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OUTER CONJUGACY CLASSES
OF AUTOMORPHISMS OF FACTORS

BY ALAIN CONNES

INTRODUCTION

Two automorphisms a and P of a von Neumann algebra M are called outer conjugate
when their classes e (a), e (?) modulo inner automorphisms of M, are conjugate in the
group Out M = Aut M/Int M.

The outer period po (a) of an automorphism a of M is by definition the period of £ (a)
in Out M, and is equal to 0 if no power e (a)", n ^ 0 is equal to 1.

The obstruction y (a) of an automorphism a of M is the root of 1, y in C such that
o^o (a) = Ad U => a(U) = y U for U unitary in M. This definition makes sense when M
is a factor, moreover y (a)^0 (a) = 1 and y (a) = 1 if PQ (a) = 0.

In [8], theorem 1.5, we showed that/?o and y are complete invariants of outer conjugacy
for automorphisms of the hyperfinite factor of type II i : R, which are periodic. In this
paper we shall show that the restriction of periodicky is unnecessary, that is: Any two
automorphisms a and P of R such that po (a) = PQ (?) = 0 are outer conjugate.

It shows that Out R is a simple group with only countably many conjugacy classes.
In [4] we showed that the classification of factors of type III^ ^ e ]0, 1[ is the classifi-

cation of outer conjugacy classes of automorphisms 9 of factors of type 11̂  : N, which
multiply the trace of N by the scalar ^. In [5] we gave an example where for fixed N
and X there was more than one such outer conjugacy class of 9' s.

Here we prove, using the study of automorphisms of R, that for N = R ® 1 ,̂ where 1̂
stands for the algebra of all bounded operators in a Hilbert space, one has: For each
X e ]0,1[ there is, up to conjugacy, only one automorphisms 9^ of N such that 9 multiplies
the trace by X. This implies that the Powers' factors are the only factors of type 11\
whose corresponding factor of type 11̂  is Ro,i. (The above N = R ® 1̂  is the only
factor of Araki-Woods of type 11̂ , we take the notation Ro^ for it, as in [1].) We
shall in another paper discuss the implications of this fact on the study of hyperfinite fac-
tors and also apply theorems 1 and 2 below to get the list, up to outer conjugacy, of all
automorphisms of Krieger's factors. Also we refer the reader to [9] for the applications
of the above results to hyperfiniteness of representations of arbitrary solvable groups.
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384 A. CONNES

The content of this paper is essentially the proof of two theorems, that we now state.
We take the same notations as in [8] for periodic automorphisms of R. In particular

for p e N, p ^ 1 we let Sp be the automorphism of R (unique up to conjugacy) such that
(SpY = 1 and PQ (Sp) = p. For p = 1, s^ == 1. Also we let SQ be the infinite tensor

CO

product of all the Sp , p ^ 1 on ® (Rp , T?) where Rp is isomorphic to R and Tp the cano-
p=i

nical trace on Rp. By definition the asymptotic period p^ (9) of an automorphism 9 of M
is the period of 9 in the quotient group Aut M/CtM, where CtM is the normal subgroup
of centrally trivial automorphisms (see [7]), i. e., those 9 such that 9 (x^—x^ —> O* strongly
for any bounded sequence (^n)neN °f elements of M such that [ [ [x^ , (p] || —> 0, (p in the
predual M^ of M.

As Int M <= CtM, we see that Aut M/CtM is a quotient of Out M and that/?^ (9) divides
PQ (9) for any 9.

THEOREM 1. — Let M be a factor with separable predual, isomorphic to M ® R. Let
p e N and 9 e Aut M, then (9 ® Sp outer conjugate to 9) o pa (9) = 0 modulo p.

Take p = 1, then for any 9 e Aut M, one has pa (9) = 0 (p) so 9 ® IR is outer conjugate
to 9.

If Pa (9) = 0, then 9 ® Sp is outer conjugate to 9 'for all p. Moreover we shall prove
that the condition "M is isomorphic to M ® R" is [equivalent to the Tzo/z-commutativity
of the group e (Int M) = Int M/Int M, where the closure is taken in the natural topology
of Aut M : the topology of pointwise norm convergence in M^. This fact is a simple
generalization of results of D. McDuff [11] who proved that when M is of type II i then
"M is isomorphic to M ® R" is equivalent to the ^wz-commutativity of the algebra of
central sequences. Moreover we shall see that as soon as M is isomorphic to M (g) R
we have

8(CfM)=(8(IntM))',

where the prime indicates the commutant. (More explicitely a 9 e Aut M is centrally
trivial iff s (9) commutes with any s (a), a e Int M.)

The basis of the proof of theorem 1 is to use for each ultrafilter (free on N), say co, the
functor M —> M^ defined in [5] from the category of von Neumann algebras in the cate-
gory of finite von Neumann algebras. For each co and 9 e Aut M one shows that
Po (9J = Pa (9) an(! then one applies a generalization of the tower theorem of Rokhlin
(see 1.2.5). The next theorem studies the outer conjugacy problem for the approximately
inner automorphisms, i. e., those which belong to the closure Int M of Int M in Aut M
with the same topology as above. Observe also that for 9 e Int M, pa (9) is the period
of e (9) in e (Int M)/Center e (Int M).

THEOREM 2. — Let M be a factor with separable predual, isomorphic to M 0 R, take
9i, 92 e Int M.
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AUTOMORPHISMS OF FACTORS 385

V Pa (9i) = Pa (Qi) = 0 there is a a e Int M such that

8(62) =6(061 a"1).

(In particular 62 is outer conjugate to 9i).
VPa (9j) > 0, A, (9i) == ̂  (62) ^zrf ^a(Qj) = 1 ̂  82 is conjugate to 9i.
The second part of the theorem is an easy adaptation of our previous argument in [8]

and we shall omit it here.

COROLLARY 3. — Two automorphisms a, P e Aut R are outer conjugate iffpo (a) = RQ (?)
and Y (a) = y (P).

Proof. - If A) ( a )>0 use [8] (th. 1.5). Otherwise by [8], Lemma 3.4,
Pa (°0 = A» (P) == 0 and theorem 2 applies, as Int R = Aut R.

COROLLARY 4. — The group Out R is a simple group with countably many conjugacy
classes.

Proof. - By corollary 3 the conjugacy classes of Out R are parametrized by couples
(P^ Y)» P e N, y e C, V = 1. Choose for each p, y, s^ as denned in [8] if p ^ 0 and SQ
if p = 0. We have to show that a normal subgroup G of Aut R, containing Int R and
an outer automorphism, is equal to Aut R. It is enough to show that for any (p, y),
(?', Y) as above there is, i f ^ ^ l a n equality a = a^ . . . a,,, with a, of the form Oy ^y a~1

for ally = 1, . . ., w and a outer conjugate to ̂ . If p ^ 0, using the construction [7]
part IV we can find an automorphism P of R such that s^ P s^p P~1 has outer period 0. So
we just have to treat the case p = 0. As, for any countable group D, there is an action,
by outer automorphisms, of D on R we easily get a product a = SQ a SQ a~1 outer conjugate
to s^.. But by construction s^ is a product of an automorphism conjugate to s1. by
an automorphism conjugate to an ^, q = Order y'.

Q. E. D.

LEMMA 5. - Ct (Ro, i) = Int (RQ, i), where Ro, i is the tensor product ofRby a type 1^
factor F^.

Proof. — Let 9 e Ct (Ro, i). Then by theorem 1 we have that 9 0$) IR is outer conjugate
to 6. Let 6 'eAutRo, i , £(9') = s (9), such that R^ contains a factor of type 1̂
(use [7], lemma 3.11). It follows that 9 ® lp^ is outer conjugate to 9 and that 9 00 1̂  ^
is in Ct (Ro,i ® Ro.i)' L^ s be the symmetry : s (x 0 y) == y ® x, on Ro,i. One
checks that s e Int (Ro, i ® Ro, i) and hence that s (s) commutes with s (9 ® 1^ ^). Then
9 ® 9~1 is inner and so is 9.

Q. E. D.
Let M be a factor of type 11̂  and 9 e Aut M then by mod 9 we mean the scalar K e R^

by which 9 multiplies an arbitrary faithful normal semi-finite trace on M.

COROLLARY 6. — Let RQ,I be the tensor product of R by a factor of type 1 .̂ Then
there is, up to conjugacy, only one automorphism 9^ o/Ro.i with mod 9^ = ^ 7^ 1.

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



386 A. CONNES

Proof. - Put Ro,i == R ® F^,. Let T| be the map a — ^ a ® ! ? ^ of Out R in
Out Ro.i. By [7], lemma 3.11, this map is an isomorphism of Out R onto

OutiRo,i = {9e0ut Ro,i, mod 6=1}.

It follows easily that Outi Ro, i = £ (Int Ro, i), where e is the canonical quotient map. Let
^ be the set of outer conjugacy classes of aperiodic automorphisms of Ro,i. As
R O . I ® R O , I ls isomorphic to Ro,i we have a commutative law of composition
a. P = class of a ® P, which makes SS into a group for the following reasons (a) (Class
SQ ® l).a = a for any a e ̂  (because by lemma 5, the asymptotic period of any element
of the class a, is equal to 0, so that theorem 1 applies); (b) a.a~1 = class (SQ ® 1) for
any a e S8. [To see this last fact, note that mod (a ® a"1) = 1 so that corollary 3 applies
to show that a (g) a"1 is outer conjugate to SQ ® 1]. At the same time we have shown
that the kernel of ^ ̂  R* is trivial, so that as the fundamental group of R is equal
to R*. ([12]) we have shown that ^ m0-^ R*. is an isomorphism.

This shows the uniqueness of 9^ modulo outer conjugacy. However using [6], III,
we get back to ordinary conjugacy.

Q. E. D.

It follows that all factors of type III^ (*) M for which the associated factor of type 11̂
is Ro,i are isomorphic to R^, the Powers factors. (Apply [4] theorem 4.4.1).

For each integer p e N the unique automorphism of Ro, i with module equal to p can
be described as a/?-shift in the following way. Let (\,,j)/=i, ..., p,vez be an eigenvalue
list such that the corresponding infinite tensor product of the/? x p matrix algebras (My , \)
satisfy:

® (My , \) is a factor type II i;
v^O

® (My, \J is a factor of type 1 .̂
v<0

Then ® (My, Xy) is isomorphic to Ro,i and the shift has module p so that by corol-
veZ

lary 7 it is conjugate to Qp.
It also follows from corollary 7 and the existence, proven by M. Takesaki, of a one

parameter group (Q^\ep+ °f automorphisms of Ro,i with mod 9^ = ^ for all ^, that
each of the above shifts can be imbedded in a flow.

COROLLARY 8. — An automorphism a e A u t R o ^ i is unimodular if and only if it is a
commutator: a = Pa?"1 o-"1 of elements o/Aut Ro,i.

Proof. — Assume mod a = 1, then for any X -^ 1, mod oc9^ == K so by 7 we have a a
th a9^ = <jQ^ <j~1.with a9^ = <jQ^ o 1

Q. E. D.
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AUTOMORPHISMS OF FACTORS 387

I. Preliminaries

I.I . ASYMPTOTIC CENTRALIZER OF FACTORS. - Let M be a von Neumann algebra and
co a free ultrafilter on N—As in [5] 2.2, a centralizing sequence (^,)neN °^ elements of M
(resp. an (o— centralizing sequence) is an element of the C* algebra /°° (N, M) such that
|( [;€„, y] [ 1 — ^ 0 when n —> oo (resp. n —> CD), V ̂  e M^. Let us recall a result of [5].

PROPOSITION I . I . I . — For M aw^ 0) fl5' above, the (^-centralizing sequences form a C*
subalgebra of /°° (N, M)—The set ^\ of (^-centralizing sequences (^)neN min ^ ""̂  ^*

n-^(o

strongly is a two sided ideal of this C* subalgebra. The quotient C* algebra M^ ^ a
yzm^ vow Neumann algebra on which each faithful normal state (p of M defines a faithful
normal trace, associating to each (^-centralizing sequence (^n)ngN? tne scalar Lim (p (^).

n-»(o

We say that two ©-centralizing sequences (^n)neN ^d O^neN are equivalent when
•^n ~ ^n tends to O* strongly when n tends to co. If (Xn)neN ls ©-centralizing and (^n)ngN
is a bounded sequence such that x^—Yn —> O* strongly then (yn)ne^ ls co-centralizing. An

n->a»

element x of M^ is a class of equivalence of co-centralizing sequences (x^eN»e2ic^ of them
being called a representing sequence for x. If (^)ngN» O^neN represent x, y e M^ then
^n+Jn? ;c^? -^n^n represent respectively x+y, x*, xy. An x e M^ has norm less than 1 if
and only if it has a representing sequence (x^eN wlt!1 || ^n || ^ 1 f01" ^17Z e N.

PROPOSITION 1.1.2. — Let M be a countably decomposable factor, and co a free ultra-
filter on N.

(a) For each x e M^ , the weak limit ofx^ when n —> co: T^ (.x) ̂  aw element of the center C
o/ M, which does not depend on the choice of the representing sequence of x.

(b) The map x e M^ —> Ty, (x) is a faithful normal trace on M^ and for any (p e M^, any
representing sequence (Xn)ne^ ofx e M^ ow^ has (p (x,,) —^ (p (1) T^ (x).

n-»<o

Proof. — (a) The unit ball of M is weakly compact so that x^ —> L where L e M. As
n-*co

uXn u*—Xn —> 0 strongly for any unitary ueM ([5], prop. 2.8), (a) follows easily.
n-^o

(b) Let (p be any linear normal functional on M, then one has (p (^) —> (p (r^ (^)) for
n-^a

any representing sequence (^neN of x e M^ , just by definition of the weak topology. So
taking (p faithful and normal state and applying proposition I . I . I completes the proof.

Q. E. D.

PROPOSITION 1.1.3. — Let M be a factor with separable predual and o) a free ultrafilter
on N.

(a) Any projection e e M^ can be represented by a sequence (e^ney of projections o/M.

(b) Let (^n)neN anc^ (fn)nev be (^-centralizing sequences of projections e^^ fn ofM repre-
senting e, feM^. Any partial isometry ue M^, u* u = e, uu* =f has a representing
sequence of partial isometrics (M^^N mtn u! ^n = ^n » ^n M,* = fn-

ANNALES SCIENTIFIQUES DE I/ECOLE NOBMALE SUPERIEUBE



388 A. CONNES

(c) Any partition of unity CF/)^=I, . . . ,n ^ M^ c^ 6^ represented by a sequence of parti-
tions of unity, (Fy^). If the Pj are pairmse equivalent one can choose the Fy^ pairmse
equivalent for each n.

(d) Any system ofp xp matrix units in M^ can be represented by a sequence of systems
of p x p matrix units in M.

LEMMA 1.1.4. — Let M be a countably decomposable von Neumann algebra in a space Jf
and ^ e Jf. Let e, f be projections belonging to M.

(a) Let fe = w p be the polar decomposition offe then:

||^-/)^||^3e, ||(w-^[|^4e, ||(^*-/)^[ ^ 4e, \\(w^e)^ |[ ^ 3e,

where s = || (e— f) ̂  |[.

(b) If e ^ /(M), there exists a partial isometry u e M, such that

u^u^e, uu^=f, ||(u-/m|^6||(.-/)S;||, ||(u-/)^|| ̂  7||(.-/)^||.

.Pnw/ - 00 We have p2 = 6?/6? ^ 6?. Also ||/(e- /) ^ || ̂  e hence || (fe-e) ̂  || ^ 2 e
and (| (p2-^) ^ || ^ 2 e. As p2 ^ p ^ ^, we have:

IKp-^II^IKp^^ll^e and ||(wp-we)^|| ̂  2e.

As w 6? = w, this gives || (fe-w) ̂  || ^ 2 e and hence || (f-w) ^ |( ^ 3 e.
The adjoint of fe is ef = w* (w p M;*), which shows exchanging ^ and /, that

|| (w*-e) ̂  || ^ 3 e and ends the proof of (a).
(b) Let c be a central projection such that (1 —c) e is properly infinite and ce is finite,

put 6?i = c6?, 6?2 == (1 -c) e, /i = c/, /2 = (1 -c)/. We have e^ - /i and ^ ~ /2- Let
T| > 0. Choose projections e\ ̂  e^ f^ ^/^ such that e^-e\ and/2-/21 are properly
infinite with the same central support as e^ while

IK^-^^II^TI, IK^-^SII^TI.
Put e1 = e^+e^ f1 =/i+/21 an(i ^t E = Support f1 e1, F = Support 6?1/1. We
have E ^ ^, F ̂ /1 and ^1/1 ̂  ^ E so that with s = || (e-f) ̂  ||,

IK^-E)^) ^ ||(^-,V^i)^|| ̂  2||(.1-/1)^|| ̂  2e+4ii

and with/1 e1 = w p as above, we have w* w = E, ww* = F and

||(w-/l)^||^3||(el-/l)S||, IKw*--/1)!!^!!^/1)^.

In the same way we get/1 elfl ^ F and || (/i -F) ^ || ^ 2 s+4 ^. The projections
ei-cE and /i-cF are equivalent because cE ~ cF and e^ -/i. The projections
^z-O-^E and/2-(l-c)F dominate respectively ^2-^ 3Lnd fi-f^ and hence are
properly infinite with same central support, so they are equivalent. It follows that

4® S^RIE —— TOME 8 —— 1975 —— ?3



AUTOMORPHISMS OF FACTORS 389

e—E ^/—F, let w e M, w* w = ^—E, ww* =/—F. Then M = w+w satisfies M* M = ^,
uu* == f and

||z^|| = | |ww*w^| | ^||0-E)^|| ^2£+5ii ,

||w^|| = Ipww^H ^ ||(/-F)^|| ̂  2S+5T1,

|[(w-/)^|| ^3(£+2Ti)+Ti=3e+7Ti,

| |(^*-/)^| |^4(8+2ii)+r|=4e+9Ti.

Which taking T| small enough gives the conclusion.
Q. E. D.

LEMMA 1.1.5. — Let e e ]0, 1 [, M be a von Neumann algebra, (p a state on M and p e M,
0 ̂  p ^ 1 ^McA ^/^ |( p 2 — ? |L ^ s. Let e be the spectral projection of p for the interval
[1-s172, 1] then:

||p^||^2e1/2, Hp1/2-^^1/2

Proof. - As in [10] (p. 278-279) one has (1 - p)2 (1 - e) ^ 8 (1 - e) and (p (p2 (1 - p)2 ^ e2

so that cp (p2 (1 —e)) ^ s. As [| p e—e \\ ̂  s172 we get

p-.ll^llpO-^+llpe-.ll^^2.
Also we have

IcpCp-p^i-^l^ilp-p2!!^,
hence || p172 (l-e) [|^ ^ 2 8 and as || p172 e-e \\ ̂  s172 we get the second inequality.

Q. E. D.

Proof of proposition 1.1.3. — (a) We have || e \\ = 1, so let (^)»eN ̂  a representing
sequence of e with || x^ \\ ̂  1 for all n. As p = x^ x^ e [0, 1] and represents e we have
|[ p ^ — p ^ l j —>0 when n—>w, for any faithful normal state cp on M. Fix (p and let
^ = || P^~Pn | | < p » ^» be the spectral projection of ?„ for [1 —e^2, 1]. Then by 1.1.5 one
has ^,—?„—>() *strongly when ^—»-(o so that (^)neN ls co-centralizing and represents e.

(b) Let (^n)n6N ? || ̂  || ^ 1 ̂ e a representing sequence for M. Asfue = M the sequence
fnXnen = Yn represents also u. Let (p be a faithful normal state on M, ?„ = ̂  y ^ ,
£n = || ri-Pn | |<p and ̂  the spectral projection of ?„ for [1-8^/2, 1]. As(p^N represents
the projection e = M* u we have, by 1.1.5, that G^ —> 0 and that (^)neN represents e. Let

n->a»

(;„ = k^ g^, where k^ p^72 is the polar decomposition of y^. By construction
|| ^ ' 2 Sn-Sn || ^ e^2 so A^ I I ̂ n^-^ [| ^ ^1/2 which, as (^eN represents e, shows
that (^)neN ls an co-centralizing sequence and represents ue == u.

By construction v^ is a partial isometry with v^ v^ ^ e^ Vn v! ^ /»» aIld ^n~v^ vn "~^ ^
n-»a»

fn—Vn^ ~~^ O* strongly because e = u* u,f = MM*. If e^—v^ v^ is equivalent to/,—^ i;*
n-*co

via a partial isometry ̂  we see that w^ —> O* strongly, so that u^ = ^n+^ is the desired
n-»G>

sequence of partial isometries. With (p as above we choose for each n e N projections

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



390 A. CONNES

^ , /; € M, ^ ^ ^ , /; ^ /„ such that ^ = ^ , /„ == /; when ^ is finite and that e^-e^
/„-/; are infinite,

11^-^11^1 /n , \\fn-fn\\^ 1/n

when ^ is infinite. Then we do the above construction with (^) and (/„) instead of (€„),
(/„) and we get always, as v^* ̂  ^ ^ , ̂  ^* ^ /; that e^-v^ v^ is equivalent to/^-r^ !;„*.

Q. E. D.

(c) The first part of (c) is easily proven by induction on the number of elements of the
partition, using lemma 1.1.5.

If M is finite and the ¥j are pairwise equivalent, we get lim. T (F, „) = 1/p, where T
n-*® '

is the trace on M. So one can adjust the F^ „ so that T (F^ „) = 1/p for all n. If M is
infinite, for each n there is an F^ „ which is infinite and hence, with (p a faithful normal
state on M, we can f ind/?—l pairwise orthogonal subprojections/^ „ ofF^,,, such that
each /^ „ is infinite and ^ <p (/^^ „) < 1/n. Distributing those /^ „ to the Fy^ n J ^ J n w®

fc '
replace the partition (Pj,n)j=i, ...,p by a partition (Fy.n)y=i, ...,p satisfying the required
conditions.

(d) Let (^»j) i , j=i , . . . ,p be a system of matrix units on M^. By (c) let (Fj,n)j=i,. . . ,p
be a sequence of partitions of unity in equivalent projections of M, with (Fy^ n)neN repre-
senting ejj. By (&) let for j = 1, .... p-1, (^ ̂ g^ be a sequence of partial isometrics
of M representing ^-+i, j and such that for all n andy:

utnuJ\n = F^, M,^^*, = F,+î .

Then for each n the (^j, n)j=i.. . . , p-i generate a system of matrix units e^ such that
^•+1, y = uj. n an(! it is the desired sequence of systems of matrix units.

Q. E. D.

1.2. NON COMMUTATIVE ROKHLIN'S THEOREM. — We first remind the reader that given
two projections 6?,/in a Hilbert space ̂  they generate a von Neumann algebra N of type I,
in fact, more precisely:

1. a = e A/+(l-6?) A/+^ A (l-f)+(l-e) A (I-/) is the largest projection of
the center C of N such that N^ is abelian.

2. Ni_a is a von Neumann algebra of type la.
3. e and / are abelian projections of N.
We put s(e,f) = | e-f\ and c(e,f) = | e V/-^~/| = s(e V/-(?,/). We have

0 ^ s(e, f) ̂  1 and ^(^,/)2+c(^ /)2 = e V/. Both s(e,f) and cQ?,/) belong
to the center C of N. We have

c(e,fYe == (eVf-e-f)^ = e+e+fe-2e-2fe-}-fe^efe = ̂ .

As the central support of ^ is larger than the support of c (e, /) we get.

4® S^RIE —— TOME 8 —— 1975 —— ?3



AUTOMORPHISMS OF FACTORS 391

4. ||^,/) || =|| ./||, ||^/)||=||.-/||.
Let E == e jf, F = /jf and

E,=KeE, ||S||=1}, F ,={^F, | |Ti | |= l} .

5. ||e/||= sup «^TI>|.
^6Ei, i ieFi

Let now M be a von Neumann algebra and 9 an automorphism of M. As in [4] (prop.
1.1.5, p 161) we let p (9) be the largest projection e e M, 9 (e) = e such that the reduced
automorphism 9*' is inner.

We say that 9 is properly outer when p (9) = 0.

THEOREM 1.2.1. — Let M be a countably decomposable von Neumann algebra and
9 e Aut M. Then 9 is properly outer if and only if for any non zero projection e e M and
any e > 0 there exists a non zero projection f^ e such that:

11/ecoll^ e.

When M is abelian, M = L°° (X, p) and 9 is the transpose of the transformation T of X,
theorem 1.2.1 translates to (M, 9) the existence, for each subset E of X, n(E) > 0, of
a subset F of E, p (F) > 0 such that TF n F = 0. The non commutative case relies on
the following lemmas :

LEMMA 1.2.2. — Let M and 9 e Aut M be as in 1.2.1, Let Sp 9 be the spectrum in the
sense of [3], [4] of the representation n -^ Q" of Z on M. Then if -1 e Sp 9 there exists
for each e > 0 a non zero projection e e M such that \\ e 9 (.) (| ^ e.

Proof. - We can assume that M acts in a Hilbert space ^f and that 9 (x) = V x V*
for all xeM and some unitary V in ^ (Jf). Let xe M, || x || = 1 be such that
11 9 (x) + x [ [ ^ e/2 = 8. (We use the hypothesis -1 e Sp 9 together with [4] 2.3.5.) Let
x == a^-ib, a = a*, b = A*. Then

||9(^)+^||^8, ||9W+fc||^8.

As 1 ̂  j | a l j + 1 1 b || we can assume that \\a\\^ 1/2, so that by a suitable choice of
a == ± 1 we see that p = a a/|| a \\ satisfies : p = p*, [[ 9 (p) + p || ̂  2 8,1 is in the spectrum
of p and || p |[ = 1.

Let e be the spectral projection of p corresponding to the interval [1-8, 1]. We know
that . ^ 0, we now show that [| . 9 (.) |[ ^ e. Let E = e^f, E^ = { ^ e E, || ^ || = 1 }.
For^eEiWehavejIp^H ^ 8. LetF == 9(e)^f = V ^ V * jf == VE.F^ =VEi. For
11 = V^ 'eFi we get:

||e(p)n-ii|| = ||vpv^v^v^|| = ||p '̂ || ̂  8.
||pi1+Ti||^||p+9(p)||.||Ti||+i|Ti-9(p)Ti||^38.
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So for ^eEi , r|eFi we get:

|<^T1>-<P^11>|^| |(p- l)^| . | |Tl | |^8,

| < ^ P T 1 > + < ^ T 1 > | < | | ^ | | . | | P T 1 + 1 1 | | ^ 3 5 .

So that | < ^, n > [ ^ 2 5 which, using 5., shows that || e 9 (e) \\ ̂  s.
Q. E. D.

LEMMA 1.2.3. — Let M and 9 e Aut M be given. If 9 ̂  Int M r/z^ for any £ > 0
^r^ ^^^ a projection fe M ^c/z that ||/9 (/ ) || ^ s wzrf / ̂  0.

Proof. — We can assume that 9 (x) = x for all x in the center C of M. For each n ^ 1
let ^ be the largest projection of C such that all non zero subprojections d of dn , d e C
satisfy: (9^ = Ad M for some unitary ueM^, ^d (u) = M occurs for q=n but no
q e { 1, . . . , n— 1 }. If dn + 0 for some n > 1 we can assume that this d^ is 1. Then
let v be an nth root of u in M9, so that 9 = Ad u.a, where a" = 1. Choosing a spectral
projection e ^ 0 of v such that, for some X e T, || ^y—^ e [| ^ s/4, we see that the norm
distance between 96 and a6 e Aut M^ is smaller than e/2. So we can assume that 9" = 1. By
construction of d^ we know that F (9) = { n Z }1, where F is as defined in [4] and [6]
(3.3.3). In fact, if^, = 1, with 9" = Ad M, let x = ̂  a^ (J^ be an element ofW* (9, M)
and let us assume that x is in the center of W* (9, M). Then each a^ belongs to M9 and
satisfies a^ 9"1 (y) = y a ^ , for y e M. It follows easily that the center of W* (9, M) is
generated by the center of M (it is fixed by 9) and M* (J^. By [6], theorem 3.3.2, we
get r (9) = { n Z }1. If 9" = 1 we see that 9 is minimal periodic and an easy adaptation
of [8] (2.6 a) shows the existence of a unitary X e M, X" = 1, 9 (X) = X X, X = exp(f27i/n).
A suitable spectral projection / + 0, of X will hence satisfy 9 (/)/= 0. Now assume
dn = 0 for n ^ 1 (9 is not inner). Then the center of W* (9, M) is equal to the center
of M and by [6] theorem 3.3.2 we have F (9) = T, Sp 9 = T so that lemma 2 applies.

Q.E.D.

LEMMA 1.2.4. — Let e, f be projections in a von Neumann algebra M and a > 0.
(a) Assume that for any non zero projections e\f eM,^' ^ e^f ^fonehas\\ e'f\\ ̂  a,

I I ^ / ' H ^oc, then c(ej) ̂  ^(e V/).
(b) If the support ofc (e,f) is e V /, then the partial isometry u of the polar decomposition

of e V /—(^+/ ) satisfies:

u = M*, u2=eVf, ueu*=f, ufu* = e.

Proof. — (a) We can assume that M is generated by e and/. Let then C be the center
of M. Let ~e be the central support of e. If c (e,f) is not larger than a e, there exists
a P > 0, P < a and a non zero projection deC such that dc(e,f) ^ ^ de ^ 0. We
have

de^Q, de^e,

c(deJ)=\de\/f^de^f[=d\eVf-e^f\^l^d)\f^f\=dc(eJ)^^de

which contradicts \\def\\ ̂  a. Soc(6?,/) ^ ae, c(e,f) ̂  a/and hence we get (a).
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(&) The module of e V/-(6?+/) is c(e,f) so u •= u*, u2 = e \/f are clear, ueu*
is the projection which is the support of eu*, hence of e(eN /-(^+/)) = -<?/. But
^/ = /c (e, f)2 has support /.

Q. E. D.
Proof of theorem 1.2.1. - Assume first that /? (9) ^ 0. Say that 9 = Ad u, u unitary

in M. Let e be a spectral projection of u, e + 0,11 u e - \ e \ \ ̂  1/4 for some K e T. Then
the norm distance in Aut M6 between Ad ue == 96 and 1 is less than 1/2 so that for any
projection/^ e one has || 9(/)-/|[ ^ 1/2 and hence || 9(/)/|| ^ 1/2 i f /^ 0.

Assume now that p (9) = 0 and let e e M be a non zero projection. Let
a = Inf |[/9(/) [ I (where/varies among projections of M).

f^e,f^0

We assume that a > 0 and derive a contradiction. Let e > 0 such that (a+1) e < a,
and /^ e, / ^ O such that ||/9 (/) || ^ oc+e. For any g^ f , g ^ O we have
||^9 (g) || ^ a hence ||/9 (g) [ [ ^ a and || g 9 (/) [ [ ^ a. So by lemma 4 (a) we get
c(/, 9(/)) ^ a ( /V 9(/)). As ||/9(/) [| ^ a+e it follows that

a(/V 9(/)) ̂  c(/, 9(/)) ̂  (a+e)/V 9(/).

Let M be the partial isometry of the polar decomposition of /V 9( / )—/—9( / ) , we
have by 4 (&):

u = M*, u2 =/V 9(/), M/M* = 9(/), uQ(f)u* =/
and

||au-Mc(/, 9(/))|| ̂  ||a(/V 9(/))-c(/, 9(/))|| ̂  e

||o^-(/V9(/)-/-9(/))||^8.

The automorphism 9' of My such that 9' (x) = u 9 (.x-) M*, is outer because/? (9) = 0. So
by lemma 3, there exists a projection g ^ 0, g ^ /such that [| g 9' (g) || ^ e. We have

and hence:
||^ete)||=||^e(g)u*||^8

||g(/V9(/)-/-9(/))9(g)||<ae+e

But g(fV Q(f))Q(g)-gfQ(g)-gQ(f)Q(g)== - g Q ( g ) because g^f, and so
||g9te)|| ^ a e + e < a .

Q. E. D.

By definition an automorphism 9 of a von Neumann algebra M is aperiodic iff all its
powers 9", n ^ 0 are properly outer. We now prove the non commutative analogue of
the very useful tower theorem of Rokhlin.

THEOREM 1.2.5. — Let N be a finite von Neumann algebra, T a faithful normal trace
on N, T (1) = 1, and 9 an aperiodic automorphism o/N which preserves T.

For any integer n and any e > 0, there exists a partition of unity (F^)y^ „ in N such
that

|| 9(F,)-F, ||^e, .. , ||9(F,)-F,^ H,^ e, .. , ||9(F^)-F, ||, ^e.
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As usual we used the notation \\x^ = t ( x * x)112 for ;ceN. We first need some
technical lemmas:

LEMMA 1.2.6. — Let M be von Neumann algebra, n e N and e > 0, such that n ! e < 1.
Let (fj)j^^^ ^ „ be a family of n projections ofM such that \\fjfk || ̂  ^for allj + k. Then
there is a family of n pairwise orthogonal projections ej ^ fj such that || Cj— fj \\ ^ n\ e

for allj = 1, ..., n and \f e, = V/,.i i
Proof.—Let e,f be projections in M such that \\ef\\ < 1 then [|c(^,/)(| < 1 so

that P = e \/ f — e is equivalent to / and one has

||F-/||=||s(F,/)||=||,(.V/-.,/)||=||./||.

Suppose now that we have proven the lemma for n — 1 projections and take n projections
(./})^=i. ^ with \\fjfk || ^ s»7 + k, by our induction hypothesis we get n— 1 projections
^ i ? . . . ^ » - i » pairwise orthogonal, and such that ej ^ fp [| Cj—fj [| ̂  (w—l)!e. So
|| ̂ 7n-/,/n 11^ ("-l)!e for j = 1, ...,^-1. Hence

| |^| |^(n-l)(n-l)!e+(n-l)e^n!£,

where e = ^i+ . . . +^-i. As w! e < 1, the above argument shows that e V fn —e is a
projection, equivalent to /,, orthogonal to all the e'j s and such that || e^— fn \\ ̂  n\ e
and e V ^ = e V/,.

Q. F. D.

LEMMA 1.2.7. — Z^ N and 9 &^ ^ in proposition 1.2.1 ^/zrf assume that 6 («v) = ;c,
;c e Center o/N. Then for any n e N, w > 1, o^ 8 > 0, ̂ /^ ^x^r^ a family (/,)j=i. ..., n
o/ w TZOTZ z^ro pairwise orthogonal projections of N a/z^ a unitary v e N ^McA ^ar:

||t;-l||^8T(£/,), ^9(/y)^=/y+i, J = l , . . . , n

[where [| ̂  |[i = T ( | ^ | ) for any x e N, and f^^ =/J.

Proo/. - Put 8' == 8/12(^+1), choose m = np so large that Im'112 ^ 872 and then
choose 8 > 0 such that e < l/(w!) and 2mmle ^ 872.

Choose, using the aperiodicity of 9, projections E^, E^, ..., E^ such that £„ + 0,
£„ ^ ... ^ EI and that

[[e^E^H^e, j = l , . . . ,m.
As E^ ^ Ej we have:

lle^EJEjI^s, j = l . . . . , m .

Put ^ == E^. Then we have, for any i < j, i,je {1, ..., m ] that

\\Qi(e)^(e)\\^\\eQ^(e)\\<^
m

Let E ==\/ Qj (e). As e < I/(ml) we can apply lemma 1.2.2 in N^. It gives a family
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of m pairwise orthogonal projections (^= !....,„ with ^ - e7^), y = 1, . . . , w,
ej ^ E,./ = 1, . . . , m and

Ije7 00-^H ^ m ! e ^ 874m.

m m

Also we have ^ T(e,)T(E), because ^ ^ = E.
j'=i j=i

Let F = E V 9 (E) = E V 9^ 00. Anyway T (E) ^ T (F) ^ 2 T (E). Let Q = Np.
For any j = 1, . . . , m one has .̂ ^ E hence 9 ( ,̂) ^ 9 (E) ^ F, so that 9 (ej) e Np.

Let T' = (I/T (F)) T restricted to Np. So T' is a trace on Q whose value on the unit F
ofQ is equal to 1.

For q e [1, + oo[ let, for any x e Q, || x ||^ = (r' (| x j4))^ == T (F)-1^ || ̂  ||,. Note
also that the C* norm 11 x 11 of any x e Q is the same as its C* norm as an element of N. Put

fi = ^ i + ^ n + i + - • • +^(p-i)+i,

fl = ^2+^n+2+ • • • +^n(p-l)+2» • • • , fn = ^n+^+,,4- . . . + ̂ ,

where m == np as above.
n

We have ^/^ = E, and f^ 9 (/^) belong to Q for all k. We want to show that

|| 9 (A)-A/i ||̂  8' for all k= 1, . . . ,n and/^ =/i.
For j = 1, . . . , w-1 we have

||9(^)-^J|^||9(^)-9J+l^)||+||97+l(^)-^J|^872m.

Hence||90?,)-6?,+i||^872w. Then for k = 1, . . . , n-1 weget|| 9 (A)-A+i||^ 8'.
As 9 leaves the center of N fixed pointwise, one has 9 (e) ^ e for any projection e e N. In

particular the ^ are pairwise equivalent in Q, T'(^.) ^ 1/m, and T' (9 (ej)) ^ 1/m. So
||9(^)||^m- l/2,| |^||^w- l/2andweget||9a)-/J|^^872m+2w- l/2^8 /.

The projection 9 (/^) e Q is equivalent to /^ and hence to f^ i in Q. By lemma 1.1.4
we get partial isometries Vi, . . . , V^, . . . ,¥„ in Q with V^ V^ = 9 (/^, V^ V̂ * = /^i
and || Vk-fk+i \\2 ^ 6 8'. Let Vo e Q satisfy V^ Vo = F-9 (E), Vo V$ = F-E. We
have:
T' (F-E) ^ T' (9 (<?„.)) and hence

II VolM || 9(^)||^ 872.

Let V = Vo+Vi+ . . .+¥„ . It is by construction a unitary element of Q because
(F-9 (E))+9 ( / i )+. . .+ 9 ( / ^ ) = F and F- E + /^+ . . . +/^i = F. We have
||V-F||^ ^ 6(w+l)8 ' = 8/2 and also:

V9(A)V*=/^, f c = l , . . . , n .

put y = V+(l -F). It is a unitary element of N such that

| | r - l | | i==T( | r- l | )=T( |V-FD=T(F)T'( |V-F|)^T(F) | |V-F| |2 .
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/ n \

So || v-1 |[i ^ T(F)8/2 ̂  §T ^ /, . Finally, for all k,
v=i /

vQ^v* = (V+(1-F))9(A)(V*+(1-F)) = V9(A)V* =/,^.

Q.E.D.

Proo/ o/ theorem 1.2.5. - First assume that 9 (x) = x, for xeC. Fix w e N and
§ > 0. Then let ^ be the set whose elements r are couples ((Fy)^=^ ....„, V) where:

(a) (Fj)j=^^ ^ ^ n ls a family of n pairwise orthogonal, equivalent projections of N.
(6) V is a unitary in N with || V-1 ||i ^ § T (^ F,).
(c) V 9 (F,) V* = F,^, j = 1, .... ,z (with F^ = F^).

Now we define an ordering on ̂  by putting, for r, r ' e^ that r ^ r ' if and only if the
following are satisfied:

(1) F ,^F; ,7= 1, . . . , 7 t ;
(2) IIV-V'll^aT^F^F,)).

It is clear that ^ is an ordering.
We want to prove that ̂ , ^ is inductive.

Or any totally ordered subset ^ of ^ the map r-^r (^Fy) is an order isomorphism
of ^ on a subset of [0,1]. We just have to show that if (r^gp, ls an increasing
sequence of elements of ^, there exists an r e ̂  such that rj ^ r, / e N.

Let ̂  = ((Fp, VJ. Then we have, using 2, that

IIV.-V^JI^ST^F^-F}1)).
y

Moreover, using (1), there exists projections Fy, pairwise orthogonal, equivalent, such
that FJ* -> F .̂ when w ^ oo. We have ^ ||V^-V^+i |[i ^ §. This shows that V^

m

converges in the L1 norm to an operator V of norm L°° less than 1. We see that V is uni-
tary, because the product is bicontinuous for the L1 norm on the unit ball of N.

So V^ -. V strongly and [| V-V^ ||i ^ 5r (^ (F,-Fp) for all m e N.
It follows that r = ((Fy), V) satisfies conditions (a), (&), (c), where (&) and (c) are checked

by a continuity argument. Also one checks that r^ ^ r for all m e N. By Zorn's lemma,
there exists some maximal element r of ^. We assume that r = ((Fy), V) with V F • < 1
and we derive a contradiction.

Put E = 1 - ̂  F,, and let P = Ng. As (c) is fulfilled we have V 6 (E) V* = E and
7=1

hence we can consider the restriction 9' of V 9 (.) V* to P = Ng. As 9 is aperiodic so
is V9( . )V* , and hence so is its restriction to ^-[see definition of p (9)]— Hence
lemma 1.2.1 shows the existence o f ( /y )^^^ , a family of n equivalent pairwise ortho-
gonal projections of Ng and of v, unitary in Ng, such that v 9' (fj) y* =fj+1, / == 1, . . . , r,
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|| c-E ||i ^ §T' (^/,) + 0, where T' = I/T (E) T on N^. Put F;. = F,+/,, j == 1, . . . , n
and V = (i;+(l -E)) V. Condition (a) is clear, for r ' = ((F?, V). Moreover we have
that

|| t;+(l -E)-1 ]|, = T(E) || t;-E ||i ^ 5T(E)T' £/,) = 8T(1:/,)

and hence || V'-V ||i ^ §T (^/^). This shows that r7 satisfies (A) and (r, r') satisfies (1)
and (2). We also have

(i?+(l-E))F, = F,(i;+(l-E)) = F,, j = 1, 2, . . . , n
hence for ally:

r9(F,)V /*==F,^,V'e(/,)V /*=(t;4-l-E)9'(/,)(l;+l-E)*=/,^

so that r' also satisfies (c).
Thus we have shown that for any n e N, any 5 > 0, there is a partition

of unity (F^-)y = i ^ in N such that

|| 9(F,)-F,^ ||^21| 9(F,)-Ve(F,)V* ||^48, 7 = l , . . . , n .

The conclusion 1.2.1 follows hence, under the hypothesis that 6 fixes pointwise the center
CofN.

In the general case, let 9 = restriction of 6 to C. Let then (cj)j^ be a partition of
unity in C such that for all j ^ 1, 9(c,) = Cp ((P)7' = 1 and there is a partition
(^•)i=i,..., j of c] such that 9 (cl]) = ^+1, / == 1, . . . , 7. While for j = 0, 9°° is aperiodic.

Of course, to prove 1.2.1 we can assume that Cj = 1 for some j. The case 7 = 1
is already treated. The case 7 == 0 follows trivially from Rokhlin's theorem [13].
Assume 7 > 1. Put c1 = c\, / = 1, .. .,7, M = N^i and a = restriction of 97 to M.
[It makes sense because 97 (c1) = c1.] As 9 is aperiodic on N wesee that a is aperiodic
on M. Let n e N, n > 1 and T| > 0. As a fixes pointwise the center of M we get, from
the above discussion, a partition of unity (Gs)s=i,...,n in M with || a (G^—G^+i ̂  = T(,
s = 1, . . . , n. Put Hpj+q = 9^ (Gp\ for 0 < q ^ 7, 0 ^ p < n. Then the H^, m == 1, . . . , nj
form a partition of unity in N such that || 9 (H^)—H^+i \\^ ^ T|, m = 1, . . . , n—1.

put F, = H,+H^+ . . . +H^(y_i )+5 , then we see that they form a partition of unity
(F.)s=i.. . . ,ninN and that

||9(F,)-F^i||2^7^ s = l , . . . , n .
Q.E.D.

II. Factorization of automorphisms by automorphisms
of the hyperfinite factor of type II i

Let M be a von Neumann algebra. An automorphism 9 of M is called centrally
trivial when for any centralizing sequence (x^e^ one has:

9 (x^) — x^ -> O* strongly, when n -> oo.

The set Ct (M) of centrally trivial automorphisms is a normal subgroup of Aut M,
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DEFINITION 2.1.1. - Let M be a factor, Q an automorphism ofM, then we let p^ (6) be
the period of 9 modulo Ct M, in other words p^ (9) e N and for any n e Z one has 9" °e Ct M
iffn is a multiple ofp^ (9).

In particular/^, (9) = 0 means that no nontrivial power of 9 is centrally trivial.
Now let co be a free ultrafilter on N. If (x^ is an co-centralizing sequence in M, then

so is the sequence (9 (.x,)\^ Also the ideal J^ of proposition 1.1.1 is globally inva-
riant under this transformation. So there is a unique automorphism 9., of M^ such that
^ (^n)neN represents x e M^ then (9 (^))^ represents 9,, (x) e M^.

The map 9 -> 9^ is an homomorphism from Aut M to Aut M^, and in fact each co e P N\N
defines in this way a functor M -^ M^, 9 -^ 9^.

PROPOSITION 2.1.2. - Let M ̂  ^/flcror H^A separable predual, 9 ̂  automorphism of
M awrf co a/jw ultrafilter on N.

(9^CtM) o (9,^1) <^ (9, is properly outer).

Pnw/ - We just have to prove that if 9 ^ Ct M then 9,, is properly outer. The other
implications are easy.

By hypothesis, letting cp be a faithful normal state on M, there is a centralizing sequence
(•^(FN in M such that, for some 8 > 0

|(9(x,)-^[|^8 for all neN.

We have to show that the only a e M^ such that 9^ (x) a = ax for any x e M,, is a == 0.
Let (^)neN be a representing sequence for a and e2 = T^, (a* a). Let M act in ̂  with

< x ^ S > = <P (x) for all x e M. We shall assume that e > 0 and derive a contradic-
tion. We can take ̂  with || ̂  ^ |[ ^ e, for all n.

As any weak limit of (9 (^)-^)* (9 (A:J-^) is larger than 82 we can for each n find
an integer m = m (n) such that

IKe^J-^a^ll^ae, ||[x,,aJS||^1

^ n

||[^.^]||^1, 7 = l , . . . , n
n

where v|/i, . . . , \|/^, . . . is a preassigned norm dense sequence in M^. Then the sequence
(^neN? X^ = ̂ ^ is co-centralizing and the corresponding X e M ^ commutes with a,
while (9^ (X)-X) a ^ 0 which is a contradiction.

Q. E. D.

THEOREM 2.1.3. - Let M be a factor with separable predual, 9 an automorphism ofM
with p, (9) = 0 and co a free ultrafilter on N. Then 9^ ^ ar stable automorphism: for any u
unitary in M^ there is a unitary v e M such that

(v) == uv.
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LEMMA 2.1.4. - Let M, 9 and co be as in theorem 2.1.3. Then for any n e N, n > 1,
wzrf fl/iy countable subset O^gN o/M^ rA^r^ ^7'̂ j a? partition of unity (F^ == i, ...,„ ^ M^
^cA r/^r ^cA Ffc commutes with all xj and that 9^ (Fj^) = F^i, A- = 1, .. .,n, where
F^i = Fi.

Proo/. — By theorem 1.2.5. and proposition 2.1.2., we can for each 8 > 0 find a parti-
tion of unity (Fy)^^ _,,,in M^ such that (| 9^ (F,)-Fy.n [ja < 8 for y = 1, . . . , n, where
|[ [ (2 is the L2 norm corresponding to T^. Let (p be a faithful normal state on M, and
(^v)veN be a dense sequence in M^.

By induction on v 6 N we can construct a sequence of partitions of unity (F])j»i, ...,n
in M, such that for all v e N.

W ||[^,F}]||^ l / v , / = l , . . . , v , y = = 1 , . . . , ^ .
(&) [| [̂ , F}] |[$ ^ 1/v, A: == 1, . . . , vj = 1, . . . , n.
(0 | |9(Fp-F}^||^l/v,7=l,..,^.

Where C^gN is a representing sequence for x^. (To get (FJ)^=^ ^, apply the above
discussion with 28 < 1/v and get (Fy)^^ ^. Then by proposition 1.1.3 choose a
representing sequence (FJ%^N ^or ^e Fy, such that for each m, (Ppy^^^ is a parti-
tion of unity in M. Take then m such that (FJ1)^ = i ,....„ satisfies conditions (a), (b\ (c). Put
F}=F7).

Then by (a) (F^gN is for each j a centralizing sequence of projections of M. Let
(^j)j'^i,...,n be the corresponding partition of unity in M^. By(&) it commutes with all
^k, and by (c) we have 9^ (¥j) == F .̂+ ̂ j === 1, . . . , n.

Q E. D.

Proof of Theorem 2.1.3. — Let M be a unitary in M^. Let £ > 0 and take n e N such
that ln~112 ^ E. Let (Fy)^-=^ „ be a partition of unity in the relative commutant of
u and such that 9^ (F .̂) = F^.+i, y = 1, . . . , n. We have ^ (F .̂) = 1//2 for all y, so that
|| F, ||̂  8/2,7= 1 , . . . , ^ . Put

^o == F^, ^i = 9^"! (uuo), . . . , Vk+1 = 9^1 (u^), . . . , ^-1 = 9^1 (^^-2).

We have, by induction, Vj vj = vj Vj = F^-y, because assuming this true for / = k we get :

^+1^1 = O;1^^^*) = 9;l(MF„.,M'lt) = 9,1(F„_,)= F^(^I),

^ i ^+1 = e;1 (^* ̂ ) = 9, 1 (¥,.,) = F^(^ i).

So the Vk are normal partial isometries with pairwise orthogonal supports, their sum

V = ^ v^ is a unitary in M^ and we have:
o

n-l n-2

Q<o(V) = S U )̂ = 0<o(^o)+ E MI;, [because 9J^+i) = MC,],
k=0 fc=0

n-l n-2

u\= T.uvk= E M^+m^-i.
fc»0 Jk=«0
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As
11 Q^ (t;o) | [2 ^ e/2 and 11 uv,. , | [2 ^ e/2 (because 11 F, | ̂  < e/2)

we see that || 6^ (V)-uV j^ ^ s.
We now repeat the same procedure as in the above lemma. Let cpeM^, (p (1) = 1,

(p faithful, (^)^gN be a dense sequence in M^. Let (u^^ be a representing sequence
of unitaries for u. For each v e N, let V^ be a unitary in M^ such that
llQoO^)-^!^ ^ 1/2 v and let (Vp be a representing sequence of unitaries for \\
Then there is for each v a subset A^ of N whose closure in P N contains co, such that

W ||[^V}]||^ l /v ,^= l , . . . , v ,yeA, .
W ||e(Vp-^V}||^ l/v,7-eA,.
Choose the \ decreasing and with N n (Q A^) = 0, and define Vj = V}0^ where

v

7eA^(y)\Ay^+i determines v (7). By condition (a) and the fact that v (j) —> oo
when ^ -> o we see that (vj)j^ is an co-centralizing sequence. In the same way
condition (b) shows that [| 9 (vj)-Uj Vj ||̂  -> 0 when j -^ co so that the element of M^
represented by (vj)^^ satisfies 6^(u) = MI;.

Q. E. D.

2.2 FACTORIZATIONS OF M BY THE HYPERFINITE FACTOR OF TYPE II i. — In this Section
we extend results of McDuff [11] and Araki [2]. We apply them to the group of auto-
morphisms of factors. As always Aut M is gifted with the topology of pointwise norm
convergence in the predual M^ of M.

THEOREM 2.2.1. - Let M be a factor with separable predual then the following are
equivalent, (where co e P N/N).

(a) M is isomorphic to M ® R (R the hyperfinite 11^ factor).
(b) Int M/Int M is not abelian.
(c) IntM4: CtM.
(d) M^ is not abelian.
(e) M^ is a von Neumann algebra of type II^.

Proof. - (d)=>{e). Let cp e M^, cp (1) = 1. Choose co-centralizing sequences
(^n)neN. (^)neN such that || [x^, j^J [^ does not tend to 0 when n -> co, let
lim||[^, ^ ] | | ^ = 2 o c > 0 .
n -*• (o

Let/e M^ be a non zero projection. We just have to show that (MJy is not abelian. Let
P = (^C/))172 and (/n)«eN representing/as in proposition 1.1.3 (a) with cp (Q ^ P2

for all ^eN. Let (v|/v)veN ^e a dense sequence in M^. Then for each w e N there is
a k^ e N such that:

(1) 11[^^]||<1, 1|[^^]||<1, j = i , . - . , "
n n

(2) |j[/^,/^]||$^.
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(Because when k -> © one has | \_fn x^fn, fn Ykfn\ I2") [^5 J^] ^/n which converges
strongly to 0 because (x^e^ ^d (j^XeN are co-central in particular. One then uses
proposition 1.1.2 to compute

lim (p([ [̂ , y,] IVn) = (p(/n)TJ| [x, ̂  |2) ̂  (Roc)2).
fc-»(0

Let X (resp. Y) be represented by (x^\^ (resp. (y^n^) then [/X/,/Y/] ^ 0 which
gives the conclusion.

(e) => (a) let (^y)» y = 1 2 ^e a system of 2 x 2 matrix units in M^. Let (^)veN be a
representing sequence as in proposition 1.1.3 (d). For each v, (^y)i,^=i,2 ^ a system
of 2 x 2 matrix units in M. Moreover, for any \|/i, . . . , v)/^ e M^ and e > 0 we can
find v such that:

|| [^21] || <s, J = l , . . . , ^ .

But this shows that M has property L[^ °f Araki [2] and by [2], theorem 1.3, that M
is isomorphic to M ® R.

(a) => (b). We have to show that there are automorphisms of M ® R, say a, P, which
are approximately inner, while ocpoc"1 P~ 1 is not inner. Choosing a and ? of the form
IM ® ̂  IM ® Po shows that it is enough to do it for R which is easy.

(c) ==> (d). We assume that (d) is not true so that M^ is abelian. As M^ is separable
it follows that for any faithful normal state (p on M and s > 0 there are elements \|/i, . . . , \|/^
of M^ and a 5 > 0 such that:

(x, j;eM, ||x|| ̂  1 , |H| ̂  1, ||[x, ̂ ]|[ ^ 5, |[b, ̂ ,]|| ̂  5, Vj)

=^ (ll^^ll^^

Let 9 e Int M, we shall show that 6 e Ct M.

With (p, v|/y, 5, s as above, let

'T= {oceAut M, ]|\|^.a-\|^|| <5 for all j}.

For any a e Int M n V we have

(xeM,| |x| |^l, |[[x,^]| | ^5 ,7=1 , . . . , q ) => ||a(x)-x||^ e

(because a == Ad u and [| [M*, x~\ ||̂  ^ s).
So this is still true for any a e Int M n V. Now write 9 = a. Ad W with

a e i^. Choose \1/̂  i, . . . . \|/^ in M^ and 5' ^ 5 such that

(^M, | [^ [ [^ l , | | [v | / , , ^ [ | ^5 ' ,y=^+l , . . . , / • ) => |[(x(W^W*)-aOQ||^8.

(We use the fact that all centralizing sequences are central.)
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Then for any x e M, || x || ^ 1, [| [>, \|/,] || ^ 8', j = 1, ..., r one has

||9(x)-x||^||a(WxW*)-cx(x)|[,4-||a(x)-^ ||^2e.

This shows that 9 e Ct M.
Q. E. D.

(b) =» (c) Follows From:

LEMMA 2.2.2. — Let M be a von Neumann algebra with separable predual. Then for
any 6 e Ct M, any a e Int M, e (9) commutes with s (a).

Proof. — As 9 is centrally trivial, there is for any n e N a neighborhood i^n of 1 in
Aut M such that (u unitary in |M, Ad u e ̂ ) ==» |[ 9 (u)-u ||^-i ^ 2"" and
lie^^ll^-o-i^-".

Let (^n)neN be a decreasing basis of neighborhoods of a in AutM such
that ̂ ^-1 c: ̂ , and P e^ => |[ (p.p^-cp.a-1 |[ ^ 2-2". Let ^ be for each
w e N , a unitary in M such that Ad^e^,. We have 9a9~1 = lim Ad9(^) so we

n -»• oo
just have to prove that the sequence u^ 9 (^) converges * strongly to a unitary of M. Let
^=^.+1^ for all n eN, so that i^e^^-1 for all 71. We get then
|| 9 (^)-i^ 11^-1^2-" and hence

||e(^)^-l|LAdu.- l^2.2-n+2-w=3.2-n

because P = Ad u^ belongs to ̂ .
So

119(^)^^-^11^3.2-"
and

||e(^i)^+i-e(^)Mn||<p= 110(^)9(^)^^-9(^)^11^3.2-"
Also, using

and

one gets

||9(^i)-^i 11^ -1 .9 -1^2 - "

|(p.Ad9(M; l)-(p.9.a-1.9- l]|^2-M

11^,9(^0-^9(^)11^3.2-".

This shows that u^ 9 (u^) converges * strongly to a unitary X such that
AdX = a-1^.^-1.

Q. E. D.

Let M be a factor. We now compare modulo Int M some factorizations of M as a
tensor product M = M, ® R,, R, hyperfinite factor of type II i. We say for short that
a subfactor A of M factorizes M when the equality n (x ® y ) = xy, x e A, y e A' n M
defines an isomorphism of A ® A^ onto M. The factorizations described here are the
infinite ones. We shall deal later with the finite ones.
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PROPOSITION 2.2.3. — Let M be a factor with separable predual, A, B subfactors of M,
hyper finite of type II^, and facto rizing M. Then if A^( a^rf Bj^ or^ isomorphic to M, ^r^
is a a e Int M 5'McA ̂ ^ a (A) = B.

Proof. — Let us first reduce the problem to the construction of a triple (C, D, o) where
C c: A is a subfactor of A, factorizing A and isomorphic to A, where D has the same
relations with B and CT e Int M satisfies a (C) = D.

If such a triple is constructed, let R be a subfactor of A^, isomorphic to A, factorizing
A^. In M, R and A generate a subfactor that we can identify with R ® A because A
factorizes M. There is an automorphism of this subfactor which carries C on A. Extend
this automorphism to an a e Aut M such that a (x) = x, V x e R' n A' n M. As R ® A
factorizes M, this is possible and moreover a e Int M because any automorphism of R ® A
is approximately inner. In the same way one constructs a P e Int M such that P (D) = B,
the conclusion follows. To get C and D we shall start from a generating pairwise commu-
ting sequence ((^;)»,y=i,2)*6N O^P-./^) °^ matrix units in A (resp. B).

Let (v|^)/5N be a dense sequence in M^.

We build by induction a sequence (^v)veN °^ integers and (^^g^ °^ unitaries of M such
that, for all v, with v^ = u^ . . . . . u^, one has:

(a) MY commutes with/y, .. .,fy~1.
(b) i^;^=/?;,fc= l , . . . ,v .
(c) ||v|/,.Ad^-v|/,.Ad^;J1^2~v,

|| v|/,.Ad iv,\-v^.Ad v^ || ^ 2-\j = 1, ..., v.

Letting C (resp. D) be the subfactor of A generated by the e\] (resp. f^) and CT = lim
V-KX)

Ad v^ it is then clear that, by (c), a makes sense, and, by (b), that a (e^j) = /̂ .v for all
f ,y,vsothata(C) = D.

Assume n^ and u^ are constructed for k < v. Then let P be the commutant in M of
the yy, f , y = l , 2 , ^ = l , . . . , v - l . As ^.i^;^*., =/^ for k = 1, . . . , v-1, we
see that for n > n^ we have v^_ ^ e^j v^_ ^ e P and of course /^. e P. Let then co be a free
ultrafilter and (e^), (/^) be the systems of matrix units in P^ corresponding to the co-centra-
lizing sequences (^v-i ^?/^-i^eN? (/»})»»eN- Using a partial isometry ueP^ with
M* u = e^, uu* ==/n and 1.1.3 (b) we construct an co-centralizing sequence (W^gp^ of
unitaries of P such that

W^^-i^.^iW^ ==^. for all neN and ij = 1, 2.

It is then clear that for some n = n^ and u^ = W^ the conditions (a), (A), (c) are realised.
Q. E. D.

2.3. Proof of Theorem 1. — In this section we prove a more precise form of theorem
1 -the notations R, S p ^ p e N are as in the introduction.
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THEOREME 2.3.1. - Let M be a factor with separable predual, isomorphic to M ® R. Let
p e N and 9 e Aut M. Then the following conditions are equivalent:

(a) pa (9) = 0 modulo p.
(b) 9 ® Sp is outer conjugate to 9.

(c) For any (p e M^, ̂  8 > 0, there is a unitary P e M such that \\ P-1 [|^ < § ̂
that p9 = Ad P. 9 is conjugate to p9 ® ^p.

COROLLARY 2.3.2. - Let M &^ a factor with separable predual. If s (Int M) ^ w^
abelian, one has s (Ct M) = £ (Int M)7 (1).

Proo/. - We know by lemma 2.2.2 that in general s (Ct M) c= g (Int M)\ Moreover
by theorem 2.2.1 that M is isomorphic to M ® R. Let 9 e Aut M, paW ^ 1. We
have to show that there is an a e Int M with s (9) s (a) ^ £ (a) s (9). By theorem 2.3.1
we can assume that M is of the form N ® R and 9 = 9i ® Sp where p = p^ (9) ^ 1.
Then let (XQ e Aut R be such that Sp do Sp 1 o^ 1 is not inner as an automorphism of R. As
Sp is explicit (XQ is easy to construct. We have a = 1^ ® ao e Int M and 9a9~1 a~1 is
not inner.

Q. E. D.
We need some lemmas before starting the proof of 2.3.1.

LEMMA 2.3.3. — Let p > 1, X e T, Q be a von Neumann algebra of type II i and oc e Aut Q.
Assume that 1° a is stable (as in 2.1.3) or 2° o^ is properly outer/or 1 ̂  q < n and a" == 1,
V = 1. Then there is a system of matrix units (/^)jk,;=i,...,p in Q with a (/^) = ^k~l fki
for k , l == 1, . . . , /? .

PAW/. - Assume 1° and let (^)»,j=i,....p be matrix units in Q. Wehave^i = 1 where ^
is the canonical center valued trace on Q([ll], Th. 2, p. 249) hence (a {e^ = e\^
and there exists a partial isometry W, such that W* W == e^, WW* = a(^n). Put
V = ^ a (^.0 W 6?iy then a (x) = V .vV* for any element x of the subfactor K generated

p
by (^v)f,;=i,...,p. Let U = ^ ^ ^ then we have UV* a (e^) VU* = ^i-J .̂y

;,y = 1, . . . , p. Put M = UV*, and as a is stable take v, unitary in Q, such that u* a (v) = u.
We get (Ad v)~1 .a. Ad u = Ad (UV*).a and as a conjugate of a satisfies the conclusion
of 2.3.3, so does the automorphism a.

Assume now that for some n > 0, a" = 1 and a is properly outer for q = 1, . . . , n— 1.
Then the corresponding action q -^ ^ of Z/n on Q is stable ([6], 3.2.16), and the fixed
point subalgebra Q" is a von Neumann algebra of type Hi ([6], 3.2.15). So let
(^•)»,y=i, ...,p be a system of matrix units in Q". Put U = ̂ ^ e^ where ^ is as above.
Clearly Ad U.a satisfies the conclusion of 2.3.3, moreover (Ad U.a)" = 1 because Ad U
commutes with a and U" = 1. So Ad U. a is conjugate to a because Ad U.a defines an
action of Z/n on Q which is outer conjugate and hence conjugate to the stable action
defined by a. As above this ends the proof.

0 e is the quotient map Aut M —> Out M and the prime means the commutant in Out M.
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LEMMA 2.3.4. - Let M be a factor as in 2.3.1, and p an integer, 9 e Aut M, X e C,
| U = 1, ^a(9) = 1. TT^z for any \|/i . . . v[/g e M^ wzrf any faithful normal state (p e M^,
a/zy E > 0, ^r^ ^c^ a unitary P e M and a system ofpxp matrix units (^)i,j=i,...,p
in M satisfying the following conditions:

(a) HE^h^ j ] || < e, / = 1, ..^qandije{ 1, . . . , / ?} .
(6) (Ad P.9)(^,) = X1-^,, fje { 1, . . . , / ?} .
(c)| |P-l| |;<8.

Proof. — Let co be a free ultrafilter on N and put Q = M^. By Theorem 2.2.1, Q is
of type Hi. Let a = 6^ then either pa (6) == 0 and then by theorem 2.1.3 a is stable or
p^ (9) = n 1=- 0 and then by proposition 2.1.2, for each q e [\, .. . , n-1} one knows
that o^ is properly outer, that a" = 1 and that X" = 1 by hypothesis. Hence we can
apply 2.3.3 and get a system (/»j)ij^i,...,p of p x p matrix units in M^ such that
^(fi^^^fipiJ^^'-^PY

Let (prop. 1.1.3) (ffj\eN10e a system of representing sequences, where C/^gN represents
fij and for each k, (f^)i,j is a system ofpxp matrix units in M.

For each k, /^ is necessarily equivalent to 9 (/^) (because (6 (/^)) is also a system of
p x p matrix units) and, as O^C/ii) = /n we get (lemma 1.1.4) a sequence O^g^ °^ partial
isometries such that u^ u^ == /i\, ^ u^ = 9 (/i\) and that u^—f^ ——> 0 * strongly. Put

p
^ = Z ^"•^(/Ji) ^/f/- Then we see that the sequence (u^gN ^s ©-centralizing

^=1
and represents

S^U/.iVii/i--.
j

So we have shown that Vj, ——> 1 * strongly.

Also v^ is a unitary for all A: and

^e(^)t;,=/^?9(^)9(^)9(^u,^

And, as Mj* 9 (/^) ̂  = M^ u^ = /^i, one gets

v^^v^^'f^ V i , j e { l , ...,?}, VfeeN.

As each sequence (^)keN ^s co-centralizing, and as i^ ——^ 1 * strongly, one gets the conclu-
sion of 2.3.4 with P = ^.

Q. E. D.

For the next lemma we take the following notation, where M is a von Neumann algebra,
K a type !„ subfactor. For each \[/ e M^ we let v|//K' ® T^ be the element of M^, which
when M is identified with K' ® K (K' = relative commutant of K) is equal to the tensor
product of the restriction of \|/ to K' by the normalized trace TK of K.
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LEMMA 2.3.5. — LetM be a von Neumann algebra, (e^)^j^^^_^asystem of nxn matrix
units in M. Then for any v|/ e M^ one has \\ \)/-\)//K' ® TK (| ^ n2 Sup )| [^y, \|/] (|

U
w/^r^ K ̂  ̂  subfactor generated by the (e^), i,j== 1, . . . , n.

Proof. - Let e = Sup || |>y, v|/] ||. Let x e K', and i,je [1, ..., n ] , i ^ j\ We
i,J

have
|VK^,,)-V|/(^^)|^E||^||

and, as e^ xe^ = 0 we get

Also

so

|v|/(^,)|^e||x|| for i ^ j \

| ̂  (^^«) - ̂  (̂ 7) |=|^ (^^u ̂ () - ̂  (^-f ̂ ^iy) I ̂  e 1 1 x 1 1

n

|ni|/(^«)- ^ \|/(x^)|^ne||x||
j-i

and we get:

^ (x^ -^v l /Ml^e l lx l l for all f and xeK'.
M

Put ^ e M, || x || ^ 1, x = ^ Xij e^ with ^;y e K'. One has |[ x^ \\ ̂  1 and

(v|//K/®TK)(x)= l tvK^).
n j=i

(v|/-v|//K' ®TK)(X) = E ̂ ^^)+E(vl/(^,^)- ̂ (x^)).
*^y y n

So the above inequalities show that

|(v|/-\|//K/®TK)00| ̂ nCn-^e+ne^e.
Q. E. D.

LEMMA 2.3.6. — Let M be a von Neumann algebra, (n^\^ be a sequence of positive
integers (2), (K^\^a sequence of pairmse commuting subfactors of M mth Ky of type
l^for all v e N. Let (v|^)jeN oe a countable total subset of M^.

Assume that for allj e N one has:

E[|^,-V|/,/K:®TKJ|«».
v

Then the Ky generate a subfactor K of type II^ o/M a/zrf M is equal to the tensor product
ofK by its relative commutant K'.

(2) We assume /iy ^ 2 for all v.
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Proof. — For each v, let m^ be the haar measure on the unitary group of K^ such that

that wj l )= l . For v e N, x e M define E^ (x) = uxu* dm^ (u). Then E^ is a faithful

normal conditional expectation of M on the relative commutant K^ of Ky, and when iden-
tifying M with KY ® KY, it coincides with 1 ® T^. The transposed E^" of E^ in M^ is
the projection of norm 1 which to each v|/ e M^ associates \|/ o E^ = v|//K^ ® r^v-

So we can rewrite the hypothesis of the lemma as

(2.3.7) £||E*^-^||<^ VjeN.
v

Now the E^, v e N obviously commute pairwise because Ad u and Ad v commute for u
unitary in K^, v unitary in Ky., v ^ v'. Hence the E^ also commute pairwise, and condi-

rtion 2.3.7 shows that the product P = FI E* converges pointwise in norm. For any /
/m \

the sequence ( R] E* j v|/y = \1̂ * satisfies
\ i /

1 H^1-^!)^ f ||E;,^,-v|/,||<oo.1
m=11 m= 1 _J

oo
It follows that the product fj Ey converges pointwise weakly to the transpose E of P.

i
/ m \

By construction E is weakly continuous. For x e M and v < m we know that (]~[ Ey) x
\ i /

belongs to the commutant of K^, and we see that the range of E is contained in K' = ( | K^.
v

For x e K/ we have Ey x = x for all v and hence E x = x. We have shown that E is a
weakly continuous projection of norm 1 of M onto K7. We have by construction that

/m \
E (uxu*) = E (x), V x e M, V M unitary in K, because this holds for ( R] E^ j provided

\ i /
u is a unitary in the algebra generated by Ki, . . . , K^. Now for any faithful normal
state (p on K', \|/ = (p o E is a normal state on M such that v|/ (uxu*) = v(/ (x), x e M, u
unitary in K. So the support e = s (v|/) of \|/ must belong to the relative commutant K'.
As then E (e) = e we get \|/ (1 —e) = (p (1 —e) = 0 and e = 1. We have shown that E
is faithful and that K is a finite factor, (((p o E)/K is a faithful normal trace on K so [10],
prop. 1, p. 271, shows that K is a factor.)

Choose a faithful normal v|/ = (p o E as above, then a* leaves K pointwise fixed and
hence K7 globally invariant. So by [14], corollary 1, to check that M = K (g) K' we
just have to show that K and K' generate the von Neumann algebra M.

Let x e M, then x is the weak limit of the sequence ^m = (II ^v) 00- For eac^ m^

(n Ev)(^) belongs to the von Neumann algebra generated by K^, . . . , K^-i and K'.

Q. E. D.
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Proof of theorem 2.3.1. - (a) => (c). Let p e N and 8 > 0 be as in 2.3.1 (c). If
p = 0 let (^v)veN be a sequence of integers ̂  > 1 where each q > 1 appears infinitely many
times. Put ̂  = exp (i 2 K^) for all v. Up = 1 let ̂  = 2 for all v and ̂  = 1 for all v.
Ifp > 1 take n^= p for all v and \ = exp (i 2 TC//?).

Let (p be a faithful normal state on M and (v|̂ ) j^ a sequence dense in M^.
We construct by induction on v a sequence (Py)vgN of unitaries of M and
^I/)i,j=i...., »v °^ ̂ sterns of matrix units in M which for each v satisfy the following condi-
tions.

(a) The factor K^ generated by the (^)f.y=i. ....„, commutes with Ki, . . . , K^_^.
(P) || [̂  ̂ ] || ^ <2 2-' for fc ^ v and any fj = 1, . . . , ̂ .
(y) P,e(Ki u ... uK,_i)'.
(8) 9, == Ad (P, P î ... Pi) 9 satisfies 9^ (̂ ) = ^- '̂ ̂  for k ^ v.

00 II (Pv Pv~i ... Pi)-(Pv-i ... Pi) ||̂  < 8.2-.
Assume the construction is done up to v, let us construct P^+ i , ^v+l. Let M be the

relative commutant in M of fKi u . . . u K^Y = J^ the factor generated by Ki, . . . , K^.
As M is identical with K^ ® M we get from v|/i, . . . , \|/^ e M^, elements vj/i, . . . , vj/,
of M^ and an 6 > 0 such that:

(2.3.8) ^eM,||x||^l,||[x,vi;,]||<e,j=l,...,r)

^ (||[^^]H^nv-.2l2-(v+l)forJ=l,...,v+l).

Also as the restriction of (p to M is faithful, there is an T| > 0 with:

(2.3.9) (P unitary in M, ||P-11|$ ̂  11) => (||P(Pv.. .P^-Py.. .Pi ||̂  ̂  8.2-(v+l)).

Let 9 = 9JM. It makes sense by (§). One has p^ (9) = ̂  (9) by an immediate compu-
tation. Then by the choice of ^+1 and .̂̂  and lemma 2.3.4, there exists a system of
Wy+i xnv+l matrix units (^»j)i.j=i. . . . .ny+i and a unitary P in M such that:

W ||[vK,^,][| < e , ^ = 1, . . . , r ; i J = l, . . . ,7i^,.
(&) Ad P o 9 ( ,̂) = ̂  ̂ ; <J = 1, . . . , ̂ .

^1|P~1||;<^
Taking ^+l= ^y and using 2.3.8 and (a) we check (p). Conditions (a) and (y) are

clearly verified. Condition (5) for f e = v + l follows from (b) and P^ = P,
Ad P^i o 9^ = 9^. For k ^ v one has

9v+l(4)=Pv+l9v(^P^l=9,(4)

because by construction P^ commutes with 9^(^) = ^F^t- Finally condition (s)
follows from (c) and 2.3.9.

Now (P^ P^ .. . Pi)vgN converges * strongly [by (e)] to a unitary P e M such that
|| P-1 ||$ ^ 8. Let 9^ = Ad P o 9 so that 9^ -> 9^ when v -^ oo and, by (8) we get
(8') 9, (4) =^-'4 for all f, y, ̂
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Combining (P) and lemmas 2.3.5, 6 we see that the K^, v e N generate a subfactor
K of type Hi of M which factorizes M in M = K ® K'. By (5') the restriction of 9^ to
K is conjugate to Sp and as Sp ® Sp is conjugate to Sp we get 2.3.1 (c).

(c) => (b) is obvious.
(&)==> (a) follows by constructing explicitely for q ^ 0(p) a central sequence (>•„)„ eN

in R such that
||(Sp)W-^||^0 when n^oo.

Q. E. D.

III. Proof of Theorem 2

We recall the theorem for convenience.

THEOREM 2. - Let M be a factor with separable predual, isomorphic to M ® R and
9i, 62 be automorphisms ofM such that

9, e Int M, A,(9,)=0, j = 1, 2.

TA^! rA^r^ ^dy^s' 0 cr e Int M ^cA ^ar

e(9^)=8(CT9i(j~1).

On M ® R the automorphism 9 = 1 (g) ^o satisfies the conditions of the theorem.
To prove the theorem we let 9 be an element of Int M such that pa (9) = 0 and we cons-

truct a factorization M = K ® K^ of M, with K isomorphic to R, and an automorphism
a of K such that 9~1 (a ® 1) is inner. By construction a will be an infinite tensor product
of automorphisms of finite dimensional factors and will not depend, up to conjugacy, on 9.

The proof is divided in two parts. In the first one our aim is the technical lemma 3.1.4
which will be repeatedly applied in the second part.

LEMMA 3.1.1. - Let M as above, 9 e Int M, pa (9) = 0. Then there exists a sequence
(Yp) N ofunitaries in M such that:

(a) Ad Yp —> 9 in Aut M when p —> oo.
(b) 9 (Y^) - Y^ -^ 0 * strongly when p -^ oo, for any k e Z.

proof. - As 9 e Int M there is a sequence (Vp)p^ o! unitaries of M satisfying 3.1.1 (a).
We have 9 ° Ad Vp o 9~1 = Ad 9 (Vp) for all p e N, and hence Ad 9 (Vp) -^ 9 in Aut M,

whenp—> oo.
It follows that Ad (V^ 9 (Vp)) -^ 1 in Aut M, when p -> oo. Put Wp = V^ 9 (Vp),

then one has |[ (p o AdWp~(p || —^0 when/?-^oo, for any (peM^. This shows that
(Wp) ^ is a centralizing sequence.

Let co be a free ultrafilter on N and let W be the unitary element of M^ represented by the
sequence (Wp)^N- As ̂  is a stable automorphism of M^ (theorem 2.1.3) we can find
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a unitary X e M^ such that:
W=X*9JX).

Let (Xp)p^ be a representing sequence for X, where each Xp is unitary. We have:
X^ 6 (Xp)-Wp -> 0 * strongly when /? -^ co, Ad Xp -^ 1 in Aut M when p -> co.
It follows that Ad Vp X^ -^ 9 in Aut M, when p -^ co and that

90W)-V,X^== V,(V;9(V,)-X;9(X,))9(X$)

tends to 0, * strongly, when/? tends to co (3).
We have shown how to construct a sequence Yp = VpX* satisfying 3.1.1 (a) and

9 (Yp)-Y^O* strongly.
Let I e N, assume that 9 (Y^)-Y^ ̂  0 strongly when p -> oo. Then 9 (Yp^) Y^ -> 1

strongly, Y^ 9 (Y;1) 9 (Y;1) Y^ 1 strongly (because Y^9(Y;1)-^! strongly)" As
for any (p e M^ we have (p o Ad Yp1 -)- (p o 9~1, we get that (p (9 (Yp0^) Y^'1) -^ (p (1).
We have shown that 9 (Y;0^) Y^1 -> 1 weakly hence that 9 (Y^-Y^ ^ Ostron-
gly. Condition 3.1.1 (b) follows by induction.

Q. E. D.

LEMMA 3.1.2. - Let M be as above, 9 e Int M, ̂  (9) = 0, let (p be a faithful normal
state on M and \|/i, . . . , \[^ e M^. 77^ /or wzy /z e N, a^ 8 > 0,^^ k e N, rA6w ̂ f^
a partition of unity (Fy)j=^ ^.^ , unitaries u, W e M 5-McA r/^;

^) | | [^ ,F , ] | | ^8^=l , . . . , ^y=l , . . . , ^
(6) M F , ^ = F , ^ , y = l , . . . ,^,(F^i =Fi).
(c) l l^oe^-^oAdK- 1 ! !^^^ 1, . . . ,^ .
(rf) '̂rA 9' = Ad W o 9 o^ Aa^ || (p o 9/-(p o Ad M || < 8.
(^) ( I 9' (u^-u111^ 8, for]/1 <k.
(/) 9' (F,) =F,^, j = 1, . . . , n, (F^, = F,),
(^ ||W-1||^8.
^roo/. - For any sequence (WJ^^ of unitaries of M we have

(W^ -> 1 strongly) =^> Ad W^ -^ 1 in Aut M.

So there exists an T| > 0 such that, for any unitary W in M,

(||W-l||^ii) => llvl^-^AdW-1--^-1)!^/^ V 5 ^ ^ .

Take such an T|, with T| < 8.
By theorem 2.3.1, applied with the above <p, we let W be a unitary in M, || W-1 IP ^ T|,

such that 9' = Ad W o 9 is of the form 9^ ® 5-0 in a factorization M = Q ® R of M as
a tensor product of a factor Q by the hyperfinite factor oftypelli: R. Once 9' is fixed
this way we first choose a partition of unity (F^ = i...... of M satisfying (a), (/). (Choose

(3) If Zp - 0 strongly then for (p 6 M^, (p ((Z, V?)* (Zp V?))-(p.O (Z; Zp) -. 0, so that Zp V? - 0
strongly.
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Pj e 1 ® R in the above factorization of M.) Then we let, for / e Z, | / 1 ^ k, (pj = (p o 9' ~ (

and also \|/ = (2A:+1)~1 ^ (pj.
m^k

Choose £ < 8/2 such that 3e+2A;(2e+(2A:+1) 1 7 2 7 w e) ^ 5 and that

( 2 f c + l ) l / 2 7 ^ e ^ TI'
where for any unitary X e M:

(HX-IH^TI ') => l l^oe ' - 'oAdx- ' -^oe ' -^I^BM, for 5 = 1 , . . . , ^ .
By lemma 3.1.1 there exists a unitary Y e M such that:

ll^oe'-^oAdY-1!!^, 5=1, . . . , f ? ,
l l ^ - c p o A d Y ^ l l ^ s 2 \l\^k,

llYF.Y^e^F^II^E, j = l , . . . , n ,

Ije^Y^-Y^^e, | ? | = k .

As 9' (Fy) = F^-n for ally, we get by lemma 1.1.4 a partial isometry Xj e M, with initial
support YF^.Y* and final support Fy+i , such that || Xy-Fy+i (|^ = 7 e. Then

n
X = ^ Xy is a unitary such that || X-1 ||^ = 7 /z E, and that

XYF^X^F.+i, 7 = l , . . . , n .

For each /, | / 1 = k, we have (|| X-l ||^)2 = (2 Jk+1) (|| X-l [|p2, and hence
|[X-1 ||̂  = (2A;+1) 1 / 2772E. As l l .^-cpoAdY- 1 ! ! = e2 and ||X-1 || = 2 we get

IICX-l)^!^ ^ 2e+(2k+l) l / 27ne = a.
For / > 0 we have

IKxYy^-Y^^ii^iKx-DY^^ii.+iKxYy-Y^ii, (4)
so that for 0 = / ^ A; we get || (XY)(-Yi |̂  /a. In the same way [| (XY)^-Y( |̂  |/ |a
for all /, | / 1 = k and || Y (XY)1 Y* -Y1 | (<p = | / 1 a for all /, | / 1 < k. The last conclusion
implies, using [| (p o 6 '—(p o Ad Y || ^ e2, that, for | / 1 < k,

| |9 '(XYy--9 /(YZ) | |<p=2e+| |AdY((XY) J-Y l) | |<p=2£+|^|a.

Put u = XY. We have shown that for any /, ( / 1 < k one has

| |e ' (M !)-M l | |<p^2e+|/ |a+e+|^|a^3e+2ka^5.

We just have to check conditions (c) (d). We have || X-l ||^ ^ TI', because
( 2 A : + l ) l / 2 7 w e ^ T|'. So v( / , °AdM- 1 = \|/,oAdY-1 oAdX- 1 is at less than s+8/4

(4) (XY)^1-^-^1 = (X-DY^1 4- XYCOCYy—Y1).
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of \1/, o 9' ~1, hence at less than S of v|/, o 9 ~1. Finally

l l cpoAdX-cp l l ^ l lX- l l l ^ lC l f c+ l^^ne

and as ^+2 (2 A^l)172 7 w s ^ 8, we get rf).
Q. E. D.

LEMMA 3.1.3. - Let M be a von Neumann algebra, (p a state on M and u e M a unitary
with projection valued spectral measure denoted by J -> e (J) (J borel subset ofT).

Then A ((p, u) = { ^ e T, (p Q?j^) ^ 2~4, V ^ e N, ^ > 2 } ^ ^ ^wpry, n^rc J^
^ ̂  interval in T, of center ^ and haar measure 2~2g.

P/w/ - We let m be the (normalized) haar measure of T. For each q e N we have
m { X e T, (p (6'(J^)) > 2 ~ ^ } ^ 3.2~4. In fact, otherwise we could find a disjoint
collection of J^q s = 1, . . . , / whose union has a haar measure larger than 2~^ while, for
each s, one has (p(^(J^)) > 2~^. As each of those intervals has haar measure 2^,

i
one has 7 ^ 2 ^ and we get a contradiction because (p (1) = 1 < ^ (p (^(J^ ^)). Now

w { X e T, 3 ̂  > 2, <p (^ (J^)) > 2-^} is smaller than ^ 3.2-^1 3/4, hence
q>2

m (A ((p, M)) ^ 1/4.
Q. E. D.

In the rest of this section we denote by/,,, for each n e N, the borel function from T to T
such that:

^(e19)^'9/", ve, - n<e^n .
LEMMA 3.1.4. — Let M 6^ a factor, with separable predual, isomorphic to M ® R, to

9 e Int M, /?„ (9) == 0, ^fif to ^ be a faithful normal state on M, and v|/i, . . . , \|/^ e M^.
Then for any n e N, o/zy e > 0 ̂ ^ ̂ f^ o partition of unity (Fy)y=^ _^ m M fl^J ^f-
^arf^ M, i; e M such that:

(1) ||[^F,]||<8, fe= l , . . . , ^ , ;=1, ...,n.

(2) MF,M*=F,^, ;=1, ...,n, (F^i=Fi).

(3) | |v^/,o9- l-^oAdM- l | |<e, fc = 1, ...,^.

(4) -leA((p,M").

(5) Ad u ° 9 (^) = M^M* /or a/i^ x in the type !„ /oc^or generated by (Fy)y=i „ awct
u=uf,W.

(6) ||^-1||:<^

Proo/ - Choose m e N such that 3 (2-m)l/2 ^ e/8 n. Then for /? = 1, . . . , n choose
polynomials (of z and z~1), Rp (z) = ^ ^ , z^ such that:

\t\^k

^ ^ [^(^-(^(zT^I^/Sn, VzeT, z^J-i,,,
( [R^(z)|^2, VzeT.
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Let A =^ |^ | and take 8 < e, e/4 ^ + ((e/4 w)2 + 9 a^+A 8 ^ e/w. Applying
p.f

lemma 3.1.2 with this 8 we get a partition of unity (Fj)j=i, ....„ and unitaries M, W e M.
By lemma 3.1.3 we can assume that -1 e A ((p, u"). Put 9' = Ad W o 9. Let <? be the
spectral projection of u" for J_i^.Asq>(^) ^ 2"'", it follows from 7) that:

(8) llR^^ll^eMn, p - 1, . . . , n .

It follows that || RpO^-i^H^ ^ e/4w, ;? = 1, . . . , n where (pi = ( p o A d w , using
the commutativity of u with both Rp(u) and 2 .̂ The condition ( d ) of lemma 3.1.2
and the inequality || RpO^-S^ [| ^ 3 show that

(9) ||RpW-^||<poe^((£/4n)2+98)l/2. p = 1, . . . , n .

Moreover the condition (^) of lemma 3.1.2 shows that

||9^)-^||^8, \l\^k

and hence, by the choice of A, that

(10) ||R^(9'(u))-R^ti)||^A8, p = l , . . . , n .

From (8), (9) and (10) we get:

||MP-9'(MP)||^8/4n+((£/4n)2+98) l /2+A8,
and hence

(11) llt^-^MQll^e/n, p = l , . . . , n ,

by the choice of 8.
As 8 < e the conditions (1) to (4) of the lemma are fulfilled. We shall now

construct v = VW satisfying conditions (5), (6). By construction we have u" = 1,
and as u" commutes with the F}^, so does/,,0/')*. It follows that

uFjU* ==u¥jU* = Fy+i, j = 1, . . . , n, F^+i = Fi

and hence that S, Fy generate a type !„ subfactor K of M. A system of matrix
units (^)»j=i,....n in K is given in particular by ^ = = i ? ~ J F y , i, j= 1, ...,n.
Moreover u" and /„ (u") belong to K'.

Note that ne^u^ = ^.n,y+i for all i and j and that ue^u* = ^ » + i , j + i for all i
and 7.

n
Take V = ^ ^-+i, 2 ^/ (^i/)' Then one checks that

j= i

V9/(^)V* =^+1,20 ' (^ii)^. 1+1=^.^* for 5 , 1 = 1 , ...,n.

Because 9' 0?u) = 9' (Fi) = ^22- With v = VW this proves the condition (5) of the
lemma. We have, for j = 1, . . . , n, that

^+l.29'(^^•)==e,^.29/(Fl)9/(Sl"J) = ̂ 1.2 Q'^1^)
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hence, by (II):
ll^i^e^^.^-^i^^^H^e/n

and as the term with a minus sign in the last inequality is equal to Fy+i we have shown
that ||V-l|^e. As | [ W - l | j < p < e (because 8 < e), we get ||VW~l||^2e.
Now one has to estimate | |V*—1 ||y. We have, for all j,

(^+l.29'(^.,)=Sy"19'(Sl"QF^,

hence
lK^i.2e' (^jr-F,^ 11,
^IP^'^-Qll^/n

so that, as above, | [V*-1 ||, ̂  e, [((VW)*-! ||, ̂  2e.
Q. E. D.

3.2. Second part of the proof. — We fix a factor M with separable predual, isomorphic
to M ® R and a 9 e Aut M, 9 e Int M, p^ (9) == 0.

We choose a sequence of positive integers (^v)veN suc^ ^^

(3.2.1) S l/n,<oo.
v = l

In the next two lemmas we determine two sequences (8^)vgN» (ev)v6N °^ positive reals.

LEMMA 3.2.2. — For each v e N there exists a 8y > 0 such that if(Fj)j=i, ....^ is a
partition of unity in M and u e M a unitary with u"" == 1, u Fj u* = Fy+i, j = 1, . . . , n^
then:

(v|/e M^, || [v|/, u} || < 8,, || [̂ . F,] || < 8,, j = 1. . . . . n,)

implies \\ v|/-v|//K' ® TK || < 2^ w^A rA^ notations of 2.3.5 w/^?/^ K ^ /A^ subfactor
of M generated by u and the F.»?.

Proof. — A system of matrix units in K is given by e^ = u^~3 Pj. If [[ [v|/, M] || < 8
we have, tor k > 0, || [v|/, ^J [| ^ ^ 8, hence with || [v|/, Fj] [[ < 8 for all 7, we get
I I [̂  ^17] I I ^ "v ̂ +^ ^OT a^ ^7 e { ^ • . . , ^v }• ApP^y111^ lemma 2.3.5 we just have
to require

^(^4-1)8^2''.
Q. E. D.

Throughout we let 8^ == 2~v^~2 (^+1)"1.

LEMMA 3.2.3. — For ^^cA v e N ^r^ ^^^ ^/z 8^ > 0 such that Ey ^ l/^ and
satisfying the following: Let cp be a faithful normal state on M, and u a unitary^ ueM such
that -1 e A ((p, u"^1) then:

(\|/ e M^, \|/ ^ (p, || [\|/, M] || ^ 2 e,) TO/?/^

|| [̂  "3 || ^ 8v^ H-A^ u = u(f^ (^v+l))*.
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m
Proof. - Put n = /z^p 8 = 5^+i. Let R(z) = ^ a^ be such that | R(z) | ̂  2,

— w
V z e T and

(3.2.4) l^-O^zl2^2/^ Z€T, z"^J^,,

where q ̂  3 is such that 9.2-^ S^S. We have ([| R («)-/„ (^)* M ||^)2 ^ 82/8+9.2"<^

because — 1 e A (<p, M").
It follows that || R (u)-u \\\ ̂  8/2, V v|/, 0 ^ v|/ ^ (p. Moreover [| [v[/, ̂  |[ < e

implies |[ [\|x, M*] || ^ | k \ e for any fee Z so that we just have to choose e^ such
that 8y ^ 1/Wy and:

(3.2.5) (i\k\\a,\\2e^S12
\-m /

and check that, 0 ^ v|/ ^ (p, || [\|/, M] || ^ 2 e^ implies

|| [R («), v|/] || ^ 5/2, || [S, v|/] || ^ 8/2+8/2 (see [5], 2.1).

Q. E. D.

We fix (£v)veN once ^or a^ ^t1 ^+1 ^ £v» ^v-
LEMMA 3.2.6. — L^^ M = Q ® N be the tensor product of a finite dimensional

factor Q by a factor N. Then for any v|/ e M^ there exists m elements (m = dimension
°f Q) of N4,, v|/1, . . . , ^m such that:

(a) V x e N, |( [v|/, 1 (x) x] || ^ Sup || [iK ^] ||.
j

(6) V U unitary in Q, V unitary in N, 6 e Aut N, one has

| |v | /o((AdU)®9)-v|/oAd(U®V)| |^Sup| |v| / Jo9-\ | / JoAdV|| .

Proof. — Let (^y),, y = i , . . . ,wi/2 be a system of matrix units in Q and (<0j)j=i, ...,w
be a basis of Q^ dual to the (e^).

For each x e Q ® N, the operator fcoy ® 1) (x) is a matrix element of x (x is a matrix
with coefficients in N). It follows that | [ o )y®o) | [ ^ H ® ) ! to1' any oeN^. Write

m
\|/ = ^ coy ® v|/y and put vl/^ = w \|/^, y = 1, . . . , m; so that

j ^ i

1 w
\[/ = — ^ 0), ® V)/-7.

m j = = i

For x e N we have:

[v[,,l®x]=l ECO,®^,^
m y=i
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which shows (a). For U, V and 9 as in 3.2.6 (b) we have

v|/o((Ad U)®9) = -^((o.oAd U) ® (\|/7 o 9),
m

\ | /o((Ad(U®V)==A^(^.oAdU)®(^oAdV)
m

and as || (co, o Ad U) ® 0 [| ^ |[ co ||, for any oo e N^ we get (&).
Q. E. D.

LEMMA 3.2.7. — Let M wzaf 9 as above, (p a faithful normal state on M, (vk-)/=i
^ sequence of elements of [0, (p],^. There exists a sequence (K^)^ of sub factors of M
awfif (Pv)veN °f unitaries of M ^-McA that:

(a) For each v e N, K^ commutes with Kj, 7 < v.
(6) For 6?acA veN, K^ ^ generated by a partition of unity (F}),=^_^ and a

unitary U^, U^ = 1,
U,F}U*=F}^, V ; = l , . . . , n , .

(^ I I E ^ . U J I ) ^8,, ||[^,F}]|| ^ 8 , / ^ ^ v e N , ^ / < v W y = 1, ...,^.
(d) For any veN, P^ commutes with Ki, . . . , K^_^.
(e) For any v e N, || (P,-1) P,_, P,_, . . . P, ||̂  8/^.
(/) Put 9, = Ad (P, P,-i . . . Pi) o 9 then each 9, /^v^ K,, j ^ v ^foWfy m^r^^

and coincides with Ad Uy ow ^MC/Z a K^-.
(g) For any v e N, j ^ v OA^ Afl5';

| |^oev" l-^OAd(U,U,-l...UO- l | |^e,.

Proo/. - We assume that K,, Py have been constructed up to j = v and we look
for K,^, P,^.

Let Q be the subfactor generated by the K,, j ̂  v and let m be the dimension of Q.
Let N be the relative commutant of Q in M. The automorphism 9^ c c M leaves Q
globally invariant and coincides on Q with the inner automorphism Ad U where
U = Uy^v-i • • • ^i (note ^at the Uy commute pairwise). Let 9 be the restriction
of 9^ to N and note that if we identify Q ® N with M we get Ad U ® 9 = 9 . Let,
for / = 1, . . . , v - h l , \|/^, s= 1, . . . , w be elements of N^ satisfying lemma 3.2.6
relative to \|/j.

By theorem 2.3.1 we see that 9 is outer conjugate to 9 and hence O e I n t N
and p, (9) = 0.

By lemma 3.1.4 there exists a partition of unity (Fj)j=i, ...,^1 in N and unitaries u,
v e N such that:

0) ||[^F.]||^S^, ;=1, . . . , v , V5, V;.

(2) uF^*=F^i, j = l , . . . , n ^ i .
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(3) [ I v I / f o O - ' - v l / f o A d u - 1 1 | < e^i/2, ! = l , . . . . v + l , Vs.

(4) -1 eA( (pN, M"^1) where (p^ = (p restricted to N.

(5) J9 (x) = uxu*, V x e K where K is the factor generated by the F^. ^ and

M^/n^O^y-

|^-l | | :<£v+i/2, lle-^tO-lll^e^M
(6) j and

( ||(F-l)PvPv-i...Pi|l,<ev+i/2.

We are applying 3.1.4 with s ^ 8^ p e ^ e^ i/2 and e so small that any unitary v e N
such that || u-1 ||̂  < e satisfies the condition (6) above. It is possible because (p^
is faithful. We have 9^ = Ad U ® 9, hence (3) and 3.2.6 show that:

(7) llvl^^-^oAd^U)-11| ^e^i/2, ; = 1, . . . , v + l .

But the induction hypothesis (g) shows that

||^o9;1 -v|/,oAd U-11| ^ e,, I = 1, . . . , v.

And, as u and U commute we get [| ̂ i o Ad u'^—^i \\ ̂  Ey+^+i/^

(8) || [vl^M] 11^ 2£,, J = l , . . . , v .

As \[^ ^ (p, condition (4) and lemma 3.2.3 show that

(9) ||[^tl]||^8^,, J = l , . . . , v .

Let P =fn^,(unv+l)*, then || P-1 || ^ n/n^^ and (6) shows that, with P = P u
we have

||(l-P)P,P,-i.. .Pi |[, ̂  7i/n^+ Je^,.

||P^..P*(l-P^lt)||^||(l-l;ilt)||,+7l/n^^l/2e,^+TC/n^,.

Moreover by 3.2.3 we have e^^ ^ V^v+i and hence

(10) ||(i-P)P,...Pj|^8/n,^.

Now we have
ll^^oAdtr1-^;1!!

=||^oAd(9;l(^;-l))-^|[^2||9;l(t;)-l||^
^2||971(^;)-l||,=2||9-l(t;)-l||^e,^/2,

for any /, using (6). Together with (7) we get:

llvl^^oAdi^-^oAd^U)"1!! ^ £ v + i ; ;= 1, . . . , v + l .
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Applying AdP~1 to both sides gives, using P~1 = v~1 P~1, and u~1 P~1 = (u)~1 that:

(11) ll^oe^oAdP-^^oAdOlU)-1!!^^; (=1, . . . , v+ l

We take F}^ = F,, j = 1, . . . , n^,, U,^ = S, K^, = K, P^, = P = P i;.
Conditions 3.2.7 (a) and (&) are easy to check. Condition (c) follows from (9)
and from condition (1) above and lemma 3.2.6 (a). Condition (d) is clear because P e N,
condition (e) is given by (10). To check (/) note that

e^i = A d P ° 9 ^ = A d U ® p 9

which proves (/) for j = 1, . . . , v.
Moreover K^i = K c: N and we just have to check that pQ(x) = uxu*, V ^ e K .
By (5) we have v 9 (x) v* = uxu*, V x e K and as P u = u, we get

P v 9 (x) r* P* == P uxu* P* = uxu*, V x e K.

We thus have checked (/) for j = 1, . . . , v, v+1.
To prove (^) note that 9^\ == 9^1 o Ad P~1 and that U^i U^ ... Ui = u U with

the above notations. Hence (g) follows from inequality (11).
To end the proof of 3.2.7 we note that, for v = 1, the conditions (c) are vacuous

because there is no \|/^, / < v. Hence the construction of (F^)y=^_^, Ui and ?i
follows from the same argument as above, with v = 0.

Q.E.D.

End of the proof of theorem 2. — We choose a faithful normal state (p on M and
a sequence (v[//)/gN» °^ [0, <p]M*» which is total in M^. Then we construct (K^eN'
(U^)ygN ^d (Pv)veN as m lemma 3.2.7 and we note that:

(a) The K^ generate a subfactor K of type Hi in M and M is equal to the tensor
product of K by its relative commutant K'. [Apply condition 3.2.7 (c), lemma 3.2.2
and lemma 2.3.6.]

(P) The unitaries W^ = PyPy-i ... Pi converge * strongly to a unitary W e M
[by condition 3.2.7 (e) one has || W^-W^_J|^ 8/^, v e N and by hypothesis
E 1/^v < ^]-

veN

Let 9^ = Ad W o 9 == lim 9^ in Aut M. We have
v-*oo

(y) For each j 6 N, 9^ leaves Ky globally invariant and coincides with Ad Uy on Ky
[Use 3.2.7 (/)].

Using (a) one sees that K is the infinite tensor product of the couples (K^, T^),
T^ = canonical trace on K^. Let a e Aut K be the infinite tensor product of the
Ad U^ e Aut K^.

From 3.2.7 (g), identifying M with K ® K' we get:
(8) 9^ = a < g IK/.
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By 2.3.1 a is outer conjugate to a ® IR so modifying a by an inner automorphism
of K we can get an automorphism P of a subfactor A of K (factorizing K and such
that A and A' n K are isomorphic to R) and a unitary veK with:

(e) A d c o a = P ® IATIK-
Then Ad v o 9^ = P ® l ( A ' n K ) ® IK'- Using proposition 2.2.3 one gets the desired

conclusion.
Q. E. D.
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