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A factor not anti-isomorphic to itself 
By A. CONNES 

Abstract 

We construct a factor, acting in a separable Hilbert space, and not anti- 
isomorphic to itself. 

Introduction 

We construct a family Qr \ e 0 1[, p =1 2, ***, C, 1, of 
mutually non-isomorphic factors. For each x, p, ai, the factor Q2,p, is anti- 
isomorphic to Q s,,p,, So that if -r2 7 1 then Q2,p,, is not anti-isomorphic to itself. 
The construction of the Q's and the proof of non-isomorphism rely on: 

1) Theorem 4.4.1 of our classification of type III factors [3], which 
asserts the existence and uniqueness of the discrete decomposition of an 
arbitrary factor of type III2, X e ]0, 1[ as the cross product of a factor of type 
II,, by an automorphism multiplying the trace by X. 

2) The existence shown in [5] and reproved here (Part 4) of distinct outer 
conjugacy classes s,, p e N, -i e C, -l = 1, of periodic automorphisms of the 
hyperfinite II,-factor R. Henceforward we shall denote the hyperfinite II1- 
factor by R. 

3) The existence shown in [4], for each X e ]0, 1[, of a factor N, of type 
IIo, with no non-trivial central sequences, but having X in its fundamental 
group (i.e., there exists an automorphism O' of Ni, multiplying the trace by 
4 The Q.,p.r are then defined as the cross product of R (? N2' - N2 by 
SI ?D Oi, so that they are factors of type III2, depending exactly (by 1) on the 
outer conjugacy class of sr ? O, in Aut No. From the choice of Nil (without 
central sequences) it follows that the image of Aut R in Out N2 by the map 
a -a ? 1, is a normal subgroup of Out N,, equal to the image of the 

closure of inner automorphisms of N2 in the natural topology of Aut No. 
Also from this choice it follows that the image of Aut Ni in Out N2 is 

contained in the normal subgroup of Out N2 of centrally trivial automor- 
phisms, i.e., automorphisms which act trivially on central sequences. 

We then show that the two above subgroups Int N2 and Ct N2 have 
trivial intersection in Out N2, or in other words that 

Int N2 n Ct N, = Int N2. 
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A FACTOR NOT ANTI-ISOMORPHIC TO ITSELF 537 

The non-isomorphism of the Q's follows then from the uniqueness (in Out No) 
of the decomposition Sr ? 01 = (s" ? 1)(1 ? Oh). Though the existence of the 
Q's ruins the hope of describing all factors by the usual group measure space 
construction, there still remains the problem of constructibility of factors 
from the group measure space construction and an additional 2-cocycle as 
described in [12]. 

The construction of the s, done in Part 4 is different from [5]. The con- 
struction makes it obvious that the canonical abelian maximal regular sub- 
algebra of R is left globally invariant, a fact from which it is clear that the 
Q2,P r are obtained by the group measure space construction with additional 
2-cocycle. 

Contents 

I Preliminary on full factors with non-trivial fundamental group ....... 537 
II The group of approximately inner automorphisms ...................... 540 
III The group of centrally trivial automorphisms ......................... 544 
IV Some periodic automorphisms of the II1-hyperfinite factor ............ 547 
V The factors Q2,p r ....................................................... 551 

I. Preliminaries on full factors with non-trivial fundamental group 

In all this section we recall the construction of a full factor' of type II,, 
with X in its fundamental group, done in [4, Theorem 2.10]. First we take 
all the notations of [10, p. 192-195] to get some properties of the Pukanszky 
factors Pi. We take Pi as constructed in [10, p. 192] with p/q = X E 1O, 1[. 
Let Ad be the functional X e Pi - (XC0, (0) in the notations of [10]. 

Recall that with the notations of [10] one has a group 9 containing two 
subgroups 9, and G and that 9 has a unitary representation in L2(Q, A) such 
that for g e 9, f e L-(Q, f), 

U'f Ug =f , f f (0) = f(dg-1) for all d e Q . 

Moreover recall that Pi acts in a Hilbert space XC direct sum of the JACK 
where XK = L2(Q, A); that there is an isomorphism (D of L??(Q, p) onto a 
maximal abelian subalgebra a of Pi and a unitary representation U of 9 in X 

such that 

U- "P(f ) Ug = O(ff ) for all g e 0; 
and also that the generic element of Pi has the form 'geI (1(fg) Ug 

(fgh-1 Ugh-1). 

In the notations of [3], [12], this means that P, is the cross product of 
L-(Q, pa) by the action of 9 on Q such-that: 

1 i.e., its group of inner automorphisms is closed in the u-topology (see Part II). 
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538 A. CONNES 

g =g' for all ge , for all se Q . 

Also $D is the canonical isomorphism of L"(Q, A) in Pi, and go Ug the canonical 
homomorphism of 9 in the unitary group of Pi, of Proposition 1.4.6 [3], up 
to a spatial isomorphism. Let 1 = (0, e) be the unit of 9 (see [10, p. 193]). 
Then the map E which to X = E $(fg) Ug associates PD(f1) U = $D(f1) is the 
canonical conditional expectation of Pi onto a. 

Now - J, (1) where 1 e L2(Q, A) has the obvious meaning ([10, p. 194]) 
and hence, for X = E 'P(f) Ug = (gh1- Ugh-1), one has: 

eP(X) = <XJ11, J11> = fi($)dp() . 

Then Ad = ,p(-'E is the state on Pi canonically associated to the measure j" 
on Q. Hence by [3, Lemma 1.4.5], one has: 
(1.1) S C (P,)T 6g(Ug) = UgPt9 
where 

MO() = dp(g$)1dj"(2) for all $ e Q. for all g e g . 
(See the computation in [3, p. 161, proof of 1.4.8].) 

Now for any g e G c 9 one has da($g-')/dt($) = 1, for all d e Q, because 
the action of G on Q is just a permutation of the components. It follows that 
(1.2) Uge (P2)SA , for all geG . 
From the preceding discussion one sees that the above Pi is the same as the 
PA defined in [3, p. 207]. Moreover, as in [3, p. 207] one has dpa(g$)/dte($) E 
{X n e Z}, for all d e Q. for all g e 9 where X = p/q. So Pi, is a factor of type 
III2 and Ad satisfies 
(1.3) Sp A, = S(P2). 

Now by [10, Proposition 4.3.19], one has the following inequality, valid 
for all X e Pi: 

(1.4) | 9p(X) 2 > qi(X*X) - 14 Supi q'([X, Uaj]*[X, Uai]) 
where the ai are the generators of the free group G. Now (1.4) being true 
for all elements of P, is true in particular for elements of (P2),, which is a 
factor of type II, ([2, p. 1405] and [3, 4.2.6]). 

As in [4] we let Nji = (P2),S, and, since Ua, e Noi and By is the canonical 
trace of the factor Nj' we get: 

LEMMA 1.5. For each X e 1O, 1[, Nj, is a factor of type II, which contains 
two unitaries U., U2 such that, with z- the canonical trace, one has: 

11 X _ ZT2(X) 112 -< 14Sp |[sUJ 112 *2 2x In a ?inite =14 Sup [x, U 2 cn 
2 In a finite factor, 11 112 is the canonical L2 norm. 
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A FACTOR NOT ANTI-ISOMORPHIC TO ITSELF 539 

Proof. One has 

72 0 - 7z(x))*(x - Z (x))) 

= Z(x*x) - (x*)Z(x) -Z(x*)z(x) + Z(x*)Z(x) 

= ZT2 (X*X) - | Z'(x) I2 = P2(x*x) - | PA(X) I2 
? 14 Supi q2([x, U]*[x, U]) = 14 Supi 11 [x, U] II2. 

Notation 1.6. Throughout we let Nil be the tensor product of Noi by a 
type I,, factor S(XC), and O' be an automorphism of Ni such that the couple 
(Ni', Of) is a discrete decomposition of Pi. (See [3, Theorem 4.4.1]; in fact 
(9' 0 Trace) is a generalised trace on Pi ?S(fC) whose centraliser is 
obviously Ni,). 

Definition 1.7. Let M be a von Neumann algebra; then a centralising 
sequence (Xn)neN in M is a uniformly bounded sequence of elements of Msuch 
that II [xn, *] I 0, for all * e M* (i.e., for all A, there exist sn, - 0 with 
l*(xny - yxI!)f II nyjII, for all yeM, for all neN). Now let R be the 
hyperfinite factor of type II, with trace z-. Let SC = 12(Z), write x = (xjj)ijez, 
xij e C for the generic element of 2(XC), and define states on S2(C) by: 

P0(x) = 
7 

EZ 2 3jlXjj, 
9 

pl(x) = I Ez 2-jlxjj , 
3 

P2(X) = 3 Ez 2 21jlXjj, 
5 

each of them faithful and normal on S(JC). We want to obtain: 

PROPOSITION 1.8. Let N, = R (? No?2(2(C). Let (Xn)neN be a centralising 
sequence in N2, then: 

II x -(1 - Z, ( pOXn) I I ropo 0 when n - .3 

In other words any centralising sequence in N2 is equivalent to a sequence 
in R (? 1. 

The proof is already contained in [4] but we want to make one of the 
lemmas more explicit. 

LEMMA 1.9. Let SC = 12(Z), S2(C), po PO , P2 be as above and let (Xj)je be 
such that Xj = 2-i, j 0, Xj = 2j+', j < 0 and b, = jeZ \jejj,' while b2 is 
the unitary corresponding to the shift. Then 

(II [x, bj] IIpj < s, for all j = 1, 2) -- 11 X- pO(x) IIpo < 146 . 
3 For any state f on a von Neumann algebra M, any x e M, one takes II x II (X*X)1' 

I X1 = +(X*X + XX*)1/2. 
(eii) is the canonical system of matrix units in 2(X). 
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540 A. CONNES 

Proof. For x = (xij) e S2(C), the jth diagonal element of the matrix of 
x*x is I xij 12, so that we have: 

x - x00 l1' = 7 1 x 2 2-31 l + 7 Jj I xjj-x 12 2-x('( , PO 9 jj9 

A = E I x_, 2-31j, B = Ej I Xjj-X00 12 2- 

11 [x, b,] l12 E I Xj(\iXj) 12 2-Hi > 1 E. x 2 
3 3 X14 

because 

= 
1 

-2 > (2-1/2 - 1)22-21jl for i? j 

11 [, 2] <0= 1 1 b*xb2- X 
11<2 > 3 E I Xj+l, j+l _Xjj 12 2-21 jl. 11[x, b2] P2 

= bb2 2 xH2 = 
~ 
5 

So that, with II [x, b2] IIP2 < e, one has I xj+-,j+,- xj. <2'jls(5/3)1/2 for all j, 
hence x x 0,,,, , ? I 21"12s (5/3)112 and B ? 1462. 

So 11 [x, bj] IIj s e, j = 1, 2, implies II X - XO J12 < (7/9)(3 x 19)s2 < (76)2 
and hence II x - p,(x) IIP p 7e + 7e = 14s. 

Proof of 1.8. Any centralising sequence on any von Neumann algebra is 
a central sequence ([4, Prop. 2.8, ,) - )]). Then by [4, Lemma 2.11] we 
first have that: 

II X.- (1 pO)(x.) I -O when n 00 

and where 9q = z z-2 (0 po is the canonical state on N2. As (x*)neN is also a 
centralising sequence, we get: 

IIX - (1 ?p0O)(x)II 1 -O when n >. 

Then ((1 0 pO)(x4)),eN is also a centralising sequence on R? No2 and by Lemma 
1.5 and [4, Lemma 2.11] we get: 

11(1 0 pO)Xn - (1 ? Z-2 ? pO)(XX) 1I 1- )0O when n - 00 Q.E.D. 

II. The group of approximately inner automorphisms 

Let N be an arbitrary factor, with separable predual. We put on Aut N 
the topology of pointwise norm convergence in N* called the u-topology in 
[8] (cf. [1] and [8]). 

For a e Aut N a basis of neighborhoods is given by 

T - 
-Pk s ={IleAutNl IIqo 3 - 9jo aj<e, for all j}, 

wheres>Oandj eN*, j= 1, ...,k. 
Gifted with the u-topology Aut N is a topological group ([1], [8]) which 

is Polish as a topological space. The u-topology is in general stronger than 
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A FACTOR NOT ANTI-ISOMORPHIC TO ITSELF 541 

the topology of simple * strong convergence in N, as can be seen by direct 
computation or as in [1], [8]. 

When N is of type II, it coincides with the topology of simple strong 
convergence (if a,,(k) -o a(k) strongly, for all k e N then r(k . ) = q satisfies 
pa-1 qac-', for all kie N and r the trace on N) (see [8]). Moreover the 
normal subgroup Int N is in general not closed (see [4, Theorem 3.1]); its 
closure Int N is a normal subgroup of Aut N. 

THEOREM 2.1. Let X e JO, 1[ and N2 = R 0 N2' as defined in Section 1. 
Then a e Int N2 if and only if there exists a unitary X e N2 and an 
ao e Aut R with 

a = Ad X(aO O) 1N.) 

Throughout the proof we let 9o be the state z- X po on N,' already con- 
sidered in Section 1. We let q' = r 0 9o where r is the trace on R. Also we 
assume that N2 acts in the Hilbert space XJCD of the Gelfand-Segal construc- 
tion of qA, and that 

(2.2) <X$d, $S> = 9(X), for all x e N2 . 
We note that R 0D 1 is contained in the centraliser of cp in N2 because z is a 
trace on R; in particular: 

(2.3) 4, = y$,, for all y e R ($ 1, where Y = Jfx*J5p, for all x e N2 . 

(2.4) 9(wxw*) = 9(x), for all x e N2, for all w unitary in R 0) 1 . 
LEMMA 2.5. There exists a basis (G3n)neN of neighborhoods of the identity 

in Aut N2, such that T.+, c T., for all n and that: (u, u' unitaries in N2, 
(Ad u')-'(Ad u) e T.) (there exists a unitary X e N2 and w e R 0) 1 with 
uf 1u = Xw and II (X - 1)$S 11 1/2'4). 

Proof. Using (1.8), one can, for each s > 0, find a finite number of 
elements of (No)*: Ar, ... 21e and an A> 0 such that 

(x e N2, -x 11 1, 11[x, in]E1 h,, for all j) 
(2.6) (l (x - (1 0 9o)(x))$e ? s and 

(x* - (1P9o)x*)$w ? 

Let (sWn)neN be a basis of neighborhoods of the identity in Aut No. Choose 
es > 0 such that s. + 2(2sn)'I2 < 1/2%. We define (G3n)neN by: 

(2.7) T?& = ,n1f- n zf n {a e Aut N2, fanoa - fan ff for all j} . 
We have to show that any unitary U e N2 such that Ad U e 'C. can be written 
U = X W, I H(X- 1)$f I 1 <1/2A, W unitary in R (O 1. Put y = (1 0) (o) U G 
R 0 1. Then the hypothesis Ad U e 'C. implies that 
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542 A. CONNES 

[[ [*r.n, U][I = I I noAdU- */ran[[ < ! 7% for all j 1, ... qs 

so that 2.6 implies: I!(U- s)! < , I (U* - * 1 . We want to 
replace y by a unitary in R 0 1. We have: 

(y*y - 1)Wf 9 = I( - < (y* - I + (yU* - WS, 
< Rn+ 11 U*(9 - U)$q || :!E 2sa . 

1y -1)$) |- (J y*y- 1)112 because (y Y 1)2 < I I y 12 _1 y= y*y-1 

But then: 

11C y ) 11 - 1) 1 (Y' Y - 
1)$0 111,2 1 (2e )'I2 

Let y = wo I y be the polar decomposition of y. Then wo is a partial 
isometry belonging to the II, factor R 0 1, so there exists a unitary w = 

wo + w1, where w, e R 0 1, w*w, = 1 w- *wo. As y*y ? w*wo, one has 

11 w1$( 11 = 9(1 - wo*wo) ? 9(1 - y*y) < 2sn 

so that II (wo - w) 11 <- (2esn)112 and: 

II (Y - ff || -! II (Y - wo)$q f + (2esn)112 
1<(1 y f - 1)$Y | 

+ (2en)112 < 2(2esf)112 
As y and w belong to the centraliser of p, we have also: 

l (y* - J 
?|| 2(2n)I , J|| (U2 - w J ?)$ | + 2(2e )112 < 1 

then X = Uw* satisfies 

11 (X-1)$fI1 = 11 (U*X-U*)$I 1 Q.E.D. 

Proof of 2.1. a) Let (Glin),neN be a basis of neighborhoods of a in Aut N., 
such that: 

(2.8) qtn+Ic 'Ml for all neN, G;Gli -',, c Tn for all n e N 

where (T,,7)nXN is as in Lemma 2.5. As a e Int N, we can find for each n, a 
unitary un e N, such that Ad un e Glqi. Then (Ad u')-l Ad u,+, e GqJ-lGqn C c 

By Lemma 2.5, there exists for each n, a unitary w. e R ? 1 and a 
unitary X, e N2 such that 

(2.9) u?&+l = X.W., |I (X- 1)- <1- 

By induction one shows, using (2.9), that for each n e N: 

(2.10) ua = u1Z1Z2 ... Z%_,wIw2 ... wn1 where Z0 = 1, 

Zj = wJw2 ... wj51XjwLI ... W* for all j > 1 . 

In fact if (2.10) is true for n, then by (2.9): 
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A FACTOR NOT ANTI-ISOMORPHIC TO ITSELF 543 

Un+l= unxnwn= .Ulzi ... Zn,1WIW2 ... Wn-IXfWn 

- U1Z1 ... Z-,ZnWl.w2 * We-JWo - 

Using (2.4) and the second part of (2.9) we see that II (Zn - 1)$9 ? 1/2n 
for all n, and hence that the sequence of unitaries: 

Ya = Z, Zn e N, satisfies Y -1, ( Y,, 11 Y <f 1 for all n 

and hence ($i, is cyclic for N2) converges strongly to some isometry Y belong- 
ing to NA. 

We shall see that the surjectivity of a implies that Y is unitary. We have 
Ad u, ta in Aut N2 and hence in particular: 

UnXUn >aOC(x) S for all x e N2 . 

Now, by (2.10), we have u. = uY.,w, ... w., = u Y, Vn, with V. = 
w, w. e R ? 1. So we get: u, Y. Vx V,* Y,%t* a(x) strongly for all 
x e N,~. 

Put e = cal(u( - YY*)u*). Then e > 0 and: 

Y. V.7e V, Y, > .* ua(e)ul = 1 - YY (strongly) . 

As Yn Y strongly, and as the product is strongly continuous on bounded 
subsets of 2(NCX), we have: 

(Y V.eV V. Y)Y. >(1 - YY*)Y= 0 . 

So Y, T7,e V, * 0 strongly, Te V, *$, 0 in XC, and 9(e) = 9p( Ve V,*) = 0 
(using (2.4)). 

We have shown that Y is unitary, hence that Y,, Y* strongly and that 
Ad Y, Ad Y in Aut N2. Put X = u, Y; then Ad Y Lug* Ad X* when n 
ca, and Ad us = Ad u, Y,1 V1a when n .5 So 

Ad ( Y.*1) Ad (u, Y, Vnj )AdX*o when n > o 

Now Ad Vn Ad X * o a in Aut N2, so that in particular for all x e 1 ? 
NA, one has: 

Ad X* o a(x) = lim O V ,x* = x (because V, e R X 1). 

This shows that Ad X * o a leaves R ? 1 globally invariant and is equal to the 
product a,, ? 1 of its restriction a,, to R by the identity on Ni'. Q.E.D. 

b) We now let a,, e Aut R and prove that a,, C 1 e Int N2. Let Kn be an 
increasing sequence of finite dimensional subfactors of R, generating R, and 
(Lemma 3.11) let u e R be such that a-'(x) = u*xu,, for all x e K.. Let 

In both cases for the u-topology of Aut No. 
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544 A. CONNES 

k e Kn0, and n > no; then with 2 = z(k.) e R* one has 

oAd U,,o = z-(un*ku,,.) = z-ao-1(k).) = ao, . 

Then IIoAdu n-* oaoI | O forall' e R* and 

II W 0 *2) o (Ad u.) 0 1- (2w X 2) o (ao 0 1)!! - -co 0, 
for all 21 e R A, k2 e (N,)* 

so that Ad (uo 0 1) converges to ao 0 1 in Aut No.. Q.E.D. 

III. The group of centrally trivial automorphisms 

Let N be an arbitrary factor. 

Definition 3.1. An automorphism a e Aut N is centrally trivial if and 
only if for any centralising sequence (Xn)neN, xn e N,6 one has a(x,)- x E 0oo O 
* strongly. 

The set Ct (N) of centrally trivial automorphisms is a subgroup of Aut N 
because if a, 6 e Ct (N) and (Xn)neN is a centralising sequence, we have: 

t-',S(x,)- = a-1(j3(x) - x.) + a'-(x, - a(x,)) for all n e N, 

so that, as a-' is * strongly continuous, we get a-re(x,) - -O 0 * strongly. 
Ct (N) is a normal subgroup of Aut N, because for any a e Aut N and 

any centralising sequence (Xn)ne N, the sequence (u(x,)),,,, is also centralising 
(so for a e Ct None gets au(x,) - u(x,) 0 * strongly and u-'au(x,) - x 0 
is strongly). 

One can check that Ct N is in fact the kernel of the homomorphism 0 
0St, defined in [4, Theorem 2.9]. Moreover Ct (N) contains Int N because for 
any centralising sequence (x,) eN and any unitary u e None has uxnu*-x, 0 
* strongly (using [4, Prop. 2.8, M) . 

THEOREM 3.2.7 Let N2 = R 0 N2' where R is the hyperfinite factor of 
type II, and NA is as in sections I, II. 

a) Any a e Ct N2 which preserves the trace on N2 is equal to Ad X(1X,8) 
for some 6 e Aut Ni', X unitary in No; 

b) Int N2 nCt NR,= Int N2. 

LEMMA 3.3. Let P1, P2 be factors of type II, and put P = P1 0 P2. Let 
a e Aut P be such that 

6 i.e., I I xn I I uniformly bounded and I I [X., ,] A ->n?? 0, for all f e N*. 
7 Statement b) can be proved in a simpler way using [5, Lemma 3.4] (see remark 3.14 

below). 
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A FACTOR NOT ANTI-ISOMORPHIC TO ITSELF 545 

a(u ( 1)-u U? 1112-< 1 Y for all u unitary in P.. 
2 

Then there exists a2 e Aut P2 and X unitary in P with: 

a = Ad X(1 0 a2) . 

Proof. Let z be the trace on P and hCr = L2(P, z-) be the Hilbert space 
of the Gelfand-Segal representation of P with respect to z. We let 7y be the 
canonical injection of P in Cr. The unitary group qlii of P. 0 1 has the 
following representation in Cr: 

(3.4) 0q(7(x)) = 7(uxa(u*)) for all u e fto, for all x e P. 

The equality (3.4) defines for each u e 611 a unitary 0. of ,Cr, because right 
multiplication by unitaries result in unitaries. Let C be the closed convex 
hull in XC. of {qy2(1), u e %J}. Then C is qs invariant and by the hypothesis of 
the lemma, one has 11 d- q(1) 11 ! 1/2, for all $ e C. 

As 11 7q(1) 11 = 1, we see that the orthogonal projection $, of 0 on C is not 
0, and is a fixed point for 0. Also as the image under at of the unit ball of P 
is a weakly closed convex subset of XC containing the qYu(1), we have $o = 
7(y) for some y : O y e P. The equality 0.7y(y) = )(y), for all u e 611 implies: 

(3.5) uya(u*) = y for all u e qt1 . 

Let y = wp be the polar decomposition of y; then for each u e 61k, 

(uwa(u*))(a(u)pa(u*)) is a polar decomposition of y, so that 

(3.6) uwa(u*) = w, for all u e % , , uww*u* = ww*, for all u e Gtl . 

It follows that e = ww* is a projection belonging to the commutant of P1? 1 
in P, and hence of the form 1 X e2, e, e P2. Also, one can linearise (3.6): 

(3.7) (x X 1)w = wa(x ( 1) for all x e P1, 
Let now v be a unitary of P such that ev = w. (For instance take w,: 1 - 
w*w ) 1- ww* and v = w + w,.) As e commutes with x ? 1, for all x e P, 
one gets 

(3.8) e(x (1 1)v = eva(x (? 1) for all x e P1 . 

Put 8(y) = va(y)v*, for all y e P; then: 

(3.9) e(x ? 1) = ee(x (? 1) for all x e P1 e 

As e commutes with x C) 1, x = x* e P, we see that, in this case, e,(x (0 1) is 
self adjoint so that e commutes with ,(x 0 1) for all x e P. It follows that 
,8l(e) e 1 C) P, and that we can find a unitary X e 1 (0 P2 such that: 

is1(e) = XeX* . 
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Put a' = Ad X* o e-. Then we have for x e P1: 

(3.10) ,8-1(e),T-'(x ? 1) = ,3-C(e)(x 0 1) (using (3.9)) 

XeX*13-T(x 09 1) = XeX* (x (0 1) . 

ea'(x 0 1) = eX*(x 0 1)X = e(x 0 1) (because Xe 1 0 P2) 

while a'(e) = X*,f-l(e)X = e. 
Now a' leaves the reduced von Neumann algebra Pe globally invariant. 

Moreover P, = (P1 0 P2),,e2 = P, 0 (P2)e2 (see [6, p. 16]) and (3.10) means 
a'(x 0 e2) = x 0 e2, for all x e P1, so that there exists an a' e Aut (P2)e2 such 
that: 

a' restricted to P' (? (P2)e2 = 1 (0 c2 
Let now a"' e Aut P2 be such that a"'(e2) = e2 and that 

a2' restricted to (P2)e2 = a2 

Then the automorphism 1 0 a" coincides with a', when restricted to Pe It 
follows from [3, 1.5.2] that a' is equal to 1 0 a"' modulo Int P. Hence 'S' is 
equal to 1 0a"' modulo Int P and ,C is equal to 1 0 (a')-' modulo Int P. 

Q.E.D. 

LEMMA 3.11.8 Let N be a factor, r a semi-finite faithful normal trace 
on N, a a r-preserving automorphism of N and F a type I subfactor of N 
with c/N semi-finite. Then there exists a unitary V e N such that: 

a(x)= VxV* for all xeF. 

Proof. Let (eij)iie l,.,n} be a system of matrix units in F where n e 
{1, .. , oo} and the e generate F. We have zca(e1,) = z-(e,,) < oo by hypothesis, 
so that e,, is equivalent to a(e,1) relative to N. Let u be a partial isometry 
belonging to N, having initial support e,, and final support ar(e1,). Put V = 

n a(ej,)uej. Then, as each a(ej,)uej has ejj as initial support and a(ejj) as 
final support, V is unitary. Moreover we have, for k, l e {1, ..., n} that 

Vekl V* = a(ekl)uelkeklezlu*a(ejl) = a(eklellell) = a(ekl). Q.E.D. 

Proof of 3.2. a) Let (Kn)neN be an increasing sequence of finite dimen- 
sional subfactors of R generating R and Rn = K.f nR be the relative com- 
mutant of K. in R. Put L.-=Rn (& 1 c RB Nolt where N,= No' 0 2(C). 
As 1 ( 2(XC) is a subf actor of N, satisfying the conditions of (3.11) we can 
modify a by an inner automorphism and assume that a = a0 0) 1 for some 
a0 e Aut (R 0 No). If xn is an arbitrary centralising sequence in a factor P 
then x. 0 1 is centralising in P 0 Q for any factor Q so that a0 e Ct (R 0 No). 

8 This lemma is classical; the proof is given for the sake of completeness. 
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There exists an n0 such that: 

For all x e Lao II xf < 1, one has II ao(x) - x2 II, 2 9 
2 

In fact, otherwise there exists a uniformly bounded sequence 

Xn, jx,, !n 1- , e Ln, I ao(X) -X. 112 >- 2 

and (Xn)neN is a central (ising) sequence in R A) No' because for each m and 
n > m, xo commutes with Km 0) No'. 

Now by (3.3), up to inner automorphisms, ao is of the form 'Rn0o (g? a2 
where a2 is an automorphism of Ko ( No'. By Lemma 3.11, a2 is, Up to 
inner automorphisms, of the form 1Kn0o 0S and we get the desired result. 

b) It is a general fact for factors of type II,, that any a e Int N preserves 
the trace; however, here one can use (2.1). By (2.1) and 3.2 a) we can find an 
automorphism a, of R, a unitary X, of N2, an automorphism a2 of N21, and a 
unitary X2 of N2 such that: 

(3.13) a= Ad X,(a, (a 1) = Ad X2(1 0 a2) . 

Then a, 0) a-' is an inner automorphism of N2, so that by [7, Cor. 6], both a, 
and a2 are inner; hence a is inner. 

Remark 3.14. Lemma 3.3 is not necessary to prove 3.2 b) which is the 
only statement of Theorem 3.2 that is used in Part 5. In fact Lemma 3.4 of 
[5] shows that any outer automorphism ao of R fails to belong to Ct R so that 
any outer automorphism a = Ad X(ao 0) 1) of N2 with ao e Aut R fails to 
belong to Ct No. Hence by (2.1) we get Int N2 n Ct N, = Int No. 

Remark 3.15. Let ,8 be an arbitrary automorphism of NJ1; then 1R (0) , 
as an automorphism of N2, is centrally trivial. In fact for any centralising 
sequence (Xn)neN on N2 there exists, by Prop. 1.8, a sequence (yn)nrNy, Y e R 
such that x,-y y(D 1 0 * strongly, so that (1 0 ,8)(x")-x, -0 * strongly. 
It is not clear that any automorphism a e Ct N2 is equal to some 1R (0 D modulo 
inner. It would be the case if the fundamental group of Ni' was R*, by 
Theorem 3.2 a). 

IV. Some periodic automorphisms of the II-hyperfinite factor 

First we shall associate to each automorphism a of a factor M a pair 
po(a), 7(a), that we call the outer invariants of a. As usual we let Int M be 
the group of inner automorphisms of M. We define po(a) as being the 

9 R (0 N0 is of type III; 11 112 is its trace norm. 
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integer > 0 such that: 

(4.1) a", e 1nt M if and only if n e p,(a)Z. 

When no nonzero power of a is inner, we have p,(a) = 0 and we say that a 
is aperiodic. In any case p,(a) is called the outer period of ca. We define -f(a) 
as being the complex number of modulus 1 such that: 

(4.2) (u e Mu, XPO(a)(X) = uxu*, for all x e M) a(u) = 'f(a)u .10 

This definition makes sense because aoPo'') is an inner automorphism so that 
the set of u's satisfying acp0't' = Ad u is not empty; moreover, for any such 
u, one has: 

aaPo't'ca-l(x) = a(u)xa(u*), for all x e M 

so that a(u)u* belongs to the center of M, and is a scalar ' independent of 
the choice of u such that acp0"') = Ad u. 

PROPOSITION 4.3. Let M, a, po and - be as above: 
a) For each a, - (a) is a po(a)th root of 1 in C. 
b) Let w be a unitary in M, and a9 = Ad w o a, then 

pO(Sq) = Po(a), Y(a)= a(S) . 

c) Let N be another factor and take A e Aut N?( M, , = 1 0 o; then 

po()-- po(a), 7(R) =-(a). 

Proof. a) We have with the notations above: aPo(c'(u) = - u* = u for 
any unitary u as in (4.2), and hence: 

-f(a)Po('au = u so that Yf(a)Po(a - 1. 

b) ForneN,wehave: 

(4.4) Isen -Ad (wa(w) ... *"-1(w))a1& 

as can be seen using an inductive argument. In particular r1n is inner if and 
only if Ca is inner, which proves that po(a) = po(S). 

Now if po(a) = 0 = po(I), both (c(a) and tY(a) are equal to 1 and the same 
occurs if po(a) = po(a) = 1. Put p = po(a) = po(a) > 1. Let u be a unitary 
in M such that aP(x) = uxu*, for all x e M. By (4.4) we then have: 

,Sv(x) = wa(w) ... aP-1(w)acP(x)aP-1(w*) ... a(w*)w* , for all x e M. 

Then the unitary U = wa(w) ... ac'-(w)u satisfies: 

eE(x)= UxU* for all xeM. 

We then have to compute 8(U) = wa(U)w*. We get: 

10 Mu is the unitary group of M. 
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(U) = wa(wa(w) ... aP-1(w)u)w* = wa(w) ... aP-1(w)aP(w)a(u)w* 

= (wa(w) ... aP-1(w))(UWU*Y(a)UW*) =7(a)((wa(w) ... WP (w))u) 

where we have used a1 = Ad u and a(u) = Y(a)u. We have shown that 
,9( U) = -f(a) U so that -(a) = -(Qx). 

c) First if a" is inner, so is 1 0 a", and conversely if f = Ad V then 
V e 1 M= (N? 1)' nf N M so that a" is inner. We have p,(a) = p,(a) = 

p. Let u e M. satisfy a' = Ad u. Then (1 C) )P = Ad 1 u, and: 
(1 ? a)(1 ) = 1? a(u) = -f(a)(1 C u) . 

Then Y(8) = -f(a). Q.E.D. 

We now construct automorphisms s", p e N, p > 2, -f e C, Y1P = 1, of the 
hyperfinite factor of type II,: R, such that 

pA(Sp) = p Y(Sp)=Y. 

A detailed study of those automorphisms will be done in [5], but here we 
prefer to define them in a different way, using essentially [11]. 

The numbers p and - are fixed throughout. Let ZIp be the additive 
group of integers modulo p. Let Xp be the compact group Il ZIP; each 
element s of Xp corresponds to a sequence s = (sj)jeN, si e ZIp, for all j e N. 
Let m1p be the Haar measure of X1, with m1p(1) = 1. Let Xp be the countable 
subgroup of Xp defined by: 

s e xp if and only if there exists jo e N. si = 0 for all i > jo 

The group xp with discrete topology, acts on the abelian von Neumann 
algebra L-(Xp, inp) in the following way: 

(4.5) for all t e X1p (t a)(s) = a(s - t) for all a e L'(Xp , np)), for all s e Xp. 
This action of Xp is ergodic and free [10, p. 175], so that the cross product 
R= W*(xp, L(XP, mrp)) is a factor. Moreover mp is an invariant measure 
and xp is a union of its finite subgroups. Then R is the hyperfinite factor of 
type II,. We let I be the canonical isomorphism of L"(Xp, inp) onto a maximal 
abelian von Neumann subalgebra e of R, and let t - U, be the homomor- 
phism of Xp in the unitary group of R, related by the following: 

(4.6) UI(a) U,* = I(t .a) for all t e X1p for all a e LO'(Xp, inp) 

We define an automorphism Y of LO'(Xp, mp) by: 

(Y(a))(s) = a(s - 1) for all a e Lc(Xp, mp), for all s e Xp 

where 1 is the element of Xp all of whose coordinates are 1. We have YP = 1, 
z preserves mp, and I commutes with the action of Xp on Xp. 

We define an automorphism S of R by: 
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(4.7) S(I(a)) = I((a)) for all a e Lo(X,, mr), 
S(U) = Ut for all t e X, . 

As the I(a) and U, generate R, and as S is an automorphism of the * algebra 
A of finite linear combinations of products I(a) Ut, a e LX, t e Xi, one checks 
easily that S defines an automorphism of R [11]. Now let p be a mapping 
from XP to the unitary group (T. of a such that: 

(4.8) Ps+t= p8U8ptu* forall steG ." 

Then as in [11], [12] one defines an automorphism z- of R by the conditions: 

(4.9) Z'(a) = a, for all a e a, Z(U8) = p. U8, for all s e X . 

As a is abelian, so that the p's belong to its center, one sees from (4.8) that 
z, defines an automorphism of A and hence of R because it preserves the 
unique trace z- of R. 

From (4.7) and (4.9) we obtain for any k e Z: 

a = SkzpS-k(a), for all a e a, SkzpS-k(U8) = Sk(p8)U8, for all se X, . 
Therefore we have, with Sk(p) mapping X, to ai by (Sk(p)) = Sk(p8): 

(4.10) SkThpSk = sk(p) for all ki e Z . 
For each ns e N, we therefore get: 

(4.11) (STp)n = St(zs-(n-l)p) . (Z-s-ip)zp = Saz7(S-(nfl)p...S-1(p)p) 

As for k = 1, ..., p - 1, there is no inner automorphism of R, leaving a 
globally invariant and coinciding with Sk on a; by [11] we know that, for any 
p as above, one has 

(4.12) p,(Svp) is a multiple of p . 
We shall construct a p such that p = I(a) and 

(4.13) ((aP-l(8t) (P-2Q(t) ... '(13)-8t)(s) = Y(8-t)Oy-80 - 7-to 

for all t e Xip, for all s e Xp (with s = (sj)jeN) . 

It will follow that (Svp)P = Ad U, where U is the unitary of R, which is the 
image by I of the function g: 

s e XP yo- g(s) 

In fact this follows from (4.11), (4.13) and the equalities 

Ad U(a) = a, for all a e a, UU, U* = U(Ut U* Ut*) Ut, for all t e Xp . 

To get 3, we first let f be a map from Zip x Zip to Zip such that 

(4.14) Ep-lf(a + j, b + j) = b-a . 
" In notation pe Z (x, a.). 
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Take for instance f(a, b) = 0 if a # 0, and f(a, b) = b if a = 0. Then for 

s e X, and j e N we put fj(s) = f(sj, sj+,) and 

At(s)-7(y-o (f=(8)=fj(8t)) for all t e Xi, for all s e X. 

This definition makes sense because, with tj = 0, for all I > lo, one has 
(s - t) = sl, and hence, for any t e Xi, the sum . (fj(s) - fj(s - t)) only 
has a finite number of terms # O and moreover jq makes sense for any q e Zip. 
Now to check (4.13) we have to prove that for any s e X, and t e X, one has 

EJco (IP-- (fj(s + k) - fj(s + k - t))) =to 

where k is the element of Xp all of whose components are equal to k. For 
each j e Nwe have IP2-Ifj(s + k) = J2`1 f(sj + k, sj+l + k) = sj+ - sj, using 
(4.14), and similarly: 

L" (fj(s + k) - fj(s + k - t)) = (sj+, - si) - ((sj+, - tj+,) - (sj - tj)) 
= tj+1 - tj 

Now only a finite number of the tj's are different from 0 so: 

'=o (tj+l - tj) = -to . 
THEOREM 4.16. Let p, 'r, R, ... be as above, and put s7 = Sz1(,); then 

Po(s7) = p and -Y(s7) = Y. 
Proof. We have shown that (S7)q is outer for q = 1, * , p - 1 and that 

WY = Ad U where U = I(g), g(s) = 7r-8, for all s e Xp. So po(s7) = p. More- 
over: 

s7(U) = S(I(g)) = I(Y'(g)) = JI(g) = -/U. Q.E.D. 

V. The factors Q2Pr, X e JO, 1[, p e N, -r e C, v = 1 

Let X e ]O, 1[ and P2 be the Pukanszky factor of type III2. Let P2 = 
W*(61, N,1) be the discrete decomposition of P2 as the cross product of a 
factor of type IIo: N21, by an automorphism 61 multiplying the trace by X. 
By [3, Theorem 4.4.1] we know that the outer conjugacy class of 61 is uniquely 
determined. Let p e N, p > 2 and -r e C, V = 1 be given. Then let R and 
sr e Aut R be as constructed in Section IV. 

We put NM = R (0 N21, 02,r = s7 (0 61 e Aut NM. By [3, Theorem 4.4.1], 
the cross product W*(02,pr, N2) is unaffected by a change in the choice of 61. 
We denote it by Q2P == W*(0P rp N2). 

THEOREM 5.1. For X e ]O, 1[, p e N, p > 2, -r e C, V = 1, the Q2,P r are 
mutally non-isomorphic factors of type III with separable predual. 

Proof. Let z be the trace on R and z, a faithful semi-finite normal trace 
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on NA; then z 0& z, is a faithful semi-finite normal trace on N2 = R 0 NA and 

(Z. (8 Z-0 ? 02,Pr = (Z. ? SDp (8 (Z1 ? 029 = A,(Z (3J Z1) 
This, with Theorem 4.4.1 of [3], shows that Q2,p~r is a factor of type III2, for 
all X, p, -. Now let X e ]O, 1[ and p, p'e N, -, 'e C be given, with y = 1 
-'P' = 1, and let us assume that Q2,p,, is isomorphic to Qp.P Then by 
[3, Theorem 4.4.1] there exists an automorphism II 12 of N2 such that 
HlS,,pJII'6-1 ,,r, e Int N,; i.e., 

HI2,JTI-1 = Ad upr u unitary of N, . 

Now let a = II(sr 0& 1)II-T, f = II(1 0 60)TI-1. As Int N2 and Ct N2 are 
normal subgroups of Aut N2 and as sr (0 1 e Int N2 (because sr e Int R) and 
1 0& 6' e Ct N2 (see Section 3, remark 3.15) we get: 

aeIntNA, feCt N . 

In the same way a' = srp. 8)1 eIntN2 and 6' = Aduo(1 d&08) belongs to 
Ct N2. 

We have f6a = fl'a', so that (fl')' a = 'a-1 belongs to Ct N, n fnt NA- 
Int NA. 

We have shown that for some unitary Ve N2 one has a' = Ad Va. It 
hence follows from Proposition 4.3 that 

(5.2) po(a') = po(a), -(a') = (a) . 

Now po(1i(sr 0 1)TI-1) = po(sr (0 1) and Y(JI(sr 0 1)TI-') = Y1(sr (0 1) by an 
obvious computation. Moreover by (4.3) we have 

Po(sl 
0 1) = p0(sr) /(sr (s0 1) = -/(S^>) 

Hence, using (4.16) we get from (5.2) that 
p,= p Y rye y . Q.E.D. 

THEOREM 5.3. For X e ]O, 1[, p e Ng p > 3, -/ E C,y rp = 1,Y2 / 1, the factor 
Q2 P r is not anti-isomorphic to itself. 

Proof. Let M be an arbitrary von Neumann algebra. The conjugate Mc 
of M is by definition the algebra whose underlying vector space is the 
conjugate of M (for X e C, x e M the product X by x in Mc is equal to xx) and 
whose ring structure is the same as in M. In other words the identity map 
x I(x) of M on Mc is a conjugate linear ring isomorphism of M on Mc. 

The opposite MO of M is by definition the algebra whose underlying 
vector space is the same as for M while the product of x by y is equal to yx 

12 srP and srp act on the same factor R. 
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instead of xy. We shall not have to consider MO but we have obviously an 
isomorphism x - x* of M6 on Mo. (See [9, Section 2.3].) 

For a e Aut M we denote by ar the automorphism of M6 such that 
acxI(x) = I(cx(x)) for all x e M. This equality does not mean that ar and a are 
in the same conjugacy class, because I is not an isomorphism. 

With a and M as above, let j be a conjugate linear isomorphism of M on 
M; then Io j-' is a linear isomorphism of M on M6 and j o a a J-1 is an automor- 
phism of M which is in the same conjugacy class as ar = (Io j-')j oao j-1 
(IO j-,)-'. Moreover with M and a as above, the cross product W*(aoc, M6) is 
isomorphic to (W*(a, M))c. This can be seen by checking that if w is the 
canonical isomorphism of M onto a von Neumann subalgebra of W*(a, M) 
and X the unitary of W*(a, M) canonically associated to a (so that 
XW(y)X* = r(a(y)), for all y e M), the map 

IW*(aM) ? a7 ? IM ,= 7 
is an isomorphism of M" onto a von Neumann subalgebra of (W*(a, M))4 
and, with X' = Iw*(aM)(X), one has 

X'WP(y)XP* II=*(a M) ar(aI~71(y)) = a ac(y) for all y Me . 

Now, as P, is isomorphic to P2 (because PA is obtained by the group 
measure space construction), we see from [3, 4.4.1] that (01)c is outer con- 
jugate to If. 

Also, let p e N, p ? 2, -/ e Cy, rp = 1, and R. srp be as constructed in Section 
IV. We let j be the conjugate linear isomorphism of R onto R such that 

jI(f ) = I(f) for all f e L(Xp, mp), 
j Us = U. for all se Xe 

Then we get joSo j-1 = S and jo po j-1 z=r for all mappings Xp-d? 
satisfying the cocycle condition (and where (P). = s for all s e XZp the obvious 
meaning). 

It follows that jsTj-1 = s. Hence we have shown that s4 is in the same 
conjugacy class as (s-p)c. It follows that sp 9 01 is outer conjugate to (sp)c 0 
(1)6 and hence to (sp ? 01)6.13 Therefore W*(sr ? 01, tN2) is isomorphic to 
W*((st ? 0)6, Nc) which is isomorphic to the conjugate of Q2,pT. We have 
shown that (QJo is isomorphic to Q2, . Q.E.D. 

QUEEN'S UNIVERSITY, KINGSTON, ONTARIO 

13 because K IN2 o (IR 0 IN')-' is an isomorphism of Rc (N2l)c on (N2Y such that 
K(s`)c 0 (0)cK- = (SI 0 01.). 
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