing M, hence h = 01 for some 01 E iR+* so that 
M, is a factor. 

(d) * (a) follows from Proposition 2.2.2(b) in [4] and Theorem 4.1 
above. 
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LEMMA 4.9. Let M be a factor, cp be anr-almost periodic weight on M. 
Let B be the operator of multiplication by the function y -+ /3(y) in P(r), 
and u = tr(B.) the corresponding weight in 2(12(r)) (Tr is the usual 
trace). Then M @ Z(Z2(r)) is isomorphic to the cross product of the 
centraliser (M @ 2?(Z”(I’))),,, by an action of the group I’ (with discrete 
topology). 

Proof. The weight 9) @ w is r-almost periodic on P = M @ 2(/2(r)) 
hence Pmou is the range of a normal conditional expectation E from P. 
Moreover the inclusion P,&u C Pwow follows from an immediate 
modification of [4] Lemma 4.2.3. 

For y E r let u, be the unitary in Z2(r) corresponding to translation 
of y. Clearly y + U, = 1 @ u, is an homomorphism of I’ in the 
unitary group of P such that: o?@“*~( U,.) = (t, y) U,, , Vt E G. It 
follows that Ad U, leaves PQow globally invariant, thus defining an 
automorphism V, of this von Neumann algebra. Moreover using [4] 
Part. 2 and the discreteness of r we see that PVow and the U,, generate 
the von Neumann algebra P. 

Let 7 be the restriction of y @ w to Pm@,,,; it is faithful semifinite 
normal trace and 7 0 V,, = P(~)T (Use [4] Lemma 1.4.5(b)) so that for 
any y # 1 the automorphism V,, is outer and satisfies p( V,,) = 0 with 
the notations of [4] Proposition 1.5.1. 

Now the conclusion follows from [4] Remark 4.1.3(d). 

LEMMA 4.10. Let A be a discrete Abelian group acting by automor- 
phisms x -+ g * x on a von Neumann algebra N. Assume that the center C 
of N is difJuse and that the action of A on C is ergodic. Then P = 
W*(A, N) is not a full factor and has property L of Pukanszky. 

Proof. The action of A on C is weakly equivalent to a free action 
of (Z/2)‘“’ on C (result due to W. Krieger). Let v be an arbitrary 
faithful normal state on C. Then for each n = 1, 2... there exists a 
unitary u, E C such that: pl(u,) = 0 and 

S(q,r2 I..., E”.O ,... Pn = % vcj = 0, 1 j = I,..., n. 

Identifying N with its canonical image in P = W*(A, N), we note 
E the canonical conditional expectation of P onto N and X --+ U, the 
canonical homomorphism of A in the unitary group of P. 

For h E A the restriction of Ad U, to C belongs to the full group of 
the S,, E E (Z/Z)(“) so that there exists a family of projections 
(e>),,(,/,)cH) in C such that U,xU,* = C S,(e>x). Let then e,* = 
c.4 E1 ,..., f,,o ,...) W,A). When n --t 00, emA tends to 1 strongly and as 
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UAu,UA*e I=24 n e 12A, U,pn U,* - u, = u,(enA - 1) + &u, Un*( 1 - enA) 
tends to { strongly. Moreover for each n, u, E P* where # = v. E. 
Since [u, , xUJ -+lt+m 0 * strongly for any x E N, we see that 

Ilk 3 rlGllln4c + 0 for each y in the linear span of the NU, , h E A in P. 
As the set of such y# is norm dense in M, , and as #(ulz) = 0, Vn, 

we conclude that P does not satisfy condition (d) in 3.1. Moreover 
the sequence (u,),,~ is a central sequence in P (use the proposition 
2.8) hence P has property L of Pukanszky. 

Proof of (1) in Theorem 4.7. Let v be an almost periodic weight 
on M, with A = group generated by point spectrum of y. Assume 
that the center of M, is diffuse. Let z,!t = y @ w be as in Lemma 4.9, 
on P = M @ Z(Z”(r)) and for h E (1 let Eh be the projection in 
g(Z”(/l)) corresponding to multiplication by the characteristic function 
of {A}. Then z+5rOEh is isomorphic to /3(h)p, and hence the center of its 
centraliser is diffuse. 

As the (1 0 J%A form a partition of unity in the centraliser of 4 
it follows that the center of this centraliser is diffuse. But using 
Lemmas 4.8 and 4.9, it contradicts the fact that M is full. Now let 
e E M, be an atom in the center of M, , then the weight ye on M, 
satisfies condition (d) of Lemma 4.8. Now Theorem 4.7 being trivial 
for factors of type II we shall assume that M is of type III, hence that 
M, is isomorphic to M. Then the corresponding weight on M satisfies 
condition (b) of 4.8 hence (1) of 4.7. 

Proof of (2) in Theorem 4.7. Let 01 E IF!+* be such that ut = 
(Dy, , &I& extends to the dual group G of r. Let Q = M @ Fz 
be the von Neumann algebra of 2 x 2 matrices over M, and 
9b dC xij 0 4 = o~~r(xiJ + &x2J be the corresponding weight onQ. 

By Proposition 1.1 we see that y is r-almost periodic on Q, and 
as Sd(Q) = F that the centraliser Qm of q is factor (Lemma 4.8). 
In particular the two infinite projections I @ e,, , I @ e22 of Qm are 
equivalent and consequently there exists a unitary u E M, with 
U* @ e2i E Qm and it follows (as in [4] p. 221) that y2 = ol~i,~ . 

COROLLARY 4.11. Let M be a full factor with separable predual then 

Sd(M)= S(M). 

Proof. If Sd(M) = R+* the conclusion follows from 1.7, so we can 
assume that Sd(M) = l-’ + R, *. Let y be a F-almost periodic weight 
on M (Theorem 4.7) then iI!&, is a factor (Lemma 4.8) hence by [4] 
2.2.2(b) we have S(M) = Sp d, . But as d, is diagonal its spectrum is 
the closure of its spectrum and we get 4.11. 
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COROLLARY 4.12. Let M be a full factor with separable predual with 
Sd(M) = r # R, *. Then if M is not finite it is the cross product of a 
factor N of type II, by an action y -+ 8, of I’ on N such that 

T o 6 = B(Y)T VyEr. 

Moreover in such a description the isomorphism class of N as well as the 
conjugacy class in Out N of the 8, are uniquely determined by M. 

Proof. Starting from a r-almost periodic weight q~ on M such that 
v(I) = $-co we consider $ = 9 @J o on P = M @ =!Z(l”(I’)) as in 
Lemma 4.9. Then 4 is F-almost periodic and #( 1) = + co so that P+ 
is (use 4.8) a factor of type II, . So that the existence of N and 0 
follows from Lemma 4.9. 

Now assume M = W*(r, N) where r acts on the type II, factor 
by 0: 7 o BY = /IT, try E F. Let N be identified to a von Neumann 
subalgebra of M, E be the corresponding conditional expectation and 
q = T 0 E. Then it follows from [4] and Proposition 1.1 that q is 
r-almost periodic on M with ~(1) = + co, hence the uniqueness 
statement (4.7(b)) implies the last conclusion of 4.12. 

V. FULL FACTORS WITHOUT ALMOST PERIODIC STATES 

Our aim is to prove the existence of such factors. 

DEFINITION 5.1. Let M be a full factor of type III,, we note T(M) 
the weakest topology on R for which the modular homomorphism 
R 5 Out M is continuous. 

We shall from now on assume that M has a separable predual. Then 
Out M is a metrisable topological group hence T(M) is a metrisable 
group topology on R, weaker than the usual one. Also T(M) is entirely 
determined by the knowledge of which sequences (tJnsN , t, E R are 
T(M) converging to 0. 

THEOREM 5.2. Let p be an arbitrary injective separable unitary 
representation of R then there exists a full factor M of type III1 acting 
in a separable Hilbert space such that T(M) = weakest topology on R for 
which p is strongly continuous. 

Proof. We can assume that there exists a finite measure ,u on R,* 
with J h dp(X) < co such that for each t, p(t) is the multiplication by 
hi” in L2(R+*, dp). Let P = L”(R+*, II) @ F2 ,q the unique state on P 
proportional to the functional 
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By [4] 1.2.3(b) we have, for f = C fii @ eir and t E R, 

u&f) = fll 0 ell + Nfil 0 ezl + fWfi2 0 e12 +f22 0 e22 

(where p(t)(X) = hii, Vh E R+*). H ence we conclude that for sequences 
(QneN , t, E R one has: u$” -+ 1 in Aut P o p(t,) += 1 strongly. Let P 
act in Z’, and & be cyclic and separating with we0 = v. We now adopt 
the notations of Proposition 3.9 and let M be the corresponding factor. 
By (3.9~) we have for any sequence (QnGWI , t, E R 

(Ufn -+ 1 in Aut M) o (dityM + 1 strongly) 0 (dzp --f 1 strongly) 

hence $ -+ 1 in Aut M o p(t,) -+ 1 strongly. Now assume that 
S,(t,) --+ 1 when n -+ co. Let u, , n = 1, 2... be unitaries in M such 
that Ad u, 0 g$ n -+ 1 in Aut M with u topology. Then 

Ad u, 0 o:~( UJ d Usj 

strongly when n -+ co hence [un , * UJ tends to zero strongly when 
n -+ co. Also c$.~, 0 Ad u,*( Usj) -+ Usi strongly so that 

I/ Ad u,*U,, - Usj [Iti -+ 0 when n + co and [u, , U,J + 0 * strongly. 

Applying Proposition (3.9b) we get a sequence h, of complex numbers 
of modulus 1 such that u, - h, + 0 * strongly. Then for any x E M 
we have: 

which tends to x when n --+ co because hnu,* + 1 strongly, and 
&u, --+ 1 strongly. Using this we see that ut ---t 1 in Aut M. It 
follows that S,(t,) --+ 1 when n -+ co o p(t,) G,,, 1 strongly. 

COROLLARY 5.3. There exists a factor acting in a separable Hilbert 
space and which possesses no almost periodic state or weight. 

Proof. Take p to be the regular representation of [w in 5.2, then 
let M be a full factor such that T(M) = weakest topology on W making 
p strongly continuous = usual topology of 08. 

In particular the completion of R with 7 topology (more precisely 
the two-sided corresponding uniform structure) is R. If there were 
any almost periodic weight q on M this completion would be G = f 
where r = Sd M, according to Section IV. 
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COROLLARY 5.4. There exists a Jinite measure space X, TV and an 
ergodic group 9 of non singular transformations of X, TV such that for any 
v N p the set of values dv(g, t)ldvt, g E $9, t E X is not denumerable. 

Proof. All the factors constructed in the Proof of 5.2 can be 
obtained by the group measure space construction from a triplet X, 
I*> 3. 

COROLLARY 5.5. There are factors of type III, acting in a separable 
Hilbert space and which are isomorphic to no cross product of a semi$nite 
von Neumann algebra by an Abelian discrete group. 

Proof. Let M be a full factor without almost periodic state. 
Assume M = W*(A, N) w ere h N is a semifinite von Neumann 
algebra and II an abelian group. Then by Lemma 4.10 the center C 
of N has an atom and the action of fl on C being ergodic, C is purely 
atomic. So for any pair of faithful semifinite and normal traces on N 
the map t = (&a : 0~~)~ extends to the Bohr compactification of R. 
Hence it follows from Proposition 1.1 that T 0 E is an almost periodic 
weight on M for any choice of T, a contradiction. 

COROLLARY 5.6. Let G be a locally compact Abelian group, then the 
following two conditions are equivalent 

(1) Any factor of type III has a decomposition Semi-finite @ G 

(2) G contains a closed subgroup isomorphic to IF!. 

Proof. (2) 3 (1) is an easy consequence of [13]. Assume that G 
does not satisfy the condition (2) above, then by classical structure 
theorems G contains an open compact subgroup K. Moreover, it is 
an easy exercise, using for instance [13] and conditional expectations, 
that the cross product of a semifinite von Neumann algebra by an 
Abelian compact group is still semifinite. As a full factor without 
almost periodic state has no decomposition semifinite @ discrete 
Abelian, it does not belong to the class semifinite @ G. 
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