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OUTER CONJUGACY CLASSES
OF AUTOMORPHISMS OF FACTORS

By ArLaiIN CONNES

INTRODUCTION

Two automorphisms o and p of a von Neumann algebra M are called outer conjugate
when their classes ¢ (o), € (B) modulo inner automorphisms of M, are conjugate in the
group Out M = Aut M/Int M.

The outer period p, (o) of an automorphism o of M is by definition the period of € (a)
in Out M, and is equal to 0 if no power € (a)", n # 0 is equal to 1.

The obstruction y (o) of an automorphism a of M is the root of 1, y in C such that
@ = Ad U = o(U) =y U for U unitary in M. This definition makes sense when M
is a factor, moreover y (a)?® = 1 and y () = 1 if py (@) = 0.

In [8], theorem 1.5, we showed that p, and y are complete invariants of outer conjugacy
for automorphisms of the hyperfinite factor of type II, : R, which are periodic. In this
paper we shall show that the restriction of periodicicy is unnecessary, that is: Any two
automorphisms o and B of R such that p, (&) = po (B) = 0 are outer conjugate.

It shows that Out R is a simple group with only countably many conjugacy classes.

In [4] we showed that the classification of factors of type III, A € ]0, 1] is the classifi-
cation of outer conjugacy classes of automorphisms 6 of factors of type II  : N, which
multiply the trace of N by the scalar . In [S] we gave an example where for fixed N
and A there was more than one such outer conjugacy class of 6’ s.

Here we prove, using the study of automorphisms of R, that for N = R ® I_, where I |
stands for the algebra of all bounded operators in a Hilbert space, one has: For each
A € ]0,1[ there is, up to conjugacy, only one automorphisms 8, of N such that 6 multiplies
the trace by A. This implies that the Powers’ factors are the only factors of type III,
whose corresponding factor of type II is Ry ;. (The above N = R ® I is the only
factor of Araki-Woods of type II , we take the notation R, , for it, as in [1]) We
shall in another paper discuss the implications of this fact on the study of hyperfinite fac-
tors and also apply theorems 1 and 2 below to get the list, up to outer conjugacy, of all
automorphisms of Krieger’s factors. Also we refer the reader to [9] for the applications
of the above results to hyperfiniteness of representations of arbitrary solvable groups.
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384 A. CONNES

The content of this paper is essentially the proof of two theorems, that we now state.

We take the same notations as in [8] for periodic automorphisms of R. In particular
for peN, p = 1 we let s, be the automorphism of R (unique up to conjugacy) such that
(5,)? =1 and py(s,) =p. For p=1, s, =1. Also we let s, be the infinite tensor

product of all the s,,p = 1on ® (R,, t,) where R, is isomorphic to R and 1, the cano-
=1

nical trace on R,. By deﬁnitio; the asymptotic period p, () of an automorphism 6 of M

is the period of 8 in the quotient group Aut M/CtM, where CtM is the normal subgroup

of centrally trivial automorphisms (see [7]), i. e., those 0 such that 6 (x,) — x, — 0* strongly

for any bounded sequence (x,),.n of elements of M such that || [x,, ¢] || — 0, ¢ in the

predual M, of M.

As Int M = CtM, we see that Aut M/CtM is a quotient of Out M and that p, (0) divides
Do (8) for any 6.

THEOREM 1. — Let M be a factor with separable predual, isomorphic to M ® R. Let
peN and 0 € Aut M, then (8 ® s, outer conjugate to 0) < p, (6) = 0 modulo p.

Take p = 1, then for any 6 € Aut M, one has p, () = 0 (p) so 8 ® 1 is outer conjugate
to 0.

If p,(6) = 0, then 6 ® s, is outer conjugate to 6 :for all p. Moreover we shall prove
that the condition “M is isomorphic to M ® R’ is lequivalent to the non-commutativity

of the group ¢ (I-I; M) = Int M/Int M, where the closure is taken in the natural topology
of Aut M : the topology of pointwise norm convergence in M,,. This fact is a simple
generalization of results of D. McDuff [11] who proved that when M is of type II; then
“M is isomorphic to M ® R’ is equivalent to the non-commutativity of the algebra of
central sequences. Moreover we shall see that as soon as M is isomorphic to M ® R
we have

£(CtM) = (¢(Int M)Y,

where the prime indicates the commutant. (More explicitely a 6 € Aut M is centrally
trivial iff € () commutes with any € (o), o € Int M.)

The basis of the proof of theorem 1 is to use for each ultrafilter (free on N), say o, the
functor M — M,, defined in [5] from the category of von Neumann algebras in the cate-
gory of finite von Neumann algebras. For each ® and 6 e Aut M one shows that

po (6,) = p, (8) and then one applies a generalization of the tower theorem of Rokhlin
(see 1.2.5). The next theorem studies the outer conjugacy problem for the approximately

inner automorphisms, i. €., those which belong to the closure Int M of Int M in Aut M
with the same topology as above, Observe also that for 0 e Int M, p, (0) is the period
of € (0) in & (Int M)/Center € (Int M).

THEOREM 2. — Let M be a factor with separable predual, isomorphic to M ® R, take
0,, 0, € Int M.
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AUTOMORPHISMS OF FACTORS 385

Ifp,0) =p,(0,) =0 thereisace Int M such that
8(92) = 8(691 0_1).

(In particular 0, is outer conjugate to 9,).

If p. (8;)) > 0, p, (8)) = p,(8,) and 62:®? = 1 then 8, is conjugate to 0,.

The second part of the theorem is an easy adaptation of our previous argument in [8]
and we shall omit it here.

COROLLARY 3. — Two automorphisms a, p € Aut R are outer conjugate iff p, () = po (B)
and vy () = v (B).

Proof. — If po(x) >0 use [8] (th. 1.5). Otherwise by [8], Lemma 3.4,
P. (@) = p,(B) = 0 and theorem 2 applies, as Int R = Aut R.

COROLLARY 4. — The group Out R is a simple group with countably many conjugacy
classes.

Proof. — By corollary 3 the conjugacy classes of Out R are parametrized by couples
(p, ), peN, yeC, y? = 1. Choose for each p, v, s} as defined in [8] if p # 0 and s,
if p =0. We have to show that a normal subgroup G of Aut R, containing Int R and
an outer automorphism, is equal to Aut R. It is enough to show that for any (p, y),
(p’, ¥) as above there is, if p # 1 an equality o = o, ... o, with o; of the form o; 57 cj"
for allj =1, ..., m and o outer conjugate to s;:. If p # 0, using the construction [7]
part IV we can find an automorphism B of R such that s} B s} B! has outer period 0. So
we just have to treat the case p = 0. As, for any countable group D, there is an action,
by outer automorphisms, of D on R we easily get a product o = 5, & 5, 6~ ! outer conjugate
to s;,. But by construction S;: is a product of an automorphism conjugate to s;, by
an automorphism conjugate to an s;, g = Order y'.

Q.E.D.

LeMMA 5. — Ct (Ry, ;) = Int (Ry,,), where Ry | is the tensor product of R by a typel_
factor F .

Proof. — Let 0 € Ct (Ry,;). Then by theorem 1 we have that & ® 1, is outer conjugate
to 0. Let 0'e AutR, ;, £(8') = €(0), such that Ry, contains a factor of type I
(use [7], lemma 3.11). It follows that 6 ® 1g_ is outer conjugate to 8 and that 0 ® 1, |
is in Ct (Rg,; ® Ry,;). Let s be the symmetry : s(x ® y) =y ® x, on Ry ;. One
checks that s € I_nt*(Ro,1 ® Ry, ) and hence that ¢ (s) commutes with € (0 ® 1z, ). Then
0 ® 07! is inner and so is 0.

Q.E.D.

Let M be a factor of type II_ and 6 € Aut M then by mod 6 we mean the scalar A € R¥
by which 6 multiplies an arbitrary faithful normal semi-finite trace on M.

COROLLARY 6. — Let Ry ; be the tensor product of R by a factor of type 1. Then
there is, up to conjugacy, only one automorphism 0, of Ry | with mod 8, = A # 1.
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386 A. CONNES

Proof. — Put R,y =RQ®F,. Let n be the map a »a ® 1z, of OutR in
Out Ry,;. By [7], lemma 3.11, this map is an isomorphism of Out R onto

Out, R, ; = {6eOut Ry ;, mod 6 =1}.

It follows easily that Out; Ry ; = € (ith Ry, 1), where g is the canonical quotient map. Let
# be the set of outer conjugacy classes of aperiodic automorphisms of Ry ;. As
Ry,1 ® Ry,; is isomorphic to R, ; we have a commutative law of composition
o.p = class of o« ® B, which makes # into a group for the following reasons (@) (Class
So ® 1).a = o for any o € # (because by lemma 5, the asymptotic period of any element
of the class a, is equal to 0, so that theorem 1 applies); (b)) a.a™! = class (s, ® 1) for
any a € B. [To see this last fact, note that mod (¢ ® a~!) = 1 so that corollary 3 applies
to show that @ ® a~! is outer conjugate to s, ® 1]. At the same time we have shown

that the kernel of # kit R* is trivial, so that as the fundamental group of R is equal
to R* ([12]) we have shown that P R R* is an isomorphism.
This shows the uniqueness of 6, modulo outer conjugacy. However using [6], III,
we get back to ordinary conjugacy.
Q.E.D.

It follows that all factors of type III, (*) M for which the associated factor of type II
is Ry, are isomorphic to R, , the Powers factors. (Apply [4] theorem 4.4.1).

For each integer p € N the unique automorphism of R, , with module equal to p can
be described as a p-shift in the following way. Let (A, ;);j=1, ..., p, ez b€ an eigenvalue
list such that the corresponding infinite tensor product of the p x p matrix algebras (M, , A,)
satisfy:

® (M, , A,) is a factor type II;

v20

® M,, A, is a factor of type I_.

v<0

Then ® (M,, A,) is isomorphic to R, ; and the shift has module p so that by corol-
veZ
lary 7 it is conjugate to 0,.
It also follows from corollary 7 and the existence, proven by M. Takesaki, of a one
parameter group (0,),.g, of automorphisms of R, ; with mod 6, = A for all A, that
each of the above shifts can be imbedded in a flow.

COROLLARY 8. — An automorphism o € Aut Ry ; is unimodular if and only if it is a
commutator: o = BB~ 6! of elements of Aut R, .

Proof. — Assume mod o = 1, then for any A # 1, mod a8, = A so by 7 we have a ¢
with 00, = 66, o~ 1.

Q. E.D.
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AUTOMORPHISMS OF FACTORS 387

1. Preliminaries

1.1. ASYMPTOTIC CENTRALIZER OF FACTORS. — Let M be a von Neumann algebra and
o a free ultrafilter on N—As in [5] 2.2, a centralizing sequence (x,),.n of elements of M
(resp. an ®—centralizing sequence) is an element of the C* algebra /* (N, M) such that
|| [x.> ¥1|| =0 when n— oo (resp. n— @), V¥ e M,. Let us recall a result of [5].

PROPOSITION 1.1.1. — For M and o as above, the w-centralizing sequences form a C*
subalgebra of 1° (N, M)—The set £, of w-centralizing sequences (x,),.n With x, — 0*

n—-o0

strongly is a two sided ideal of this C* subalgebra. The quotient C* algebra M, is a
finite von Neumann algebra on which each faithful normal state ¢ of M defines a faithful
normal trace, associating to each o-centralizing sequence (x,),<n , the scalar Lim ¢ (x,).

n—-w
We say that two o-centralizing sequences (x,),.n and (3,).en are equivalent when
X, — ¥, tends to 0* strongly when »n tends to ®. If (x,),.n is ®-centralizing and (y,),cn

is a bounded sequence such that x,—y, — 0* strongly then (y,),.n is ®-centralizing. An
n—-o
element x of M,, is a class of equivalence of w-centralizing sequences (x,,),.n, €ach of them

being called a representing sequence for x. If (x,),cn> (Wa)nen T€pPresent x, y € M, then
Xy+Yn, X¥, x, y, represent respectively x+y, x*, xy. An x € M, has norm less than 1 if
and only if it has a representing sequence (x,),.n With || x, || < 1 for all ne N.

PROPOSITION 1.1.2. — Let M be a countably decomposable factor, and ® a free ultra-
filter on N.

(a) For each x € M, , the weak limit of x,, when n — ®: 1, (x) is an element of the center C
of M, which does not depend on the choice of the representing sequence of x.

(b) The map x e M, — 1, (x) is a faithful normal trace on M and for any ¢ € M,,, any
representing sequence (x,),<n 0f X €M, one has ¢ (x,) — ¢ (1) 7, (%).

n—=w
Proof. — (a) The unit ball of M is weakly compact so that x, — L where Le M. As

n—-w
ux, u*—x, — 0 strongly for any unitary u € M ([5], prop. 2.8), (a) follows easily.

n—-o

(b) Let ¢ be any linear normal functional on M, then one has ¢ (x,) — ¢ (t, (x)) for

any representing sequence (x,),.n of x € M, , just by definition of the weak topology. So
taking ¢ faithful and normal state and applying proposition 1.1.1 completes the proof.

Q.E.D.

PROPOSITION 1.1.3. — Let M be a factor with separable predual and ® a free ultrafilter
on N.

(a) Any projection e e M, can be represented by a sequence (e,),.n 0f projections of M.

(b) Let (e)yen and ( f)nen be w-centralizing sequences of projections e, ~ f, of M repre-
senting e, fe M. Any partial isometry ue M,,, u*u = e, uu* = f has a representing
sequence of partial isometries (u,),.n With uf u, = e, , u,u¥ = f,.
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388 A. CONNES

(c) Any partition of unity (Fj)j=y, ..., in M,, can be represented by a sequence of parti-
tions of unity, (F; ,). If the F; are pairwise equivalent one can choose the F; , pairwise
equivalent for each n.

(d) Any system of p x p matrix units in M, can be represented by a sequence of systems
of pXp matrix units in M.

LEMMA 1.1.4. — Let M be a countably decomposable von Neumann algebra in a space #
and Ee H#. Let e, f be projections belonging to M.

(a) Let fe = w p be the polar decomposition of fe then:

[w=E]| =3e,  ||w-e)E| 4, [[W*=NE||S4e,  ||(w*—e)E]| <36,
where € = || (e— ) & ||.

) If e ~ f(M), there exists a partial isometry ue M, such that
u*u=e uu*=f, ||w-NE||26]|(-NE|, |[u-H*E]=T||-NE].

Proof. — (a) Wehavep? =efe<e. Also||f(e— f)E||<ehence||(fe—e)t|| < 2¢
and || (p*—e) &|| £ 2e. As p? < p < e, we have:

[(p—e)E|| = ||(P*—e)E||=2¢e and ||(wp—we)E]| < 2e.

As we = w, this gives || (fe—w)& || < 2¢& and hence || (f~w)E || < 3.

The adjoint of fe is ef = w* (wp w*), which shows exchanging e and f, that
|| w*—e) & || < 3¢ and ends the proof of (a).

(b) Let ¢ be a central projection such that (1 —c) e is properly infinite and ce is finite,
put e, =ce, e, = (1—-c)e, fi =cf, f, =(1—c)f. We have e; ~ f; and e, ~ f,. Let
n > 0. Choose projections e} < e,, f; < f, such that e,—e} and f,—f; are properly
infinite with the same central support as e,, while

[(ea—en)E|[=m,  |[(a=f)E|| S

Put e!
have E

e +ey, f1=f,+f} and let E = Support f!e', F = Support e'f!. We
e', F<f'and ¢! f! ' < Esothat with e = || (e— f) E ],

' =B)g|| < ||e' el f g || < 2| ('~ FHE|| < 2e+47

and with f! e! = w p as above, we have w* w = E, ww* = F and

IIA

lw—fHEl =3[ =MEll,  [[w*~H|| 4]~ HE].

In the same way we get f' e’ f' < Fand || (f* —F)&|| £ 2e+4n. The projections
e;,—cE and f;—cF are equivalent because cE ~ ¢ F and e, ~ f;. The projections
e;—(1—c¢)E and f,—(1—c) F dominate respectively e,—e} and f,—f} and hence are
properly infinite with same central support, so they are equivalent. It follows that
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AUTOMORPHISMS OF FACTORS 389

e—E ~ f—F, let weM, w*w = e—E, ww* = f—F. Then u = w+w satisfies u*u = e,
uu* = f and

|we|| =||ww*wE|| <||e—E)&|| <2e+5n,

|o*e|| = ||w*ww*e|| < ||(f —F)&|| < 2e+5n,
[w—1E|l <3(e+2m)+n=3e+7n,
||w*—NE|| < 4(+2n)+n =4e+9.

Which taking m small enough gives the conclusion.
Q.E.D.

LemMA 1.1.5. — Let e € ]0, 1[, M be a von Neumann algebra, ¢ a state on M and p € M,
0= p<1 such that ||p*—p||, S & Let e be the spectral projection of p for the interval
[1—&'2, 1] then:

lo—ell <26, [lpel, <36

Proof. — Asin[10] (p. 278-279) one has (1—p)* (1—e) = e (1—e)and ¢ (p? (1—p)? < &2
so that ¢ (p2 (1—e)) S &. As ||pe—e|| < €'/ we get

lp—elle=|lp=0)]lo+|[pe—e|l, < 2¢"2
Also we have
lo(p—p)(1—e)| = ||p—p*|ls =,

hence || p'/2(1—e)||2 < 2¢ and as || p'/?e—e|| < €'/? we get the second inequality.
Q.E.D.

Proof of proposition 1.1.3. — (a) We have || e[| = 1, so let (x,),.n be a representing
sequence of e with || x, || < 1 for all n. As p = x* x, [0, 1] and represents e we have
| pZ—ps||o— O When n— o, for any faithful normal state ¢ on M. Fix ¢ and let
&, = || P2—Pa |l » €a be the spectral projection of p, for [1—g}/2,1]. Thenby 1.1.5 one
has e,—p, — 0 *strongly when n — ® so that (e,),.n IS ®-centralizing and represents e.

(b) Let (X)nen s || X. || S 1 be a representing sequence for u. As fue = u the sequence
fu X, e, = y, represents also u. Let ¢ be a faithful normal state on M, p, = y¥*y,,
g, = H pZ—p, ”q, and g, the spectral projection of p, for [1 —&!/2, 1]. As(p,),n represents
the projection e = u* u we have, by 1.1.5, thatg, — 0 and that (g,),.n represents e. Let

n->w
v, = k,g,, where k,pl? is the polar decomposition of y, By construction

| p2/% gu—ga || < €12 sonthat || » &a—va || < €1/* which, as (g,),en represents e, shows

that (v,),cn IS an o-centralizing sequence and represents ue = u.

By construction v, is a partial isometry with v} v, < e, v, v* < f,, and e,—v* v, — 0,
n—-o
Jfi—v, 0¥ — 0* strongly because e = u* u, f = uu*. If e,—v} v, is equivalent to f, —v, v}¥
n—-o
via a partial isometry w, we see that w, — 0* strongly, so that u, = v,+w, is the desired
n->0

sequence of partial isometries. With ¢ as above we choose for each n e N projections
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390 A. CONNES

e ,f,eM, e < e,, f, <[ such that e, = e,, f, = f, when ¢, is finite and that e¢,—e],
J.—f, are infinite,

||en—er’|”:p§1/n’ ”fn_fnllllpél/n

when e, is infinite. Then we do the above construction with (/) and (f;) instead of (e,),
(f») and we get always, as v,* v, < e, , v, v,* < f, that e,—v,* v), is equivalent to f, — v, v,*.
Q.E.D.

(c) The first part of (¢) is easily proven by induction on the number of elements of the
partition, using lemma 1.1.5.

If M is finite and the F; are pairwise equivalent, we get lim t (F; ,) = 1/p, where 1
is the trace on M. So one can adjust the F; , so that t(F; ,) = 1/p for all n. If M is
infinite, for each » there is an F; , which is infinite and hence, with ¢ a faithful normal

state on M, we can find p—1 pairwise orthogonal subprojections f; , of F; ,, such that
each f, , is infinite and ), @ (f;, ,) < l/n. Distributing those f; , to the F; , j # j, we
k

replace the partition (F;, ,);=,
conditions.

» by a partition (F} );-, satisfying the required

s P

(d) Let (e;p);, j=1,...,, be a system of matrix units on M,. By (c) let (F; ,);=q, ...,
be a sequence of partitions of unity in equivalent projections of M, with (F;, ,),.n repre-
senting e;;. By (b) let forj =1, ..., p—1, (4;, e~ be a sequence of partial isometries
of M representing e;,,, ; and such that for all » and j:

* — *x
Uj nthjn=F; p Ujnthjn=Fjprq 0

Then for each n the (4;,,);=1,..., ,-1 generate a system of matrix units e]; such that
€}y, = uj,,and it is the desired sequence of systems of matrix units.
Q.E.D.

1.2. NON COMMUTATIVE ROKHLIN’S THEOREM. — We first remind the reader that given
two projections e, fin a Hilbert space s# they generate a von Neumann algebra N of type I,
in fact, more precisely:

l.a=eAf+(—-e) Af+e N (1= f)+(1—e) A (1— f) is the largest projection of
the center C of N such that N, is abelian.
2. N,_, is a von Neumann algebra of type I,.

3. e and f are abelian projections of N.

We put s(e, f) = |e—f| and c(e,f) =|eV f—e—f| =s(e V f—e,f). We have
0<s( f)<1 and s(e,f)*+c(e f)>=e V f. Both s(e,f) and c(e, f) belong
to the center C of N. We have

cle, f)*e=(eVf—e—f)e=e+e+ fe—2e—2fe+ fe+efe = efe.
As the central support of e is larger than the support of c (e, f) we get.
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4. fle@Nl =lefll Is@Nl =lle=7ll
Let E=e s, F = fo# and

E,={&eE ||E||=1}, F,={neF,|[n]=1}.

5. |lef]l= sup <&

EeEy,neF,
Let now M be a von Neumann algebra and 0 an automorphism of M. As in [4] (prop.
1.1.5, p 161) we let p (0) be the largest projection e € M, 0 (¢) = e such that the reduced
automorphism 0° is inner.

We say that 6 is properly outer when p (6) = 0.

THEOREM 1.2.1. — Let M be a countably decomposable von Neumann algebra and
0 € Aut M. Then 0 is properly outer if and only if for any non zero projection e e M and
any € > O there exists a non zero projection f < e such that:

IfeN]| s

When M is abelian, M = L* (X, p) and 0 is the transpose of the transformation T of X,
theorem 1.2.1 translates to (M, 0) the existence, for each subset E of X, u(E) > 0, of
a subset F of E, p (F) > 0 such that TF n F = . The non commutative case relies on
the following lemmas :

LEMMA 1.2.2. — Let M and 8 e Aut M be as in 1.2.1, Let Sp 0 be the spectrum in the
sense of [3], [4] of the representation n — 6" of Z on M. Then if —1 € Sp 0 there exists
for each € > 0 a non zero projection e M such that || e (e) || < e.

Proof. — We can assume that M acts in a Hilbert space # and that 6 (x) = VxV*
for all xeM and some unitary V in & (#). Let xeM, || x|/ =1 be such that
|6 x)+x|| < e/2 =235 (Weusethe hypothesis — 1 € Sp 0 together with [4]2.3.5) Let
x = a+ib, a = a*, b = b*. Then

|6@)+a||<8, ||6b)+b]| <5,

As 1 < ||al|+||®]|| we can assume that ||a|| = 1/2, so that by a suitable choice of
o=+ 1 we see that p = o a/|| a|| satisfies : p=p*, ||8(p) + p|| £ 23, 1is in the spectrum
of pand |[p| =1

Let e be the spectral projection of p corresponding to the interval [1—38, 1]. We know
that e # 0, we now show that ||e0(e)|| < e Let E=es, E, = {E€E, || &| =1}
For¢ ¢ E, wehave|| pt—&|| < 8. LetF =0(e)o# = Ve V* s# = VE,F, = VE,. For
n=VE& eF, we get:

|6(n—n||=||VpV*VE-VE'|| =|[p& -E| <3,
l[en+nll = [[p+0@)]]-[In]l+][n-8()n|| = 35.
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So for £e E,, neF; we get:

| <& n>—<pE )| || (p=DE]|.||n]| =3,
[<& pnd+<& n>| <||&]|.||en+n]|| = 38.

So that | (&, n )| < 25 which, using 5., shows that || e0(e) || < e
Q.E.D.

LeMMA 1.2.3. — Let M and 0 € Aut M be given. If 0¢Int M then for any € > 0
there exists a projection fe M such that ||f0(f)|| £ € and f # 0.

Proof. — We can assume that 0 (x) = x for all x in the center C of M. Foreachn = 1
let d, be the largest projection of C such that all non zero subprojections d of d,, de C
satisfy: (0%)7 = Ad u for some unitary ueM,, 0% (4) = u occurs for g = n but no
ge{l,...,n—1}. If d, # 0 for some n > 1 we can assume that this d, is 1. Then
Tet v be an nth root of u in M®, so that 8 = Ad v.a, where o = 1. Choosing a spectral
projection e # 0 of v such that, for some A€ T, || ev—A e || < €/4, we see that the norm
distance between 0° and a° € Aut M, is smaller than €/2. So we can assume that 6"=1. By
construction of d, we know that I' ) = {n Z }*, where I is as defined in [4] and [6]
(3.3.3). Infact,ifd, =1, with0" = Adu, letx =) a, (J& be an element of W* (6, M)
and let us assume that x is in the center of W* (0, M). Then each a,, belongs to M® and
satisfies a,, 0™ (y) = ya,,, for ye M. It follows easily that the center of W* (0, M) is
generated by the center of M (it is fixed by 0) and u* ( J§. By [6], theorem 3.3.2, we
getT'(8) = {n Z}*. If6" = 1 we see that 0 is minimal periodic and an easy adaptation
of [8] (2.6 a) shows the existence of a unitary X e M, X" = 1,0 (X) = A X, A = exp(i2n/n).
A suitable spectral projection f # 0, of X will hence satisfy 0 (f)f= 0. Now assume
d, =0 for n = 1 (0 is not inner). Then the center of W* (0, M) is equal to the center
of M and by [6] theorem 3.3.2 we have ' (8) = T, Sp® = T so that lemma 2 applies.

Q.E.D.
LEMMA 1.2.4. — Let e, f be projections in a von Neumann algebra M and o > 0.
(a) Assume that for any non zero projectionse',f' € M, e’ < e,f’ < fonehas|| e f|| 2 a,
||ef’|| = o, then c(e,f) = a(e V f).
(b) If the supportof c (e, f) is e V f, then the partial isometry u of the polar decomposition
of eV f—(e+ f) satisfies:

u=u* ul=eVf, ueu*=f ufut=e.

Proof. — (a) We can assume that M is generated by e and f. Let then C be the center
of M. Let e be the central support of e. If ¢ (e, f) is not larger than o e, there exists
aB>0,pB <aand a non zero projection de C such that dc(e,f) < Bde #0. We
have ‘

de #0, de<Le,

c(de, f)=|deV f—de—f|=d|eV f=e=f|+(1—d)|f - f| = dc(e, f) < Bde

which contradicts || def|| 2 «. Soc(e,f) 2 ae, c(e, f) 2 a f and hence we get (a).
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(b) The module of eV f—(e+ f) is c(e, f) so u = u*, u> = e V f are clear. wueu*
is the projection which is the support of eu*, hence of e(eV f—(e+ f)) = —ef. But
fef = fc(e f)* has support f.

Q.E.D.

Proof of theorem 1.2.1. — Assume first that p (0) # 0. Say that 8 = Ad u,  unitary
in M. Let e be a spectral projection of u, e # 0, [|ue—MLe || < 1/4forsomereT. Then
the norm distance in Aut M° between Ad ue = 6° and 1 is less than 1/2 so that for any
projection f < e one has || 0 (f)— f|| < 1/2 and hence || 6 (f)f|| = 1/2 if f # 0.

Assume now that p(0) =0 and let eeM be a non zero projection. Let
a= Inf |[f0(f)]|| (where f varies among projections of M).

fSe, [#0
We assume that o > 0 and derive a contradiction. Let ¢ > 0 such that (a+1) € < a,
and f<e, f#0 such that ||f0(f)| £ a+e For any g<f g#0 we have
||g0(g)|| = o hence || f0(g)|| =2 « and ||g6(f)|| = o So by lemma 4 (a) we get
c(£,0(/)Za(fVo(f). As |[f0(f)] = ate it follows that

a(fVO(f) e, 0(f) = (a+e)fVO(S).

Let u be the partial isometry of the polar decomposition of fV 0 (f)— f—0(f), we
have by 4 (b):

u=u*,  w=fVO(f), ufu*=0(f), ub(fHu*=f

and

leu—uc(f, 6N < ||a(fV OUN—c(f, 0] s
lau—(fVO(N)-F-8(N] <.

The automorphism 8’ of M such that 8’ (x) = u 6 (x) u*, is outer because p (8) = 0. So
by lemma 3, there exists a projection g # 0, g < f such that || g6’ (g) || < &. We have

||gub(g)|| =||lgub(®)u*|| <
and hence:

1g(/V 0(f)=F=0(fNO()|| < oe+e

But g(fVO(f)0(e)—gf0(g)—g6(f)0(g) = —g0(g) because g < f, and so
[|g0(@) || < aete <o
Q. E.D.

By definition an automorphism 6 of a von Neumann algebra M is aperiodic iff all its
powers 0", n # 0 are properly outer. We now prove the non commutative analogue of
the very useful tower theorem of Rokhlin.

THEOREM 1.2.5. — Let N be a finite von Neumann algebra, © a faithful normal trace
on N, 1 (1) = 1, and 9 an aperiodic automorphism of N which preserves <.

For any integer n and any € > 0, there exists a partition of unity (Fj);=,, .. ,in N such
that

10F)-Fsll<e ..., |[0@)-Fjilla<e ... ||0F)—F,|s <e.
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As usual we used the notation || x||, = T (x* x)!/? for xeN. We first need some
technical lemmas:

LeMMA 1.2.6. — Let M be von Neumann algebra, ne N and € > 0, such that n ! ¢ < 1.
Let (f})j=1, ..., » be a family of n projections of M such that || f; £ || < & for all j # k. Then
there is a family of n pairwise orthogonal projections e; ~ f; such that ||e;— f;|| < n'e

forallj=1,...,n and\lle,-=\llfj.

Proof.— Let e, f be projections in M such that ||ef|| <1 then ||c(e,f) || <1 so
that F = e V f —e is equivalent to f and one has

IE=fll=lls@® D] =llsCVs-en|=]efl

Suppose now that we have proven the lemma for n—1 projections and take n projections
(fy=1, ..., n With || f; i | | < &,j # k; by our induction hypothesis we get n— 1 projections
ey, ..., €.y, Dairwise orthogonal, and such that e; ~ fj, ||e;—f;|| £ (n—1)!e. So
|lesfa=fifu]| £ m—D'teforj=1,...,n—1. Hence

llefil| S(r—1D)(n—1)'e+(n—1)e <n'le,
where e = e, +...+e,_;. As nle < 1, the above argument shows that e V f, —e is a
projection, equivalent to f,, orthogonal to all the e; s and such that ||e,— f,|| < n!e

and eVe,=eVf,.
Q. F. D.

LeMMA 1.2.7. — Let N and 0 be as in proposition 1.2.1 and assume that 6 (x) = x,
x € Center of N.  Then for anyne N, n > 1, any 8 > 0, there exists a family (f})j=,,
of n non zero pairwise orthogonal projections of N and a unitary v € N such that:

lo—=1]s S8t Ef), v0(fPv*=fjar, J=1 ...,n

[where || x ||, = ©(|x|) for any xeN, and f,,, = f;].

Proof. — Put & = §/12 (n+1), choose m = np so large that 2 m~1/2 < §’/2 and then
choose &€ > 0 such that € < 1/(m!) and 2mm!e < §'/2.

Choose, using the aperiodicity of 0, projections E,, E,, ..., E, such that E, # 0,
E, < ... £ E; and that

”6"(E])Ej”§8, j=1, I D
As E,, < E; we have:
|6’ B En||se,  j=1,...,m.

Put e =E,. Then we have, for any i<j,ije{l,...,m} that
[|0' )0/ ()| =||e89 P (o) || <.

Let E = Y 6/ (e). As € < 1/(m!) we can apply lemma 1.2.2 in Ng. It gives a family
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of m pairwise orthogonal projections (e;)j=y, . m With ¢; ~ 0@, j=1,....m
e;<E j=1,...,m and
|6/ (e)—e;|| s m'e <& /am.

m

Also we have ) t(e;)t(E), because ). e;=E.
=1

ji=1
Let F=EVOE)=EV0™*!i(e). Anyway 1(E) <1(F) £217(E). LetQ = Np.
For any j=1,...,m one has ¢; < E hence 0(e;) < 0(E) < F, so that 0 (e;) € Ng.

Let ©° = (1/1 (F)) 1 restricted to Ng. So t’is a trace on Q whose value on the unit F
of Q is equal to 1.

For ge[l, +oo[ let, for any xeQ, || x]||, = @' (| x|9)" =t (F)~"/|| x||, Note
also that the C* norm || x || of any x e Q is the same as its C* norm as an element of N.  Put
fi=ete it tep-nyer
f2=e2+en+2+"'+en(p—1)+2a SRR fn=en+en+n+"'+enp’

where m = np as above.

We have ) f, = E, and f;, 0(f,) belong to Q for all k. We want to show that
1
|8 (f)— fier|[z £ 8 for all k =1,...,n and f,.y = fi.

Forj=1,...,m—1 we have
186e)—ese ]| S 118N -0+ @] +]|6 =y ]| S 5/2m.

Hence||0 (¢;)—e;4 1 ||; £ 8/2m. Thenfork =1, ..., n—1weget|| 0 (f)— fisy |2 8"

As 0 leaves the center of N fixed pointwise, one has 0 (¢) ~ e for any projectione e N. In
particular the e; are pairwise equivalent in Q, 1’ (¢;) £ 1/m, and 1" (0 (¢j)) < 1/m. So
[|0(enp) || < m™ Y% || ey ||y £ m™V?and weget||0 (f)— f1| Sp&2m+2m™ 2<%

The projection 0 () € Q is equivalent to f; and hence to f;,, in Q. By lemma 1.1.4
we get partial isometries Vy, ..., V,, ..., V,in Q with V¥V, =06(f), V. V¥ = fisq
and || Vy— fir1 ||y S 68" Let VoeQ satisfy V¥V, = F—0(E), V,V4=F—E We
have:

v (F—E) £ 1" (0 (e,,)) and hence
| Voll2 = [|0em |2 = 872.

Let V=V,+V,+...4+V,. It is by construction a unitary element of Q because
F-0 EN+0 (f)+...+6(f,)=F and F—E+ f,+...+ f,+1 =F. We have
|| V=F|, £ 6(r+1)8 = §/2 and also:

Ve(fk)V* =fk+19 k=1’ ceey N
Put v = V+(1—F). It is a unitary element of N such that
|[o—1]| =t(|v—1|)=1(|V—FD=1(F)1:’(|V—F|)§1(F)|[V-F||’2.
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So ||v—1]l; gt(F)6/2§81(ij>. Finally, for all k,
i=1

v0(f)v* =(V+(I-FNO(S)(V*+(1-F) = VO(f) V* = fiss.
Q.E.D.

Proof of theorem 1.2.5. — First assume that 0 (x) = x, for xe C. Fix neN and
8 > 0. Then let # be the set whose elements r are couples ((F;);-y, ..., » V) where:

(@ (Fpj=1, ., »is a family of n pairwise orthogonal, equivalent projections of N.

(b) V is a unitary in N with || V—-1]|; £ 81 (¥ F).

(© VOF)V*=F;,y, j=1,...,n (with F,,; = Fy).

Now we define an ordering on £ by putting, for r, r' € Z that r < r’ if and only if the
following are satisfied:

(D) F;sF,j=1,..,n
) ||V—V’ |l = 81 (F;—F)).
It is clear that < is an ordering.

We want to prove that £, < is inductive.

Or any totally ordered subset o of # the map r— 1 (}_F;) is an order isomorphism
of & on a subset of [0,1]. We just have to show that if (r,),.n iS an increasing
sequence of elements of %, there exists an re€ # such that r; < r, ieN.

Let r,, = ((F7), V,,). Then we have, using 2, that

Vo= Viwst |1 < 80(T FF = F).

Moreover, using (1), there exists projections F;, pairwise orthogonal, equivalent, such
that F? —» F; when m —» co. We have ) ||V,,—V,.; || £8. This shows that V,,
m

converges in the L! norm to an operator V of norm L™ less than 1. We see that V is uni-
tary, because the product is bicontinuous for the L! norm on the unit ball of N.

So V,, - V strongly and || V=V, ||; £ 8t (3 (F;—F7)) for all me N.

It follows that r = ((F;), V) satisfies conditions (a), (b), (c), where (b) and (c) are checked
by a continuity argument. Also one checks that r,, < r for allm e N. By Zorn’s lemma,
there exists some maximal element r of 2. We assume that r = ((F;), V) with 2 F; <1
and we derive a contradiction.

Put E=1- Z F;, and let P = Ng. As (c) is fulfilled we have V0 (E) V¥ = E and
ji=1

hence we can consider the restriction 8" of VO (.) V¥ to P = Ng. As 0 is aperiodic so
is VO(.) V¥ and hence so is its restriction to Ng—[see definition of p (6)]— Hence
lemma 1.2.1 shows the existence of (f});=1,... . a family of n equivalent pairwise ortho-
gonal projections of Ng and of v, unitary in Ng, such that v 0" (f)) v* =f;, 1, i=1,...,r

B
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||v—E||’1 S8 (Qf)#0, where v = 1/t(E)t on Ng. PutF;=F;+f, j=1,...,n
and V' = (v+(1-E)) V. Condition () is clear, for r’ = ((F), V'). Moreover we have
that

|lo+(1=BE)—1]|; =t(®)||v—E||; £ 8t (B)v' Lf) =t XS
and hence | V'=V||; £ 81 (3 f;). This shows that r’ satisfies (b) and (r, r’) satisfies (1)
and (2). We also have
(+(1—E)F, =F,(0+(1-E))=F,, j=1,2, ..., n

hence for all j:
Vle(Fj)Vl*= Fj+1’ Vle(fj)vl* = (v+1_E)9l (fj)(”"’l"E)* =fj+1

so that r’ also satisfies (o).

Thus we have shown that for any neN, any & > 0, there is a partition
of unity (F;);=;, . ,in N such that

[|0(F)—Fii|5<2||0(F)—-VOF)V*|[, <45, j=1,...,n
The conclusion 1.2.1 follows hence, under the hypothesis that 0 fixes pointwise the center
Cof N.

In the general case, let @ = restriction of 6 to C. Let then (c;);.n be a partition of
unity in C such that for all j =1, 6(c;)) = ¢;, (0)) =1 and there is a partition
(¢)i=1, ..., j of ¢; such that 0 () = I=1,...,j Whilefor j=0,6%is aperiodic.

Of course, to prove 1.2.1 we can assume that ¢; = 1 for some j. The case j =1
is already treated. The case j = 0 follows trivially from Rokhlin’s theorem [13].
Assume j> 1. Put ¢!=¢}, I=1,...,j, M =N, and a = restriction of 6/ to M.
[It makes sense because 67 (c') = ¢'.] As 0 is aperiodic on N wesee that o« is aperiodic
onM. Let neN,n>1 and n>0. As a fixes pointwise the center of M we get, from
the above discussion, a partition of unity (G-, ..., in M with || & (G) -Gy, || £ n,
s=1,...,n. Put Hy;,,=0%(G,), for 0<q=<j0=<p<n ThentheH,,m=1,...,n
form a partition of unity in N such that |8 (H,)—H,.+|,Snm=1,..,n-1L

Put F; = Hi+H, 4+ ... +H,_1)+, then we see that they form a partition of unity
(Fg)s=1,...,» in N and that

||0(F)—Fsry|l2<jn,  s=1,...,n
Q.E.D.

II. Factorization of automorphisms by automorphisms
of the hyperfinite factor of type II,

Let M be a von Neumann algebra. An automorphism 6 of M is called centrally
trivial when for any centralizing sequence (x,),.n One has:

0(x,) —x,— 0* strongly,  when n-— oo.

The set Ct (M) of centrally trivial automorphisms is a normal subgroup of Aut M,

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE.



398 A. CONNES

DEFINITION 2.1.1. — Let M be a factor, 0 an automorphism of M, then we let p, () be
the period of ® modulo Ct M, in other words p, (0)eN and for any n € Z one has 0" Ct M
iff n is a multiple of p, (6).

In particular p, (8) = 0 means that no nontrivial power of 0 is centrally trivial.

Now let ® be a free ultrafilter on N. If (x,),n IS an w-centralizing sequence in M, then
so is the sequence (8 (x,)),.n> Also the ideal £, of proposition 1.1.1 is globally inva-
riant under this transformation. So there is a unique automorphism 6, of M, such that
if (x,),n represents x € M, then (0 (x,)), .~ represents 6, (x) € M,

The map 8 — 6, is an homomorphism from Aut M to Aut M, and in facteach o e f N\ N
defines in this way a functor M — M,, 6 — 0,

PROPOSITION 2.1.2. — Let M be a factor with separable predual, 0 an automorphism of
M and ® a free ultrafilter on N.

(0¢CtM) < (6,#1) < (0, is properly outer).

Proof. — We just have to prove that if 8 ¢ Ct M then 0, is properly outer. The other
implications are easy.

By hypotbhesis, letting ¢ be a faithful normal state on M, there is a centralizing sequence
(X)nen in M such that, for some 8 > 0

[|0(x)—x,|ls 28 for all neN.

We have to show that the only a € M, such that 6, (x) @ = ax for any xe M, is a = 0.

Let (a,),n be a representing sequence for a and € = 1, (a* @). Let M act in # with
{(xEE>=0(x)for all xe M. We shall assume that ¢ > 0 and derive a contradic-
tion. We can take a, with ||a, § || 2 &, for all n.

As any weak limit of (0 (x,,) — x,.)* (8 (x,,) —x,,) is larger than 3 we can for each 7 find
an integer m = m (n) such that

1 1
160G —xmatlz 8  ||[xm aldll<-
1 .
1D Willl==, G=1
where Yy, ..., ¥,, ... is a preassigned norm dense sequence in M,. Then the sequence

(Xwnens Xy = Xpmmy is ©-centralizing and the corresponding X € M,, commutes with a,
while (8, (X)—X) a # 0 which is a contradiction.
Q. E. D.

THEOREM 2.1.3. — Let M be a factor with separable predual, © an automorphism of M
with p, (0) = 0 and © a free ultrafilter on N. Then 0, is a stable automorphism: for any u
unitary in M, there is a unitary v € M, such that

0, (v) = uv.
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LeEMMA 2.1.4, — Let M, 0 and ® be as in theorem 2.1.3. Then for any neN, n > 1,
and any countable subset (x’);.n of M,, there exists a partition of unity (F)x =, ..., ,in M,
such that each F, commutes with all x' and that 0, (F,) = F, +1 k=1,...,n, where
Fo+1 = Fy.

Proof. — By theorem 1.2.5. and proposition 2.1.2., we can for each § > 0 find a parti-
tion of unity (F));~y, ..., ,in M, such that || 8, (F))—F;. || < 8for j =1, ..., n, where

|| |2 is the L? norm corresponding to ,. Let ¢ be a faithful normal state on M, and
(¥,), n be a dense sequence in M.

By induction on ve N we can construct a sequence of partitions of unity (F});-y, .. ,»
in M, such that for all ve N.

@ ||V B Stvi=1,..,v,j=1...,n

O | Flesivk=1,..,v,j=1,...,n

© ||0FD-Fy i 1v,j=1,...,n

Where (x¥), .y is a representing sequence for x*. (To get (F))j=1,...,» apply the above
discussion with 26 < 1/v and get (f:j)j=1,...,n~ Then by proposition 1.1.3 choose a
representing sequence (I’:“;!'),,,EN for the l;j, such that for each m, (15'}') j=1,...,n 18 @ parti-
tion of unity in M. Take then m such that (%’}‘) =1, ..., Satisfies conditions (a), (b), (c). Put
Fy = Fm).

Then by (@) (F/),.n is for each j a centralizing sequence of projections of M. Let

(F;)j=1,...,n be the corresponding partition of unity in M,. By (b) it commutes with all
x*, and by (c) we have 0, (F)) = F;,,j=1,...,n.

J

Q E. D.

Proof of Theorem 2.1.3. — Let u be a unitary in M,. Let € > 0 and take n € N such
that 2n~'? <e. Let (F;);=,, ..., be a partition of unity in the relative commutant of
u and such that 8, (F;) = F;,,j=1,...,n. We have 1, (F;) = 1/n for all j, so that
||Fjll £¢2,j=1,...,n. Put

-1 -1 -1
Vo = Fm Uy = 90) (uv0)9 vy Uy = em (uvk)’ ceey Upg = em (uvn—Z)'
We have, by induction, v; v} = v} v; = F,_;, because assuming this true for j = k we get :
-1 -1 -1
Uk+1 U:+1 =0, (uv, U:“*) =0, (u Fn—ku*) =0, (F,—0)= Fn—(k+1)’
-1 -1
v;:+1 Ugs1 = O (”:Uk) =0, (F,_p) = Fn—(k+1)'

So the v, are normal partial isometries with pairwise orthogonal supports, their sum
n—1

V = Y o, is a unitary in M, and we have:
0

n—1 n—

Bm(v):= em(vﬂ =:9m(00)+
0 k

k=

2
uv, [because 0, (v, 4,) = uv,],
0

n—1 n—2
uV=Y uvp= Y uv+uv,_,.
k=0 k=0
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As
||0a(o)||.<€/2 and  ||uv,_||, S€/2 (because ||F;||, <e/2)

we see that || 6, (V)—uV ||, < «.

We now repeat the same procedure as in the above lemma. Let peM}, ¢ (1) =1,
¢ faithful, (,),.n be a dense sequence in M,. Let (u),.n be a representing sequence
of unitaries for u. For each veN, let V' be a unitary in M, such that
|6 (V)—uVY||, £ 1/2v and let (V}) be a representing sequence of unitaries for V.
Then there is for each v a subset A, of N whose closure in B N contains ®, such that

@ [V VIS v k=1,...,v,jeA,
®) |0 (V)—u; Vi||i < 1)v, jeA.,.
Choose the A, decreasing and with N () A) = &, and define v; = Vi) where

Je€A,H)\A,y+1 determines v (j). By condition (a) and the fact that v (j) — o
when n —» @ we see that (v;);cn is an w-centralizing sequence. In the same way
condition (b) shows that || 8 (v;)—u; v; [|s > 0 when j —» o so that the element of M,
represented by (v));.n satisfies 0, (v) = uv.

Q.E.D.

2.2 FACTORIZATIONS OF M BY THE HYPERFINITE FACTOR OF TYPE II;. — In this section
we extend results of McDuff [11] and Araki [2]. We apply them to the group of auto-
morphisms of factors. As always Aut M is gifted with the topology of pointwise norm
convergence in the predual M, of M.

THEOREM 2.2.1. — Let M be a factor with separable predual then the following are
equivalent, (where ® € B N/N).

(@) M is isomorphic to M ® R (R the hyperfinite 11, factor).

(b) Int M/Int M is not abelian.

(&) Int M ¢ Ct M.

(d) M, is not abelian.

(e) M, is a von Neumann algebra of type 11,.

Proof. — (d)=(e). Let 9eMj, ¢(1)=1. Choose w-centralizing sequences

(Xdnens (Vwwew such that ||[x,, y,]||¢ does not tend to O when n — o, let
lim || [x, yal|ls = 20> 0.

n—=o

Let fe M,, be a non zero projection. We just have to show that (M), is not abelian. Let
B = (1, (f)"* and (f,),en representing f as in proposition 1.1.3 (a) with ¢ (f,) = B2
for all ne N. Let (V,),.n be a dense sequence in M,. Then for each ne N there is
a k, € N such that:

1
0 B vl < WD bdll< s =t

N s St 2 %
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(Because when k — o one has |[f, x fo, /o 2 ful | —| [% 2] /o which converges
strongly to 0 because (x,),cn and (¥ )ien are o-central in particular. One then uses
proposition 1.1.2 to compute

}gﬂ o (| [xe v ) = 0 ()t (| [, 117 2 (B)®).

Let X (resp. Y) be represented by (x; ),en (resp. (3 Jnen) then [ fX £, fY f ] # 0 which
gives the conclusion.

(e) = (a) let (e;5); j=1,, be a system of 2x2 matrix units in M,,. Let (¢;;),cn be a
representing sequence as in proposition 1.1.3 (d). For each v, (¢]}); j=1,, is a system
of 2 x 2 matrix units in M. Moreover, for any {,, ..., y,e M, and &€ > 0 we can
find v such that:

”[‘l’j’ 9‘2’1]”<8, ji=1,...,4.

But this shows that M has property L}, of Araki[2] and by [2], theorem 1.3, that M
is isomorphic to M ® R.

(a) = (b). We have to show that there are automorphisms of M ® R, say a, B, which
are approximately inner, while afa™! B~ ! is not inner. Choosing o and B of the form
Im ® ag, 1y ® By shows that it is enough to do it for R which is easy.

(¢) = (d). We assume that (d) is not true so that M, is abelian. As M, is separable
it follows that for any faithful normal state ¢ on M and € > 0 there are elements \,, ..., {,
of M, and a § > 0 such that:

G yeM, ||x|[ Gyl <L 1Ix vl S8 [ w1l <8, V))
= (||[x ¥1lls <®.

Let 0 e Int M, we shall show that 6 € Ct M.
With ¢, {;, 3, € as above, let
¥ ={acAut M, ||¥;.a—V;|| <38 for all j}.

For any a € Int M n ¥” we have

(xeM, |

=t vlllssi=1 ... = |ee)-x|,<e

(because o = Ad w and || [u*, x]||Z < ©).

So this is still true for any o eIntMn¥. Now write 6 =0a.AdW with
ae?’. Choose Y, 1, ..., V,in M, and 8" < 3 such that

OeM, [|7|| S 1L ||| 85 7=g+1, ... = [Ja(WyWH—a ()] S e
(We use the fact that all centralizing sequences are central.)
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Then for any xeM, ||x|| =L, ||[x, ¥;]||£8,j=1,...,r one has
[0(x)—x|p < || (W x W*)—a(x) ||p +|[ 2 (x)— x| < 2.

This shows that 0 e Ct M.

Q.E.D.
(b) = (c¢) Follows From:

LeEMMA 2.2.2. — Let M be a von Neumann algebra with separable predual. Then for
any 0 € Ct M, any o € Int M, & (0) commutes with € ().

Proof. — As 0 is centrally trivial, there is for any n € N a neighborhood ¥", of 1 in
AutM such that (u unitary in {M, Aduev,) = |0 @—ulff,+ £27" and
|0 ()—ul[gou-10-+ 27"

Let (#.).en be a decreasing basis of neighborhoods of « in AutM such
that #, %, ' < ¥, and Be#,=|@.B"'—¢.a”!|£27?". Let u, be for each
neN, a unitary in M such that Ad u,e#’,. We have 000~ ! = lim Ad 0 (4,) so we

n— o

just have to prove that the sequence ©* 6 (1,) converges * strongly to a unitary of M. Let
Uy = U, u¥ for all neN, so that v,e#,#,' for all n. We get then
|| ® ()=, ||t o+ < 27" and hence

118 (020, —1|p.pgus 1S 2.27" 427" =3.27"

because B = Ad u, belongs to #/,.
So
|0 (¥ vy uy—uy|le<3.27"
and
110Cus Dt s —0 @) ] = || 0 O @) 1~ O )y |}y < 3.27"

Also, using
”e(vn+1)_vn+l ||¢.0.1'1.8‘1 27"
and
||¢.AdB(u, H—0.0.071.07 || 27"
one gets
||u:+16(un+1)_u:9(un)||¢ 3.2

This shows that u*0 (u,) converges * strongly to a wunitary X such that
AdX =a"1.0.0.071,
Q.E.D.

Let M be a factor. We now compare modulo Int M some factorizations of M as a
tensor product M = M; ® R;, R; hyperfinite factor of type II,. We say for short that
a subfactor A of M factorizes M when the equality n (x ® y) = xy, x€ A, ye A'n M
defines an isomorphism of A ® Aj, onto M. The factorizations described here are the
infinite ones. We shall deal later with the finite ones.
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PROPOSITION 2.2.3. — Let M be a factor with separable predual, A, B subfactors of M,
hyperfinite of type 11,, and factorizing M. Then if Ay and By, are isomorphic to M, there
is a o € Int M such that 6 (A) = B.

Proof. — Let us first reduce the problem to the construction of a triple (C, D, ¢) where
C < A is a subfactor of A, factorizing A and isomorphic to A, where D has the same

relations with B and o e Int M satisfies & (©) =D.

If such a triple is constructed, let R be a subfactor of Ay, isomorphic to A, factorizing
Ay. In M, R and A generate a subfactor that we can identify with R ® A because A
factorizes M. There is an automorphism of this subfactor which carries C on A. Extend
this automorphism to an a € Aut M such that a (x) = x, VxeR'"nA'n M. AsR® A
factorizes M, this is possible and moreover o € Int M because any automorphism of R ® A
is approximately inner. In the same way one constructs a p € Int M such that § (D) = B,
the conclusion follows. To get C and D we shall start from a generating pairwise commu-
ting sequence ((e});, j=1,2)ken (resp. £;}) of matrix units in A (resp. B).

Let (V;);.n be a dense sequence in M.

We build by induction a sequence (n,), .y of integers and (u,),. of unitaries of M such
that, for all v, withv, = %, ..... u,, one has:

(@) u, commutes with £, ..., iy

ij>

B voefrvy=fik=1,...,v.

(©) ” V. Ad v, —V;.Ad o, || S 27,
| ¥ Ad ol =¥ Ad o7t || < 27% 7 =1, . v

Letting C (resp. D) be the subfactor of A generated by the ¢j} (resp. fj}") and ¢ = lim
V= 0

Ad v, it is then clear that, by (c), o makes sense, and, by (b), that o (e};) = f;}* for all
i, j, v so that o (C) = D.

Assume 7, and u, are constructed for k¥ < v. Then let P be the commutant in M of
the fi, L,j=1,2k=1,...,v—1. As v_, e’i'}‘v;"_1 =fipfor k=1,...,v-1, we
see that for n > n, we have v,_, e}; v}, € P and of course f{;€ P. Let then o be a free
ultrafilter and (e;;), (f;;) be the systems of matrix units in P, corresponding to the w-centra-
lizing sequences (v,_; €}; V5" Jpen» (fiPnen- Using a partial isometry ueP, with
u*u = eyq, uu* = f;; and 1.1.3 (b) we construct an w-centralizing sequence (W,),.n Of
unitaries of P such that

W,v,_yej;00_y Wy =f; for all neN and i, j=1, 2.

It is then clear that for some n = n; and ¥, = W, the conditions (a), (), (c) are realised.

Q. E. D.

2.3. Proof of Theorem 1. — In this section we prove a more precise form of theorem
1 —the notations R, s, p € N are as in the introduction.
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THEOREME 2.3.1. — Let M be a factor with separable predual, isomorphic to M®R. Let
peNand 0 € Aut M. Then the following conditions are equivalent:

(a) p, (06) = 0 modulo p.
(b) 8 ® s, is outer conjugate to 6.

(c) For any 9 e M}, any & > 0, there is a unitary PeM such that |P—1|[} < & and
that ;0 = Ad P.0 is conjugate to ;0 ® s,,.

COROLLARY 2.3.2. — Let M be a factor with separable predual. If € (fr;t M) is not
abelian, one has € (Ct M) = & (Int M)’ (V).

Proof. — We know by lemma 2.2.2 that in general € (Ct M) c ¢ (ﬁ M)’. Moreover
by theorem 2.2.1 that M is isomorphic to M @ R. Let 6 e AutM, p,(0) # 1. We
have to show that there is an o € Int M with € (0) € (&) # & (o) € (8). By theorem 2.3.1
we can assume that M is of the form N® R and 0 = 6, ® s, where p = p, (0) # 1.
Then let a, € Aut R be such that s, o, s, g ! is not inner as an automorphism of R.  As
s, is explicit a, is easy to construct. We have a = Iy ® a5 € Int M and 000~ ™! is
not inner.

Q. E. D.
We need some lemmas before starting the proof of 2.3.1.

LEmMMA 2.3.3. — Letp > 1, A e T, Q be a von Neumann algebra of type 11, and o. € Aut Q.
Assume that 1° o is stable (as in 2.1.3) or 2° a? is properly outer for | £ g < nand " = 1,
A" = 1. Then there is a system of matrix units (fi)e,1=1,...., in Q witha (fy) = A" £,
fork,1=1,...,p.

Proof. — Assume1° and let (e;;); =y, ..., , be matrix unitsin Q. We have pe}, =1 where &
is the canonical center valued trace on Q([11], Th. 2, p. 249) hence (a (e;))" = €,
and there exists a partial isometry W, such that W* W = ¢;,, WW* = a (e,,). Put
V = ) a(ej;) Weyjthen a(x) = VxV* for any element x of the subfactor K generated

)
by (e j=1,..,,» Let U=3YAe, then we have UV* a(e;) VU* = A7 ¢
k=1

i,j=1,...,p. Putu=UV* and as a is stable take v, unitary in Q, such that v* a (v) = u.
We get (Ad v) " '.a.Ad v = Ad (UV*).a and as a conjugate of a satisfies the conclusion
of 2.3.3, so does the automorphism «.

Assume now that for some n > 0, a” = 1 and « is properly outer forg =1, ..., n—1.
Then the corresponding action g — o4 of Z/n on Q is stable ([6], 3.2.16), and the fixed
point subalgebra Q* is a von Neumann algebra of type II, ([6], 3.2.15). So let
(€ip)i, j=1,...,, be a system of matrix units in Q% Put U = A* ¢, where ) is as above.
Clearly Ad U.« satisfies the conclusion of 2.3.3, moreover (Ad U.a)” = 1 because Ad U
commutes with « and U"” = 1. So Ad U.ua is conjugate to o because Ad U.a defines an
action of Z/n on Q which is outer conjugate and hence conjugate to the stable action
defined by a. As above this ends the proof.

3
(*) ¢ is the quotient map Aut M — Out M and the prime means the commutant in Out M.
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LemMA 2.3.4. — Let M be a factor as in 2.3.1, and p an integer, 6 € Aut M, A e C,
M| =1, 07® = 1. Then for any , ..., € M, and any faithful normal state ¢ € M,
any € > 0, there exists a unitary P e M and a system of p X p matrix units (e;;);, j=1,...,p
in M satisfying the following conditions:

@ ||[[Vi eyl <el=1,...,qandije{l,...,p}.
(b) (Ad P.e) (eij) = xi_je"j, i,je { 1, ces P }.
(© ||P-1]j <=

Proof. — Let o be a free ultrafilter on N and put Q = M,. By Theorem 2.2.1, Q is
of type II,. Let a = 0, then either p, (8) = 0 and then by theorem 2.1.3 « is stable or
P (0) = n # 0 and then by proposition 2.1.2, for each ge {1, ..., n—1} one knows
that a? is properly outer, that " = 1 and that A" = 1 by hypothesis. Hence we can
apply 2.3.3 and get a system (f};);j=1,..,, Of pXxp matrix units in M, such that
0,(fi) =AM fije{l,...,p}

Let (prop. 1.1.3) (f}),n be a system of representing sequences, where (f}), .y represents
f;; and for each k, ( f,.’l‘.),., ; is a system of p x p matrix units in M.

For each k, ff, is necessarily equivalent to 0 (ff,) (because (8 ( fi’j‘)) is also a system of
p X p matrix units) and, as 0,(f;,) = f;; we get (lemma 1.1.4)a sequence (), .y Of partial
isometries such that u} u, = f¥,, w, uf = 0 (ff,) and that u,—f%, ——> 0* strongly. Put
p .
ve= 3 M770(ff)uff;. Then we see that the sequence (), .y is ®-centralizing
j=1
and represents

le_jem(fjl)fllflj = -

J
So we have shown that v, - 1 * strongly.
-0

Also vy is a unitary for all k and
e (v =f w0 (F1) BSOS we SN 7.
And, as uf 0 (f¥) w, = uf u, = f¥,, one gets
RO (fHu=N"fk Vi je{l,...,p}, VkeN.

As each sequence ( fi’;.)keN is @-centralizing, and as v} -2 1 * strongly, one gets the conclu-
-0

sion of 2.3.4 with P = v}
Q. E. D.

For the next lemma we take the following notation, where M is a von Neumann algebra,
K a type I, subfactor. For each y € M, we let /K’ ® ¢ be the element of M,, which
when M is identified with K’ ® K (K’ = relative commutant of K) is equal to the tensor
product of the restriction of { to K’ by the normalized trace 14 of K.
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LEMMA 2.3.5. — Let M be a von Neumann algebra, (e;;); ;= ,...,n @ System of n X n matrix
units in M. Then for any Yy €M, one has || ¥—¥/K' @ 1| < n*Sup||[e;, ¥]||
i’j
where K is the subfactor generated by the (e;)), i,j =1, ..., n.
Proof. — Let € = Sup || [e;;, ¥]||. Let xeK’, and i,je{l,...,n}, i #j We
iJ

have
|V Crei) =V (eyyxe) | S € fx ||

and, as e;; xe;; = 0 we get

|W(xe)| Sel|x|| for i#j.

Also
I‘J’(xeit)_\l’(xejj)l = |‘-|-’(xeijeﬁ)“"l’(eﬁxeij)| < 8”-"7”
SO
|m¥ e = T Vixep)| < nelx|
and we get:

|\|1(xeu)—1\lt(x)| <el|x|| for all i and xeK'.
n

PutxeM, || x|| 1, x =Y x;e; with x;;e K’. One has || x;;|| £ 1 and

WK @t =~ ¥ wix,).

n
j=1

V=YK @) = T ¥ (xye) + 500 (xyy ) WG,

=

So the above inequalities show that

|V —¥/K @) (x)| Sn(n—1)e+ ne=n’e
Q.E.D.

LeMMA 2.3.6. — Let M be a von Neumann algebra, (n,),.n be a sequence of positive
integers (%), (K,),cn @ Sequence of pairwise commuting subfactors of M with K, of type
I, for allveN. Let (V;);cn be a countable total subset of M,,.

Assume that for all j € N one has:

<00.

Z”‘-’{,'—\P,/K; ® Tk,

Then the K, generate a subfactor K of type 11; of M and M is equal to the tensor product
of K by its relative commutant K'.

(®) We assume n, = 2 for all v.
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Proof. — For each v, let m, be the haar measure on the unitary group of K, such that
that m,(1) = 1. For veN, xe M define E, (x) = J uxu* dm,(u). Then E, is a faithful

normal conditional expectation of M on the relative commutant K/ of K, and when iden-
tifying M with K| ® K,, it coincides with 1 ® 1¢ . The transposed E} of E, in M, is
the projection of norm 1 which to each { € M, associates ¥ - E, = Y/K| ® 1.

So we can rewrite the hypothesis of the lemma as

(2.3.7) LIESY;—V;|| <0,  VjeN.

Now the E,, ve N obviously commute pairwise because Ad u and Ad v commute for u
unitary in K, v unitary in K., v # v'. Hence the E¥ also commute pairwise, and condi-

@
tion 2.3.7 shows that the product P = [] E¥ converges pointwise in norm. [For any j
1

the sequence (H E’:) y; = V7 satisfies
1

Svr-wls £ vl <o

@0
It follows that the product H E, converges pointwise weakly to the transpose E of P.
1

m
By construction E is weakly continuous. For xe M and v < m we know that { [T E; | x
1
belongs to the commutant of K, and we see that the range of E is contained in K’ = () K..

For x e K’ we have E, x = x for all v and hence E x = x. We have shown that E is a
weakly continuous projection of norm 1 of M onto K. We have by construction that

E (uxu*) = E (x), VxeM, Vu unitary in K, because this holds for <H Ev> provided
1

u is a unitary in the algebra generated by K,, ..., K,. Now for any faithful normal
state @ on K’, ¥y = ¢ o E is a normal state on M such that ¥ (uxu*) = ¥ (x), xe M, u
unitary in K. So the support e = s (V) of ¥ must belong to the relative commutant K'.
As then E(e) = e we get Y (1—e) = ¢ (1—e) =0 and e = 1. We have shown that E
is faithful and that K is a finite factor. ((¢ o E)/K is a faithful normal trace on K so [10],
prop. 1, p. 271, shows that K is a factor.)

Choose a faithful normal § = ¢ o E as above, then ¥ leaves K pointwise fixed and
hence K’ globally invariant. So by [14], corollary 1, to check that M = K ® K’ we
just have to show that K and K’ generate the von Neumann algebra M.

Let x € M, then x is the weak limit of the sequence x,, = (H Ev) (x). For each m,

(H Ev> (x) belongs to the von Neumann algebra generated by K,, ..., K,,_; and K'.

Q.E.D.
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Proof of theorem 2.3.1. — (@) =(c). Let peN and 8 > 0 be as in 2.3.1(c). If
p = O0let (n,), .y be a sequence of integers n, > 1 where each g > 1 appears infinitely many
times. PutA, = exp(i2w/n)forallv. Ifp = 1letn, = 2forallvand A, = 1 for all v.
If p > 1 take n, = p for all vand A, = exp (i 2 ©/p).

Let ¢ be a faithful normal state on M and (V;) ;n a sequence dense in M,,.

We construct by induction on v a sequence (P),.n Of unitaries of M and
(€})i,j=1, ..., n, of systems of matrix units in M which for each v satisfy the following condi-
tions.

(o) The factor K, generated by the (g]));,j=1, ..., », commutes with K, ..., K _,.

® ||[ep Wl]| Sny227Vfork <vandanyij=1,...,n
-y PeXju... uK,_ ).

() 6, =Ad(P,P,_, ... P,)0 satisfies 0, (ef,) = A,/ &} for k < v.

© ||®PyPyey ... PY—@,_, ... PP JE < 8.27"

Assume the construction is done up to v, let us construct P, ej/"*. Let M be the
relative commutant in M of ( K1 U ... uK))” = K" the factor generated by Kl, ..., K,
As M is identical with K’ ® M we get from Yy, ..., ¥, ,, € M,, elements \j;,, ceo 1l~/,
of M* and an € > O such that: .

ve

(2.3.8) xeM, |[x]| =1 |[[x ¥]l|<ei=1 ..., 7
= (||[[x V]|l snk27 P for j=1, ..., v+1).

Also as the restriction of @ to M is faithful, there is an n > 0 with:

(2.3.9) (P unitary in M, IP=L|f<n) = (]|P(P,...P)—P,...P|[f<8.270*D),

Let 6 = OV/I\7I. It makes sense by (§). One has p, (5) = p, (0) by an immediate compu-
tation. Then by the choice of n,,, and A,,, and lemma 2.3.4, there exists a system of

My4q XN, Matrix units (e;;);, j=1, ..., n,,, and a unitary P in M such that:
(@ H[\Tff,fu] |<ek=1..,rnij=1..,n.,,.
(b) AdPoO(e;) =AM eysij=1,..
© || P-1 I¥ < n.

v+1 = e;; and using 2.3.8 and (a) we check (B). Conditions (e) and (y) are

clearly verlﬁed Condition (8) for k =v+1 follows from (b) and P, l~’,
AdP,,  °0,=0,, Fork < vonehas -

0,41 (e:"j) P,,,0 (eu) Pv+1 =0 (efj)
because by construction P,,, commutes with 8, (ef;) = A,/ ef,. Finally condition (&)
follows from (c) and 2.3.9.

Now (P, P,_, ... Py),.n converges * strongly [by (€)] to a unitary P e M such that
||P—1]ff =8 Let®,=AdP-0 so that 6, »6, when v— oo and, by (5) we get
(8) 0, (ef) = A7 €}, for all 4, j, k.

9 nv+1'

Taking e};
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Combining (B) and lemmas 2.3.5, 6 we see that the K, ve N generate a subfactor
K of type II, of M which factorizes M in M = K ® K'. By (3’) the restriction of 6 to
K is conjugate to s, and as s, ® s, is conjugate to s, we get 2.3.1 (c).

(c) = (b) is obvious.

(b) = (a) follows by constructing explicitely for g # 0 (p) a central sequence (x,),cn
in R such that

|| (sp)*(x)—x,||;+0  when n- oo.

II1. Proof of Theorem 2

We recall the theorem for convenience.

THEOREM 2. — Let M be a factor with separable predual, isomorphic to M ® R and
0, 0, be automorphisms of M such that

0,elnt M, p,(0)=0, j=1,2.

Then there exists a 6 € Int M such that
£(0,) =€(00,07").

On M ® R the automorphism 6 = 1 ® s, satisfies the conditions of the theorem.

To prove the theorem we let 8 be an element of Int M such that p.(0) = 0 and we cons-

truct a factorization M = K ® K}, of M, with K isomorphic to R, and an automorphism
o of K such that 67! (& ® 1) isinner. By construction o will be an infinite tensor product
of automorphisms of finite dimensional factors and will not depend, up to conjugacy, on 6.

The proof is divided in two parts. In the first one our aim is the technical lemma 3.1.4
which will be repeatedly applied in the second part.

LEMMA 3.1.1. — Let M as above, 0 € Int M, p,(0) = 0. Then there exists a sequence
(Y,),en of unitaries in M such that:

(@) AdY,— 0 in Aut M when p — co.
(b) 0 (Y})—Y% — 0 * strongly when p — oo, for any k € Z.

Proof. — AsB e Int M there is a sequence (V,), .y of unitaries of M satisfying 3.1.1 (a).

We have 0 c Ad V, 007! = Ad 6 (V,) for all pe N, and hence Ad 6 (V,) — 0 in Aut M,
when p — o0.

It follows that Ad(V;6(V,)—1 in AutM, when p—co. Put W, = V>0 (V)),
then one has ||¢ cAdW,~¢||— 0 when p— oo, for any ¢ € M,. This shows that
(W), n is a centralizing sequence.

Let o be a free ultrafilter on N and let W be the unitary element of M, represented by the

sequence (W,),.n. As 0, is a stable automorphism of M,, (theorem 2.1.3) we can find
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a unitary X € M, such that:
W = X*6,(X).

Let (X,),.n be a representing sequence for X, where each X, is unitary. We have:
X* 0 (X,)—W,— 0 * strongly when p — ®, Ad X, — 1 in Aut M when p — o.
It follows that Ad V, X* — 6 in Aut M, when p — ® and that

0(V,XH)—V, X% =V, (V¥ (V,)—X*0(X,) 8 (X%

tends to 0, * strongly, when p tends to @ (3).

We have shown how to construct a sequence Y, = V, X* satisfying 3.1.1(a) and
0 (Y,)—Y,— 0 * strongly.

Let /e N, assume that 0(Y,)—Y} — O strongly when p — . Then 6 (Y)Y} - 1
strongly, Y,0(Y,")0(Y,")Y, > 1 strongly (because Y,0(Y,') -1 strongly). As
for any ¢ € M, we have g e Ad Y, ! —» @ = 077, we get that ¢ (6 (Y, “*) Y} ' 1) - ¢ (1).
We have shown that 6 (Y, **") Y}*! - 1 weakly hence that 6 (Y,'")—Y,"* — 0 stron-
gly. Condition 3.1.1 (b) follows by induction.

Q.E.D.

LemMMA 3.1.2. — Let M be as above, 0 € W, P, (0) = 0, let ¢ be a faithful normal
state on M and V,, ...,V € M: Then for any ne N, any 8 > 0, any k € N, there exists
a partition of unity (F;);=,, ..., ., unitaries u, W € M such that:

(@ ||V, Fj1||£8,s=1,...,¢j=1,...,n

) uFju* =Fj 1,j=1,...,n (Fuy = Fy).

© || W07 —Y,0Adu™ || £ 8,5=1,...,4q

(d) With® = Ad W o0 one has “(poG’—(poAdu” < 9.

(e ||0" @H—u'||, <8, for |I| < k.

(N)OEFE)=Fji,j=1..,n F = Fy),

@ |W-1]s s

Proof. — For any sequence (W,,),en Of unitaries of M we have

(W,, = 1 strongly) == Ad W,, - 1 in Aut M.
So there exists an n > 0 such that, for any unitary W in M,
(|W=1]jf=n) = |[V;00 'cAd W —y,007 || <8/4, Vs=<gq.
Take such an n, with n < 3.

By theorem 2.3.1, applied with the above @, we let W be a unitary in M, H W-1 “ q‘: <n,
such that 6" = Ad W 0 is of the form 0, ® s, in a factorization M = Q ® R of M as
a tensor product of a factor Q by the hyperfinite factor of type II,: R. . Once 0’ is fixed
this way we first choose a partition of unity (F;);-y, ..., of M satisfying (a), (f). (Choose

() If Z, - 0 strongly then for ¢ e M,, 0 (Z, VI)* (Z, V¥)—0.0 (Z} Z,) » 0, so that Z, V} - 0
strongly. :
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F; e 1 ® R in the above factorization of M.) Then we let, for /e Z, | 1' <k, =0¢o0""!
andalsoy = Qk+1)7' Y o,

|1 sk

Choose & < §/2 such that 3e+2k(2e+(2k+1)"/27ne) <8 and that

Qk+1D)'27Tne <
where for any unitary X € M:

(|X=1lf=n) = ||Vo0 toAd X ' —{,00 || <84, for s=1,...,q.
By lemma 3.1.1 there exists a unitary Y € M such that:
||Wyo0' ' —Y0oAd Y| S, s=1,...,4,
lo—0eAdY sl |1|sk,
|YF, Y*~0'(F)|{ <&, j=1,...,n,
|0 (YH-Y|,se  |I|Sk
As @' (F;) = F;, for all j, we get by lemma 1.1.4 a partial isometry X; € M, with initial

support Y F; Y* and final support F;.,, such that [|X;—F,. ][} <7e Then

X = Y X, is a unitary such that || X—1 ||} £ 7ne, and that
j=1
XYF,Y*X*=F,,,, Jj=1,...,n.

For each I, |I| <k, we have (||X-1[[})*<@k+1)(]|X-1]})? and hence
[ X=1]f, < @k+D"*Tne. As | ¢—9-AdY || <&? and || X-1]| =2 we get

|X-DY'||, < 2e+Q2k+1)*Tne =o.
For / > 0 we have

XD =Y | < [[X= DY o+ XD =Yl )

sothatfor0 </ < kweget || (XY)'=Y!||, S/a. Inthesameway || (XY)'=Y!|, < |/]a
forallZ, | /| < kand || Y (XY)! Y*—Y!||, < || aforalll | /| < k. The last conclusion
implies, using || @ 0'—¢@ e Ad Y || < €2, that, for | /| < &,

18" (XYY —0"(Y)]|o < 28+]||Ad Y((XY)' =Y ||, < 2&+| ]
Put ¥ = XY. We have shown that for any /, | / | < k one has
|6’ (Why—u'||, S 2e+]|l]a+e+|l|a S 3e+2ka < 8.

We just have to check conditions (c)(d). We have ||X—1]|]!<n’, because
QEk+DY2T7ne<n. So YyoAdu™! = Y,o0AdY 1o Ad X! is at less than e+3/4

(4) (XY)H'l——YH'l =X-1) yi+t 4 XY((XY)‘ _ Y').
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of Y, - 8’1, hence at less than & of y, - 1. Finally
loeAd X—o|| = 2||X-1|; £2(2k+1)'*7ne

and as 2422 k+ 1?2 Tne < 8, we get d).
Q.E.D.

LeMMA 3.1.3. — Let M be a von Neumann algebra, ¢ a state on M and u € M a unitary
with projection valued spectral measure denoted by J — e (J) (J borel subset of T).

Then A(9,u) = {AeT, 0 (e, )<27% VqeN, ¢>2} is not empty, where I, ,
is the interval in T, of center \ and haar measure 2~ 24,

Proof. — We let m be the (normalized) haar measure of T. For each g€ N we have
m{ieT,@(e(,,) >2"9} £3.27% In fact, otherwise we could find a disjoint
collection of J, ,s = 1, ...,/ whose union has a haar measure larger than 277 while, for
each s, one has ¢ (e (J,,,) > 27% As each of those intervals has haar measure 2724

1
one has / = 27 and we get a contradiction because ¢ (1) =1 < Y o¢(e(J,, ). Now
s=1

m{reT,3g>2,¢0((,,,)) >2"9} is smaller than ) 3.277 = 3/4, hence

q>2
m (A (¢, u)) 2 1/4.
Q. E. D.

In the rest of this section we denote by f,, for each n € N, the borel function from T to T
such that:

fn(eie) = eiﬂ/n’ Ve; -II< 9 _S_ IT.

LEMMA 3.1.4. — Let M be a factor, with separable predual, isomorphic to M @ R, let
6eIntM, p,(0) = 0, and let ¢ be a faithful normal state on M, and ,, ..., ¥, e M,.
Then for any ne N, any € > O there exists a partition of unity (F});=,, .. . in M and uni-
taries u, v € M such that:

@ |V Fj]|| <e,  k=1,...,q, j=1,...,n
(2 uFu*=F;,y, j=1,..,n  (Fu=F)).
3 [[Wee® ' —YoAdu™t||<e, k=1,...,q.
4) —1eA(o, u").

(5) Advo0(x) = uxu* for any x in the type 1, factor generated by (Fj);-,,
u = uf, (u"y*.

©) |[o—1]) <e.

Proof. — Choose m e N such that 3 (2"™)"/2 < g/8n. Then for p = 1, ..., n choose
polynomials (of z and z71), R,(2) = Y a,,z" such that:
ftisk
5 ]RP(Z)——(an(Z")—l)p]éS/Sn, VZET’ Z"¢J—1,m5

7 ( |Rp(z)| <2, VzeT.
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Let A=Y |a,,| and take & <e¢, €/4n+((e/4n)?*+98)"/>*+A s < ¢/n. Applying
t

> ‘
lemma 3.1.2 with this 8 we get a partition of unity (F;);-,, ...,, and unitaries u, W € M.
By lemma 3.1.3 we can assume that —1€ A (¢, #"). Put 0’ = Ad W 0. Let e be the
spectral projection of u” for J_, ,.As¢(e) < 2™ it follows from 7) that:

8) ”Rp(u)—;;””q,gs/4n, p=1,...,n

It follows that ||R,(w)—u”||, < €/4n, p=1,...,n where ¢, = ¢ oAdu, using
the commutativity of » with both R, (x) and u?. The condition (d) of lemma 3.1.2
and the inequality || R, (u)—u” || < 3 show that

©) IR, )= ||ooer < (E/4m)>+98)Y%  p=1,...,n.
Moreover the condition (e) of lemma 3.1.2 shows that

o 6)-ullys5 1k
and hence, by the choice of A, that
(10) || R (6" () =R, (w)]|, < AS, p=1,...,n
From (8), (9) and (10) we get:

|| 4P~ @) ||, < e/dn+((e/4n)* +98) + A S,
and hence
(11) ”;p—ef(;p)llyée/n’ P=1, I (B
by the choice of 8.

As & < ¢ the conditions (1) to (4) of the lemma are fulfilled. We shall now
construct v = VW satisfying conditions (5), (6). By construction we have #" = 1,
and as «" commutes with the F)s, so does f, (u"*. It follows that

uF,u*=uFu*=F;,,, j=1,...,n F, =F

and hence that F; generate a type I, subfactor K of M. A system of matrix
units (e;); j=1,..» in K is given in particular by e; = %' JF;, i, j=1,...,n
Moreover #" and f, (") belong to K'.

Note that ue;; u* = e;,,, ;4+, for all i and j and that ue;; u* = e;,,, ;4+, for all i
and j.

Take V= Y e;.y, .0 (e;;). Then one checks that

j=1
* *
VO (e, )V =€y, 20 (er1)es 41 =ue ,u for s,t=1,...,n.

Because 0’ (eq;) = 0’ (F,) = e,,. With v = VW this proves the condition (5) of the
lemma. We have, for j =1, ..., n, that

€+1,20'(e1, ) = €;41 20 (F1)el(al_j) =€j1+1,2 9,(51_1)
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hence, by (11):

”ej+1,29,(91,1)—31'“.2“‘—]”, <celn
and as the term with a minus sign in the last inequality is equal to F;,; we have shown
that ||V-1]|], <& As ||[W-1 Hq, <& (because & <¢), we get ||[VW—1]|, < 2=
Now one has to estimate || V*—1||,. We have, for all j,

(ej41,20'(er, ) = ;I—le'(;l_j)FjH
hence
”(ej+1,26’(e1,j))*—Fj+1“Q
< [|@-0 G|, s efn
so that, as above, || V*—1||, S & ||[(VW)*—1 ]|, < 2e.
Q.E. D.

3.2. Second part of the proof. — We fix a factor M with separable predual, isomorphic
to M®R and a 6 Aut M, 0 elInt M, p,(0) = 0.

We choose a sequence of positive integers (n,),.n such that

(3.2.1) S 1/n, < oo.
=1

v
In the next two lemmas we determine two sequences (8,),.n, (€,)yen Of positive reals.

LEMMA 3.2.2. — For each v € N there exists a 8, > 0 such that if (F));=y, .. . isa
partition of unity in M and ue M a unitary with u™ = 1, uF;u* = F;.,,j=1,...,n
then:

v

WeM,, ||[V,u]]| <8,,||[¥, F;1||<8,,i=1,...,n)

implies || W—V/K' ® 1 || < 27" with the notations of 2.3.5 where K is the subfactor
of M generated by u and the Fs.

Proof. — A system of matrix units in K is given by e;; = v/ F;. If [|[V, u] || < 8
we have, for k >0, || [V, #*]]|| £ k8, hence with |[[V, F;]|| <& for all j, we get
|| [V, e;;] ]| < n,8+3 for all i,je{1,...,n,}. Applying lemma 2.3.5 we just have
to require

nZ(n,+1)38,<27".
Q. E. D.
Throughout we let 8, = 27Vn; % (n,+1)"".

LemMA 3.2.3. — For each veN there exists an €, > 0 such that €, < 1/n, and
satisfying the following: Let ¢ be a faithful normal state on M, and u a unitary, u € M such
that —1¢€ A (9, u™*") then:

(VeM, ¥ <o, ” [V, u] “ < 2¢,) implies
” [‘I’, ;] ” = 8v+1 where u= u~(f;v“,(u"v+l))*.,
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Proof. — Put n=n,,,, 8 =23,,,. Let R(z2) = Y a,z* be such that |R(z) | < 2,
VzeT and

(3.2.4) IR@)—(f,(Nz|*<8*8, zeT, z2"¢J_,,
where ¢ = 3 is such that 9.279 < §%/8. We have (|| R (0)— f, @")* u||})* < 8*/8+9.27¢

because —1 € A (9, u").

It follows that ||[R@u)—u|[},<8/2, V¥, 0S¥ < ¢. Moreover |[[V,u]|l<e
implies || [, #*]|| < |k |e for any ke Z so that we just have to choose &, such
that €, < 1/n, and:

(3.2.5) (i |k||akl)28v§8/2

and check that, 0 S ¥ < o, || [V, u] || < 2 ¢, implies

| [R @), ¥1|| £ 8/2, || [#, V] || < 8/2+8/2 (see [5], 2.1).

Q. E. D.
We fix (g,),.n once for all, with g,,, < &,, V.

LEMMA 3.2.6. — Let M = Q ® N be the tensor product of a finite dimensional
Sfactor Q by a factor N. Then for any € M there exists m elements (m = dimension
of Q) of N, V!, ..., U™ such that:

@ VxeN, |[[¥, 1 ®x] || < Sup || [¥, x] |-
J
(b) Y U unitary in Q, V unitary in N, 6 € Aut N, one has

|| o ((Ad U) ®0)—¥oAd (U® V)|| < Sup|[¥/o0—Y/oAd V||.

Proof. — Let (e;;);, j=1, ..., ms2 be a system of matrix units in Q and (®;);=y,....m
be a basis of Q, dual to the (e;)).

For each x € Q ® N, the operator (0; ® 1) (x) is a matrix element of x (x is a matrix
with coefficients in N). It follows that ||o; @ ® || £ ||@]|| for any @ eN,. Write

m
V=Y o;®V; and put ¥ =mVy;, j=1, ..., m; so that
i=1

Y o,V

1
m j=1

\[/:
For x e N we have:

[W1©x]=L 3 o @V, ]
m j=1 :
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which shows (a@). For U, V and 0 as in 3.2.6 (b) we have

Ve((AdU)®6) = %Z(o),-oAd U) @ (¥7-0),

V(AU V) =T (@,Ad )@+ Ad V)

and as || (@;°AdU) @0 || £ ||o]|, for any @ e N, we get ().
Q.E.D.
LeMMA 3.2.7. — Let M and 0 as above, ¢ a faithful normal state on M, (V;);=;, ...
a sequence of elements of [0, @]y, There exists a sequence (K,),.n of subfactors of M
and (P)),.n of unitaries of M such that:
(a) For each veN, K, commutes with K;, j < v.

(b) For each veN, K, is generated by a partition of unity (F});-y .. ., and a
unitary U,, Uy = 1,
U,F;Uy =Fj,y, Vi=1, ..., n,.

© ||V, G| £8,, ||V, FY|| £ 8, for any veN, any I <vandj=1,...,n

(d) For any veN, P, commutes with K, ..., K,_,.

(¢e) For any veN, ||®,—D)P,_ P,_,... P ||} < 8n,

(f) Pur 6, =Ad(P,P,_, ... P;) >0 then each 8, leaves K;, j < v globally invariant
and coincides with Ad U; on such a K;.

v

(g) For any ve N, j £ v one has:
|| V267 ;0 Ad (U, Uy—y.. . UD 7! | Sey

Proof. — We assume that K;, P; have been constructed up to j = v and we look
for Ky, Pyyy

Let Q be the subfactor generated by the K;, j < v and let m be the dimension of Q.
Let N be the relative commutant of Q in M. The automorphism 0, ¢ M leaves Q
globally invariant and coincides on Q with the inner automorphism Ad U where
U=U,U,_, ... U, (note that the U; commute pairwise). Let 0 be the restriction

of 6, to N and note that if we identify Q ® N with M we get AU ® 6 =0, Let,
for I=1,...,v+1, Vi, s=1,...,m be elements of N, satisfying lemma 3.2.6
relative to V,.

By theorem 2.3.1 we see that 9 is outer conjugate to 6 and hence feIntN
and p, () = 0.

By lemma 3.1.4 there exists a partition of unity (Fj);-q, ...,
ve N such that:

(1) I[Ws Fl| €8s I=1,...,v, Vs, Vi
2) uFu*=F;.y, j=1,..,n,.4,.

in N and unitaries u,

LS
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3) |Wio0 ' —WieAd u™ || <641/2,  I=1,...,v+l, Vs

4) —1eA(py, u™*') where ¢y = ¢ restricted to N.

5 ,,6 (x) = uxu*, Vxe K where K is the factor generated by the F;s and
u= uf,,,, (W™)*

lo—1l) <t/ 1|07 @) —1]]p < &s1/4
(6) and
[|[0=DP,P,_y...Pyllp < &+1/2-

We are applying 3.1.4 with e < 3,,,, € < €,,,/2 and € so small that any unitary ve N
such that ||v—1||3, < e satisfies the condition (6) above. It is possible because @y

is faithful. We have 8, = AdU ® é, hence (3) and 3.2.6 show that:
©) ||\11,09:1—\11,0Ad(uU)"'\|§8v+1/2, I=1,...,v+1.
But the induction hypothesis (g) shows that

|| W06, ' —Y,0Ad U7 || S &, I=1, ...,

And, as u and U commute we get ||V, c Adu™'—{, || £ g,+€,,,/2

® I ulf| 26, I=1....v.
As , £ ¢, condition (4) and lemma 3.2.3 show that
®) 0¥ 8|S 8y I=1,.v.

Let f’:f,,v“(u""“)*, then ||I~’—1 || £ n/n,,;, and (6) shows that, with P = Po
we have

1
H(l"P)PvPv—l' . -P1||¢§Tf/nv+1+ iav+1’

”PT . PV*(I_P*)HQ é ||(1_v*)”q)+n/nv+l é 1/28v+1+n/nv+l'
Moreover by 3.2.3 we have ¢,,, < 1/n,,, and hence

(10) [|[1=P)P,...P|Js < 8/nys;.
Now we have
”‘|’1°9\,—1°Ad U~1‘-\|Il°e;1”
= H‘I’z"Ad(ev—l(U—l))—\h” < 2“9\71(0)_1H¢.
<2[[67 @)~ 1]lp=2[|0 7 @)= 1]lp < &y41/2,

for any /, using (6). Together with (7) we get:
||\|/,oe;10Ad v =Y 0 Ad(uU)! || < €41; I=1,...,v+L
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Applying Ad P~ to both sides gives, using P! = v=! P~1, and »~! P~! = (#)~! that:
(11) V007 cAd P~ — 0 Ad(@U) || Sgyuy;  I=1,...,v+1

We take FI*'=F;, j=1,..,n,, U,, =% K, =K, P, =P=Pn
Conditions 3.2.7 (a) and (b) are easy to check. Condition (c) follows from (9)
and from condition (1) above and lemma 3.2.6 (@). Condition (d) is clear because P € N,
condition (e) is given by (10). To check (f) note that

0,,, =Ad Po8, = Ad U® ;0

which proves (f) for j =1, ..., v.
Moreover K,,, = K = N and we just have to check that .8 (x) = #xi*, V x e K.

By (5) we have 00 (x) v* = uxu*, VxeK and as Pu = #, we get
P00 (x) v* P* = P uxu* P* = uxii*, VxeK.

We thus have checked (f) for j =1, ..., v, v+1.

To prove (g) note that 07!, = 0;'o AdP~! and that U,,, U, ... U; = U with
the above notations. Hence (g) follows from inequality (11).

To end the proof of 3.2.7 we note that, for v = 1, the conditions (c) are vacuous
because there is no VY,;, / < v. Hence the construction of (F})j=1,,m,,l, U, and P,
follows from the same argument as above, with v = 0.

Q. E. D.

End of the proof of theorem 2. — We choose a faithful normal state ¢ on M and
a sequence (V;);en, Of [0, @]y, , Which is total in M,. Then we construct (K,),.n
(U,)yen and (P,),.n as in lemma 3.2.7 and we note that:

(o) The K, generate a subfactor K of type II; in M and M is equal to the tensor
product of K by its relative commutant K. [Apply condition 3.2.7 (c), lemma 3.2.2
and lemma 2.3.6.]

(B) The unitaries W, =P P, _, ... P; converge * strongly to a unitary WeM
[by condition 3.2.7 (e) one has ||W,—W,_,|* < 8/n, veN and by hypothesis
Y 1/, < ]

veN

Let 6, = AdW o0 = lim 6, in Aut M. We have

(y) For each jeN, 0 leaves K; globally invariant and coincides with Ad U; on K;
[Use 3.2.7 (]

Using (o) one sees that K is the infinite tensor product of the couples (K,, 1,),
1, = canonical trace on K,. Let aeAutK be the infinite tensor product of the
AdU, e AutK,.

From 3.2.7 (g), identifying M with K ® K’ we get:
©) o, =ag Ig.
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By 2.3.1 a is outer conjugate to & ® 1z so modifying o by an inner automorphism
of K we can get an automorphism B of a subfactor A of K (factorizing K and such
that A and A’ n K are isomorphic to R) and a unitary v e K with:

() Advoa =B ® 1, nk-
Then Adve6, =B ® s nk)® lx. Using proposition 2.2.3 one gets the desired
conclusion.
Q.E. D.
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