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Annals of Mathematics, 104 (1976), 73-115 

Classification of injective factors 
Cases II,, IIL, IIIH, X ? 1 

By A. CONNES 

Introduction 

A von Neumann algebra M, acting in a Hilbert space UC, is called injec- 
tive when, as a subspace of the Banach space 2(JC) of all bounded operators 
in UC, M is the range of a projection of norm one. The main result of this 
paper is: 

THEOREM 1. All injective factors of type II,, acting in a separable 
Hilbert space, are isomorphic. 

We now mention several applications, all of which solve problems which 
remained open for a long time. 

COROLLARY 2. All subfactors of the Murray and von Neumann hyper- 
finite factor R ([34]) are isomorphic to R or finite dimensional (cf. [41], 
Pb. 4.4.27). 

This shows that R can be characterized as the smallest infinite dimen- 
sional factor, it can be imbedded in all infinite dimensional factors and is, up 
to isomorphism, the only one. Also all von Neumann subalgebras of R are 
isomorphic to a product of von Neumann algebras An {? Mn(C), n = 1, 2, ... 
and a von Neumann algebra A ( R, where A and the An are abelian von 
Neumann algebras. Thus all von Neumann subalgebras of R are classified 
up to isomorphism by the number of atoms in the An and the A and the 
presence of a non-atomic projection in the An and A. 

The factor R is the first one all of whose von Neumann subalgebras are 
classified. In [12] we showed that the group Out R = Aut R/Int R of classes 
of automorphisms of R modulo inner automorphisms is a simple group with 
countably many conjugacy classes indexed by a pair (p, -), p e N, yr e C, 
yP = 1. 

Another remarkable property of the factor R is that if S c R is any self- 
adjoint subset, the von Neumann subalgebra M of R generated by S can be 
characterized by a bicommutation property, analogue to the bicommutation 
in a type I factor: 
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x e M [x, Y.] -> 0 strongly for any bounded sequence 

(YJ)n eN in R such that [s, yJ] n- 0 strongly, for s e S . 

COROLLARY 3. Let 9 be a discrete countable group and X the left regular 
representation of 9 in 12(9). Then if 9 is amenable the commutant X()' of 
X is a von Neumann algebra of the form X(g)' = A (0 R & E' , An (0 M(C) 
where the A. and A are abelian von Neumann algebras (cf. [41], Pb. 4.4.28). 

It is known from the Schwartz property P that if 9 is not amenable the 
von Neumann algebra X(g)' is not of the above form. In particular if 9 has 
only infinite conjugacy classes the commutant of X(g) is isomorphic to R. 

COROLLARY 4. All infective factors of type IL,, acting in a separable 
Hilbert space, are isomorphic (cf. [41], Pb. 4.4.11). 

Let R0,l = R ? Moo(C) be the corresponding factor. Corollary 4 implies 
that all factors of type II,, which are generated by an increasing sequence 
of finite dimensional * subalgebras are isomorphic to R,,1. (The terminology 
used to qualify this approximation property of a von Neumann algebra by 
finite dimensional * algebras is usually "hyperfiniteness". However it is 
inadequate for nonfinite von Neumann algebras, in which case we shall 
follow [20] and use the adjective "approximately finite dimensional.") 

COROLLARY 5. Let G be a locally compact connected separable group and 
A the left regular representation of G in L2(G). Then the commutant X(G)' 
is a von Neumann algebra of the form: 

(G)= A ? R ? Mo(C) E1 An &M(C) AO) A. Moo(C). 

We now pass to more general representations of such groups. A theorem 
of J. Glimm and 0. Marechal [30] asserts that for any infinite approximately 
finite dimensional factor M and for any non type I separable C* algebra d 

there exists a representation X of a such that 7r(d)" = M. Thus the class of 
approximately finite dimensional factors is the smallest class of factors 
suitable for representation theory of non type I C * algebras (with a a 
uniformly hyperfinite C * algebra, the r(G)" are certainly approximately 
finite dimensional). 

Our next result characterizes this class: 

THEOREM 6. For a factor M acting in a separable Hilbert space SC the 
following properties are equivalent: 

(a) M is approximately finite dimensional: 
(b) M is injective; 
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(c) M has property P of Schwartz [42]; 
(d) M is semi discrete [19]. 

The equivalence between those properties had been conjectured by 
several authors, in particular that (a) (c) was believed since [42], that 
(b) (d) -: (a) was conjectured in [19]. The next corollary was conjectured 
by Kadison and Singer. 

COROLLARY 7. Let G be a solvable separable locally compact group or a 
connected locally compact separable group. Then any representation 7 of G 
in a Hilbert space generates an approximately finite dimensional von 
Neumann algebra. 

In fact, more generally we shall see that if G is locally compact separable 
and Go, the connected component of the identity, is such that GIGO is ame- 
nable, then any =(G)" is approximately finite dimensional. In [8], following 
the works of Powers, Araki, Woods and Krieger, we introduced invariants 
S and T for factors of type III, based on Tomita's theory. This allowed us 
to subdivide the class of type III factors in subclasses III,, X e ]0, 1[, IIIo and 
III1 corresponding to the subgroup of R*, S(M). The important features of 
this theory are: 

( 1 ) Computability of the invariants S, T for all known constructions of 
factors; this is due to the characterization by the non-commutative Radon- 
Nikodym theorem [8] of the modular automorphism groups as the sections 

8 
of an abstract kernel R -k Out M, where Out M = Aut M/Int M, and to the 

equalities 

S(M) = Spectrum 8, T(M) = Kernel a. 

(2 ) The existence and uniqueness of the discrete decomposition of a 
factor of type III2, X e ]0, 1[ as cross product of a factor of type II,, by an 
automorphism 0 with module X. The discrete decomposition was also extended 
in [8] to the case IIIo. 

One criticism of [8] was that case III1 was left untouched. However 
Lemma 1.2.5 [8] was really a crucial idea of Takesaki's solution of case III, 
by the introduction of continuous cross products. 

A more serious criticism was the absence, at the time, of any reasonable 
classification: 

(a) of factors of type IIo, 
(b) of their automorphisms with module x. 

In [12] we showed (Corollary 6) that all automorphisms 0 of Rol = R C) Moo(C) 
with the same module X ? 1 are conjugate. When M is an infective factor 
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of type III2, the associated factor of type II,, in a discrete decomposition 
inherits the infectivity of M and we now apply Corollary 4 to conclude: 

THEOREM 8. For each X e ]0, 1[, all injective factors of type III2 are 
isomorphic to Powers' factor Ru. 

In case IIIO the discrete decomposition of M allows one to show that M 
is obtained as the cross product of an abelian von Neumann algebra by a 
single automorphism. It then follows from a theorem of W. Krieger [29] 
that such factors are classified by ergodic (non-transitive) flows. In case III, 
the only known infective factor is the factor Rc,. of Araki-Woods. I am 
grateful to E. J. Woods for his kind invitation to Queens University where 
the present work was done. 
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I. Preliminaries 

I.1. Joint distribution of pairs of positive square integrable operators 
affiliated with a semi-finite von Neumann algebra. Let N be a semi-finite 
countably decomposable von Neumann algebra and r a faithful semi-finite 
normal trace on N. We use the LP spaces of Dixmier [14] and Segal [43], for 
the values p = 1, 2. An element x of LP(N, r) is a closed operator affiliated 
with N whose domain is strongly dense with respect to N ([43], Def. 2.1). A 
positive operator h affiliated with N is called integrable when its spectral 
measure: w(B) = z(XB(h)), for any Borel subset B of R* = jO, oc [, satisfies 5 xdv(x) < ??, and in this case one defines r(h) as the value of 5 Xdv(X). (See 
[43], Corollary 12.6.) Note that the spectral measure v, is a Radon measure 
on JO, + oo [, when h is integrable; P({O}) can be + oo but this does not affect 
the equality r(h) = 5 xdv(x) (see [43]). For x e LP(N, r), I x "P is integrable 
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and one has 

(Z(Cx IP))/P = II x p ([43], 12, 11; 3.8; 12.14) 
PROPOSITION. Let N and r be as above, X = RI \{O}, H, K the continuous 

functions H(x, y) = x, K(x, y) = y, (x, y) e X. Let h, k be positive elements 
of L2(N, r). Then there exists a positive Radon measure pu on X such that: 

(a) For any positive Borel function f on [0, +oo [ with f(O) = 0 and 
f(h) integrable (resp. fl(k)), the function f(H) is integrable on X and 
r(f(h)) = p(f(H)) (resp. r(f(k)) = p(f(K))). 

(b) For any pair f, g of complex Borel functions on [0, +00 [, with 
f(O) = g(O) = O f(h), g(k) e L2(N, z) one has: 

11 f(h) - g(k) 112 = 1 1f(H) - g(K) 112 
Proof. For s > 0, one has X[8,o[(h)S2 ? h2 so that XA(h) is integrable for 

any Borel subset A of [s, oo [. Hence as in [33], Appendix, there exists a 
positive finite measure p, on [s, oo [ x [0, O. [ such that e,(A x B) = Z_(XA(h)XB(k)), 
for any Borel sets Ac[s, oo[, Bc[O, oo[. In the same way one gets a 
measure ,u8 on [0, oo [ x [s, oo[ with, for A c [0, Bc c [s, oo [, (A x B) = 
Z(XA(h)XB(k)). As the plane Borel sets form the least monotone class contain- 
ing the disjoint unions of rectangles we see that all measures [.., fue" agree 
on the intersections of their domains and hence define a unique positive 
Radon measure ,u on X such that ,u(A x B) = r(XA(h)XB(k)) provided 0 O A or 
O 0 B. A, B c [0, oo [. So P(XA(H)) = ,u(A x R+) = Z-(XA(h)), provided 0 O A, 
and the first assertion follows. Hence we have 

Ilfi(H) - f2(H) 112 = lfi(h) - f2(h) 112, 
for fi, f2 complex Borel functions on [0, O. [ vanishing at 0 and making fj(h) 
square integrable. So to prove (b) we can assume that f (and g) is of the 
form: f = ? X6XAj, 0 O.Ap. Then r(f(h)g(kc)) = pe(f(H)U(K)) and hence (b) 
follows. Q.E.D. 

Proposition I.1 summarizes the advantage of the L2 norm over the other 
LP norms, p ? 2, for which it is no longer true. The next section contains 
the main technical lemma of this paper: Theorem 1.2.2. 

I.2. Stability of the polar decomposition of square integrable operators 
under square integrable perturbations. Let XC = L2(N, T) be the Hilbert 
space of square integrable operators affiliated with the von Neumann algebra 
N with faithful normal semi-finite trace T. 

Each x e XC has a unique polar decomposition: x = u(x) I x I where u(x) is 
a partial isometry with support equal to the support of x and where I x = 

(x x) . 
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The map x x I was studied in [38] and it follows from [38] that for 
normal x and y e UC one has 

[[lxi - IYlXI2Y Ix-Y2II. 
In the non-abelian case this inequality is no longer true but the inequality of 
Powers-Stormer [36] replaces it: 

PROPOSITION 1.2.1. Let N and r be as above. 
Let x, y e L2(N, r), then 

X- I yIl < [I X12_ IyI2[[1 x -yH2(2xI2y1+ 2/112). 

Proof. For the first inequality see [36] when N is a type I factor and 
[24], Lemma 2.10 for the general case. Also, 11 I x 12 _ I y 12 III is the distance 
in N* between the vector states associated to x* and y* and hence is smaller 
than 11 X-Y 112 (11 X 112 + 11 Y 112) Q.E.D. 

Even when N is abelian the map x u(x) is quite discontinuous. For 
each a > 0 let ua be the map from SC = L2(N, z-) to the set of partial iso- 
metries of N defined by ua(x) = u(x)Ea(l x 1) where Ea is the characteristic 
function of ]a, + (> [ c R+. Still each u,, is discontinuous and even in the 
abelian case we cannot find for each a > 0 an s > 0 such that for any x e L2 
there exists an a > 0 satisfying ua(x) # 0 and: 

yeL2, 11 -X112 < S II X 112 > 1 U.(X) - U(Y) 11 2 < 11 U(X) 112 

However we shall prove the following continuity. 

THEOREM 1.2.2. Let N, z- be as above. Let ( e ]0, 1[, n e N, put s = (3/6n)8. 
Then for any subset (x6)61 ... of L2(N, r) of diameter less than S 11 X 112 

there exists an a > 0 such that 

|| U.(Xi) - U.(Xl) 112 < 8 || U.(Xl) 112 1 

|XI - U,(Xl) I Xi | 112 a II X1 112 I 

As an easy corollary of Theorem 1.2.2 we have: 

COROLLARY 1.2.3. Let N, z- be as above, a e ]0, 1[, n e N and s = (a/24n)"6. 
Then for any unitary operators (uj)j=l, ...,_l in N and any equivalent pro- 
jections el, e2 eN such that 1 1 [uk, e,1 112 < II e 11 2 for all k and s, one can find 
a projection e ? el V e2 such that 

flee. - e, 112 < f 11 e, 112 1 S = 1, 2, 
11 [e, Uk] 112- a I I e 112 P k = 1, 2, .. * , n -1 . 

For the proof of 1.2.2 we begin by stating the elementary properties of 
the maps ua: ua(x) = u(x)Ea(l x f). 

LEMMA 1.2.4. Let N, z be as above and a > 0, x e L2(N, z). 
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(1 ) ua(vx) = vua(x), ua(xv) = ua(x)v, v a unitary operator of N. 
(2 ) ua(8(x)) = 0(u,(x)), 8 e Aut N. 
(3) Let Xb = XEb I X b > 0, then Ua(xb) = u,(x) and Ua(Xb) xbI = 

u,(x) I x 1, where c = sup (a, b). 

(4 ) Ua(h) = uf (.)(f(h)), h e L2(N, zj), f increasing bijection from R+ 
to R+. 

Proof. (1), (2) and (4) are clear. For (3), I xE x I = x and 
u(xEb I X ) = u(x)Eb I x 1. For t > 0, Ea(tEb(t)) = O if t < c, and = 1 if t > c, 
so E'(I Xb 1) = E,(C x 1) and as Eb(C x I)E,(l x 1) = EC(I x 1) we get (3). Q.E.D. 

LEMMA 1.2.5. Let N, z be as above, x e L2(N, z). Then 

|; || Ua1/2(X) -Ual/2(l X 1) 112 da = Xi x- 1 112 

Proof. Let u = u(x), h = x 1. For any Borel function f from R+ to R 
such that f(h) e L2(N, z), f (0) = 0, we have 

1 uf(h) - f(h) I 12= z(f(h)(u* - 1)(u - 1)f(h)) = z(f(h)2(2 - u-u*)) 
The expression that we want to compute is 

| uEai/2(h) - Eal/2(h) 1 2da = z((Eal/2(h))2(2 - u - u*))da . 

But (Eal 2(h))2 = Eal 2(h) = Ea(h2) by 1.2.4 (4) and Ea(h2)da is equal to h2. R.; 
Now z-(h2(2-u-u*)) =11 uh-h 12 Q.E.D. 

LEMMA 1.2.6. Let N and z be as above, h, k e L2(N, z)+. Then 

\ * 1Ual/2(h) - Ual/2(k) 112 da ?I h-k 112 11 h + k 112 R+ 
Proof. As h and k are positive we have ua(h) = Ea(h) for each a > 0. 

So by Proposition 1.1 we can assume that N = L?(X, L), that z = ,u and h 
and k are square integrable functions on X. We have | I Ea(x) -Ea(y) da = 
I x - y I for x, y e R+, so by Fubini's theorem J 

|* 11 Ea(h2) - Ea(k2) 11, da = h2 
- 

2 1Il 
As 

I Ea(h2) - Ea(k12) 1 =I Ea(h2)- E(k12) 12 
we have 

H Ea(h2) - Ea(k2) 112 = HI Ea(h2) -Ea(k2) Ill 

so: 

|*Ea(h2)- Ea(k12) 112 da = 11h2 - 1k1 ?< 1 h-k 112 11 h + klc2 Q R+ QED 
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Remark 1.2.7. One can show that there is no constant K > 0 such that 
the inequality 

. I 1I E,(h) - E(k) I 1, da <K I I h- kI 
R+ 

holds for any h, k e L'(N, z) (unless N is of bounded type I). 

Proof of Theorem 1.2.2. We assume that II xl1 I2 = 1. When b 0 +0, the 
xj = XjEb I Xi I converge in L2 to xi, so using 1.2.4 (3) we see that we can 
assume that all xj and hence x, are of finite rank. Then replacing all Xi by 
vxj where v is a unitary operator such that vx1 > 0 we can assume, using 
1.2.4 (1), that x1 > 0. By 1.2.1: 

Xi Xi - 1 < 112? HXj - xl 112 + 11 I Xi I - I Xl 1 112 <e S+ 2e"2 < 3es2 
So we get, by Lemma 1.2.5: 

Ua,12(Xj) - u 2(l x 1) 112 da < 9e . 

As | x I xj Xl 112 < 2es12, Lemma 1.2.6 shows that: 

;11 Ua/2( Xi 1) - Ual,2(Xl) 112 da < (2e'"2) x 3 = 6 '2 

The inequality x1 X + y 112 < 2 1 x 112 + 2 1ly 112, x, y eL2(N, z) shows that: 

|; Ual/2(Xj) -Ual/2(Xl) 112 da < 18e + 12e'"2 < 30esl2 . 

Now let G be the decreasing function from ]0, + oo [ to [0, + oo[ such that 

G(a) = z(Ea(x2)) = Z(Eal/2(Xi)) =I I Eal 2(X) 112 = II Ual/2(Xl) 112 

As II xl 112 = 1 we have 

G(a)da = r Ea(xI )da) = Z.(x2) = 1 

so that G(a)da is a probability measure on ]0, + [. Let 

&j = {b > 0, || Ubl/2(Xi) - Ubl/2(Xl) I2 > " || Ubl/2(Xl) I2 } 

For a e &j we have 

G(a) < 6-1/4 11 Ual/2(Xj) - Ual/2(Xl) 2 

so that 

G(a)da < c"430e"l2 = 30s"4. 
&j 

Let 1 be an open set in R+ containing 0, all &j, j = 1, * *, n and with 
G(a)da ? 30ns"4. Then the smallest b > 0, b e tc satisfies 

'o nR; 
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G(a)da < 30ne"4 < 1 
]O, b[ 

hence b < o. Let the a required in 1.2.2 be a = b"2. As b V &j we have 

|| U-(xj) - u.(xl) I12 < e" | u.(xl) I2 for all j = 1, ,n . 

Moreover for any t e R+ one has 

\ E8(t2)ds = t2(1 - Eb(t2)) + bEb(t2) 

Hence 

11 x2(1 - Eb(X2)) ||1 = x(1 - Eb(Xl))) < 
z(\ E.(X2)ds) 

b rb 

= z(E8(xX2))ds = G(s)ds < 30ne"4 

As Eb(xl2) = Ea(x1) = ua(xl~s 11 Xl 112 = 1 we get: 

II Xl- U.(xl)xl1 112 < 6n"1/2I18 II X1 112 Q.E.D. 

Proof of Corollary 1.2.3. Let x0=(el+e2)12, xj = ujxou* j=1, ** , n-i. 

All the x; are positive and we have: 

11 uieku8 - ek Zl s < 2e 11 ek Ill (Proposition 1.2.1), 
11mtxou2 -0x21 < Zx 1ll, 
I1 ujixou8 - xO 112 < (2)1"2 11 xo 112 (Proposition 1.2.1) . 

So the x; form a set of diameter less than 4e1/2 II xo 112. Let, by 1.2.2, a > 0 be 
such that 

I -a(O) -Ea(xj) 112 < 6n(4e"/2)"/8 II Ea(XO) 112, 

1 XOEa(XO) -XO 112 < 6n(4"1/2)1/8 11 XO 112 

Let e = Ea(xo). Then as 6n(4e"l2)1"8 < (3/2 we have 

11 [e, Uj] 112 < 11 e112 , j = 1, * , n-i; 

z(x (1- e)) < 10(2Z(X2) 

z(e1(1 - e)) < '32z(x2) < (32z(el) 

11 el(e -1) 112?< ( 1l el1 2 Q.E.D. 

I.3. Representation of the ultraproduct of factors of type II,. Let 
(Nk)keN be a sequence of factors with finite normalized traces zk. We define 
as in [17], p. 451 the ultraproduct II. Nk, for an ultrafilter a) on N, as the 
quotient of the product von Neumann algebra ll1 Nk by the 0-ideal of the 
trace z-,: z4,((Xk)) = limk.,,W zk(xk). As in [17], p. 451 the ultraproduct is a factor 
with normalized trace z. 

Let each Nk act canonically in XCk = L2(Nk, zk). Let CW,, be the ultra- 
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product of the Hilbert spaces XCk for co so that a $ e X.C, is represented by a 
sequence: (Mk)keN, Ik e JCk, I I II = lim. I Ik I 1. Each bounded sequence of oper- 
ators Ak G &(Xk) defines an operator A e 2(XQ) by A()k eN = (Ak%)ke N. A 
sequence (Ak)keN defines 0 if and only if limk_, II Ak 11 = O. It follows that, in 
general, II Nk does not act on XSCw. However II Nk acts on a subspace of 
X.CK identified by the following equi-integrability condition: 

PROPOSITION 1.3.1. Let Nk, JCk = L2(Nk, Zk) be as above. Let X,,JC be the 
set of e JCW which satisfy, with $ = (%)keN: 

(*) For any s > 0, there exists a > 0 such that 

liMkw I I E,( IOk I) I Ok I 11 2 < 'S - 

Then XJC is a closed subspace of SwC, and IlI Nk acts on XJC in a standard way 
with the vector 1 = (l)k,,N as cyclic and separating trace vector and the map 
(M)ke N ~ (Jk)ke N as canonical involution. 

Proof. We just have to check that X,,C is the closure in X.C, of the set of 
vectors (Xk)k?NY II Xk II, bounded. Assume that d = (Mk)kEN satisfies (*) and let 
s > 0. Then for some a > 0 one has limk_,,, II I I k 1 11 2 < e so that the vector 
h1 )2k = k(l - E) I %k I is at less than s of $ and satisfies 11 2k I o < a for all 
k e N. Conversely let s e ]0, 1[ and a > 0 and assume that 12 k 1, 

11k - Xk 112? < for all k, where Xk ll-< afor all keN. By 1.2.1 

1 1k - Xk 112 < (3e)"2 

Using Proposition 1.1 an easy computation gives || I Ok IE2,(l ek 1) 112 <2(3s)1/2 
Q.E.D. 

In the special case Nk = N for all k e N we denote by NW the ultraproduct 

Il N and, as in [11], we denote by N. the relative commutant of N in NW 
where N is canonically imbedded in N. 

I.4 A technical lemma. Most of the norms that one uses on a von 
Neumann algebra M satisfy the conditions: 

norm (a) = norm (I a 1), for a e M, a normal; 
a, beM+, ab = ba and a < b imply norm a < normb . 

In particular all LP norms p e [1, Aol relative to a trace satisfy those condi- 
tions. This shows the interest of the following: 

LEMMA 1.4. Let M be a von Neumann algebra, e, f e M be two finite 
equivalent projections. Then there exists a unitary W e M such that: 

(a) WeW* = f; (b) W commutes with I e-f l; (c) I W-1 1 < 3 le-f 1. 
Proof. Let c be the largest projection of the center of the von Neumann 

algebra N generated by e, f, such that N, is of type I2. As N1,? is abelian, 
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one can find projections e', e", f', f": 
e" = (1-c)e-e A f, e' +e" =e, f" = (1-c)f-e A f, f' +f"=f 
such that e' A (1 - f') = 0, (1 - e') A f' = 0, that e", f", e' V f' are pairwise 
orthogonal and that I e-f I = e" + If" + I e'- f 1 

Let u be the partial isometry of the polar decomposition of f'e', then 
u - e' I < V I e'-f - 1. In fact one needs only to check it for one dimen- 

sional projections e', f e M2(C), in which case I e'- f - is the scalar sin 8 
where 8 e [0, 7r/2[ is the angle between e', f'. Moreover in this case I u-e' I I = 
2 sin 0/2 so that the inequality is just (cos 8/2)-' < V2 for 8 e [0, 7r/2[. One 
has u*u = e', uu* =f'; let v satisfy v*v = e", vv* = f". Then v-e"= 
V e" since e"f" = 0. Then W, = u + v satisfies W,*W1 = e, W1W1* = f, 
[W1, Ie - f] = Oand IW -eI < ? 21fe -fl. 

As (e V f - e) - (e V f - f) we get a partial isometry W2 commuting 
with I e - f I and satisfying 

IW2-((eVf)-e)I >2Ie -f lW2* W =eVf-eW2W,*=eVf-f. 

It follows that, with a = W- e, b = W2- (e V f - e) one has: 

Ia + bI < 2V2 e-f I < 3 1e-f I 

(If M acts in XC, one has I a + b I $11 = 11 ad + bE 11 < 2 11 I e -f IjJ for 
any ~ e C SC and as the square root is operator monotone one gets the above 
inequality.) Finally W = (1 - e Vf) + WV + W2 satisfies (a), (b), (c). Q.E.D. 

II. Property F and the C* algebra generated by a finite 
factor and its commutant 

Let N be a finite factor, z the canonical trace on N. We recall that N 
has property F of Murray and von Neumann if and only if for any x1, ..., 
Xm e N and any s > 0 there exists a unitary operator u, z-(u) = 0 such that 

[iN, Xi] 112-< s for all j. 
THEOREM 2.1. Let N be a factor of type II, acting in a standard way in 

the Hilbert space SC = L2(N, z); let J be the canonical involution of the 
cyclic and separating vector 1 e L2(N, z). 

The following conditions on N are equivalent: 
(a) N has property IF; 
(b) For any finitely generated subgroup 9 c Int N there is a non-normal 

s-invariant state on N; 
(c) For any unitary operators ul, ..*, u,* e N there is a sequence 

(M)keN9 Ok G AC| II | = 1, (Ui - JU3 J)% k - 0 
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for all j = 1, ** , n but such that I <o,, 1> I does not tend to 1 when k-+ ca; 
(d) The C* algebra C*(N, N') generated by N and N' in UC contains no 

non-zero compact operator: C*(N, N') n x(xC) = {o}. 
The possibility C*(N, N') n x(xC) * {0} was first shown in [2], by C. 

Akemann and P. Ostrand. 
In [9] we defined a full factor as a factor M for which the inner auto- 

morphisms Int M form a closed subgroup of the group Aut M of automor- 
phisms of M with the topology of norm pointwise convergence in M*. We 
showed that for II, factors with separable predual, fullness is equivalent to 
the negation of property F. (See also [40].) 

From 2.1 it follows that N is full if and only if C*(N, N') n x(xC) # {0}, 
and hence if and only if X(XC) c C*(N, N') by irreducibility of C*(N, N'). 

COROLLARY 2.2. Let N be a semi-discrete factor of type II,; then N has 
property F. 

Proof. When N is semi-discrete the canonical map E ai(0 b, 
Si- aaibi from the algebraic tensor product N (0 N' in ?(XC) extends to an 
isomorphism of the C* tensor product of N by N' onto C*(N, N'). By a 
theorem of M. Takesaki, as both N and N' are simple C* algebras, so is 
their C* tensor product ([44]), and hence so is C*(N, N'). So 

C*(N, N') n x(xC) # {O} - C*(N, N') = X(X) 

but this implies that 1 e XC(XC) so that ?JC is finite dimensional. Q.E.D. 

The next corollary was used in [18] but, however, the proof given there 
is false. 

COROLLARY 2.3. Let N1, N2 be factors of type II,, then N1 (0 N2 is full 
if and only if N1 and N2 are full. 

Proof. If N1 or N2 has property F so does N1 0 N2. Assume that both 
N1 and N2 are full and let Ni act in Xics as usual. By 3.1 (d) let 
K1 e C*(N1, Ni,) n X(3C1), K1: 0 and K2 accordingly. As the C* algebra gener- 
ated by N1 (? N2, N1' (0 N2 contains C*(N1, N1') (0 1 and 1 0& C*(N2, N2), we 
see that it contains the non-zero compact operator K1 (? K2. Q.E.D. 

We now prove some lemmas for the proof of Theorem 2.1. 

LEMMA 2.4. Let N be a factor of type II, satisfying 2.1 (b), then for any 
unitary operators ul, ***, u,, e N and any s > 0 there exists a non-zero pro- 
jection e e N, r(e) < s such that 

11 [u, e 112 <_ 11 e 112 = 1, * , n 
Proof. By hypothesis there exists a singular state OeN*, invariant 
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under the Aduj, j = 1, * * *, n (use [41], 1.17.7). Let then, by [45], f e N be a 
projection with f(f ) = 1, T(f ) <; (s < 1/2). Let 10 = {J state on N, *(f) > 
1 - e} c N*. We identify the dual of Nn with (N*)n by the duality 

(*1, .. ' )(x, *, X.) = 
E kk(Xk) . 

With this identification (N*)" has Nn as dual Banach space and Nn has (N*)n 
as dual Banach space. 

Let 
U = J(* - *oAdul, * , +o Aduj), * e z3 n N*} 

By construction W is a convex subset of (N*)", and the closure of W in (N*)n, 
for the weak topology of (N*)" corresponding to N", contains 

(0 - oAdui, ... P 0 - OAdu,) = (Ot ...s O ) P 

because 0 belongs to the weak closure in N* of 3o n N*. 
So the weak closure of W in (N*)" contains 0 and as W is convex the 

norm closure of W in (N*)" contains 0. 
Let ? e N* nssatisfy 11 soAduj- 11 < s for j = 1, ** , n. Let r'(x)= 

(1/(f))*(fxf). As *(f) > 1 - s, one has, for any x e N, 

1 - f)x) ? ('r(1 - f))"12 11 X 1? < A1/2 11 X 11 
so that jjI'I- < 3s1/2. Let heL2(N, T), h > 0, r(h2.) = ''. We have 
support h < f and 

(II ujhuI'-h 1 12)2 < - r'o Aduj 11 < 7e1/2 (1.2.1) 
Provided 3"1/' < (1/6n)8, there exists by Theorem 1.2.2 an a > 0 such that 

Ua(h) # 0 and H Ua(hj)- Ua(h) 112 < 8 11 Ua(h) 112I 
where 3 = 6n(3s'')"'8 < 1 and hj = ujhu>. Let e = Ua(h); then Ua(hj) = ujeu* 
so 11 Nui, e] 112 <_ 11 e 112* Moreover r(e) < r(support h) < r(f) < s. But s is 
arbitrary. Q.E.D. 

LEMMA 2.5. Let N be a II, factor satisfying (b), and f be a non-zero 
projection f e N. Then Nf satisfies (b). 

Proof. Let ul, * * *, un be unitary operators in Nf, iwi = uj + 1 - f. Let 
K be a type Iq subf actor of N with a minimal projection e < f and g the sub- 
group of Int N generated by the Ad j and two inner automorphisms Ad vj, 
where the v; generate K. Then as e < f the restriction of any singular 
t-invariant state to Nf, is non-zero, singular, and invariant under the 
Ad u;. Q.E.D. 

LEMMA 2.6. Let N be a II, factor, w a free ultrafilter on N, No as in 
1.3 and ul, ... , un unitary operators in N. Then if the commutant of the 
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uj in NW is finite dimensional, there are unitary operators u, **, u, C N 
such that the commutant of the uj, j = 1, ***, q in NW is the scalars. 

Proof. We just have to show that the commutant in NW of the uj, 
j = 1, * * *, n is necessarily contained in N, if it is finite dimensional. Let us 
assume that some x e NW, x < 1, [x, u,] = 0 for all j, satisfies I I x - 1, > 

s>O for any yeN, I y ?<1. Let x = (xk)kGN. We get, for any yeN, 
IIy ? : < 1, that limkI,,, xk - y II2 > e. So by induction on p e N we construct 
sequences (Ykp)k eN with 

( 1 ) y-pyq 2?for all k and q < p; 
( 2 ) 1yP l1 and I [Yk",U] U 2? 1/k for all k andp. 

Each time one takes, yP among the Xm, m e N. Let yP e NW be represented by 
the sequence (Yk)keN We see that all yP belong to the unit ball of the com- 
mutant of the uj in NW and as y I yP" _ 1y2 > e for p # q that this commutant 
is not finite dimensional. Q.E.D. 

Proof of (a) (d) in Theorem 2.1. Let M be a factor acting in a Hilbert 
space SX. We shall prove that if there exists a central sequence (Vk)kG N of 
unitary operators of M which is not trivial ([41], Definitions 4.4.33 and 4.4.35, 
p. 213), one has: 

C*(M, M') n ic(c) = {0}. 
We can assume that for some e XC, I = 1, and s > 0, one has 

limk,. <VkSo, S ?1 - 

Let w, 7r(i) = < 0>o for all ~ e CXJC. Then if C*(M M') n Fc(C) # {0} we have 
w C C*(M, M') by irreducibility of the identity representation of C*(M, M') 
in SX. Hence there exist a,, *.* , an C M, b, *..., b, e M' such that 

ajbj - w jj s/3 
As [aj, Vkdbjiso k 0 o for all j, we have 

jj E aJbjvkio - Vk E ajbjSO II k-oo '0 

so that 

E ajbjvkIo II k-oo ' ajbjab o ||I 

However 

jE ajbjS% -7~o II < s/3 and w, = so 
But 

E ajbjvk*o - 7(vkO%) II < s/3 

As 11 (vkO) I = I <Vksoy > I we get a contradiction. Q.E.D. 
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Proof of (d) (c). We show that if (c) does not hold then C*(N, N') 
contains the one dimensional projection w of L2(N, z) on 1. As N does not 
satisfy (c) let ul, ***, us be the corresponding unitary operators. By adjoin- 
ing the u4, j = 1, **a, n we see that T = ' uJujJ can be assumed to be 
self-adjoint. Now T e C*(N, N'), 1 T H = n, T(1) = ni. We claim that T - n 
is invertible on the orthogonal of the eigenvector 1. Otherwise, as T is self- 
adjoint, there would be a sequence (k%)keN in SX = L2(N, z), II Ok II = 1, 
<ak, 1> = 0, such that |(T - n) |-+ 0. As I IujJuJk || = I IOk H| = 1 for all 
j, k, and as II THk I- n, we see from the strict convexity of X that 

IIuJuJ~k - uJJUJJk -+0 for all i and j, and hence II (u6 - JUJ)k --+0 

for all j = 1, ***, n, thus showing (c). We have shown that n is an isolated 
point and a simple point for the spectrum of T, so C*(N, N') contains a one 
dimensional projection. Q.E.D. 

Proof of (c) (b). Let ul, ***, u, be unitary operators in N. We want 
to find a non-normal state on N invariant under the Aduj, j = 1, * * *, n. Let 
co be a free ultrafilter on N and Nw the corresponding ultraproduct. By 
Lemma 2.6 we can distinguish two cases: 

( 1 ) The relative commutant of ul, * * *, us in Nw is C. Let (Wk)keN be a 
sequence of elements of norm 1 in L2(N, z) such that <ak, 1> = 0 for all k and 
that II UiJUJJk - ~k koo 0 for all j. If (Wk)keN satisfies condition (*) of 
Proposition 1.3.1, we get an element e of L2(Nw, r.) with <d, 1> = 0, 11 = 1 

and uiJujJE = e where J = JNV. But this contradicts the hypothesis on the 
relative commutant of the uj in Nw. So (W%)keN does not satisfy 1.3.1 (*). 
Hence for some s > 0 we can find a subsequence (77k)k N of the sequence 
(Wk)keNI such that z-((Ek | ik 12) 1 7k 12) > e for all k e N and Ea, a > 0, as in 1.2. 
For each k let 09k e N* correspond to l 7k 12 e L'(N, z), and ek = Ek(X i7k 12). Each 
9)k is a state on N and by the choice of (W%)keN one has 11 [Ouk] 11 - O 

for any j = 1,..., n. 
As Ek(X i7k I2) ik >2 k IEk(l ilk 2), we have Z(ek) < 1/k and hence ek k 0o 

strongly. But 9k(ek) >? for all k, which shows that the set (0)k)kIN is not 
weakly relatively compact in N*([1J, 2.3). Let 0 be a non-normal element of 
the closure of (09k)k6N in N*, for the weak topology. Then 0 is a state on N 
commuting with the u;. 

(2) The relative commutant of ul, ... , us in Nw is infinite dimensional. 
Then this commutant must contain an infinite dimensional abelian von 
Neumann subalgebra, and hence contains non-zero projections ek, kC e N, with 
rz(ek) < 11/k. As each projection in N is represented by a sequence of projec- 
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tions of N, we can find a sequence (fk)keNI of projections of N such that: 

flo ? O r(fk) < 1/k, 11 [us, fk] L1 _ 11/k lifk ll for all j, k . 
Let then Ok be the state on N corresponding to r(fk)-1fk e L'(N, z). Then 
exactly as above we find a weak limit 0 of the Ok in N* showing that N 
satisfies (b). 

Proof of (b) (a). Let (u,),~,...," be a finite subset of the unitary group 
of N and let a > 0. We show that there exists a projection e e N, r(e) = 1/2 
such that II [uj, el 112 < 8, for all j. Let R be the set of families 
r = (E, U1, ***, UJ) such that: 

(a) E is a projection, E e N, r(E) < 1/2. 
(,8) Each Uj is a unitary operator in N commuting with E. 
(-i) 11 Uj- uj II, < 8r(E), j = 1, * * *, n. 

Given two elements r, r' of 9k we write r ? r' when 

(1) E< El (2) 1 Uj - Uj II,< 8z(E' -E) , j =1, @n . 

If r < r' and E= E' then r = r'. If r < r' < r" then E< E" and 

|| U; - U II, <_ 8(z(E" - El) + z(E' - E)) = az(E" - E) 
so r < r". We claim that < is inductive on 9k. Any totally ordered subset 
of 9k has a cofinal sequence. We have to show that any increasing sequence 
(rn)neN in 9k is majorized. We have En < E,+, so that En converges strongly, 
when n-+ oo, to a projection E e N, and r(E) ? 1/2. Now 

| |Umj - Uk,j Il <_ az(Em - Ek) k < m 

so that ( Uk,j) ke N is a Cauchy sequence in L'(N, r) which strongly converges 
to a unitary operator U. One has [E, Uj] = limk~w [Ek, Uk,j] in the strong 
topology, so that the family (E, U1, *, UJ) = r satisfies (a) and (,9). We 
have 

| Uj - uj Il = limk_- | Uk,,j - Uj Ill <_ limkw 8r(Ek) = az(E) 

so r satisfies (7) and belongs to 9k. For each k and j one has 

11 Uk j - Uj Ill = limm,,i || Uk,6 - Urn, II1 < limn,. 8r(Em - Ek) = 8z(E - Ek) 

so rk < r for all k, which proves the inductivity of Rk. 
By Zorn's lemma, let r = (E, U1, ..., U.) be a maximal element in Rk. 

We assume that r(E) < 1/2 and we contradict condition (b) of 2.1. Let 
F= 1-E, M= NF, vJ = Uj(l-E) = (1-E)Uj eM (using (,9)). By Lemma 
2.5, M has property 2.1 (b). Take s > 0, r(E) + s < 1/2, and 6s ? 3. By 
Lemma 2.4 there exists a non-zero projection e, e e M, z'(e) < A, II [vj, e] II' < 

IIe II', where the ' corresponds to the normalization of r in M. But, as 
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r(F) < 1, we have r(e) = r(F)r'(e) < s. As vjevt - e < ? 2s He I1', let wi 
(Lemma 1.4) be a unitary operator in M such that 

wjvjeViwl' = e, w wj-FlII < 6sz-'(e). 
Let E' = E + e; it is a projection strictly larger than E, such that z-(E') < 1/2. 
Let U = UE + wjv;. As wjvj is a unitary operator of N(l-E) and as UjE = 
EUj we see that Us is a unitary operator in N. As wjvj commutes with e, 
the Us commute with E'. For x e M we have I x = 1/z-(F) HI x I, so we get 

11wj -(1- E)H1 ,< 8(e) and: 

|| wjiv - ViJll1 < az(e) , I Ui - Uji I 3Z(e) . 

By hypothesis II Uj - u II < 8z-(E) so that 

11 U -uj 11K < z-(E + e) = 8z-(E') . 

We have shown that the family (E', U;) satisfies (a), (,8), (/) and hence defines 
an element r' of Rk. The couple r, r' satisfies (1), (2) and as e ? 0 we have 
contradicted the maximality of r. We have shown for each 3 > 0 the 
existence of a projection E e N, r(E) = 1/2 such that E commutes with Uj, 
11 Uj - u 11 < 8, so that: 

11 [uj, E] 112 ! 2 11 UL-U- 112 + 11H Ui, E] 112 < 2(23)1/2 

because for x e N, II x i 1X < 2 one has 11 X 112 < 2 11 x II,. As a is arbitrary we 
have shown that N satisfies property F. Q.E.D. 

III. A characterization of approximately inner automorphisms 

Let N be a factor of type II, with normalized trace T. We let Aut N, 
the automorphism group of N, be gifted with the topology of strong point- 
wise convergence in N, which, as N is finite, is the same as the topology of 
norm pointwise convergence in N,. 

We characterize the closure Int N of the subgroup Int N of inner auto- 
morphisms by the following theorem: 

THEOREM 3.1. Let N be a factor of type II, with separable predual, 
acting in XJC = L2(N, r). Then the following conditions are equivalent for 
0 e Aut N: 

(a) a e Int N; 
(b) There exists an automorphism of the C * algebra generated by N and 

N' in XK which is 0 on N and identity on N'; 
(c) For any unitary operators ul, * *, u*S, e N and any s > 0 there is a 

GeDC, e 1 l I = 1, I O(Uk)JUkJe - e 1 < Afor all k = 1, e n; 
(d) There exists a bounded sequence (xn)e N in N, not converging 
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strongly to 0, such that xa - 0(a)xn converges to 0 strongly for any a e N. 

The condition (b) means that for any a1, ** , a, e N and b1, ** , b, e N' 
one has I ILk 0(aj)bj I, = I lk ajbj || where the norms are operator norms in XJC. 
The condition (c) means that for any unitaries ul, * u, * , e N and s > 0 there 
is an x e N, 1| x 112 = 1 such that 

II |(Uk)X - XUk II2 < 6 

COROLLARY 3.2. Let N be a semi-discrete factor of type II,, then Aut N= 
Int N. 

Proof. Let 0 e Aut N, a,, *.. , ake N, b1, *..., bke N'. By hypothesis, 
([19]): II Ek1 alibi 11 = Lk 1 ai (0 bi II where ai (& bi acts on XC (0 X.C But 

k ai ( &bill = 11 Ek 0(ai) X bi& 
because 0 0 1 is an automorphism of the C* tensor product of N by N'. So 
O satisfies 3.1 (b). Q.E.D. 

At this point it is important to remark that conditions (a) and (b) make 
sense for arbitrary factors M acting standardly in a Hilbert space XC, but, 
by the above proof of 3.2, that they are not equivalent in this generality. 
In fact 3.2 shows that any automorphism of a semi-discrete, but not neces- 
sarily finite, factor satisfies (b). When M is the product factor of type IIJ. 
the automorphisms of M which do not preserve the trace do not satisfy (a). 

COROLLARY 3.3. Let N1, N2 be factors of type IIj, 0j e Aut Nj. Then 
01 C0, Int N1( N2 if and only if 0j , Int Nj, j = 1, 2. 

Proof. If 0j C Int Nj for all j, then easily 01 0 02 e Int N1 0 N2. Let Nj 
act standardly in Xj so that N1?( N2 acts standardly in XC, 0( XC2. Let 
a,, **.*, ak CN1, b1, *..., bke N,. Then 

a, (31, *l* *, ak ,O 1 N1? N2, b?l1, *..., bk 1 G(N1 X N2)' 

and also: 

1 aibi | = 1 E (ai 0 1)(bi 0 1) H 
As 01 (0 02 satisfies 3.1 (b) we have that: 

I I (01(ai) (0 1)(bi (0 1) || = | E (ai 0 1)(bi 0 1) H 
Hence we have shown that 01 satisfies (b). Q.E.D. 

The proof of Theorem 3.1 (of (c) (d)) relies essentially on the following 
lemma. 

LEMMA 3.4. Let N, r be as above, 0 e Aut N satisfying condition (c), and 
Ul, ... * *u be unitary operators in N. For any s > 0 there exists a non-zero 
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projection e e N and an x c N, x lloo ? 1, II x II, > 1/4r(e), xe = x, 0(e)x-x, 
such that: 

11 [Uj, e] 11, < s 11 e 11, , j -1, * * *, n, 
and 

11xuj - (uj)x 1 sz-(e), j1 ***, n. 
Proof. Let s' e ]O, 1/8[, 20s' < s, let 28 = (W'/24(n + 1))16, 8' = (8/6n)8. 

Let XeC = L2(N, T), = 1 such that for all j = 1, ***, n one has 
I I 0(uj)JuJ: - I I < 8'. By Theorem 1.2.2 there exists a > 0 such that the 
partial isometry w = Ua(W) (if one uses 1.2.4) satisfies 

l0(uj)wO4-w 12?,< w 2 and w?0. 

We get that II uw*wj* -w*w II2 < 28 w2 and that 

0(uj)ww*0(u )-ww 2 < 28 1H w 

Let e1 = w*w, e2 = 0-O(ww*). We have IH ek I= T(ek) = z(w*w) = w I1, and 
hence: II [uj, ek] 112 < 28 11 ek 112 for all j and k. 

So, by Corollary 1.2.3, let e ? el V e2 be a projection, e e N, such that 
I [Uj, e] 112 < I' I e 112 for all j and that I eek - ek 112 ?' I ek 112. As e' < 1/2 we 
havee e 0, 11 e 112 11 eek 112 > 1/2 11 ek 112. Let x = 0(e)we. We have 11 xl <1 

x - w 112 I 0(e)ww* - ww* 112 + 11 w*we- w*w 112 

= 0(e)0(e2)- 0(e2) 112 + || ele-el 112? 2e' 1H w 

So 

11 x-w 11,= 11 (x-w)(e, V e2) 1? < 2 11 x-w 112 1wH 112 ? 4e'11 wL 

and 

x 1 > (1 - 4s')z(e1) > 1/2(1 - 4s')z(e) > 1/4r(e) . 
Also 11 xuj- 0(Uj)X 1 H2 ? (3 + 4e') 1H w 112 and, as above 

11 XUj - 0(uj)x 11 < (3 + 4s') w Iw 112 Ile 112 < sr(e) . Q.E.D. 

LEMMA 3.5. Let N, T be as above and 0 e Aut N satisfying 3.1(c). Let 
f e N be a non-zero projection, v e N with vv* = f, v*v = 0(f). Then the 
automorphism ,0, x e Nf -? vO(x)v* e Nf also satisfies 3.1(c). 

Proof. First we assume that f = 1. For any unitary operator u e N and 
any x e N we have: 

(vx)u - v(u)(vx) = v(xu - (u)x); 
hence if 0 satisfies 3.1(c) so does 1/ if vv* = v*v = 1. 

Now, in general, let m e N, 1/m < r(f) and (eij)i,,=i,...,m be a system of 
m x m matrix units in N with f = e + e' where e, e' are projections, e > ell, 
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belongs to the I, factor of the eij, and e' < e22. By multiplying 0 by an inner 
automorphism we can assume that O(eij) = eij for all i, j and also that 
0(e') = e'. Then O(f) = f and we can assume that v = f. Now let u1, ** *, us 
be unitary operators in Nf, Ii = u, + 1 - f the corresponding unitary oper- 
ators of N and iu+1, Tn+2 unitary operators generating the Im factor of the 
eij. Let (Xk)kGN be a sequence of elements of N (the sequence is not neces- 
sarily bounded) such that 11XkI 2=1 and IIXk. - 6(i)XkI 2 k 0.oo '? It 
follows that 11 [eij Xk] 112 k 0 ?, because 0(iun+q) = un+q, q = 1, 2. 

So 

| ejjXk I12. - ellXk H12 -k 0o ? for all j = 1, *... m I 

because 

11 ejlxk 112 = I I ellxk 112 and 11 Xkedl 112 = 11 Xkejj 112 

Hence I ellxk ll-2 1/m when k-. oo. Let Yk = fxkfeNf. As ell < e <fwe 
get 

liM II Yk 112> lim 1 1 ellykell 112 = M-1/2 

because 

Il ellykell 112 = l elxkell 12 > m-1/2 when k - > 

We have 

YkUj - O(Uj)Yk = f(xkiJJ - O(ilJ)xk) f. Q.E.D. 

Proof of (d) (a). Let a be a free ultrafilter on N, NW be the ultra- 
product associated to N and wo as in I.2. Let F2 be the algebra of 2 x 2 
matrices over C and a be the homomorphism of N in Nw C) F2 such that 
v(x) = x ?& e1l + ? (x) (g e22, where as usual N is identified with its canonical 
image in NW. 

Let (Y )neN be a bounded sequence in N representing y e NW; then the 
equality limy_,,x - 6(x)y,,, = 0, in the strong topology, for any x e N, is 
equivalent to y 0 e21 e P, where P is the relative commutant of v(N) in 
N?' (0 F2. 

From our hypothesis we want to deduce that 1 0 e1l is equivalent to 
1 ? e22 in P. The relative commutant of N in NW is equal to N. with the 
notations of I.2, so the map x - x 0 el1 is an isomorphism of N,, on the 
reduction of P by 1 0& e1l. Let a e N. be a non-zero projection, zW,(a) = a > 0. 
Let (a,), IN be a representing sequence of projections, Z(a") > a. Let (Yk)k 6 N 

be a bounded sequence of elements of N, and f > 0 such that: Z(Yk*Yk) > 8 

for all k, YkX - 6(X)Yk k > o strongly, for all x e N. Now (Yk*Yk)keN is a 
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central sequence and hence limk z- z(a*y*yka") > atx, for n e N. Hence 

liMk---,,II O(a.)yka, 112 > 1/2a"2 

because II 0(a,)Yka - yka. II2 ?O as k o o. For any n e N, take k_ > n with 
II 0(an)Yknan 112 > 1/281/2al/2. The sequence (Yk.)n-eN represents an element z of 
NW such that z 0 e21 e P and that (0'O(a) 0 e22)(Z 0 e21)(a 0 e11) # 0. 

Then for each projection a e Center of N., the central support of a? e,1 
in P is necessarily equal to the projection a 0 e,, + a@(a) 3 e22. It follows that 
all elements of the center of P are of the form 

c = x 0 el1 + Ow(x) 0 e22, x e Center N. 

So for any such element c one checks that: 

(z-, x Tr)(c(1 3 el,)) = zW(x) 

(z-, x Tr)(c(1 0 e22)) = ZrW(O(X)) = :@(x) 

We have shown that 1 0 e,, is equivalent to 1 0 e22 in P and so there is a 
unitary operator u e NW with u 0 e21 e P. 

Let (U.)neN be a representing sequence of unitary operators for u; then 
0 = limfl., Adu. in Aut N. Q.E.D. 

Proof of (a) - (b). Let 0 = lim,_. Ad u be an element of Int N. For 
each n e N, let a. be the inner automorphism of the C* algebra C*(N, N') 
implemented by u,. For any element x = xk Xy6 of the algebraic tensor 
product of N and N', the sequence (an(X))neN of elements of S(C) converges 
strongly to S O(x2)y2. 

So the automorphism 0 (D 1 of the algebraic tensor product N ( N' is 
norm preserving for the norm of S2(Y) and thus extends uniquely to the 
norm closure C*(N, N') as an automorphism of C*(N, N') satisfying the 
required conditions. Q.E.D. 

Proof of (b) (c). Let ul, ** , u. be unitary operators in N and consider 
the two operators 

T = 1 + u,1JuJ + + uiJunJ, S = 1 + 0((ui)JuJ + *. + 0(u')Ju"J . 

Our hypothesis on the automorphism a and the norm preserving property of 
automorphisms of C* algebras show that II S I1 = I T I1. But I1 T II = n + 1 
because the unit vector 1 in UK = L2(N, z) satisfies uJu2J1 = uju* = 1 and 
because each term in the sum defining T is unitary. So II S II = n + 1. Hence 
for any s > 0 we can find e r3C, II $II = 1 such that 

I|I + 0(u,)JuJE + * * * + 0(u,.)JunJE I1 > (n + 1) - s 

As II 0(uj)Ju2JE II = 1 for all j, we see, using the strict convexity of the 
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unit ball of a Hilbert space, that for any r > 0, there exists a $ e XJC, I ejI = 1 
such that II O(uj)JujJ$ - 11 < , j = 1, *.. , n. Q.E.D. 

Proof of (c) (d). Let u,, * * *, u, be unitary operators in N and a > 0. 
We show the existence of unitary operators U1, ***, Us such that 
II Uj-uj 1 < 8, of a unitary operator V e N and of an element X of N, 
11 XIK. ? 1, 11 XH11 > 1/4 such that: 

IIXUj-V8(Uj)V*XII?<8, i=1l, an. 

With y = V*X and replacing the Uj by uj, we have 

11yll. < 1, 111 > 1/4, 1fyuj - 8(uj)y If < 38a, 
so, then, assertion (d) follows from the separability of N*. 

We let ?R be the set of all families r = (E, U1, ** , U", V, X) of elements 
of N which satisfy the following conditions: 

( 1 ) E is a projection, the Uj are unitary operators commuting with E. 
(2) 1f1 Uj- uj1 ? z(E), j = 1, * * *, n. 
( 3 ) VV* = E, V * V = 8(E), so that F8 is an automorphism of NE. 
(4) XeNE, 11fXffo < 1S 11 Xf, L> 1/4z(E). 
(5) XUj- v(UjE)XI 11 < az(E), j= 1, ,n. 
We define for r, r' e SR the relation r < r' by the conditions: 
(a) E? E'; 
(b) II Uj'-Uj II < ?z(E'-E) for allj; 
(c) EV' = V'S(E) = V, so that v 8(E) = E; 

(d) X'E = EX' = X. 
We check that r < r', E = E' r = r' and that r ? r' ? r" implies r ? r". 
We want to show that ?R is inductive. 

Any totally ordered subset of ?R contains a cofinal sequence. We have 
to show that any sequence rk = (Ek', Ul *.. U1k, Vk Xk), rk < rk+l of ele- 
ments of ?R is majorized. We let E = limko. Ek strongly, Uj = limk,, Uj] in 
L' (and hence strongly) and we check (1), (2), (a), (b). The sequence Vk 
converges strongly because (Eq Vk)keN and (Vk8(E ))k6N are stationary 
sequences for each q e N. The limit V is a partial isometry, with VV* = E, 
V * V = 8(E) and Eq V = V8(Eq) = Vq for all q e N, so that we get (3) and 
(c). For the same reason the sequence XM converges to an X e NE such that 
1I XIK. < 1, XEq = EqX = Xq for all q e N. So 1i X f1 > 1f Xq Ill > 1/4z(Eq) 
for all q and hence If XIf1 > 1/4z(E). 

For each q e N we have 

ffIXq Uq - Vq( UqEq) Vq*Xq I 11 < -(Eq) 



CLASSIFICATION OF INJECTIVE FACTORS 95 

so that by continuity we have I XUj - V8( UjE) V*X az -( < E) which ends 
the proof of inductivity of R. 

Let r = (E, U1, .., Uy, V, X) be a maximal element of ?R such that 
E + 1. We shall contradict condition (c) for 0, thus proving (c) (d). Let 
F = 1 - E # 0 and let Y be a partial isometry in N such that YY* = F, 
Y * Y = 8(F). By Lemma 3.5 the automorphism F8 of NF also satisfies con- 
dition (c). Let vj = UjF = F Uj be for each j the restriction of Uj to F (U6 
and E commute, by 1)), so that the vj are unitary operators in NF. Let's > 0 
such that 3 x 3e < a. 

By Lemma 3.4, there exists a non-zero projection e e NF and an x e NF, 

1x < 1 11 x 11? > 1/4z(e), xe = x, y8(e)x = x such that 11 vjev- e 11- < S 11 eIe 
for all j, and I xvj - y(vj)x 1 < sez(e) for all j. By 1.4 there are unitary 
operators v; of NF commuting with e and such that 11 v -vj - < (1/3)az(e). 

Let Y' be a partial isometry of NF with initial support y8(e) and final 
support e. As the final support F of Y is larger than y8(e), the initial support 
of Y'Y is Y*yO(e)Y = 8(e) and its final support is e. Let E' = E + e, Uj' = 
UjE+v;, V'=V+Y'YandX'=X+Y'x. Ase<1-E,and as the v 
are unitary operators of N(1-E) which commute with e, we have (1). Also 

11 U - Uj K11 = Z(I Uj(l - E) - v ) = z(I vj -v1) ? z(e). 
So the couple (r, r') in the obvious notation satisfies (a), (b) and r satisfies (2). 

The initial support of V' is 

V* V + (Y'Y)*(Y'Y) = 8(E) + 8(e) = O(E') 

its final support is E + e = E', and one gets (3) and (c). The final support 
of Y'x is smaller than e so, as xe = e, one has Y'x e Ny, X + Y'x e NE', and 
EX' = X'E= X. 

X + Y'x =Sup (11 X11oo 11 Y'x lo) < 1. 

X + Y'x 11= 11 X111 + 11 Y'x 11? > 1/4z(E) + 1/4z(e), 

which gives (d) for r, r' and (4) for r'. We want to check (5), we have: 

X' Ul = (X + Y'x)(UjE + v;) = XUj + Y'xv; 

for all j. Also 

UjE' = (UjE + v')(E + e) = UjE + vfe 
and 

V'8(UjE)V'* = (V'Y(E))o(UjE)(V'Y(E))* = V8(UjE)V* 

As V*X' = V*EX' = V*X, by (3) for r and (d), we get V'8(UjE)V'*X' = 

V8(UjE)V*X. We have 
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V'8(ve) V'* = (V'8(e))8(v'e)( V'S(e))* = Y' YO(v;e)( Y' Y)* 
Also V'8(x'e) Y'*X' = Y'YO(v'e) Y*Y'* Y'x because the initial support of Y'* 
is e and eX' = Y'x. As Y'* Y'x = YO(e)x = x we get 

V'8(v'e) V'*X' = Y' YO(v;e) Y*x =Y'y(v)x 

Hence 

v o( UjE')X' = V'8( UjE) VT*X' + V'o(v;e) V'*X' 
= VO( UjE) V*X + Y'YO(v;) Y*x, 

so that 

X'Uj;- v,(UjE')X' = (XUj - v8(UjE)X) + (Y'xv - Y'yO(v;)x). 

By (5) for r we have 

I XUj - v8(UjE)X II, < 5z(E) 

As vI Vj- v, ' < (1/3)az(e) we have 

11 xv' -y(v;)x 11, < 2 1I x l 1I vj - v; 111 + 1I xvj - y8(vj)x K 
? 2/3Sz-(e) + sz(e) ? az(e) 

sinces < e13. 
We have shown that r' e R and that r < r', so this contradicts the 

maximality of r. Q.E.D. 

IV. Tensor product of centrally trivial automorphisms of finite factors 

Let N be a factor of type II, with normalized trace z. 

DEFINITION 4.1. Let 8 be an automorphism of N. Then let c(8) be the 
supremum of the set of positive real c such that for any elements x1, *.. , x, 
of N and any s > 0, there exists $ e X = L2(N, z), II $11 = 1 such that 
11 8($) - $j' c while 

I j(xi -JxJ) If <? s for j = 1, , n. 

We have 0 < c(8) < 2. In this definition one could restrict the x; to be- 
long to any subset of N which generates N as a C * algebra, and in particular 
to the unitary operators of N. 

PROPOSITION 4.2. Let N and 8 be as above. 
(a) For any 8' e Aut N, outer conjugate to 0, one has c(8') = c(Q). 
(b) For any other finite factor M one has c(8 (0 1M) ? c(8). 
(c) For any 8-invariant non-zero projection e e N, one has c(8e) = c(8). 

Proof. (a) Take 8' = Ad u.0; then, given x1, XI, xn ands > 0 take $ e C, 
= =1 with 
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11 0(0) - $ I >_ C(8) - a , (xj - Jx*J) II < S 

for all j, and I (u - Ju*J) ? e. Then 

I I '($) - = I I 0($) - u*Ju*J$ 1 > c(8) - Zs 

so that c(8') > c(8). 
(b) We identify 2 = L2(N (0 M, zN 0 , M)s with X 0g X, where 

JC = L2(N, zN),J X = L2(M, zM). So Js = Jx 0 Jx and for x e N one has 

JxX*J0C (9 1 = J(X* 0 1)JW. 

Also the unitary transformation of 2 corresponding to 8 (0 1M is 8 (g 1x. We 
assume that c(8 0 1) > 0, and let c > 0 such that c < c(8 0& 1) and '7e ]O, 1[. 
Next we let x1, **, xe N ands > 0. Let a > 0 such that na < 1/49c(1 -72) 
and a < e2. 

By hypothesis, let $ e 2 = XC 0 tJC such that 

11 1 1 = 1 , 11 (8 ? 1)$-$ > c and 11 (Tj ( 1) < a, 

where Tj = xj - J~xxJj for all j. Let 3 be an orthonormal basis of JC and 
($b)beg the components of $ on J. Let ,c be the discrete measure on J such 
that p(b) = 11 $b 112 and: 

Ej = {b e,| Tj |> |b 

G = {b , 1 0($b) - $b ? (') H b 2} 

We have, for each j, that 

P(Ej) = 
FbGEj I I '- Ti$b ? 

Also 

FG 8I 0($b) -b 112 < 4 11b 2 = 4fe(G) and 12c | 9($b) - b < ()C)2 

So we have 

7202c + 4,cc(G) > c2, ,(G) > 1/4C2(1 _ 72) > S p(Ej) 

so that G\U%, Ej is non-empty, thus showing that c(8) > '7c and proving (b). 
When M is finite dimensional the x 0 y, x e N, y e Mgenerate N ? M as 

a C* algebra so that the equality c(8 0 1) = c(8) follows easily. 
(c) Let a e ]O, 1] and e be a projection in N with z(e) = a. Let u be a 

unitary operator in N such that u8(e) = e. Then by (a) the number C(a) = 

C(uoe) just depends on 8 and a, not u and e. The equality c(8 0 1.f) = c(8) for 
finite dimensional K shows that C(a) = c(8) for any rational number a. Let 
a < 1, to show that C(a) > a3c(O) we can assume that for some integer q one 
has a2 < 1- /q ? a < 1. Let K be a type Iq subfactor of N with matrix 
units eij and e a projection in N, z(e) = a, 1 - e ? e1. We can assume that 
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0(x) = x for all x in K, and that 8(e) = e. Let s > O; xi, *.. , xn e N,. Let 
r eN. 11 $ 112 = 1, 11 [Xi, f] 112 < s for all j, such that 11 8(e) - 112 > Mc(O) 

As the eij e N we can also assume that [eij, f] = 0 for all i, j = 1, ** *, q. 
So e and 0($) belong to K'. As for a C K' n N we have 

Il (1-eel)a(1-el,) 112 = 1H (1 ele)a 112= l el e112 11 a 112 >- I I a 112. 
We get: 

edeeN N, IIe~eI12 >-1(1 - ej)(l - el,) 112 >_ 

II[xj, ede] 112 = 11 e[xj, f]e 112 < e for all j = 1, .*, n, 
If ede - 0(ede) 112 =11 e(d - 0($))e 112 > 11 (1 - ei)( - e())(1-e) 112 > _20(0) 

because 0-O($) commutes with K. If we replace I 1 12 by the L2 norm II 1 I 2 
of N,, we have fI y 11f g I Y fII <-1 1' y 112 for all y e N, which shows that 
C(O") > a3c(o). Q.E.D. 

We now state the main result of this section: 

THEOREM 4.3. Let 0 be an automorphism of a factor of type II,, N, and 
let p = pa(0) be the asymptotic period of 0 (i.e., its period in Aut N/CtN) 

(cf. [12]). Then 

C(M) = SupecP=l I Z - 1 | 

For p = 0 the notation means Supec, o=l I z -11 = 2. From 4.3 it follows 
that c(O) < V 3 c(O) = 0 0* e CtN. 

COROLLARY 4.4. Let N1, N2 be factors of type II1, Oj be automorphisms 
of Nj, j = 1, 2. Then 0 1002eCt(Nl N2) =*Oj eCtNj, j = 1, 2. 

Proof. If 01 0 CtN1 then easily 01 0 02 O Ct(Nl 0 N2). If 01 e CtNl then by 
4.2 and 4.3, c(01 0 1) = 0 so, by 4.3, 01 0 1 e CtNl 0 N2. But Ct(Nl 0 N2) is 
a subgroup of Aut (N1 0 N2). Q.E.D. 

LEMMA 4.5. Let N be a factor of type II,, 0 e Aut N, 0 ? c < c(O) and 
ul .. * * u,, be unitary operators in N. For any s > 0, there exists a non-zero 
projection e e N and an x e N, such that: 

(1) I[e, uj] 11, <I 11 e 111, j = 1, * * *, n and 11 0(e) -e 11 11 e 1e; 
(2) x 11.o < 19 11 x 11 > 2`-4(e), 11 X112 > 1l/4 11e 112; 

(3) 11 (x) - x 112 >c 11 x 112; 
( 4 ) 11 [x, uJ] II, < sr(e). 
Proof. Let (vk)k ,. be a countable family of unitary operators of N, 

invariant globally under 0 and 0-1, and containing the uj, j = 1, *., n. As 
c < c(0), let for each keNg% e N. C = L2(N, z), II ek II = 1, 
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I(Vq -JvqJ)$,II ?1/k, q =1, **, k, 
I I WO - 11 I C?I, for all k . 

Let XJC be the subspace of the ultraproduct XJCW, corresponding to the free 
ultrafilter G), of all $ = ($k)keN such that (Vq - Jvq J)-k 0 for all q e N. XJC 
is closed. By construction X reduces the unitary operator (k)k N (0($k))keN 

and we let U be the reduced unitary operator. We have I U - 11 ? c. 
As U is unitary on 5C, we let X e Spectrum U, X - 1 1 > c. For any 

3 > 0 there exists e e C, II $11 = 1,1 U$ - XJ ? a. Let a1 e ]O, 1/4[, 20&, < , 

32 = 1/2(&1/24(n + 2))16, 2& = (a2/6(n + 2))8. Let $ e L2(N, z-), I II = 1, such 
that II (Uj - Ju7J)$ I < a, for all j, and l I0($) - II I . 

By Theorem 1.2.2, let a > 0 such that, with v = uj($), one has: v # 0 
(because &2 < 1), II UjVU - V 112 < &2 1I V 112, for all j, and 11 O(v) - v 112 _ 

a2 11 v 1.12 Let el = v*v, e2 = vv*. We have 

11 UiV*UVUij* - V*V 112 < 2&2 1f V 112 

so that we get, for all k, j, 

11 [ek, Uj] 1 12 22 11 ek 112 and O1 O(ek) - ek 112 2'2 11 ek 112 

Let (by 1.2.3), e be a projection, e < el V e2 such that 4.5 (1) holds and that 

fIeek - ek 112 al 11 ek 112 for all k. Put x = eve so x e Ne, 

JIxIjXI _?1, lix vll2< 2allvl12 , HX112 >1 /2llvll2? >1/4llel2 

and hence 

| III > || X 112 > 2 '(e) 

which gives (2). 
Also 

II [X, Ui] 112 : (4a1 + &2)11 V 112 _ 5al 11 v 112< s/2 11 e 112 

because 11 v 112 _ 2 1? x 112 H 2 11 e 112. So we get 

11 [X, Uj] Ill -< I I [XI Uj] 112 11 e V u e0j 112 !!< s 11 e 112 = sz-(e)- 

So x satisfies 4.5 (4). Finally 

II O(x) - Xx-lX 11(2 -2+ 4&) 1I v 112 ? 5&1 x 2 1l x 112 

so that 4.5 (3) holds with c - s/2 instead of c. Q.E.D. 

Proof of the inequality c(o) ? Supze,,,,, z - 1 1. Let u1, ***, Un be 

unitary operators in N, c < c(O), and a > 0. Let us show the existence of 
unitary operators U1, ** , Un e N such that -I Uj-uj II, K a for all j, of an 
X e N, I X I . <K^ ,I Xl1 > 2-', 11 [X, Uj] I I 1 a, and of a unitary operator 

Pe Ng, IP - 1 11 a such that IIPO(X) - Xl12 > Clf XII2. We then get a 
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non-trivial central sequence (Xk)k6N, such that I O(Xk) - Xk 12 > c Xk ,2 for 
all k e N. It follows that the unitary transformation V of L2(NW, z,) attached 
to the action 0,, of 0 on the asymptotic centralizer N,,, satisfies II V - 11 > c. 
But by [12], Proposition 2.1.2 and Theorem 2.1.3 the spectrum of V is 
{z, z e C, zP = 1} where p = pJ(O). 

Now let 9k be the set of all families (E, U1, * * *, Un, X, P) where: 
(1) E is a projection in N commuting with the unitary operators U,. 
(2) 11 Uj - uj IL ? z-(E) for all j. 
(3) Xe NE, | XIf. ? 1, || Xli1 > 24 z(E), || [X, Uj] dz- < &z(E). 
(4 ) P is unitary, liP - 1 < z-(E), PO(E)P* = E. 
(5) 1i PO(X)P* - X112 _> c 1j X112. 

Moreover an ordering on 9k is defined as follows: r ? r' when 
(a) E ? E' and II Uj -Uj' d ?&z-(E' - E) for all j; 
(b) X'E= EX' = X; 
(c) EP' = P'O(E) = EPand iP' - Pl1 d z(E' - E). 

As above one checks that 9k, ? is an inductive ordered set. Let r be a 
maximal element, and assume that F = 1 - E ? 0. By Proposition 4.2 (c), 
let c', c < c' < c(P0F) where p6F is the restriction of pO to NF (we use (4)). 
Let s > 0, 24 x 6 x 3s < c'2_c2, 7s ? &; then, by Lemma 4.5 there exists a 
non-zero projection e e NF such that: 

iI [e, U6]il i S 11 e ii for all ji; |pO(e)-e - !E? s 11 e ii1 
and an x e Ne satisfying the other conditions of 4.5 for pOF and c' > c. By 
Lemma 1.4, let Uj be a unitary operator of N such that 

UjE = EUj' = UE, Uje = e Uj and 11 U -Uj i111 3s 11 e 11, 
With E' = E + e we have (1), (2) and (a). With X' = X + x we have 

Ii [X', Uj] I1 || [X, Uj] I1 + || [x, Uj] 11 + 6,se | e &z (E) + 7sTz(e) ? &z(E') 

and we get (3) and (b). Now e and pO(e) both belong to NF and there exists 
a unitary operator Q of N such that QE = EQ = E and that QpO(e)Q* = e, 
Q - 1 1 ?l < 3sz(e). Let P' = QP. Then 

EP' = EP, P'O(E) = QPO(E) = EP and I IP' -P 1P d&(E'-E) 

which gives (c). We have 

11 P' - 1 z(E'), P'O(E + e)P'* = E + e, 
hence (4). 

11 PIO(X')Pt* - XI 112 = T((PIO(XI*)PI* - XI*)(P'O(X')P * - xi)) 

= T(PPO(XP*XP)PP* - XP*PPo(XP)PP* 

- PIO(X'*)P'*Xt + X'*X') 
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so that 

|| PO(X')P* - X H2 < =P'(XP)PP* - X' 2 + 6 x 3z-(e) 
Now X' = X + x, X e NE, x e N, and pO(E) = E so, as x satisfies 4.5(3) with 
respect to PO and c', we get: 

I I pO(X') - XI 112 = I I pO(X) - X 112 + I I O(X) - X 112 
> C2 1- X 112 + cH2 11 X 112 > c2 11 X' 112 + (C'2 _ c2)2-4z(e) . 

As (c'2 - c2)2-4z-(e) > 6 x 36z-(e) by the choice of e, we have shown that 
II 22(X')-X' l ?c~ X' 2. We thus have contradicted the maximality 
of r. Q.E.D. 

Proof of the inequality c(O) > Sup,,= I z - 1 1. Let z e C, z" = 1. Then 
as already seen above z is in the point spectrum of the unitary transforma- 
tion of L2(N, zT,,) associated to the action 0,, of 0 on the asymptotic centralizer 
of N at w e aN\N. Thus there exists a central sequence (Yk)keN in N such 
that | O(Yk) - ZYk !2 0 0 and | Yk H12 = 1 for all k. Q.E.D. 

k -- o I 

V. All injective factors of type II1 are isomorphic 

Let YX be a separable Hilbert space. By definition the centralizer of a 
non-necessarily normal state s on S(-C) is 

S(PC) = {x E S2(C), O(xy) = O5(yx) for all y e 2(-X)J . 

We let ffc be the Hilbert space whose underlying real vector space is the 
same as for XC and such that the identity map $? is an antilinear isometry. 
For x e S(-C) we let xc E 2(7lC) be such that xc _c (x)c for all 9 e -C. Let Tr 
be the usual trace on S(-C), so that for a projection e, Tr e is the dimension 
of the range of e. We denote by x I I.,, and I x IITr the Hilbert-Schmidt and 
trace norm of an x e 2(-C): 1 X IIx, = Tr(X*X)1/2, 11 x KTr = Tr I x 1. We endow 
the space S(-hC)Hs of Hilbert-Schmidt operators of the scalar product <x, Y>Hs= 
Tr(y*x) andwenote that S2(Y), thus becomes aHilbert algebra. In particular: 

l1axJJ1Hs < 1aH II.X.Hs, l1xa lHS ? _ Hla 1 XIIHS , ae2(5C), XC2(5C)HS . 

Also to each normal state s on S(XC) corresponds a unique density matrix 
P > 0, 11 p IITr = Tr(p) = 1 such that 

Tr (px) = (x) for x e ?(X) . 

In this setting the Powers-Stormer inequality [36], Lemma 4.1 shows that 
11 p~l -_ pI212S <II - where 0 and * are normal states on 2(X). 

The main result of this section is the next theorem, whose applications 
will be discussed in the next sections. 
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THEOREM 5.1. Let R be the hyperfinite factor of type II, and N a factor 
of type II, acting standardly in XC and with normalized trace z. The follow- 
ing are equivalent: 

1. N is isomorphic to R. 
2. N is isomorphic to N 0 R and given x1, ***, e N, s > 0 there are 

Zi **.*, Zn e R and a unitary operator X e N O) R with: 

lo xi (9) 1 -X(l (g) zi)X* 112 -<s , ^*** n. 
3. The symmetry a, X ( y oyy (3 X is in Int (N C) N). 
4. 1 xjyj Iy = II Exj ? yjI , x1, *.., xneNg y1, .., yeN'. 
5. I T(E aiV*) I < 11| ai (& b~i fi~x(&x alp .. * , a., big .. * bn e N. 
6. Given xl, ***, xn e N and s > 0, there exists a non-zero finite dimen- 

sional projection e e 2(XJ) such that, for all j: 
11 [xj, e] IIHS < s 11 e IIHS I z(x) - <xje, e>HS/<e, e>HS ? <-S 

7. N is contained in the centralizer of a state 0 on 2(jC). 

The hard part is to go from 7. to 1.: 

Proof of 1. 7. As the commutant of R has property P [42] there exists 
a projection P of norm one of 2(XfC) onto N = R such that P(axb) = aP(x)b, 
a, b e N, x e 2(jX) so zSIP = 0 is a state on 2(X3C) and Nc 2(X)O. Q.E.D. 

Proof of 7. 6. We can assume that xi, ... , x, are unitary operators. 
Assume that for any finite subset F of the unitary group of N and any a > 0, 
there exists a state *O e N* such that [I [*,, ul II ! a, for all u e F while 
I *.(xj) - (xj) I > s for some j e {1, * * *, n}. Then by the weak compactness 
of the state space of N (non-normal states) we could get a tracial state on 
N different from z which is not possible. 

So let F = (u4=1,...,, and a < s be such that each xk belongs to F and 
that, for any (normal) state *O on N: 

(5.2) (11 [*0, us] 11 < 28 for all j) I O(xk) - Z(Xk) I < S- 

Let 2(X3C)* be the predual of 2(X3C), let 2(XC)P be the Banach space (XC)* 
with norm 11 (q1, * * ,) H = I Ia. Then 

O qx(xj) = . ..., up), (x1, *, X 

identifies the product von Neumann algebra (2(C))P with the dual of 2(XC)P*. 
Let W be the set of all (-R * eAdu, u * *, +- RAd up), for * a normal 

state on 2(X3C). Then W is a convex subset of 2(XC)P and hence its weak 
and norm closures coincide. As by the bipolar theorem the set of normal 
states is weakly dense in the state space of 2(X), there is a net ("keI of 
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normal states converging weakly to the state 0 invariant under the Ad uj. 
So we have shown that the weak, and hence norm, closure of W contains 
(0, *.*, 0). Let then g = (3/6p)8 and ' be the normal state on 2(X) with: 

(5.3) 1l+- *-Adu, 1l< k = 1, .. * *, p 
Let p be the unique positive Hilbert-Schmidt operator 11 p IIHS = 1 such that 
*(x) = <xp, P>Hs, for x e 2(X). Then by (5.3) and the Powers-Stormer 
inequality: 

(5.4) 11UkPUk* - p I||HS -< I 11 P I IHS = r . 
Now let Pk = UkPUk* and apply Theorem 1.2.2 to get an a > 0 such that, as 
8 K 1, 

(5.5) Ea(p) ? 0 J1 Ea(Pk) -Ea(P) I|HS < 11 Ea(P) IIHS 
We e = Ea(p) is a finite dimensional projection because Tr (e) < oo and one 
has: 

(5.6) Il [uk, e]IIHS 11eIIHS , k = 1, *..., p . 

Let *, be the normal state on N such that 

(5.7) *.0(y) = <ye, e>HS/<e, e>HS = Tr(eye)/Tr(e), y e N. 
Then for each k, with ek = uk*euk and y e N one has 

#O(Aduk(y)) = <yue, uke>Hs/<e, e>HS = <yek, ek>HS/<e, e>HS , 

so, as 11 ek - e IIHS < ? 11 e llHs we get: 11 - *oAduk 28, and by (5.2) we 
get the last inequality of 6. Q.E.D. 

Proof of 6. 5. Let a,, a,, aeN, IIaj IIg1 and b,, ., beN. Let 
s > 0 be arbitrary and by 6., let e ? 0, be a finite dimensional projection, 
such that: 

(5.8) 11[bV, e]IIHS :s< s1 IIHS , j=1 ... n, 
(5.9) z-(, ajbV) - <, ajbje, e>HS/<e, e>HS s . 
By (5.8) and aj 1 1 we have 1 aj(eb - bVe)e IHS < s I I e I IHS; hence 

<(eaje)(ebje)*e, e>HS - <ajbje, e>HS I : s 11 e HS 
and hence 

< ajba*e, e>Hs - <, ajbj'e, e>HS I < ns e II's aj = eaie, b' = ebie. 
Let X = eX7C be the range of e and Q the reduced von Neumann algebra of 
2(C) by e. Then X is finite dimensional as Q, and a!, b' e Q. The normalized 
trace of any x e Q is 

(5.10) Zq(X) = Tr(x)/Dim e = <xe, e>HS/K<, e>HS 
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So the above inequality, together with (5.9) gives: 

(5.11) Tq(E a;b;*) - T(E ajbV) I < (n + 1)s . 
Let J be the isometric involution of XIC ? ?Jc such that J(d (? (c) = ( ? dC, 
i, Y e X7C. Then for x e Q one has J(x ? 1)J = 1 0 xc. Let m be the dimension 
of XJC and , , em an orthonormal basis for XC, 

Thend =1 and <x (? 1d, i> = z,(x) for all x e Q. 
Moreover J = J.Q31, so that Ji = d and J(x ? 1)d = (x* ? 1)d for all 

x e Q, as can be checked directly for the canonical matrix units eij: dj -ip 

i, j = 1, * * *, m of Q. 
Hence, we have 

<I ((a' (3 1)J(b; (? 1)J)d, i> = K((I a;b;.*) (? 1), i> = Tq(E a;b;*) 
while it is also equal to <(I a(b;`)4, d>. Now, X?C JCC is included in X C(XCC 
and d e XJCX Xc satisfies (egec)X = $, so we have, as (e 0 ec)( aj?bc)(eoec) = 

(5.12) 'q(E a'bb*) = <a, aj (3 bj$ $ 

As = 1, this, with (5.11) completes the proof. Q.E.D. 

Proof of 5. 4. (implicitly contained in [19], proof of Proposition 4.5). 
Let N (3 N' be the algebraic tensor product of N by N' and N 0mi, N' 

the C * algebra generated by N ( N' in XC 0 SX. Let 5 be the homomor- 
phism from N (0 N' to 2(XC) which satisfies 

Y)(Et1 xi ) 0Y) = I ii xi e N yi e N'. 
Let d be a cyclic and separating trace vector of N, and J the corresponding 
involution. Then for a1, **.*, a., b, **., be N: 

T(E ajbV) = <E i> = <E aJbjJi, i> 
because as e is a trace vector Jbj, = bV. So using 5. we have: 

|<E; ajJbJ, d> < aj (0 JbjJ IK j- 
As JNJ = N' we get: 

(5.13) <El'xjy, d>I n |x 0 yj , xj e N. yj E N' 
In other words the map from N 0 N' to C which satisfies w(A) = <Ky(A)$, i> 
is bounded and hence extends uniquely to a state of N 03mm N'. 

So we have for any A, B e N (0 N', that: 

(5.14) w(B*A*AB) < ?1 A 11 w(B*B). 
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As < is a * homomorphism we have w(A*A) = 1(A)d II2 and by (5.14) 

1' (A)72(B)e IH < I A Anlin 11 H(B)d II for all A, B e N O N' 

As the r(B)d are dense in X we get that I1'(A) I _ I A I min and, as min is 
the minimal C* norm on N 0) N' we get the desired equality by [44], Theo- 
rem 2. Q.E.D. 

Proof of 3. 4. By Corollary 3.2 above, by [19], Corollaries 4, 6 and 
Proposition 3.9 we have 4. 3. 

Conversely, let N act in XYC, N (D N in XYC (? XC, and a be the symmetry 
of N ( N. By hypothesis a e Int N ( N so, Theorem 3.1 shows that, for 
a, ..., aGN?e N b1, *, b. e N'?(N' one has 

(5.15) 11 E aibi II xx = II , a(ai)bi IIc X?c 

Let x1, ... , xneN. y1, ..., yn e N', ai = xi (3 1, bi = yi (3 1; then (5.15) means, 
as a(xi (31) = 1 (3 xi, 

(1 ( xiyi) 0 k 1 IKx = |1 E i (9 xi y ex & * Q.E.D. 

Proof of 3. 2. Let N be a factor of type II, satisfying 3. Then it 
satisfies 4. and by Corollary 2.2 it has property F. So Int N # Int N by [9], 
Theorem 3.1, p. 429. Let a be the symmetry of N ?3 N. Let 8 e CtN, then 
by Corollary 4.4 we have 8 (? 1 e CtNO( Nand by [12], Lemma 2.2.2 we have 
(8 ? 1)a(8 ? 1)-1a-1 e Int N 0 N. So 8 ? 8-1 is inner and so is 8 ([28]). There- 
fore we have CtN = Int N ? Int N and hence, with a) a free ultrafilter on N 
the asymptotic centralizer N,,, is not abelian by [12], Theorem 2.2.1, (c)=- (d). 
So by [17], N is isomorphic to N 0 R. 

We now construct an approximate imbedding of N in R. Apparently 
such an imbedding ought to exist for all II, factors because it does for the 
regular representation of free groups. However the construction below 
relies on condition 6. First observe that 4. implies 7. by [19], Corollary 4.6 
and (5.10,) and the proof of 1. 7. We need some notation and lemmas. 

Notation 5.16. For each n C N let Z* be the free group on n generators 
g*... *, qn. For m e Z*n let the length of m be the sum of the absolute values 
of the exponents of the gi in the reduced form of m. Finally for unitary 
operators ul, ... , un in XYC, let, for m e Z*m, u(m) be the unitary operator 
obtained in replacing each gi by the corresponding ui and finding the product 
in 2(C). 

So m u(m) is the homomorphism of Z*m in 2(jYC) such that u9i = ui, 
U = (U1, .*** Us). 
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LEMMA 5.17. Let N be a finite factor satisfying 6., u1, * , U,, be unitary 
operators of N, k e N and X be the set of all words m e Zn whose length is 
less than k. Then for any s > 0 there exists a finite dimensional factor Q 
and unitary operators v1, ... , v,, e Q such that: 

Z-(u(m)) - Zcq(v(m)) I < s for all me X 

where u = (u1, *.*, u.), v = (v1, ** , v.) and zq is the normalized trace of Q. 

Proof. Let 3 = s/3k and using 6., let e e 2(CX) be a non-zero, finite dimen- 
sional projection such that: 

(5.18) 11 [e, uJ IIHS 11 e IIHS, j= 1,.**, n 

I z-(u(m)) - <u(m)e, e>HS/<e, e>Hs < , m e X(C. 
Let ej = ujeu; then II ej - e IIHS 11 e IIHS and, by Lemma 1.4 there are 
unitary operators wj in 2(XK) with wjejw = e and II wj - 1 Hs 1 33 H e IIHS. 
Let v' = wjUj; then we have: 
(5.19) v e = ev; , 1V -uj u|HS <?/k 11 e IIHS for all j 
Let vi = vje = ev. Then each vj is a unitary operator of the finite dimen- 
sional factor Q reduced from S(XC) by e e 2(CX). The normalized trace of Q 
is rq(X) = <Xe, e>HS/<e, e>HS, x e Q. By induction on the length of the word m 
one gets: 

I U(m) - V'(m) IHS ! length (m) He HHs 

as a consequence of (5.19), because for unitary operators a, b e ?(3C) one has: 

(5.20) H aujb - av'b I sk/Ic Ie HHS H for all j. 
Now by (5.19), e commutes with all v', so that (v'(m))e = v(m) for all words 
m. So we get: 
(5.21) < Ku(m)e, e>HS -<v(m)e, e>HS s 11 e HS m C . 
By 5.18 and the definition of Zq we get the conclusion. Q.E.D. 

LEMMA 5.22. Let N satisfy condition 6., let Gl be a free ultrafilter on N 
and RW the ultraproduct associated to the hyperfinite factor R. Then there 
exists a normal homomorphism of N into RW. 

Proof. Let 9F = Z*o be the free group with countably many generators 
gip , , gny , .. Let T be the normalized trace on N, ro on R. Let u1, . .. , u,, . . 

be a sequence of unitary operators of N generating N as a von Neumann 
algebra. For each k e N let Xk C = be the set of all words m e T involving 
only g1, , g, and with length less than k. 

By Lemma 5.17, for each k, let v', vk, *., vk be unitary operators of R 
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such that: 

(5.23) 
Z 
7(u(m)) - Z(vk(M)) k 1/i, for all m e Sk 

weevk = (Vk, Vk, * * , Vk, ,1 

For each j e N, let vj be the unitary operator of Rw represented by the 
sequence (v,)k6N. Then as each word m e F belongs to all Xk, k > k(m), we 
get, with v =(v,, ***, vj, * .): 

(5.24) ZO,(v(m)) = limk_.7 ;(vk(m)) = Z(u(m)), m ei. 

For x e a = * algebra generated by the uj, j e N, let r(x) = % \mv(m), when 
X = E Xmu(m). If , Xmu(m) = 0 then F X5m mz(u(m)*u(m')) = 0 and hence, 
by (5.24) E 5m^m,zo,0(v(m)*v(m')) = 0, so that the definition of w is un- 
ambiguous. By construction w is a trace-preserving * homomorphism of af 
into RI. So by [35], we can extend w to a trace-preserving * homomorphism 
of N into R@; w is then normal, infective. Q.E.D. 

LEMMA 5.25. Let N satisfy condition 6., then there exists, for each free 
ultrafilter w on N, a normal isomorphism 8 of N 0 N in the ultraproduct 
(N 0 R), such that: 

(a) For each x e N, 8(x 0 1) is represented by the sequence (x 0 iR)eN. 

(b) For each y e N, 8(1 C y) is represented by a sequence of the form 
(1N O ZP}peN. z, e R. 

Proof. Let w1 be the unique isomorphism of N in (N 0 R)) such that 
r1(x) = (x 0 1RX6eN. x e N. Let w be as in Lemma 5.22 and w2 the isomorphism 
of N into (N? R)@ such that w2(Y) = (iN 0 (w(Y))4)v6N where (w(Y))ve6N is a 
representing sequence for r(y) e R@, y e N. By construction w1(N) and r2(N) 
are commuting subfactors of (N 0 R)0, and as we are in a finite factor, we 
can identify w1(N) 0 w2(N) with the subfactor of (N 0 R)w generated by 
w1(N), w2(N). Then w10wC2 is an isomorphism of No Ninto (N? R)w satisfy- 
ing (a) and (b). Q.E.D. 

End of the proof of 3. 2. Let d: N 0 N -o (N 0 R)w be as in (5.25). 
Let xj, .*.. * x*n e N, s > 0, and by the hypothesis on the symmetry v: N0 No- 
N 0 N, let v be a unitary operator of N 0 N such that: 

(5.26) 11 Xi A 1 -V( ( Xj)V* 112-< s/2 , n . 
As a preserves the L norm and is a * homomorphism: 
(5.27) 11 19(Xi O 1) - (v)8(10(l) Xj)89(V)* 112 ! s/2, j= , **,n . 
Let (X,),N be a representing sequence of unitary operators of NO R for 
X = #(v) e (NO0 R)w. Let, for each j, (ZOe6N be a sequence of elements of R 
such that (1 0 Zj,,eN represents 8(1 0 xj). Then we have, by (5.27): 
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(5.28) lim,,, I1 Xj (? 1 - XJ1 (l) Z)X,* 112 < s/2, for all j . 

So for a suitable v e N we have conclusion 2. Q.E.D. 

Proof of 2. 1. Let N satisfy 2. and hence let (Nk)keN be an increasing 
generating sequence of subfactors of N, all isomorphic to N, with relative 
commutant isomorphic to R and giving factorizations N = N, (? N,. Let 
x1,* * *xe N, s>OandletkeNx;, ***, x'eNksuchthatIxj -/2 
We want to prove the condition of approximation called condition C ([34]), 
for x1, **, xn and s. By the above argument we can assume that all xj 
belong to M( C in some factorization N = MO($ R of N, with M isomorphic 
to N. Let then z1, *- * , z. e R and X unitary, X e M OD R with 

I xj- X(1M z ( zj)X* 112 < /2 , for all j = 1, ** *,n. 

By the choice of R, let Q be a finite dimensional subfactor of R, and 
q1, **, q. e Q with 11 - qj 112 < s/2 for all j. Then X(C (D Q)X* is a finite 
dimensional subfactor of MO R = N and 11 - X(1M (0 qj)X* 112 < si = 

1,itS, n. Q.E.D. 

Remark 5.29. Let N and XC be as in the hypothesis of (5.1), let 11 be the 
unitary group of N with discrete topology and wc the identity representation 
of qt in Xk7. Then the representation of Glf in 2(XC)H defined by p(u)(y) = uyu* 
is unitarily equivalent to wc ? We', the tensor product of wc by its conjugate. 
So a reformulation of 7. - 1. of Theorem 5.1 is: 

(5.30) N hyperfinite w1 i? Wc weakly contains the trivial representation. 

With the notations of (5.1) we also have, by 7. 1.: 

(5.31) N hyperfinite for any unitary operators ul, ..., un C N, 
(5.31uj ) lKc = n . 

Note also that the last condition of (5.31) was the only one used in the 
proof of Corollary 3.2. 

Remark 5.32. The proof of 5. 4. given above extends to infinite factors 
and shows that a factor M is semi-discrete if and only if some (and then all) 
faithful normal state q on M admits a purification (in the sense of Powers- 
St0rmer [36] and Woronowitez [48]) s5 on the C* tensor product of M by M0. 

Remark 5.33. A Banach algebra B is called amenable [4], [26] when 
H1(B, Y) = {O} for any dual B-bimodule Y. A von Neumann algebra M is 
called amenable when H'(M, Y) = {O} for any dual normal B-bimodule [27]. 
In [27], Johnson, Kadison, and Ringrose showed that all approximately finite 
dimensional von Neumann algebras are amenable. 
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We show below that if N is an amenable factor of type II, it satisfies 
condition 7. of Theorem 5.1. 

Let us take N acting in XJC = L2(N, z) (z the canonical trace) with 1 as 
unit trace vector. Let X be the Banach space of linear functionals * on 
2(jJC) such that: 

(a) For some K < oc, (xAy) I < K Ix2 I1 A I Iy I 2 for all x, y e N, 
A e 2(C). (The smallest such K is denoted by II * ) 

(b) *(x) = 0 for all x e N. 
It is easy to see that the unit ball of X is weakly compact (for the weak 
topology a(X, 2(jJC))) and that Xis naturally a dual normal N bimodule, with 
operations: 

(x*)(A) = *(Ax), (*x)(A) = *(xA), 

for x e N, A e 2(XC). Now let D e Z'(N, X) be the derivation of N in X such 
that: 

D(x)(A) = <(xA - Ax)1, 1> , A e 2(3C) . 

Then to say that D e B'(N, X) is trivially equivalent to the existence of a 
state * on 2(jJC) satisfying condition 5.1.7. 

Remark 5.34. Let us call a state 9q on 2(XC), such that Nc (2(XIC)),D, a 
hypertrace for the factor N. Then the existence of a hypertrace on N implies 
that N is finite and by Theorem 5.1, that N is hyperfinite, which agrees 
with the terminology of Dixmier [15]. 

Remark 5.35. One can consider condition 6. of Theorem 5.1 as an analogue 
of F0lner's condition for amenable discrete groups [21] and a hypertrace as 
an analogue of an invariant mean on such a group. Then the proof, given 
above, of 7. 6. is exactly analogous to the proof, given by Namioka, of 
F0lner's theorem [23]. 

VI. Stability properties of the class of injective von Neumann algebras 

This section is an exposition of definitions and results due to J. T. 
Schwartz [42], Choda and Echigo [6], [7], Hakeda and Tomiyama [25], Arve- 
son [3], Effros and Lance [19] and Choi and Effros [5]. If some of the state- 
ments are new they are simple to deduce from the quoted papers, except 
perhaps for Corollary 6.9 (c). One considers the category of C* algebras 
with units, the morphisms being the completely positive, unit preserving, 
linear maps. 

A C* algebra A is called infective when the following analogue of the 
Hahn-Banach theorem is true (cf. [19]): 
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For any C* algebras B c C and any morphism 8 of B in A, there is an 
extension j of a to C: d: C- .A. 

Arveson's theorem [3] shows that 2(XjC) is injective for any XJC. 

Definition 6.1. A von Neumann algebra M is called injective when it is 
injective as a C* algebra. 

This definition ties up with the extension property of [25] by: 

PROPOSITION 6.2. A von Neumann algebra M in XJC is injective if and 
only if it is the range of a projection E of norm one from 2(XC). 

As in many categories, the infectivity of von Neumann algebras is 
related to the existence of solutions to certain equations, more precisely 
Choi and Effros prove in [5] that: 

PROPOSITION 6.3. For each n let F = MJ(C). Let Mbe a von Neumann 
algebra in UX. Then M is injective if and only if for each s = s* e M (0 Fn, 
each a = a* e F, such that b (? a < s for some b = b* e 2(XC), there exists an 
xeMssuch that xa < a s, 11x11 < II b 11, x = x*. 
The next proposition shows that the infective von Neumann algebras form 
a monotone class. 

PROPOSITION 6.4. Let XC be a Hilbert space. 
(a) If M in XC, is an injective von Neumann algebra, then so is its 

commutant M' (cf. [25]). 
(b) The weak closure of an ascending union of injective von Neumann 

algebras is injective (cf. [19]). 
(c) Same as (b) with intersections of decreasing families. 

In particular, as each finite dimensional or each type I von Neumann 
algebra is injective so are the approximately finite dimensional ones (see [20] 
for equivalent definitions of this class). 

PROPOSITION 6.5. Let XC be a separable Hilbert space, X, a standard 
Borel space with probability measure p and a -~ M(a) a Borel map from X 
to von Neumann subalgebras of 2(JC). Then M = 5M(a)dpe(a) (elements of 
M are classes of essentially bounded Borel functions (xarex, xa e M(a) for 
all a e X) is injective if and only if almost all M(a), a e X are injective. 

Proof. By the Hahn-Banach separation theorem, and by 6.3, if a von 
Neumann algebra N in X is not infective, there is n e N, s = s* e N 0 F, 
b e 2C(X), b = b*, H b II < 1, a = a* e F -and 0 e (2(X) 0 Fn,)+ s > 0, such that: 

(6.6) b a < s, b0(xa) > ?(s) + a, for any x = x* eN, 11x11 H 1 . 
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Replacing s by s + s/2 one shows that (6.6), with s/3 instead of s, is still 
satisfied for a in a (norm) open subset 3O of the self adjoint part of Fn. 

For each n e N let (a,, j)jeN be a norm dense sequence in the self adjoint 
part of Fn. Then N is not injective if and only if for some integers n, j, q, k, 
there exist s = s* e N?( Fn, b = b*, b es (X), II b II < 1, and 0 e (J(X) ? F")* 
with 

11Hs k, < k, b (a cs 
and 

A 0) an, i) > ))(s) + l1/q, for any x = x* eN, 11xH < 1. 
Now, if M(a) fails to be injective for a non-negligible set of a's there are 
integers n, j, q, k such that the corresponding set of a's is non-negligible, 
and, say, is equal to X. Then for each a e Xwe choose (using [10], Appendix 
V) a baGe(3(X), IIba I < 1, ba = ba*, an sa = s* eM(a), 11 sa 1 < k and a O5ae 

(2(Xf) (? F,)+, with II Oa 11 < k and such that the corresponding families are 
Borel, while 

(6.7) ba (? Ornji< Sa f qa5(X a,,i) >_ Oa(sa) + l1/q 
for all x e M(a), x = x*, 1 x 11 < . 

The above selection is possible because one needs to check (6.7) only for 
a strongly dense set of x e M(a). Then let 

b = (ba)aex |(X)dp = P S = (Sa)aex O-M(? Fn . 

and 0 e- (MO( Fn)*+ be such that for any y = (Ya)aeX, ya e M(a) ? Fn, one has 

W(y) = a(ya)dp(a). Then 

ba(ga,,i <_ S A(9x an,2) > O5(s) + l/q for all xeM, x = x*, x11 _ 1. 

This shows that M is not injective, by 6.3. The inverse implication follows 
by a similar argument. Q.E.D. 

PROPOSITION 6.8. Let M be a von Neumann algebra generated by a von 
Neumann subalgebra N and a subgroup 9 of the normalizer of N. Then if 
N is injective and 9 is amenable as a discrete group M is injective. 

Proof. By 6.4 (a) we just have to show that M' is injective but M' is 
equal to (N')O, for the natural action of 9 on N'. As 9 is amenable, there 
exists a projection of norm one from N' to (N')O. One then applies 6.4 (a) 
and 6.2. Q.E.D. 

COROLLARY 6.9. (a) Any continuous representation w of an amenable 
locally compact group 9 is such that (w(g))" and w(3)' are injective. 



112 A. CONNES 

(b) The group measure space construction from a triple X, Ae 9 with 9 
amenable discrete, gives an injective von Neumann algebra. 

(c) Any representation w of a separable connected locally compact group 
G is such that wc(G)' and wc(G)" are injective. 

Proof. (a) and (b) follow trivially by (6.6). To get (c) one can restrict to 
factor representations by 6.5, then to real connected Lie groups by [31], 
Proposition 2.2, and finally apply (6.6) using [16], Proposition 1.7 and Pro- 
position 2.3. Q.E.D. 

We are grateful to J. Dixmier for pointing out to us the proof of 6.7 (c). 

VII. The classification of injective factors 

We restrict our attention to factors acting in a separable Hilbert space. 
The types I,,, n < 00 and I.o are well known; there is up to isomorphism only 
one factor in each of those types. 

THEOREM 7.1. Up to isomorphism, the hyperfinite factor is the only 
injective factor of type II,; all its subfactors are hyperfinite and hence 
classified by their type (IJ, n < 00, or II,). 

Proof. Let N be an injective factor of type II, acting standardly in a 
separable Hilbert space UC. Let E be a projection of norm 1 of 2(JC) onto 
N; then by classical results of Tomiyama [47], it is a conditional expectation: 

E(axb) = aE(x)b, x e J(X), a, b e N. 

So z o E (z the normalized trace of N) satisfies condition 7. of Theorem 5.1: 

o(uxu*) = 0(x), x e S(TC), u unitary in N. Q.E.D. 

By Theorem 7.1, R is the only infinite dimensional factor which is con- 
tained in all others. The terminology hyperfinite is also justified by condition 
7. of Theorem 5.1: an infinite dimensional factor is the hyperfinite factor R 
if and only if there exists on 2(iC) a state invariant under inner automor- 
phisms of R, a strengthening of the condition of existence of a trace on R. 

COROLLARY 7.2. Let 9 be a discrete countable group with infinite 
conjugacy classes; then the left regular representation of 9 generates the 
hyperfinite factor R if and only if 9 is amenable. 

Proof. If 9 is amenable, apply 6.7 (a) and 7.1, Otherwise see [421. 
Q.E.D. 

Combining Theorem 7.1 and Proposition 6.5, we see that any von 
Neumann subalgebra M of R is a direct integral of hyperfinite factors or of 
type I,, n < 00, factors. This observation has the following important 
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consequence: 
COROLLARY 7.3. Let 3 be a self-adjoint subset of R. Then the von 

Neumann subalgebra of R generated by 3 is: M = {x e R, [x, yEj n- 0 0 
strongly, for any bounded sequence of elements of R such that [ye, sJ -00 
strongly for s e 3}. 

Proof. Let N be the von Neumann algebra generated by 3. We have 
Nc M. Let (Nk)k eN be an increasing sequence of finite dimensional sub- 
algebras of N, generating N. Assume that for some s > 0 and y e M one 
has II y - x I12 >- for all x e N. Then as the relative commutant of N, n R 
in R is equal to Nk for each k e N (because Nk is finite dimensional), there 
exists a unitary uk e Nk n R such that II ukYUk* - y 2I, 2 s (because the strongly 
closed convex hull of the uyu*, u unitary in N, n R, contains an element of 
(NkA nR)' by standard arguments). Then the sequence (uJk)keN satisfies 
[Uk, SI k - 0 strongly, for s e 3 but [uk, y] -/+ 0 strongly. Q.E.D. 

By Proposition 6.4 the next theorem shows that up to isomorphism there 
is only one factor of type II,, which is the weak closure of an ascending union 
of finite dimensional von Neumann algebras. The terminology "hyperfinite" 
to designate the last property is inadequate; we shall follow [20] and call it 
"approximately finite dimensional". 

THEOREM 7.4. Let R0,1 = R (? 2(C). Then up to isomorphism R,,, is the 
only injective factor of type II,,. hence the only approximately finite dcimen- 
sional one. 

Proof. Let M = N X 2(JC) be injective, with N of type II,. Then using 
a conditional expectation of M on N one gets that N is infective (by 6.2) and 
hence 7.1 applies. Q.E.D. 

Combining Corollary 6.7 (c) and the theorem of Dixmier-Pukanzky ([37]) 
one gets that R,,, is, with 2(C), the only factor which appears in the direct 
integral decomposition of the von Neumann algebra generated by the left 
regular representation of a connected separable locally compact group. 

THEOREM 7.5. Let M be an injective factor of type IIIJ; then M is a 
Krieger's factor, i.e., it is the cross product of an abelian von Neumann 
algebra by an ergodic automorphism. 

Proof. Let M = W*(N, 8) be a discrete decomposition of M. By con- 
struction N is the centralizer of a weight on M and hence is injective as M. 
So, combining 6.5 with 7.4, we find that R,,1 is the only factor occurring in 
the direct integral decomposition of N. Hence Theorem II.1 [10] applies. 

Q.E.D. 
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COROLLARY 7.6. Two injective factors of type III, are isomorphic if 
and only if their flows of weights are isomorphic. 

This is a known result of W. Krieger [29] combined with 7.5 and [13]. 

THEOREM 7.7. For each X e JO, 1[, the Powers factor RI is, up to isomor- 
phism, the only injective factor of type III1 (see [8]), and in particular the 
only approximately finite dimensional one. 

Proof. Let M = W*(N, 8) be a discrete decomposition of M (cf. [8]). 
Then, as above, N is infective and Theorem 7.4 shows that N is isomorphic 
to R.,1. Then by [12] one gets the conclusion. Q.E.D. 

THEOREM 7.8. Any injective factor of type III, is semi-discrete and 
approximately finite dimensional. 

Proof. By [8], p. 167 and Theorem 7.7 the cross product of M by lTo, 

the modular automorphism for a To : 0, is isomorphic to RI, To log X = 2w. 
The conclusions follow easily. Q.E.D. 
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