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Annals of Mathematics, 104 (1976), 73-115

Classification of injective factors
Cases II,, I, III,, » = 1

By A. CONNES

Introduction

A von Neumann algebra M, acting in a Hilbert space IJC, is called injec-
tive when, as a subspace of the Banach space £(J() of all bounded operators
in JC, M is the range of a projection of norm one. The main result of this

paper is:

THEOREM 1. All injective factors of type II, acting in a separable
Hilbert space, are isomorphic.

We now mention several applications, all of which solve problems which
remained open for a long time.

COROLLARY 2. All subfactors of the Murray and von Neumann hyper-
finite factor R ([34]) are isomorphic to R or finite dimensional (cf. [41],
Pb. 4.4.27).

This shows that R can be characterized as the smallest infinite dimen-
sional factor, it can be imbedded in all infinite dimensional factors and is, up
to isomorphism, the only one. Also all von Neumann subalgebras of R are
isomorphic to a product of von Neumann algebras A, ® M,(C), n =1,2, ---
and 2 von Neumann algebra A X R, where A and the A, are abelian von
Neumann algebras. Thus all von Neumann subalgebras of R are classified
up to isomorphism by the number of atoms in the A, and the A4 and the
presence of a non-atomic projection in the 4, and A.

The factor R is the first one all of whose von Neumann subalgebras are
classified. In [12] we showed that the group Out R = Aut R/Int R of classes
of automorphisms of B modulo inner automorphisms is a simple group with
countably many conjugacy classes indexed by a pair (p, 7), peN, 7€,
v =1.

Another remarkable property of the factor R is that if S < R is any self-
adjoint subset, the von Neumann subalgebra M of R generated by S can be
characterized by a bicommutation property, analogue to the bicommutation
in a type I factor:
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reM =[x, y.] " 0 strongly for any bounded sequence

(Ya)nen In R such that [s, .,] " 0 strongly , for seS.

COROLLARY 3. Let S be a discrete countable group and ) the left regular
representation of S in 1X(9). Then if S is amenable the commutant M8)' of
X is @ von Newmann algebra of the form M8) = AQRPB Y. _ A, Q® M,(C)
where the A, and A are abelian von Neumann algebras (cf. [41], Pb. 4.4.28).

It is known from the Schwartz property P that if §is not amenable the
von Neumann algebra A(S) is not of the above form. In particular if § has
only infinite conjugacy classes the commutant of A(8) is isomorphic to E.

COROLLARY 4. All injective factors of type 1L, acting in a separable
Hilbert space, are isomorphic (cf. [41], Pb. 4.4.11).

Let R,, = R ®Q M_(C) be the corresponding factor. Corollary 4 implies
that all factors of type II. which are generated by an increasing sequence
of finite dimensional * subalgebras are isomorphic to R,,. (The terminology
used to qualify this approximation property of a von Neumann algebra by
finite dimensional * algebras is usually “hyperfiniteness”. However it is
inadequate for nonfinite von Neumann algebras, in which case we shall
follow [20] and use the adjective “approximately finite dimensional.”)

COROLLARY 5. Let G be a locally compact connected separable group and
A the left regular representation of G in LX(G). Then the commutant MG)
1s a von Neumann algebra of the form:

MGY = AQRQM(C)D 3., A, ® M,(C) D A. ® M(C) .

We now pass to more general representations of such groups. A theorem
of J. Glimm and O. Marechal [30] asserts that for any infinite approximately
finite dimensional factor M and for any non type I separable C* algebra @
there exists a representation 7 of @ such that #(®@)” = M. Thus the class of
approximately finite dimensional factors is the smallest class of factors
suitable for representation theory of non type I C* algebras (with @ a
uniformly hyperfinite C* algebra, the 7(®)"” are certainly approximately
finite dimensional).

Qur next result characterizes this class:

THEOREM 6. For a factor M acting in a separable Hilbert space JC the
following properties are equivalent:

(a) M is approximately finite dimensional:

(b) M is injective;
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(¢) M has property P of Schwartz [42];
(d) M is sem1 discrete [19].

The equivalence between those properties had been conjectured by
several authors, in particular that (a) = (¢) was believed since [42], that
(b) = (d) = (a) was conjectured in [19]. The next corollary was conjectured
by Kadison and Singer.

COROLLARY 7. Let G be a solvable separable locally compact group or a
connected locally compact separable group. Then any representation @ of G
wn a Hilbert space genmerates an approximately finite dimensional von
Neumann algebra.

In fact, more generally we shall see that if G is locally compact separable
and G,, the connected component of the identity, is such that G/G, is ame-
nable, then any 7(G)” is approximately finite dimensional. In [8], following
the works of Powers, Araki, Woods and Krieger, we introduced invariants
S and T for factors of type III, based on Tomita’s theory. This allowed us
to subdivide the class of type III factors in subclasses III;, » €]0, 1], III, and
III, corresponding to the subgroup of R*, S(M). The important features of
this theory are:

(1) Computability of the invariants S, T for all known constructions of
factors; this is due to the characterization by the non-commutative Radon-
Nikodym theorem [8] of the modular automorphism groups as the sections
of an abstract kernel R 2 Out M, where Out M = Aut M/Int M, and to the
equalities

S(M) = Spectrum 4 , T(M) = Kernel o .

(2) The existence and uniqueness of the discrete decomposition of a
factor of type III,, A €]0, 1[ as cross product of a factor of type II, by an
automorphism 8 with module A. The discrete decomposition was also extended
in [8] to the case III,.

One criticism of [8] was that case III, was left untouched. However
Lemma 1.2.5 [8] was really a crucial idea of Takesaki’s solution of case III,
by the introduction of continuous cross products.

A more serious criticism was the absence, at the time, of any reasonable
classification:

(a) of factors of type IL,

(b) of their automorphisms with module .

In [12] we showed (Corollary 6) that all automorphisms 6 of R,, = RQ M.(C)
with the same module \ = 1 are conjugate. When M is an injective factor
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of type III,, the associated factor of type Il in a discrete decomposition
inherits the injectivity of M and we now apply Corollary 4 to conclude:

THEOREM 8. For each N €0, 1], all injective factors of type III, are
1somorphic to Powers’ factor R,.

In case III, the discrete decomposition of M allows one to show that M
is obtained as the cross product of an abelian von Neumann algebra by a
single automorphism. It then follows from a theorem of W. Krieger [29]
that such factors are classified by ergodic (non-transitive) flows. In case III,
the only known injective factor is the factor R, of Araki-Woods. I am
grateful to E. J. Woods for his kind invitation to Queens University where
the present work was done.
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I. Preliminaries

1.1. Joint distribution of pairs of positive square integrable operators
affiliated with a semi-finite von Neumann algebra. Let N be a semi-finite
countably decomposable von Neumann algebra and 7z a faithful semi-finite
normal trace on N. We use the L? spaces of Dixmier [14] and Segal [43], for
the values p = 1, 2. An element z of L?(N, 7) is a closed operator affiliated
with N whose domain is strongly dense with respect to N ([43], Def. 2.1). A
positive operator k affiliated with N is called integrable when its spectral
measure: Y(B) = 7(y5(h)), for any Borel subset B of R} = ]0, o[, satisfies
S MY(\) < oo, and in this case one defines 7(h) as the value of Sxdv(%). (See
[48], Corollary 12.6.) Note that the spectral measure v, is a Radon measure
on |0, + o[, when & is integrable; v({0}) can be + c but this does not affect
the equality 7(h) = SR' MdyY()) (see [43]). For z e L?(N, 7), |z |? is integrable

+



CLASSIFICATION OF INJECTIVE FACTORS Vi

and one has
(z(z[))> = ll=ll, ([43], 12, 11; 3.8; 12.14) .

PROPOSITION. Let N and 7 be as above, X = R2\{0}, H, K the continuous
Sfunctions H(z, y) = z, K(x, y) = v, (x, y) € X. Let h, k be positive elements
of L*(N, 7). Then there exists a positive Radon measure ¢t on X such that:

(a) For any positive Borel function f on [0, + o[ with £(0) = 0 and
f(h) integrable (resp. f(k)), the function f(H) is integrable on X and
2(f(0) = p(F(H)) (resp. (£ (R)) = (£ (K))).

(b) For any pair f, g of complex Borel functions on [0, + o[, with
f(0) = g(0) = 0, f(h), g(k) e L¥N, 7) one has:

[ f(R) — 9(B) |l = || F(H) — 9(K) . -

Proof. For ¢ > 0, one has xi.,.((h)e* < h* so that y,(h) is integrable for
any Borel subset A of [¢, [. Hence as in [33], Appendix, there exists a
positive finite measure g, on [¢, o[ X [0, o[ such that z,(4 x B)=7(x.(h)xs(k)),
for any Borel sets AcC|[e, o[, BC[0, [. In the same way one gets a
measure £° on [0, co[ X [g, oo with, for A C [0, [, BC[e, [, #(4A X B) =
7(x A(R)xs(k)). As the plane Borel sets form the least monotone class contain-
ing the disjoint unions of rectangles we see that all measures p,, ¢ agree
on the intersections of their domains and hence define a unique positive
Radon measure £ on X such that #2(A x B) = t(y.(h)xs(k)) provided 0 ¢ 4 or
0¢B, A, BC[0, «[. So p(x.(H)) = (A x R,) = t(x4(h)), provided 0¢ 4,
and the first assertion follows. Hence we have

| (H) = FH) |l = [|fi(h) — LB |l

for f,, f. complex Borel functions on [0, o[ vanishing at 0 and making f;(h)
square integrable. So to prove (b) we can assume that f (and g) is of the
form: f = 37 \%4; 0¢ A;. Then 7(f(h)g(k)) = p(f(H)3(K)) and hence (b)
follows. Q.E.D.

Proposition I.1 summarizes the advantage of the L? norm over the other

L* norms, p # 2, for which it is no longer true. The next section contains
the main technical lemma of this paper: Theorem 1.2.2.

1.2. Stability of the polar decomposition of square integrable operators
under square integrable perturbations. Let J = L*N, z) be the Hilbert
space of square integrable operators affiliated with the von Neumann algebra
N with faithful normal semi-finite trace .

Each z € I has a unique polar decomposition: z = u(x) | | where u(x) is
a partial isometry with support equal to the support of x and where |2| =
(x*x)".
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The map « — |« | was studied in [38] and it follows from [38] that for
normal x and y € JC one has
el =Tyl =lle -yl .
In the non-abelian case this inequality is no longer true but the inequality of
Powers-Stormer [36] replaces it:
PROPOSITION 1.2.1. Let N and t be as above.
Let x, y € L*(N, 7), then
el = lylE<lek =1yl <o —yldol+ vl .

Proof. For the first inequality see [36] when N is a type I factor and
[24], Lemma 2.10 for the general case. Also, |||z [* — |y [*||. is the distance
in N, between the vector states associated to z* and y* and hence is smaller
than Hx _yllz(Hxllz + Hyllz) Q-E-D-

Even when N is abelian the map z — u(x) is quite discontinuous. For
each a > 0 let u, be the map from J = L*N, ) to the set of partial iso-
metries of N defined by u,(x) = u(x)E,( «|) where E, is the characteristic
function of Ja, 4+ o[ CR,. Still each u, is discontinuous and even in the
abelian case we cannot find for each 6 > 0 an ¢ > 0 such that for any « € L*
there exists an a > 0 satisfying u.(x) = 0 and:

yelt, |ly—zl S cllell,=—|lu@) — ua(®) . < [ (@) ]: -
However we shall prove the following continuity.

THEOREM 1.2.2. Let N, ¢ be as above. Let 6 €10, 1[, n € N, put € = (6/6n)°.
Then for any subset (x,);_,.... of LN, 7) of diameter less than |l x|,
there exists an a > 0 such that

200(2) — () s < 81 o) [l
” T, — ua(xl) !xl | ”2 § 0 || Xy ||z .

As an easy corollary of Theorem 1.2.2 we have:

COROLLARY 1.2.3. Let N, 7 be as above, d €0, 1[, n € N and ¢ = (6/24n)*.
Then for any unitary operators (u;)i-,...._, in N and any equivalent pro-
jections e, e, € N such that || [us, €]l < ¢l e, |, for all k and s, one can find
a projection ¢ < e, \/ e, such that

||ees—3a||235||es||z, 3=1,2,

H[eruk]HzéBHeHZ’ k=1,2,"',’n'—1.
For the proof of 1.2.2 we begin by stating the elementary properties of
the maps u,: u.(x) = w(x)E,(x]).

LEMMA 1.2.4. Let N,  be as above and a > 0, x € L*(N, 7).
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(1) u(vr) = vux), u(xv) = u(x)v, v a unitary operator of N.

(2) wul(0(x)) = O(u,(x)), 6 € Aut N.

(8) Let «® =zE,|x|, b>0, then wu,(r’) = u(r) and u,(z*)|z*| =
u(x) | x|, where ¢ = sup (a, b).

(4) uoh) = usw(Sf(h), heLXN, )", f increasing bijection from R,
to R,.

Proof. (1), (2) and (4) are clear. For (3), |¢E,|x|| = |x| E,|z| and
w@E, |z]) = w(@)E, |x|. Fort >0, E,(tE(t) =0ift <c¢,and =1if t > ¢,
so E(|z*]) = E(x]) and as E,(|z|)E(|z|) = E.(x|) we get (3). Q.E.D.

LEmMMA 1.2.5. Let N, t be as above, x € L*(N, 7). Then
[, 1an@) = wasllz D lzda = [l — =] [
Proof. Let w = u(x), h = |x|. For any Borel function f from R, to R
such that f(k) € L*(N, 7), f(0) = 0, we have
luf(h) — f(R) [l = o(f(R)w* — 1)(w — 1)f(h)) = o(f(R)(2 — u — u*)) .

The expression that we want to compute is

Snl | wE,(h) — Eunlh) |} da = SR‘ ((Bar(R)@ — u — u*))da .

"
But (E,: «(h))* = E,i+(h) = E,(h*) by 1.2.4 (4) and S _ E,(h)da is equal to h*.
R
Now (k2 — u — u*)) = [|uh — h |[%. " Q.E.D.
LEMMA 1.2.6. Let N and 7 be as above, h, k€ L*(N, 7)*. Then

[, ) = wasa) [ da < |1 = Kl | 0+ K]l

Proof. As h and k are positive we have wu,(h) = E,(h) for each a > 0.
So by Proposition 1.1 we can assume that N = L=(X, y), that = = ¢ and &
and & are square integrable functions on X. We have S . | E(x)—E,(y)|da=
R4
|z — y| for z, y e R, so by Fubini’s theorem

Snx | Eu(h?) — EJ(k) |l da = || B* — k[, .

As
| Eoy(B?) — EJK)| = | E(h*) — E (k) [,
we have
| E(h*) — E (k) ||} = || E(h®) — E(K) ], ,
S0:

SR' || Eh*) — E k) |;da = [|h* — B[, = |[|h — k||, ||h + K], .
! Q.E.D.
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Remark 1.2.7. One can show that there is no constant K > 0 such that
the inequality

[, | Blh) = B9l da < K |1~ Kl

holds for any h, k € L*(N, 7) (unless N is of bounded type I).

Proof of Theorem 1.2.2. We assume that || z,|), = 1. Whenbd— 0+, the
xt = x;E, | x;| converge in L* to x;, so using 1.2.4(3) we see that we can
assume that all z; and hence x, are of finite rank. Then replacing all ; by
vx; where v is a unitary operator such that vx, > 0 we can assume, using
1.2.4 (1), that , > 0. By 1.2.1:

g — 2|l = ll@; — @l + || [25] — 2, ][] S € + 26 = 3.
So we get, by Lemma 1.2.5:

SR. | ware(@;) — uaro(| ;) | da < 9e .
"

As |||z;| — z,]|, < 2¢"%, Lemma 1.2.6 shows that:

S N waz(l 2 ) — wan(@) ||fde < (2672) x 3 = 66
Ry

The inequality ||z + ¥y [E < 2|« ]| + 2]y ||} ®, y € LA(N, t) shows that:

g 1 are@;) — warele) 3 da < 18e + 126¥* < 306

Ry
Now let G be the decreasing function from ]0, + [ to [0, + <[ such that
G(a) = t(Eu (@) = t(Eus(z,) = || Eaaz) [} = || wars(@,) |2 -
As || z,|] = 1 we have
S ., G(a)da = T(S . Ea(xf)da> =7@)=1
RYG R

so that G(a)da is a probability measure on ]0, + co[. Let

& = {b >0, [[uplx;) — wpn(x) |2 > 7 [| wpe(®,) [} -
For a € &; we have

Gla) < e[| uga(@s) — arra(®,) [I3

so that
Sg G(a)da < €7*30e/? = 30e"*.
i

Let 0 be an open set in R, containing 0, all §;,7 =1, ---, n and with
Sm . G(a)da = 30ne'*. Then the smallest b > 0, b € V° satisfies
Ry
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S] [G(a)da, < 30net <1
0,b

hence b < . Let the a required in 1.2.2 be ¢ = b2, As b¢ &; we have
[ wa(®;) — ua(@) [l: = €72 || ual®)) [l forall j=1, ---,n.
Moreover for any ¢t € R, one has
b
S E(t)ds = (1 — Eyt?) + bE(t?) .
0
Hence
b
(1 — @) ||, = o(@i(1 — Eye)) < T(So E,(xf)ds)
_ Sb o(E())ds = Sb G(s)ds < 30me'* .
0 0

As Ey(x)) = Eo(@) = uq(@), |2, [l = 1 we get:

|| Ty — ua(xl)xl Hz =< 6n'/%"* H &, ||2 . Q°ED

Proof of Corollary 1.2.3. Let x,=(e,+e,)"? x; =uauf,j=1, -+, n—1.
All the z; are positive and we have:

usecu; — el = 2| e; ||, (Proposition 1.2.1) ,
[Juwtu; — x|l < 2¢ | x5, ,
[|wseuy — x, ]l = (2e)2 ] 2, |, (Proposition 1.2.1) .

So the z; form a set of diameter less than 4¢*|| z,|,. Let, by 1.2.2, @ > 0 be
such that

| Eu(xo) — Eo(x;) |l = 6n(4e'?)"* || Eo(2o) I];

” ona(xo) — X ”z = 6”(451/2)1/8 || o ”2 .

Let e = E,(x,). Then as 6n(4¢'/?)"® < 6/2 we have

||[erui]”2§5”eH27 j=1"“’n_1;
(@31 — e)) < 30°c(ad) ;
(el — e)) < 10%c(2d) < Oz(e) ;

llede — Dl =dllell. . Q.E.D.

1.3. Representation of the ultraproduct of factors of type II,. Let
(N.)iex be a sequence of factors with finite normalized traces z,. We define
as in [17], p. 451 the ultraproduct J], N,, for an ultrafilter @ on N, as the
quotient of the product von Neumann algebra J]” N, by the 0-ideal of the
trace 7,: 7.((2:)) = lim,_, 74(%;). Asin[17], p. 451 the ultraproduct is a factor
with normalized trace z,,.

Let each N, act canonically in JC, = L*(N,, 7). Let JC, be the ultra-
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product of the Hilbert spaces JC, for ® so that a & € J(, is represented by a
sequence: (£)rens &x € FCy, || €] = lim, || &, ]|. Each bounded sequence of oper-
ators A, € £(JC,) defines an operator A€ (I ,) by A6 )ren = (Aéi)ien- A
sequence (A,),.y defines 0 if and only if lim,., || 4, || = 0. It follows that, in
general, J] N, does not act on J,. However J] N, acts on a subspace of
IC, identified by the following equi-integrability condition:

PROPOSITION 1.3.1. Let N, I, = L¥N,, 7.) be as above. Let ,JC be the
set of & € IC, which satisfy, with & = (& )ien:

(*) For any ¢ > 0, there exists a > 0 such that

lim,_, H E(I&)) &1 Hz <e€.
Then ,J is a closed subspace of I, and T, N, acts on ,J in a standard way
with the vector 1 = (1),.y as cyclic and separating trace vector and the map
(E)ien — (Ji€r)ren a8 canontcal involution.

Proof. We just have to check that , ¥ is the closure in J(, of the set of
vectors (#4)ien, || % || bounded. Assume that & = (£,),.y satisfies (*) and let
€ > 0. Then for some ¢ > 0 one haslim,_, || &.E, | & |||. < € so that the vector
N, 0, = &1 — E,)| & | is at less than ¢ of & and satisfies || 7, [|.. < a for all
ke N. Conversely let €€]0,1[ and a >0 and assume that [[&.[, =1,
& — x|l < ¢ for all k, where ||z, |l. < a for all ke N. By 1.2.1

H [&e| — [ @ | Hz = (3e)%.
Using Proposition 1.1 an easy computation gives || [£, | Ew(] & 1) [|. = 2(3¢)%.
Q.E.D.

In the special case N, = N for all k € N we denote by N* the ultraproduct
II, N and, as in [11], we denote by N, the relative commutant of N in N«
where N is canonically imbedded in N.

1.4 A technical lemma. Most of the norms that one uses on a von
Neumann algebra M satisfy the conditions:

norm (a) = norm (Ja|), for @ € M, a normal ;
a,beM*, ab=>ba and & < b imply norm ¢ < normb.

In particular all L? norms p €[1, ] relative to a trace satisfy those condi-
tions. This shows the interest of the following:

LEMMA 1.4. Let M be a von Newmann algebra, e, f€ M be two finite
equivalent projections. Then there exists a unitary W € M such that:

(a) WeW* = f; (b) W commutes with |e—f|; (¢) |[W—1]<3le—f|.

Proof. Let ¢ be the largest projection of the center of the von Neumann
algebra N generated by ¢, f, such that N, is of type I,. As N,_, is abelian,
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one can find projections ¢’, ¢, 1, f'':
e€'=01—-ce—eNf, € +e' =¢e, f"=Q—0c)f—eNf, f+f'=f

such thate’ A(1 — f)=0,(1 — &) A S =0, thate”, f”, ¢ \V f' are pairwise
orthogonal and that |[e — f| =¢" + f” + |e' — f'].

Let u be the partial isometry of the polar decomposition of f’e’, then
| —e'| £V 2 |e — f'|. Infact one needs only to check it for one dimen-
sional projections ¢, f' € M,(C), in which case |¢' — f’'| is the scalar siné
where 6 € [0, 7/2[ is the angle between ¢’, f’. Moreover in this case ||u—¢e’||=
2 sin /2 so that the inequality is just (cos 8/2)™ < 1/2 for 6 ¢[0, z/2[. One
has w*u = €', uu* = f’; let v satisfy v*v = ¢”, vo* = f'. Then |v — ¢"| =
1V 2¢"” since ¢’f” = 0. Then W, = u + v satisfies W*W, = e, W,W* = f,
[W,le—fll=0and |W,—e|<V'2]e—f]

As(eV f—e)~(eV f— f)we get a partial isometry W, commuting
with |e — f| and satisfying

[Wo—(eV)—e)| =V 2le—fl, WrW,=eVf—e WWFr=eVf—f.
It follows that, witha =W, —¢, b = W, — (¢ \V f — ¢) one has:
la +b] <2V 2e—fl<3le—f].

(If M acts in I, one has |||a + b|&|| = [[a& + b&|| <212 |||e — f| &|| for
any & € J and as the square root is operator monotone one gets the above
inequality.) Finally W = (1 — e\ f) + W, + W, satisfies (a), (b), (¢). Q.E.D.

II. Property I and the C* algebra generated by a finite
factor and its commutant

Let N be a finite factor, = the canonical trace on N. We recall that N
has property I" of Murray and von Neumann if and only if for any «, ---,
%, € N and any ¢ > 0 there exists a unitary operator w, (u) = 0 such that
[ [u, ;]| = € for all j.

THEOREM 2.1. Let N be a factor of type 11, acting in a standard way in
the Hilbert space JC = L¥(N, t); let J be the canonical involution of the
cyclic and separating vector 1 € L¥(N, 7).

The following conditions on N are equivalent:

(a) N has property T;

(b) Forany finitely generated subgroup SCInt N there is a non-normal
S-invariant state on N;

(c) For any unitary operators u,, ---, u, € N there is a sequence

Eeens &€ TC, 11& 1l = 1, (u; — JuiJ)és

k — oo 0
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forallj =1, ---, n but such that | {&, 1> | does not tend to 1 when k — o;

(d) The C* algebra C*(N, N') generated by N and N' in JC contains no
non-zero compact operator. C*(N, N') N K(I() = {0}.

The possibility C*(N, N') N K(I) # {0} was first shown in [2], by C.
Akemann and P. Ostrand.

In [9] we defined a full factor as a factor M for which the inner auto-
morphisms Int M form a closed subgroup of the group Aut M of automor-
phisms of M with the topology of norm pointwise convergence in M,. We
showed that for II, factors with separable predual, fullness is equivalent to
the negation of property I'. (See also [40].)

From 2.1 it follows that N is full if and only if C*(N, N') N X(I() = {0},
and hence if and only if X (J() c C*(N, N') by irreducibility of C*(N, N’).

COROLLARY 2.2. Let N be a semi-discrete factor of type I1,; then N has
property T.

Proof. When N is semi-discrete the canonical map Y " a, @b, —
3., ab, from the algebraic tensor product N © N’ in £(J() extends to an
isomorphism of the C* tensor product of N by N’ onto C*(N, N'). By a
theorem of M. Takesaki, as both N and N’ are simple C* algebras, so is
their C* tensor product ([44]), and hence so is C*(N, N'). So

C*(N, N)YN X(I) = {0} == C*(N, N') = X(I()
but this implies that 1 € K (J() so that I is finite dimensional. Q.E.D.

The next corollary was used in [18] but, however, the proof given there
is false.

COROLLARY 2.3. Let N,, N, be factors of type 11,, then N, N, s full
if and only if N, and N, are full.

Proof. If N, or N, has property I' so does N, ® N,. Assume that both
N, and N, are full and let N; act in J(; as usual. By 3.1(d) let
K, e C*(N, N))NX(3(), K,#0 and K, accordingly. Asthe C* algebra gener-
ated by N, ® N,, N/ ® N; contains C*(N,, N/) ® 1 and 1 Q C*(N,, N;), we
see that it contains the non-zero compact operator K, Q K. Q.E.D.

We now prove some lemmas for the proof of Theorem 2.1.

LEMMA 2.4. Let N be a factor of type 11, satisfying 2.1 (b), then for any
unitary operators u,, ---, u, € N and any € > 0 there exists a non-zero pro-
jection e € N, 7(e) < € such that

ll[uhe]HZ§5HeHzr j:].,"','n.

Proof. By hypothesis there exists a singular state ¢ € N*, invariant
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under the Adu;, j =1, --+, n (use [41], 1.17.7). Let then, by [45], fe N be a
projection with ¢(f) = 1, 7(f) =< ¢ (¢ < 1/2). Let U = {y state on N, v(f) =
1 —¢fc N*. We identify the dual of N* with (N*)* by the duality
(Vs =y V)@, w00, @) = 30 (@)
With this identification (V,)* has N* as dual Banach space and N” has (N*)*
as dual Banach space.
Let
W={(y —voAdu, --+, ¥y — ¥oAdu,), ¥y € VN N,}.
By construction W is a convex subset of (N,)", and the closure of W in (N *)*,
for the weak topology of (IN*)" corresponding to N*, contains
(¢ — poAduy, -+, ¢ — goAdu,) = (0, ---,0),

because ¢ belongs to the weak closure in N* of O N N,.

So the weak closure of W in (N,)" contains 0 and as W is convex the
norm closure of W in (IV,)" contains 0.

Let vy € N,NVsatisfy || voAdu; —y || <eforj=1, .-+, n. Let ¥'(x) =
(/9 ())v(fxf). As ¥(f) =1 — ¢, one has, for any z € N,

Y@ =) = (v@ =)zl < ez,
so that |[¢" — || < 3¢/ Let heL¥N, ), h =0, z(h*) = +'. We have
support & < f and
(lwshul — R\l < [|¥" — 4 0o Adu; || < Te” (1.2.1) .
Provided 3¢'/* < (1/6n)®, there exists by Theorem 1.2.2 an a@ > 0 such that
ul(h) = 0 and |[u(h;) — (k) ||, < 0 || ua(h) .,

where 0 = 6n(3¢'*)"*<1land h; = u;hu}. Lete = u,(h); then u,(h;) = w;eu’,
80 ||[u;, e]ll; = 0| e|l,. Moreover 7(¢) < z(support k) < z(f) < ¢&. But ¢ is
arbitrary. Q.E.D.

LEMMA 2.5. Let N be a II, factor satisfying (b), and f be a non-zero
projection f€ N. Then N; satisfies (b).

Proof. Let w, ---, u, be unitary operatorsin Ny, #; = u; + 1 — f. Let
K be a type I, subfactor of N with a minimal projection ¢ < fand S the sub-
group of Int N generated by the Ad %; and two inner automorphisms Adv;,
where the v; generate K. Then as ¢ < f the restriction of any singular

S-invariant state to N,, is non-zero, singular, and invariant under the
Ad u;. Q.E.D.

LEMMA 2.6. Let N be a II, factor, w a free ultrafilter on N, N as in
1.3 and u,, ---, u, unitary operators in N. Then if the commutant of the



86 A. CONNES

u; tn N“ is finite dimensional, there are unitary operators t,., «++, h,€ N
such that the commutant of the w;, 7 =1, -++, q in N* is the scalars.

Proof. We just have to show that the commutant in N“ of the u;,
j =1, ---, nis necessarily contained in N, if it is finite dimensional. Let us
assume that some x e N, ||z || = 1, [z, u;] = 0 for all 7, satisfies ||z — v ||, =
¢>0 for any ye N, |[|y|| £ 1. Let 2 = (x,)ren- We get, for any y e N,
lyl|l <1, that lim,., ||, — ¥ |l = . So by induction on p € N we construct
sequences (¥}).ex With

(1) [ly? — yill, = e for all kand ¢ < p;

(2) llytll =1 and ||[y} u;]ll. = 1/k for all k& and p.
Each time one takes, y? among the z,,, m € N. Let y* € N be represented by
the sequence (¥!)..x. We see that all ¥? belong to the unit ball of the com-
mutant of the w;in N and as ||y” — y?||, = € for p # ¢ that this commutant

is not finite dimensional. Q.E.D.

Proof of (a) = (d) in Theorem 2.1. Let M be a factor acting in a Hilbert
space JC. We shall prove that if there exists a central sequence (v.)icx Of
unitary operators of M which is not trivial ([41], Definitions 4.4.33 and 4.4.35,
p. 213), one has:

C*(M, M) N X () = {0} .
We can assume that for some &€ 3, || &]| = 1, and ¢ > 0, one has
1imk—»oo | <vk50y $0>] é l — €.

Let &, w(&) = (&, &)&, for all £€IF(. Then if C*(M, M'YNK (IC) #« {0} we have
e C*(M, M') by irreducibility of the identity representation of C*(M, M)
in J. Hence there exist a,, -+, a, €M, b, ---, b, € M' such that

HZ:fajb_.,- — 77,'“ § 8/3 .
As [a;, v.]0;& s 0 for all j, we have

132 absoido — v 35 asbso || — = 0

so that

12 apswibol| == | D asbsta -
However

I3 asb;8, — & || < /3 and =w& =&, .
But

|32 abws, — m(vs) || < ¢/3 .
As || w(v,8) || = | (wiéy &) | We get a contradiction. Q.E.D.



CLASSIFICATION OF INJECTIVE FACTORS 87

Proof of (d) = (¢). We show that if (c) does not hold then C*(N, N’')
contains the one dimensional projection = of L*N, 7) on 1. As N does not
satisfy (c) let u,, ---, u, be the corresponding unitary operators. By adjoin-
ing the u}, j =1, ---, n we see that T = )" u;Ju;J can be assumed to be
self-adjoint. Now T'e C*(N, N'), || T|| = », T(1) = nl. Weclaim that T —n
is invertible on the orthogonal of the eigenvector 1. Otherwise, as T is self-
adjoint, there would be a sequence (&.)icx in H = L*(N, 7), ||&] =1,
(&, 1> =0, such that ||[(T — n)&. || —0. As||u;Ju;J& || = [/&| = 1 for all
j, k, and as || T&.||—m, we see from the strict convexity of J( that
|| wiJu J& — uiJu;JE, || —0 for all © and 7, and hence |[(u; — Ju}J)é.[| —0
forallj =1, ---, n, thus showing (¢). We have shown that = is an isolated
point and a simple point for the spectrum of T, so C*(N, N’) contains a one
dimensional projection. Q.E.D.

Proof of (¢) = (b). Let u,, - --, u, be unitary operators in N. We want
to find a non-normal state on N invariant under the Adu;,5 =1, -+, n. Let
® be a free ultrafilter on N and N the corresponding ultraproduct. By
Lemma 2.6 we can distinguish two cases:

(1) The relative commutant of u,, «--, u, in N is C. Let (§)r.n be a
sequence of elements of norm 1 in L*N, 7) such that (&, 1) = 0 forall k¥ and
that || w;Ju;JE, — & || —— 0 for all 5. If (&)~ satisfies condition (*) of

k— oo

Proposition 1.3.1, we get an element ¢ of L*(N*, 7,) with (§,1) =0, (||| =1
and u;Ju;Jé = &£ where J = Jy.. But this contradicts the hypothesis on the
relative commutant of the u; in N“. So (&),.x does not satisfy 1.3.1 (*).
Hence for some ¢ > 0 we can find a subsequence (7,)..x 0f the sequence
(&)ken, such that 7((E, | 7. %) |7, ") = ¢ for all ke N and E,, a > 0, as in 1.2.
For each k let ¢, € N, correspond to | 7, |* € L'(N, 7), and ¢, = E,(| 7, |*). Each

é, is a state on N and by the choice of (&,).en one has [[[4, u;]|| g 0
foranyj=1, ---, n.
As E(| 7)) | 7 ! Z kEW(| 1. '), we have 7(e,) < 1/k and hence ¢, ———— 0

strongly. But ¢,(e,) = ¢ for all k, which shows that the set (¢:)..n is not
weakly relatively compact in N,([1], 2.8). Let ¢ be a non-normal element of
the closure of (¢,)..n in N*, for the weak topology. Then ¢ is a state on N
commuting with the u;.

(2) The relative commutant of w,, - -+, u, in N* is infinite dimensional.
Then this commutant must contain an infinite dimensional abelian von
Neumann subalgebra, and hence contains non-zero projections e,, k € N, with
7.(e:) < 1/k. As each projection in N is represented by a sequence of projec-
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tions of N, we can find a sequence (f,).e~, Of projections of N such that:
i # 0, 7(f) = Lk, || [ws, fil ll, = k|| filly for all j, k .

Let then ¢, be the state on N corresponding to 7(f.)™'f. € LN, 7). Then
exactly as above we find a weak limit ¢ of the ¢, in N* showing that N
satisfies (b).

Proof of (b) = (a). Let (u;);-,,...,, be a finite subset of the unitary group
of N and let 6 > 0. We show that there exists a projectione € N, 7(¢) = 1/2
such that ||[uj, €]l <9d, for all j. Let R be the set of families
r=(E, U, ---,U,) such that:

(a) E is a projection, Ec N, 7(E) < 1/2.

(B) Each U; is a unitary operator in N commuting with E.

M 1U; —u;ll, = 0z(E), 5 =1, -+, n.
Given two elements r, ' of R we write » < ' when

(1) ESE', (2) |Ui—=Uil,=0t(EB'"—E), j=1, -+, n.
Ifr<rand E=FE'thenr=7. If r <7 < 7" then E < E"” and

1T} = U; |l < 8(c(B” — B') + o(E' — E)) = 6z(E" — E)

sor < r"”. We claim that < is inductive on R. Any totally ordered subset
of R has a cofinal sequence. We have to show that any increasing sequence
(7w)nex in R is majorized. We have E, < E,,, so that E, converges strongly,
when n — oo, to a projection E € N, and 7(E) =< 1/2. Now

| Un; — Ukl = 07(En — Ei) , k=m,

so that (U, ;)ren is @ Cauchy sequence in L(N, 7) which strongly converges
to a unitary operator U,;. One has [E, U;] = lim,_, [E,, U,,;] in the strong
topology, so that the family (E, U, ---, U,) = r satisfies (a) and (8). We
have

1 U; — w1l = limeee || Ups — %51y < limy, 07(E,) = 07(E)

so r satisfies (7) and belongs to R. For each & and j one has

N Uei — Uilly = limp e || Us,; — Un,s |l = lim,, 07(E, — E,) = 07(E — E))

so r, < r for all k, which proves the inductivity of R.

By Zorn’s lemma, let » = (E, U, ---, U,) be a maximal element in R.
We assume that 7(E) < 1/2 and we contradict condition (b) of 2.1. Let
F=1—E M= Ny v;=U1—E)=(1-E)U, € M(using (8)). By Lemma
2.5, M has property 2.1(b). Take ¢ > 0, ©(E) + ¢ < 1/2, and 6 < d. By
Lemma 2.4 there exists a non-zero projection ¢, e € M, 7'(e) < ¢, || [v;, €] |z <
¢|lel|l:, where the ' corresponds to the normalization of 7 in M. But, as
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o(F) £ 1, we have 7(e) = ©(F)r'(e) < &. As ||vjev} — e} < 2¢ | ell;, let w;
(Lemma 1.4) be a unitary operator in M such that

wiveviwf =e, ||w; — F|; < 6er’(e) .

Let E' = E + ¢; it is a projection strictly larger than E, such that z7(E') £ 1/2.
Let U; = U;E + w;v;. As w;v; is a unitary operator of N,_, and as U;E =
EU; we see that U; is a unitary operator in N. As w;v; commutes with e,

the U commute with E’. For x € M we have |[z||{ = 1/7(F) ||z ||,, so we get
|w; — (1 — E)||, < ot(e) and:
lwv; — v;ll, < dz(e), || U; — U, = ot(e) .

By hypothesis | U; — u; ||, < 07(E) so that

U7 — u;ll, < 07(E + e) = o7(E") .
We have shown that the family (E’, Uj) satisfies (@), (8), (¥) and hence defines
an element 7’ of R. The couple r, 7’ satisfies (1), (2) and as ¢ = 0 we have
contradicted the maximality of . We have shown for each 6 > 0 the

existence of a projection E € N, 7(E) = 1/2 such that E commutes with Uj,
| U; — w;l|l, £ 9, so that:

us, E1ll. = 211 U; — w;ll, + [[[U;, E]]l, = 2(20)"

because forx e N, ||2]||l. < 2 one has ||z[3 < 2||z]||,, As 0 is arbitrary we

have shown that N satisfies property T. Q.E.D.

III. A characterization of approximately inner automorphisms

Let N be a factor of type II, with normalized trace z. We let Aut N,
the automorphism group of N, be gifted with the topology of strong point-
wise convergence in N, which, as N is finite, is the same as the topology of
norm pointwise convergence in N,.

We characterize the closure Int N of the subgroup Int N of inner auto-
morphisms by the following theorem:

THEOREM 3.1. Let N be a factor of type 1I, with separable predual,
acting in JC = L*(N, 7). Then the following conditions are equivalent for
6 € Aut N:

(a) 6eInt N;

(b) There exists an automorphism of the C* algebra generated by N and
N’ in I which is 6 on N and identity on N';

(¢c) For any unitary operators u, +--, u, € N and any € > 0 there is a
§e3C, (16l =1, [|0(we)JurJé — &l < eforallk=1, ---, n;

(d) There exists a bounded sequence (x,).ex tn N, mot converging
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strongly to 0, such that x,a — 6(a)x, converges to 0 strongly for any a € N.

The condition (b) means that for any a,, ---,a, €N and b, -+, b,c N’
one has || Y 0(a;)b; || =|| 35F a;b; || where the norms are operator norms in JC.
The condition (¢) means that for any unitaries u,, - -+, u, € Nand ¢ > 0 there

isanxzeN, ||z]||, = 1 such that
| O(u)r — 2ull, < e.

COROLLARY 3.2. Let N be a semi-discrete factor of type 11, then Aut N=
Int N.

Proof. Let 6c AutN, a, ---,a,eN, b, ---,b,€N'. By hypothesis,
(1191): | ok, asde || = || 2205, @: ® b, || where a; ® b, acts on I @ F. But

12 e @b = [| 20, 0@) @b ||
because ¥ 1 is an automorphism of the C* tensor product of N by N’. So
0 satisfies 3.1 (b). Q.E.D.

At this point it is important to remark that conditions (a) and (b) make
sense for arbitrary factors M acting standardly in a Hilbert space JC, but,
by the above proof of 3.2, that they are not equivalent in this generality.
In fact 3.2 shows that any automorphism of a semi-discrete, but not neces-
sarily finite, factor satisfies (b). When M is the product factor of type Il.
the automorphisms of M which do not preserve the trace do not satisfy (a).

COROLLARY 3.3. Let N,, N, be factors of type 1I,, 6; € Aut N;. Then
0, ®6,cInt N,Q@ N, if and only if 6; cInt N;, j = 1, 2.

Proof. If 6; ¢ Int N; for all j, then easily 6, ® 6, cInt N, @ N,. Let N;
act standardly in JC; so that N, ® N, acts standardly in JC, ® I ,. Let
@y * 0y a’keNL, bl; ) bk eNl" Then

a®1, -, a,®LeNQN,, b®L ---,b,Q1e(N,®N,)

and also:

” E b, ” = ” E (@, ®1)b; ®1) H .
As 0, R 6, satisfies 3.1 (b) we have that:
122 (0a) @ 1)b: @ D) || = [| 2 (a: @ 1)(b: ® 1) || -
Hence we have shown that 6, satisfies (b). Q.E.D.

The proof of Theorem 3.1 (of (¢c) = (d)) relies essentially on the following
lemma.

LEMMA 3.4. Let N, 7 be as above, 6 € Aut N satisfying condition (¢), and
Uy + o+, U, De unitary operators in N. For any e > 0 there exists a non-zero
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projection e € N and an ¢ €N, ||z]|. < 1, ||z]|], = 1/47(e), xe = x, 6(e)x = =,
such that:
H[ui; 6]”1 §5H6H1 ’ .7 = 19 e, M,
and
lou; — Ou)z |, <ec(e), j=1,---,m.

Proof. Let ¢ €]0, 1/8], 20¢’ < ¢, let 20 = (¢'/24(n + 1)), & = (6/6n)
Let £33 = L*N, 1), ||&]| =1 such that for all =1, ..., n one has
[|0(u;)Ju;Jé — &|| < 0’. By Theorem 1.2.2 there exists @ > 0 such that the
partial isometry w = u,(£) (if one uses 1.2.4) satisfies

[|O(u;)wuf —wl,<0||w|, and w=-0.
We get that || w,w*wu} — w*w||, < 26 || w ||, and that
[ 0(u)ww*o(u}) — ww* [, < 20 [[w], .
Let ¢, = w*w, ¢, = 67 (ww*). We have ||e, |} = z(e.) = (w*w) = || w ||, and
hence: || [u;, €] ||, = 20 || e, ||, for all 5 and E.

So, by Corollary 1.2.3, let ¢ < ¢, \/ ¢, be a projection, e € N, such that
[ [u;, e]lll, < €' ||e]|, for all j and that ||ee, — e, |, < ' || e.|l,. As e < 1/2 we
havee = 0, [|e|l, = || e, |l, = 1/2 || e, |,. Letx = (e)we. Wehave||z|. <1,

e —wll, < [l0(e)ww* — ww* [, + ||w*we — w*w ||,

= [[0(e)d(e,) — Ole.) ||. + [lee — e[|, = 2¢" [|w .

So

e —wl,= [ —w)e. Ve)l. =2[lx —wl,|wl, < 4[| w]],
and

2l = 1 — 4e)z(e) = 1/2(1 — 4€)r(e) = 1/47(e) .
Also [|xu; — O(uj)x ||, < (0 + 4¢') ||w]|, and, as above
lew; — O(uy)x |, < (6 + 4€) [[w]l, 2 e]l, < ez(e) . Q.E.D.

LEMMA 8.5. Let N, 7 be as above and 6 ¢ Aut N satisfying 3.1(c). Let
feN be a non-zero projection, ve N with vv* = f, v*v = 6(f). Then the
automorphism 0, x € N; — vf(x)v* € N also satisfies 3.1(c).

Proof. First we assume that f = 1. For any unitary operator » € N and
any x € N we have:

(v2)u — Hu)(ve) = v(zw — O(u)x) ;
hence if 6 satisfies 3.1(c) so does 0 if vv* = v*v = 1.

Now, in general, let m € N, 1/m < z(f) and (e;;); ;_....... be a system of

m X m matrix units in N with f = e + ¢’ where ¢, ¢’ are projections, ¢ > ¢,,,
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belongs to the I, factor of the e¢;;, and ¢’ < ¢,,. By multiplying 6 by an inner
automorphism we can assume that 6(e;;) = ¢;; for all 4, 7 and also that
6(¢') = ¢'. Then 0(f) = f and we can assume that v = f. Nowletu, ---, u,
be unitary operators in N;, #; = u; + 1 — f the corresponding unitary oper-
ators of N and #,., %,,, Unitary operators generating the I, factor of the
e.;. Let (x,)..n be a sequence of elements of N (the sequence is not neces-
sarily bounded) such that ||z,|, =1 and | x,u%, — B(ﬁ,)x,,llz——k:—;—v 0. It
follows that || [e;;, xi] |l = 0, because 0(%,1q) = #,yqy @ = 1, 2.
So

| €% |l — HeuxkllzT_:;—’O forall j=1,---,m,
because
ll €51 % llz = ll €11 % llz and H AN ||2 = H Lr€;; Hz .

Hence || ¢,,x; ||} — 1/m when k— . Let y, = fe,feN;,. Ase, < e < fwe
get

li__m H Y ||2 = lim H €.,Yxen ||2 =m™?

because

lenyreull: = || iy ||, — m™* when kb —— oo .
We have

Yw; — 0(u;)y, = f(xit; — 6(;)x) f . Q.E.D.

Proof of (d) = (a). Let w be a free ultrafilter on N, N¢ be the ultra-
product associated to N and w as in 1.2. Let F, be the algebra of 2 x 2
matrices over C and ¢ be the homomorphism of N in N¢ ® F, such that
o(x) =xQe, + 0°(x) R e,, where as usual N is identified with its canonical
image in N°.

Let (¥,.)..x be a bounded sequence in N representing y € N“; then the
equality lim,_, ¥,x — 6(x)y, = 0, in the strong topology, for any x € N, is
equivalent to y & e,, € P, where P is the relative commutant of ¢(N) in
N*® F,.

From our hypothesis we want to deduce that 1 X ¢, is equivalent to
1 & ey, in P. The relative commutant of N in N is equal to N, with the
notations of 1.2, so the map x —x & ¢, is an isomorphism of N, on the
reduction of Pby 1® e,. Leta e N, be a non-zero projection, z,(a) = a > 0.
Let (@,)..x be a representing sequence of projections, z(a,) = a. Let (¥.)kex
be a bounded sequence of elements of N, and 8 > 0 such that: z(y}y,) = 8
for all k, y,x — 0(x)y, — 0 strongly, for all € N. Now (¥}¥.)ren IS a

k— oo
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central sequence and hence lim, ... (a3 y¥¥.a,) = @B, for n e N. Hence
H_In.k<oo Il 0(a,‘)yka,“ ||, = B2at?

because || 0(a,)y.2, — Y:@,|l;— 0 ask — . For any n €N, take k, = n with
|| 0(@a)ys,@nll: = 1/28"*a**. The sequence (¥,,)..~ represents an element z of
N© such that z ® e, € P and that (6“(a) ® €x)(z ® e, )a R e,,) = 0.

Then for each projection a € Center of N,, the central support of aRe,,
in Pis necessarily equal to the projection a @ e¢,, + 0°(a) ) e,,. It follows that
all elements of the center of P are of the form

c=xQe, + 0°(x) Q ey, x € Center N, .
So for any such element ¢ one checks that:

(o X Tr)(e(l ® e,)) = 7u(®) ,

(7o X Tr)(c(1 @ e)) = 7.(6“(x)) = 7u(x) .
We have shown that 1 & ¢, is equivalent to 1 ®) ¢, in P and so there is a
unitary operator w € N* with u Q) e, € P.

Let (#,)..x be a representing sequence of unitary operators for u; then
6 = lim,_, Adu, in Aut N. Q.E.D.

Proof of (a) = (b). Let 6 = lim,_... Adu, be an element of Int N. For
each n € N, let a, be the inner automorphism of the C* algebra C*(N, N’)
implemented by u,. For any element x = Ef x;y; of the algebraic tensor
product of N and N’, the sequence (@,(«)),.x of elements of £(JC) converges
strongly to 3! 6(x;)y;.

So the automorphism 6 ) 1 of the algebraic tensor product N © N’ is
norm preserving for the norm of £(I() and thus extends uniquely to the
norm closure C*(N, N') as an automorphism of C*(N, N’) satisfying the
required conditions. Q.E.D.

Proof of (b) =(c). Letwu, ---, u, be unitary operators in N and consider
the two operators

T=1+wJud + -+ +uJu,J, S=1+ 0(u)JuJ + -+ + 0(u,)Ju,J .

Our hypothesis on the automorphism 6 and the norm preserving property of
automorphisms of C* algebras show that || S|| =||T||. But ||T|]|=n +1
because the unit vector 1 in JC = L*(N, 7) satisfies w;Ju;J1 = w;uf = 1 and
because each term in the sum defining T is unitary. So || S|| = n + 1. Hence
for any ¢ > 0 we can find £ € J(, || £|| = 1 such that

I|& + 0(u,)Ju, Jé + « -+ + O(u)Ju,JJE|| = (n+1)—¢.
As || 0(u;)Ju;JE || = 1 for all j, we see, using the strict convexity of the
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unit ball of a Hilbert space, that for any 7 > 0, there existsa £e I(, || £]| =1
such that || 0(u;)Ju;Jé — || =9, =1, ---, m. Q.E.D.

Proof of (¢) = (d). Let u,, ---, w, be unitary operators in N and 6 > 0.
We show the existence of unitary operators U, ---, U, such that
N U; — wu;ll, £ 0, of a unitary operator Ve N and of an element X of N,

| Xllo =1, [| X[, = 1/4 such that:
| XU, — VOU)V*X[, <6, i=1 -, n.
With y = V*X and replacing the U; by u;, we have
lylle =1, llyliz 14, [lyu; —0(u)yll, =39,

so, then, assertion (d) follows from the separability of N,.

We let R be the set of all familiesr = (E, U,, ---, U,, V, X) of elements
of N which satisfy the following conditions:

(1) Eis a projection, the U; are unitary operators commuting with E.

(2) 1U; —u;l,=0c(B), =1, -+, n.

(3) VV*=E, V*V = 6(F), so that ,0 is an automorphism of N;.

(4) XeNg || Xl =1, || X]], = 1/47(E).

(5) |1 XU; — y0(U,E)X ||, = 0t(E), j =1, -+, m.

We define for r, ' € R the relation » < ' by the conditions:

(a) ESE;

(b) |1U; — U;|l, = 0c(E" — E) for all j;

(¢) EV' = V'0(E) =V, so that ,.0(F) = E;,

d) X'E=EX'=X.

We check that r < #', E = E'=r = ¥ and that » < ' < " implies r < 7.
We want to show that R is inductive.

Any totally ordered subset of R contains a cofinal sequence. We have
to show that any sequence r* = (E*, Uf, ---, Uk, V¥, X¥), r* < r**, of ele-
ments of R is majorized. We let £ = lim, ... E* strongly, U; = lim,_., U} in
L' (and hence strongly) and we check (1), (2), (a), (b). The sequence V*
converges strongly because (EV*),.y and (V*0(E?)),.x are stationary
sequences for each ¢ € N. The limit V is a partial isometry, with VV* = E,
V*V =6(E)and E'V = VO(E?) = V? for all ge N, so that we get (3) and
(¢). For the same reason the sequence X* converges to an X € N such that
X|le <1, XE*=E'X = X for all geN. So || X||, = || X?||, = 1/4z(E?)
for all ¢ and hence || X ||, = 1/47(X).

For each ¢ € N we have

| XU} — VO(U;E) VX ||, < 0t(E")
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so that by continuity we have || XU; — VO(U,;E)V*X ||, < dz(E) which ends
the proof of inductivity of R.

Let r=(®,U, ---,U0,,V, X) be a maximal element of R such that
E # 1. We shall contradict condition (c¢) for 6, thus proving (¢) = (d). Let
F=1—FE =0 and let Y be a partial isometry in N such that YY* = F,
Y*Y = 6(F'). By Lemma 3.5 the automorphism ,6 of N, also satisfies con-
dition (¢). Let v; = U,F = FU; be for each j the restriction of U, to F' (U;
and E commute, by 1)), so that the »; are unitary operatorsin N;. Lete>0
such that 8 x 3¢ < 0.

By Lemma 3.4, there exists a non-zero projection ¢ € N and an x € Ny,
2 ]le =1, || 2], = 1/47(e), xe = x, y0(e)x = x such that || vev} — e[, = ¢]|e]l,
for all 7, and ||xv; — ,0(v;)x ||, £ er(e) for all j. By 1.4 there are unitary
operators v; of N, commuting with ¢ and such that || v; — v; ||, =< (1/3)07(e).

Let Y’ be a partial isometry of N, with initial support ,6(¢) and final
support e. As the final support F' of Y is larger than ,6(e), the initial support
of Y'Y is Y*,0(e)Y = 6(e) and its final support ise. Let E' = E + ¢, U] =
UE+ v, V"=V+YYand X'= X+ Y'z. Ase=<1— E, and as the v;
are unitary operators of N,_z which commute with ¢, we have (1). Also

N U; = Uil = (| U;1 — E) — v;]) = (|v; — v;]) = dz(e) -

So the couple (7, ') in the obvious notation satisfies (a), (b) and r satisfies (2).

The initial support of V' is

V*V+(Y'DNY'Y)=0(E) + () = (&) ;
its final support is £ + ¢ = E’, and one gets (3) and (¢). The final support
of Y’z is smaller than ¢ so, as x¢ = ¢, one has Y'ze N,, X + Y'x € N, and
EX'=X'E=X.
| X + Yzl =Sup (| Xl [ Y'2[.) = 1.
IX + Yol =Xl + | Yz, = 142(E) + 1/az(e),
which gives (d) for r, v’ and (4) for . We want to check (5), we have:
X'U,=(X+ Yz UE + v)) = XU; + Y'xv}
for all 7. Also
l];E’ = (U,E + 'U;)(E + e) = U,E + ’U;e
and
V'O(UE)V'* = (V'6(E))(UE)V'0(E))* = VO(U;E)V* .

As V*X' = V*EX' = V*X, by (3) for r and (d), we get V'O(U,E)V'*X' =
VO(U;E)V*X. We have
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V'o(vie) V'* = (V'0(e))b(vie)(V'0(e))* = Y' YO(vje)(Y'Y)* .
Also V'O(x;e)Y'* X' =Y'Y0(vje)Y*Y'*Y'x because the initial support of Y’*
iseand eX' =Y'z. As Y'*Y'x = ,0(e)x = x we get
V'o(ve) V'*X' = Y'YO(vie)Y*x = Y',0(v))x .
Hence
yO(UENX' = V'O(U;E)YV'*X' + V'6(vie) V'*X'
=VOU,E)V*X + Y'YO(v))Y *z ,
so that
X'U; — v 0(U;E"NX' = (XU; — ,0(U;E)X) + (Y'2v; — Y'0(v))2) .
By (5) for r we have
| XU; — »0(UE)X||, < 07(E) .
As |[v; — v} ||, = (1/3)07(e) we have
1205 — 0@ 1, < 2112 L || v — v} 11, + [|20; — 0(:)e ],
=< 2/3d7(e) + er(e) < oz(e)
since € < 9/3.

We have shown that " € R and that » < 7', so this contradicts the
maximality of 7. Q.E.D.

IV. Tensor product of centrally trivial automorphisms of finite factors
Let N be a factor of type II, with normalized trace 7.

DEFINITION 4.1. Let 6 be an automorphism of N. Then let c(0) be the
supremum of the set of positive real ¢ such that for any elementsx,, - - -, x,
of N and any ¢ > 0, there exists £€J = L*(N, 7), ||€|| =1 such that
[16(6) — &1l = ¢ while

[(x; — JxfJ)El|<e  forj=1 -, m.

We have 0 < ¢(6) = 2. In this definition one could restrict the «; to be-
long to any subset of N which generates N as a C* algebra, and in particular
to the unitary operators of N.

PROPOSITION 4.2. Let N and 6 be as above.

(a) For any 6’ € Aut N, outer conjugate to 6, one has c(8") = c(6).

(b) For any other finite factor M one has ¢(0 @ 1) = c(6).

(¢) For any 6-tnvariant non-zero projection e € N, one has c(6°) = ¢(6).

Proof. (a) Take ¢ = Adu.6; then, givenx,,---, x, and € > 0 take & € I(,
[[£]] =1 with
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16(¢) —¢ll=ze@) —e, |(x; —Jz;J)| e
for all j, and || (v — Ju*J)&|| < e. Then
1e'(¢) — &1l = 116(5) — w*Ju*JE|| = e(f) — 2¢
so that ¢(6") = ¢(6).
(b) We identify & = L} (N Q@ M, 74 Q 74), Wwith J ® K, where
J = LAN, ty), K = LM, 74). So Je = J5 ® J 5 and for 2 € N one has

Also the unitary transformation of € corresponding tod ® 1,is 0 Q 15.. We
assume that ¢(d @ 1) > 0, and let ¢ > 0 such that ¢ < ¢(6d ® 1) and €10, 1].
Next welet x, .-+, 2z, e Nand ¢ > 0. Let d > 0such that né < 1/4¢*(1 — 7°)
and ¢ < ¢

By hypothesis, let £€ & = I ® K such that

ell=1, [(6®Ds—¢llze and [[(T;®1E] =9,

where T; = x; — Jyx¥Jy for all j. Let B be an orthonormal basis of X and
(&:)se g the components of &£ on B. Let ¢ be the discrete measure on B such
that #(b) = ||, ]]* and:

E;={0e®, [Ti&IF =018,

G=1{beSB,|10E) — &I = me) &I} .
We have, for each j, that

ME) =2 &P =07 I TP <0,
Also
2:1106E) = &P =43, 16IF =4(G) and 32.c110(5) — &I < (o) .
So we have
et + 4G = ¢, U(G) = 1/4¢*(1 — ) > 3 ((E;)

so that G\U}-, E; is non-empty, thus showing that ¢(f) = 7c and proving (b).

When M is finite dimensional the x Q) ¥, x € N, y € M generate N Q M as
a C* algebra so that the equality ¢(6d ® 1) = ¢(6) follows easily.

(c) Let @€]0, 1] and e be a projection in N with z(¢) = a. Let u be a
unitary operator in N such that ,0(¢) = e. Then by (a) the number C(a) =
¢(,0°) just depends on 4 and «, not w and ¢. The equality ¢(6 ® 1x) = ¢(6) for
finite dimensional K shows that C(a) = ¢(f) for any rational number a. Let
0 < 1, to show that C(a) = 6°c(6) we can assume that for some integer q one
has * =<1 — 1/¢g < a < 1. Let K be a type I, subfactor of N with matrix
units e;; and e a projection in N, z(¢) = a, 1 — ¢ < e¢,,. We can assume that
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O(x) = x for all x in K, and that 6(¢) = ¢. Let ¢ >0; x,, ---, x,€ N,. Let
¢eN, |[&ll, =1, ||[xj, £]]l: = ¢ for all j, such that || 6(¢) — &, = de(6).

As the ¢;; € N we can also assume that [e;;, &] = 0forall?, =1, ---, q.
So ¢ and 6(¢) belong to K'. As for a € K' N N we have

Q@ —eal —ey)ll. =1L —eal. =1 —eyl.llall.=dllall.
We get:
efee N, , |lefell, = ||(1 —e,)é(l —e,)ll. 29,
I [z, egelll. = || e[, Elell. < e  forall j=1,-.-,m,
llese — B(ege) ||, = || (¢ — (&))ell. = [| (X — e)(E — 08X — e.) ||. = 5%(6) ,

because ¢ — 6(¢) commutes with K. If we replace || ||, by the L? norm || ||;

of N,, we have ||y, = ||y]: <67 '||y]|, for all y € N, which shows that

c(6°) = 8%¢(6). Q.E.D.
We now state the main result of this section:

THEOREM 4.3. Let 6 be an automorphism of a factor of type Il,, N, and
let p = p.(0) be the asymptotic period of 6 (i.e., its period in Aut N/CtN)
(cf. [12]). Then

0(6) = Supzec,zp=1 Iz - 1| .

For p = 0 the notation means Sup,.¢,,-, |2 — 1| = 2. From 4.3 it follows
that ¢(d) < V'3 = ¢(f) = 0 = 6 e CtN.

COROLLARY 4.4. Let N,, N, be factors of type I1,, 6, be automorphisms
0f N;jy3=1,2. Then 6,0, Ct(N,Q N,) = 0,;cCtN;,j =1, 2.

Proof. If 6, ¢ CtN, then easily 6, ® 6, ¢ Ct(N, ® N,). If 6, € CtN, then by
4.2 and 4.3, ¢(4,® 1) = 0 s0, by 4.3, 6, ® L€ CtN, ® N,. But Ct(N, ® N,) is
a subgroup of Aut (N, ® N,). Q.E.D.

LEMMA 4.5. Let N be a factor of type II,, 6 Aut N, 0 < ¢ < ¢(f) and
Uy * =, W, De unitary operators in N. For any e > 0, there exists a non-zero
projection e € N and an x € N, such that:

(1) lile, uslll.=ellell, g =1, -+, nand||6() —el,<cllel;

(2) lzlle =L, (|2, = 27'(e), [|x]l, = 1/4]] €]l

(3) 16(x) —zll. = cllz|ls

(4) [, willl, = ez(e).

Proof. Let (vi)sen be a countable family of unitary operators of N,
invariant globally under 6 and 67, and containing the u;, s =1, ---, n. As
¢ < c¢(0), let for each ke N, &, € = LA(N, 7), || &1l =1,
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(v, = Jv;J)ell =1k, q=1,---,k,
[16(&) — &ll=e¢, forall k.

Let X be the subspace of the ultraproduct JC,, corresponding to the free
ultrafilter @, of all &£ = (£,),.n such that (v, — Jv}¥J )&, mo forallgeN. X
is closed. By construction K reduces the unitary operator (&)cex—(0(£))kens
and we let U be the reduced unitary operator. We have || U — 1| = ec.

As U is unitary on X, we let » e Spectrum U, |» — 1| = ¢. For any
0 > O thereexists £, [|&]| =1, || Ut — N&|| £ 0. Letd, e]0, 1/4], 206, < e,
8, = 1/2(6,/24(n + 2))*°, 26 = (6,/6(n + 2))*. Let &e L¥N, 7), ||&]| =1, such
that || (u; — Ju}J)E |} < 0, for all j, and || 6(¢) — N < 0.

By Theorem 1.2.2, let @ > 0 such that, with v = u,(¢), one has: v = 0
(because 0, < 1), [[uvul —v|, < 0,]|v|, for all j, and [[X0(v) — v][, <

0, ||v]l;. Let e, = v*v, e, = vov*. ;Ve have
v ufuoui — v*vll, = 20, || v,
so that we get, for all %, j,
Hew uilll. < 20, [[ell, and |[[6(e) — enll. = 20, [[exll, -

Let (by 1.2.3), ¢ be a projection, ¢ < ¢, \V ¢, such that 4.5 (1) holds and that
l|ee, — ells < 0, ]|e.]l; for all k. Put « = eve so x € N,,
lelle =1, lloe—vl=20 (v, [lzl.=12]v].=1/4]el,
and hence
el = [[=]; = 27'z(e)
which gives (2).
Also
[ [, u;] Il = (40, + dy) || vl = 5o, |[v]. = ¢/2]|e]l.,

because |[v|, = 2| xz|, = 2]/e][,. So we get
[, wil Il < 1, willl. lle V usenf |l < ellell; = et(e) .
So « satisfies 4.5 (4). Finally

]|(9(x) — A& ||2 é (52 + 451) Hsz —§ 551 X 2 ||x||2

so that 4.5 (8) holds with ¢ — ¢/2 instead of c. Q.E.D.

Proof of the imequality c(0) < Sup,ec,,»-, |2 —1|. Let u, ---, u, be
unitary operators in N, ¢ < ¢(f), and 6 > 0. Let us show the existence of
unitary operators U, ---, U, € N such that || U; — u;||, = ¢ for all j, of an

XeN, | X|l.<1, IX|,=2"% |[X, U;]ll, <8, and of a unitary operator

PeN, ||P—1|, <0 such that || ,0(X) — X|,= ¢/ X]|,, We then get a
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non-trivial central sequence (X,)..x, such that ||8(X,) — X, ||, = ¢ || X, ||, for
all £ € N. It follows that the unitary transformation V of LN, 7,) attached
to the action 6, of 6 on the asymptotic centralizer N,, satisfies||V — 1|| = ¢c.
But by [12], Proposition 2.1.2 and Theorem 2.1.3 the spectrum of V is
{z, z€ C, 2* = 1} where p = p,(0).

Now let R be the set of all families (¥, U,, ---, U,, X, P) where:

(1) E is a projection in N commuting with the unitary operators Uj.

(2) 1|U; — u;ll, < 6z(E) for all j.

(3) XeN;, (| X[l. =1, | X[, 2 27'(E), || [X, U], = ov(E).

(4) Pis unitary, ||P —1||, < 07(E), P(E)P* = E.

(5) [|PAX)P* — X, Z || X

Moreover an ordering on R is defined as follows: » < 7" when
(a) E<E'and ||U; — Uj||, £ 0t(E' — E) for all j;
(b) X'E = EX' = X,

(c) EP' = P'0(E)= EPand || P’ — P||, < 0t(E’' — E).

As above one checks that R, < is an inductive ordered set. Let = be a
maximal element, and assume that FF =1 — E # 0. By Proposition 4.2 (¢),
let ¢/, ¢ < ¢’ < e(,07) where 6 is the restriction of 0 to N, (we use (4)).
Lete > 0,2 X 6 X 3¢ < ¢"* — ¢, Te < 0; then, by Lemma 4.5 there exists a
non-zero projection ¢ € N such that:
Ille, Uslll. = ¢llell.  forall j; [[x0(e) —ell,=ellell

and an « € N, satisfying the other conditions of 4.5 for 6%, and ¢’ > ¢. By
Lemma 1.4, let U; be a unitary operator of N such that

U:;EZE[]J,= U,E, mezew and || U;_UJ||1S3EI|6H1

With E' = E + ¢ we have (1), (2) and (a). With X' = X + « we have
X" Uil = X, Uil + [z, sl + 6ellell, = 0T(E) + Tet(e) = d7(E")

and we get (8) and (b). Now ¢ and .6(¢) both belong to N and there exists
a unitary operator Q of N such that QEF = EQ = E and that Q:0(e)Q* = e,
[|Q — 1], < 3¢t(e). Let P’ = QP. Then
EP’' = EP, P'(E) = QP(E) = EP and ||P' — P||,<0t(E' — E)
which gives (¢). We have
|P'— 1|, < ot(E'), PO(E + ¢)P'* = E + ¢,
hence (4).
| P'O(X")P'* — X' |z = o((P'O(X'*)P"* — X"*)(P'O(X")P'* — X))
= t(P'O(X"*X")P'* — X"*P'0(X")P"*
— Py X'™*)P*X' + X'*X')
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so that
|POX")P* — X' | < ||P'OX')P* — X'|2+ 6 X 3ez(e) .

Now X' = X + x, Xe N;, x€ Ny and ,0(E) = E so, as x satisfies 4.5(3) with
respect to 0 and ¢’, we get:

10(X") — X" | = || ,0(X) — X[ + [| p0(2) — @2
= || XL+ c*[[w|iz e [[ X]iE + (¢* — ¢)27'7(e) .

As (¢ — ¢)27'r(e) = 6 x 3er(e) by the choice of ¢, we have shown that
1p0(X')— X'|2=c*|| X']2. We thus have contradicted the maximality
of r. Q.E.D.

Proof of the tnequality ¢(0) = Sup,.c,.»-. |2 —1|. LetzeC, 2 =1. Then
as already seen above z is in the point spectrum of the unitary transforma-
tion of L*N,, 7,) associated to the action 4, of  on the asymptotic centralizer
of N at w € BN\N. Thus there exists a central sequence (¥;):.x in N such
that || 0(y,) — zv. |, = 0and |ly.i, = 1 for all k. Q.E.D.

V. All injective factors of type 1I, are isomorphic

Let JC be a separable Hilbert space. By definition the centralizer of a
non-necessarily normal state ¢ on (J() is

&(I0)s = {x € £(IC0), s(xry) = ¢(yx)  for all y e L(I)} .

We let I be the Hilbert space whose underlying real vector space is the
same as for J( and such that the identity map £ —&°is an antilinear isometry.
For x € £(3() we let 2° € £(3(°) be such that x°¢° = (x&)° for all £ JC. Let Tr
be the usual trace on £(7(), so that for a projection ¢, Tre is the dimension
of the range of e. We denote by || # |lus, and || @ || the Hilbert-Schmidt and
trace norm of an x € &(H(): ||z |lus = Tr(z*x)"% |||l = Tr|2z|. We endow
the space £(H)us of Hilbert-Schmidt operators of the scalar product (x, ¥ us=
Tr(y*z) and wenote that £(J(),sthus becomes a Hilbert algebra. In particular:

laxllus = [lalll|@]las lzallas < el |z]ls,  aeC0), x€(IC)us -

Also to each normal state ¢ on £(J() corresponds a unique density matrix
>0, 0= Tr(o) =1 such that

Tr(ox) = ¢(x) for x e ().
In this setting the Powers-Stormer inequality [36], Lemma 4.1 shows that
Il oy* — py’ |[4s < ||¢ — ¥ || where ¢ and v are normal states on ().

The main result of this section is the next theorem, whose applications
will be discussed in the next sections.
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THEOREM 5.1. Let R be the hyperfinite factor of type Il, and N a factor
of type 11, acting standardly in JC and with normalized trace T. The follow-
ing are equivalent:

1. N is isomorphic to R.

2. N is isomorphic to N Q R and given x,, -+, £, € N, € > 0 there are
2y ***, 2,€ R and a unitary operator Xe N Q R with:

le;®1 - X1 ®z)X* |, <, J=1, em

The symmetry oy, 2 Qy —y @ « is in Int (N ® N).
N wyille = || 22 % @ Y |lsesacs Ty o0y T €N, Yy o+0, Yn€N'.
. IT(Eazbf)l = ||Eat®b$“3(®3m Qyy * 00y Ay, bu ] b,,GN.
6. Given x,, -+, £, € N and ¢ > 0, there exists a non-zero finite dimen-
stonal projection e € £(I() such that, for all j7:

Ol = W

[ [x;, elllas = €llellus , | T(x;) — {®wje, e)us/{e, e)ns| = € .
7. N is contained in the centralizer of a state ¢ on L£(I().
The hard part is to go from 7. to 1.:

Proof of 1. = 7. Asthe commutant of R has property P [42] there exists
a projection P of norm one of £(J(C) onto N = R such that P(axb) = aP(x)b,
a,beN, ze () sor-P=¢is a state on £I() and N < £(F),. Q.E.D.

Proof of 7. = 6. We can assume that z, ---, z, are unitary operators.
Assume that for any finite subset F of the unitary group of N and any é > 0,
there exists a state 4, € N, such that || [y, ]| < 4, for all w e F while
| ¥ro;) — 7(2;)| = € for some je{l, ---, n}. Then by the weak compactness
of the state space of N (non-normal states) we could get a tracial state on
N different from 7z which is not possible.

So let F' = (%;)j-,,....,, and & < ¢ be such that each z, belongs to F' and
that, for any (normal) state 4, on N:

(5.2) (Il [¥o, w5l 1| = 20 for all j) = [yo(x,) — (@) [ = ¢

Let £(JC), be the predual of £(J(), let £(F )% be the Banach space £(J()%
with norm || (g, -+, ¢,) || = 25|16 |l. Then

E ¢J’(xi) = <(¢1y Tty ¢p)’ (xu R xp)>

identifies the product von Neumann algebra (£(F())? with the dual of £(J()s.

Let W be the set of all (v — ¥-Adu, -,y — ¥-Adu,), for ¥ a normal
state on £(JC). Then W is a convex subset of £(JF(): and hence its weak
and norm closures coincide. As by the bipolar theorem the set of normal
states is weakly dense in the state space of £(7), there is a net (¥y)ses of
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normal states converging weakly to the state ¢ invariant under the Ad u;.
So we have shown that the weak, and hence norm, closure of W contains
(0, ---, 0). Let then 7 = (6/6p)* and + be the normal state on £(¥) with:
(5.3) I — y-Adu |7, k=1 -, p.

Let o be the unique positive Hilbert-Schmidt operator || 0 ||zs = 1 such that
¥(x) = {®P, O)us, for ze L(I). Then by (5.3) and the Powers-Stormer
inequality:

(5.4) luouir — Pllus = lollas =7 .

Now let 0, = u,0uy and apply Theorem 1.2.2 to get an @ = 0 such that, as
0 <1,

(5.5) E(0)# 0, [ E(ox) — Ex0)|las < 0| E0) ||us -

We ¢ = E,(p) is a finite dimensional projection because Tr(¢) < «~ and one
has:

(5'6) H[uk’ e]llﬂséaHeHHs, k=1, e, D.
Let +, be the normal state on N such that
(5.7) VoY) = {ye, e)us/<e, e)us = Tr(eye)/Tr(e), yc N .

Then for each k, with ¢, = u}eu, and y € N one has

"Fo(Aduk(?/)) = {yuie, ure)us/<e, e)us = {Yeu, erus/<€, € ns ,

80, as ||, — ¢|lus < 0 || ¢ |lus We get: || ¥, — Y- Adw, || < 20, and by (5.2) we
get the last inequality of 6. Q.E.D.

Proof of 6.—=5. Let a, -+, a,€N, ||la;||<1and b, ---, b, e N. Let
¢ > 0 be arbitrary and by 6., let ¢ # 0, be a finite dimensional projection,
such that:

(5.8) I[10F, el llas < €l €]]us » i=1 - m,
(5.9) | 7(32 a:d}) — (3C asble, eyus/{e, ems| = ¢.
By (5.8) and || a;|| < 1 we have || a;(eb} — b*e)e||us < € || e ||us; hence
| {(ease)(ebse)*e, e)us — {ajbfe, e)us| < €| els ,
and hence
| (32 ajbi*e, edus — <3 asble, e)us | < me || e |[s a; = ea,e, b; = ebje .
Let K = eI be the range of ¢ and @ the reduced von Neumann algebra of

&(3() by e. Then X is finite dimensional as @, and a/, b; € Q. The normalized
trace of any x € Q is

(5.10) 74(®) = Tr(x)/Dim e = (e, €)us/<¢, €)us -
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So the above inequality, together with (5.9) gives:
(5.11) | 730 aj*) — (35 ab}) | < (n + L)e.
Let J be the isometric involution of X & X ° such that J(¢ R 7°) =7 & &,

&, neX. ThenforxeQonehasJ(x ®1)J =1 x°. Let m be the dimension
of X and &, ---, &, an orthonormal basis for X,

D T
5—m251®8,€3(®3ﬂ.

Then ||£]| =1 and (¢ ® 1&, &) = 7,(x) for all z€ Q.

Moreover J = J; g5, 80 that Jé =& and J(x ® 1) = (x* ® 1)¢ for all
2 €@, as can be checked directly for the canonical matrix units e,;: &, — &,,
3, 7=1, .-+, mof Q.

Hence, we have

Qo ((@; @B, Q@ 1)), &) = (X0 aidi*) @ 1), &) = 74(3_ ajby*)

while it is also equal to {(3 a;®b5)s, £. Now, K ® X" is included in I Q I*
and & e X @ X~ satisfies (e®e)é = &, so we have, as (e®e)(3 a;®b3)(e®Re’) =
2 a; @b
(5.12) 2o ad*) = 35 a; @ b, &) .
As || ¢]] = 1, this, with (5.11) completes the proof. Q.E.D.

Proof of 5. = 4. (implicitly contained in [19], proof of Proposition 4.5).

Let N (O N’ be the algebraic tensor product of N by N’ and N Quin N’

the C* algebra generated by N N’ in H ® J. Let n be the homomor-
phism from N ) N’ to £(J() which satisfies

N, 2 ®@u) = 2wy, , z, €N, y,eN".
Let £ be a cyclic and separating trace vector of N, and J the corresponding
involution. Then fora, ---, a,, b, -+-, b, € N:

(20 abf) = 3o adié, & = &7 aJbiJs, &)
because as ¢ is a trace vector Jb;é = bf&. So using 5. we have:
| Q2T aJbJE, & | < || 207 a; @ Ibid ||xew -
As JNJ = N’ we get:
(5.13) |t &= | 2272 vl z;eN,y;eN".
In other words the map from N () N’ to C which satisfies w(A4) = (9(4)¢, &

is bounded and hence extends uniquely to a state of N ®.i N'.
So we have for any A, Be N N’, that:

(5.14) w(B*A*AB) = || Al[un w(B*B) .
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As 7 is a * homomorphism we have w(4*A4) = || 7(A4)¢||* and by (5.14)
(B = [| Alluin [[72(B) ] forall A, BENON'.

As the 7(B)¢ are dense in JC we get that || 7(4) ||5c < || A||min and, as min is
the minimal C* norm on N ) N’ we get the desired equality by [44], Theo-
rem 2. Q.E.D.

Proof of 3. = 4. By Corollary 3.2 above, by [19], Corollaries 4, 6 and
Proposition 3.9 we have 4. = 3.

Conversely, let N actin JC, N® N in I ® I, and ¢ be the symmetry
of N® N. By hypothesis 0 €Int N ® N so, Theorem 3.1 shows that, for
a, ++,06,e NN, b, ---,b,e N'Q N' one has

(5.15) 1 22 a:d: [[3cwae = || 22 0(a:)bs ||sceac -
Letzx, -+-,2,e Ny, -+, Y. €N'ya, = 2,1, b, = y,Q1; then (5.15) means,
aso(r; ®1) =1,

(2 2w @ 1lsceac = |1 22 4 @ @ || - Q.E.D.

Proof of 3. = 2. Let N be a factor of type II, satisfying 3. Then it
satisfies 4. and by Corollary 2.2 it has property I'. So Int N == Int N by [9],
Theorem 3.1, p. 429. Let ¢ be the symmetry of N X N. Let 6 € CtN, then
by Corollary 4.4 we have § ® 1 € CtN ® N and by [12], Lemma 2.2.2 we have
(0 Q1)o@ ®1)'o'elnt N® N. Sof ® 67" is inner and so is 6 ([28]). There-
fore we have CtN = Int N = Int N and hence, with » a free ultrafilter on N
the asymptotic centralizer N, is not abelian by [12], Theorem 2.2.1, (c)= (d).
So by [17], N is isomorphic to N ® R.

We now construct an approximate imbedding of N in B. Apparently
such an imbedding ought to exist for all II, factors because it does for the
regular representation of free groups. However the construction below
relies on condition 6. First observe that 4. implies 7. by [19], Corollary 4.6
and (5.10,) and the proof of 1. = 7. We need some notation and lemmas.

Notation 5.16. For each n € N let Z*" be the free group on » generators
gy, **+, .. For m eZ*" let the length of m be the sum of the absolute values
of the exponents of the g; in the reduced form of m. Finally for unitary
operators u,, ---, %, in JC, let, for m € Z*™, w(m) be the unitary operator
obtained in replacing each g, by the corresponding u; and finding the product
in £(I0).

So m — u(m) is the homomorphism of Z*™ in () such that w’ = u,,
U= (U, *°+, Uy,)-
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LEMMA 5.17. Let N be a finite factor satisfying 6., u,, - -+, u, be unitary
operators of N, k€ N and X be the set of all words m € Z*" whose length is
less than k. Then for any € > 0 there exists a finite dimensional factor Q
and unitary operators v,, «--, v, € Q such that:

|z(u(m)) — z(v(m))| < e  forall meX,
whereu = (U, *++, U,), v = (v, **+, V,) and T, s the normalized trace of Q.

Proof. Letd = ¢/3k and using 6., let ¢ € £(J() be a non-zero, finite dimen-
sional projection such that:

(5.18) H[e, u,-]||Hs§5||e]|Hs, j:l’ e, M

IT(u’(m)) — (u(m)e, €)us/<e, 6>HS{ ¢, meX.
Let e; = ujeu}; then ||e; — e|lus < 0 || ¢||us and, by Lemma 1.4 there are
unitary operators w; in £(J) with w,e;w} = eand ||w; — 1||us < 30 || || ms-
Let v; = w;u;; then we have:

(5.19) vie =ev;, |[v;— u;llus < ¢/l e]ns , for all 5.

Let v; = vje = ev;. Then each v; is a unitary operator of the finite dimen-
sional factor @ reduced from £(3C) by e € £(3(). The normalized trace of Q
is 7(x) = (xe, e)us/{e, €)us, * € Q. By induction on the length of the word m
one gets:

| u(m) — v'(m)||us < length (m)% Il €lus

as a consequence of (5.19), because for unitary operators a, b € £(J() one has:
(5.20) ” au,-b - av;b ”HS = 5/k H e ||HS , for all j o

Now by (5.19), ¢ commutes with all v}, so that (v'(m))e = v(m) for all words
m. So we get:

(5.21) | Cu(m)e, e)us — (v(m)e, e)us| = €| €|[ks , meX .
By 5.18 and the definition of 7z, we get the conclusion. Q.E.D.

LEMMA 5.22. Let N satisfy condition 6., let @ be a free ultrafilter on N
and R the ultraproduct associated to the hyperfinite factor R. Then there
exists a normal homomorphism of N into R°.

Proof. Let F = Z*~ be the free group with countably many generators
G ***y9n, »++. Let T be the normalized traceon N, z,on R. Letu, -+-,u,, -
be a sequence of unitary operators of N generating N as a von Neumann
algebra. For each ke N let X, CF be the set of all words m €F involving
only g,, ---, 9, and with length less than k.

By Lemma 5.17, for each k, let v¥, v%, - .-, v be unitary operators of R
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such that:
| T(u(m)) — 7 (v*(m)) | < 1/k, for all me X, ,

5.23
(5.23) where v* = (v, vf, ---, 05 1,1, --2).

For each jeN, let v; be the unitary operator of R® represented by the
sequence (v¥),.x. Then as each word m € F belongs to all X, k = k(m), we
get, withv = (v, -+-, v;, -+ +):

(5.24) To0(v(m)) = lim,_, 7(v¥(m)) = (u(m)) , meJF .

For x € @ = * algebra generated by the u;, j € N, let #(z) = 3, A, v(m), when
=Y Nu(m). If 35 n,u(m) = 0then 3 X\, 7(u(m)*u(m’)) = 0 and hence,
by (5.24) 3 Xohn Tou(v(m)*v(m’)) = 0, so that the definition of 7 is un-
ambiguous. By construction 7 is a trace-preserving * homomorphism of @
into B®. So by [35], we can extend 7 to a trace-preserving * homomorphism
of N into R“; w is then normal, injective. Q.E.D.

LEMMA 5.25. Let N satisfy condition 6., then there exists, for each free
ultrafilter w on N, a normal tsomorphism 6 of N @ N in the ultraproduct
(N ® R)” such that:

(a) For each xe N, 6(x Q 1) ts represented by the sequence (x @ 1z),x-

(b) For each ye N, 6(1 Q y) is represented by a sequence of the form
(lN ® zv)veNr zu € R'

Proof. Let m, be the unique isomorphism of N in (N & R)“ such that
T (x) = (x Q@ 1z),ens £ € N. Let 7 be as in Lemma 5.22 and 7, the isomorphism
of N into (N ® R)* such that 7,(y) = (15 ® (7(¥)),).ex Where (7(y)),.y is a
representing sequence for 7(y) € R*, y € N. By construction 7,(N') and 7,(N)
are commuting subfactors of (N Q R)“, and as we are in a finite factor, we
can identify 7, (N)Q 7,(NN) with the subfactor of (N & R)* generated by
T(N), 7(N). Then m, @, is an isomorphism of NQ N into (N R R)® satisfy-
ing (a) and (b). Q.E.D.

End of the proof of 3. = 2. Let : NQ N — (N R)* be as in (5.25).
Let z,, -+, ,€ N, ¢ >0, and by the hypothesis on the symmetry 6: NQ N—
N ® N, let v be a unitary operator of N ® N such that:

(5.26) lz; @1 — v(1 @ x)v* |l < ¢/2, i=1 -, n.
As 0 preserves the L* norm and is a * homomorphism:
(5.27) 16(z; ® 1) — 6()8(L @ )0(v)* |l, < ¢/2 , i=1 - m.

Let (X.),en be a representing sequence of unitary operators of N ® R for
X =0(v) e(N® R)“. Let, for each 7, (2%),.x be a sequence of elements of R
such that (1 ® 2}),.y represents (1 ® x;). Then we have, by (5.27):
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(5.28) lim,,||2z; ®1 — X,Q1RQz)X*|. = ¢/2, for all 7.
So for a suitable vy € N we have conclusion 2. Q.E.D.

Proof of 2. = 1. Let N satisfy 2. and hence let (N,),.x be an increasing
generating sequence of subfactors of N, all isomorphic to N, with relative
commutant isomorphic to B and giving factorizations N = N, @ N;. Let
x, +++, %, €N, e >0andletkeN, x|, :--, x, € N,such that || x; — 2}, < ¢/2.
We want to prove the condition of approximation called condition C ([34]),
for z, ---, x, and . By the above argument we can assume that all x;
belong to M &) C in some factorization N = M & R of N, with M isomorphic
to N. Let thenz, --+, z,€ R and X unitary, Xe M & R with

2 — X(1y ®2)X* |, < ¢/2, forall j=1,---,n.
By the choice of R, let @ be a finite dimensional subfactor of R, and
qy ***, ¢, €Q with [|2; — q; ||, = ¢/2 for all j. Then X(C® Q)X* is a finite
dimensional subfactor of MQ R = N and ||z; — X1, R ¢,)X*|, <S¢, j =
1 -, n. Q.E.D.

Remark 5.29. Let N and J( be as in the hypothesis of (5.1), let €U be the
unitary group of N with discrete topology and 7 the identity representation
of A in F. Then the representation of QU in (F )y defined by o(u)(y) = uyu*
is unitarily equivalent to 7= (X 7°, the tensor product of 7= by its conjugate.
So a reformulation of 7. <= 1. of Theorem 5.1 is:

(5.30) N hyperfinite =n R n° weakly contains the trivial representation .
With the notations of (5.1) we also have, by 7. = 1.:
N hyperfinite = for any unitary operators u,, -+, u, € N,
| 227 %5 @ u5 ||sconce = n -
Note also that the last condition of (5.31) was the only one used in the
proof of Corollary 3.2.

(5.31)

Remark 5.32. The proof of 5.=4. given above extends to infinite factors
and shows that a factor M is semi-discrete if and only if some (and then all)
faithful normal state ¢ on M admits a purification (in the sense of Powers-
Stermer [36] and Woronowitcz [48]) # on the C* tensor product of M by M°.

Remark 5.33. A Banach algebra B is called amenable [4], [26] when
H'(B,Y) = {0} for any dual B-bimodule Y. A von Neumann algebra M is
called amenable when H'(M, Y) = {0} for any dual normal B-bimodule [27].
In [27], Johnson, Kadison, and Ringrose showed that all approximately finite
dimensional von Neumann algebras are amenable.
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We show below that if N is an amenable factor of type II, it satisfies
condition 7. of Theorem 5.1.

Let us take N acting in JC = L*(N, 7) (r the canonical trace) with 1 as
unit trace vector. Let X be the Banach space of linear functionals v on
£(J(C) such that:

(a) For some K < o, |y(xAy)| = K||z|.||All|ly]. for all z, y €N,
A e &(). (The smallest such K is denoted by ||y ||x.)

(b) 4(x) = 0 for all x € N.

It is easy to see that the unit ball of X is weakly compact (for the weak
topology o(X, £(3C))) and that X is naturally a dual normal N bimodule, with
operations:

(@¥)(4) = ¥(Az), (¥x)(4) = ¥(x4),

for x e N, Ae £I(). Now let De ZY(N, X) be the derivation of Nin X such
that:

D(x)(A) = (A — Ax)1, 1>, Aee(¥).

Then to say that D e BN, X) is trivially equivalent to the existence of a
state ¥ on £(I(C) satisfying condition 5.1.7.

Remark 5.34. Let us call a state ® on £(¥(), such that N c (£(X)),, a
hypertrace for the factor N. Then the existence of a hypertrace on N implies
that N is finite and by Theorem 5.1, that N is hyperfinite, which agrees
with the terminology of Dixmier [15].

Remark 5.35. One can consider condition6. of Theorem5.1 as an analogue
of Folner’s condition for amenable discrete groups [21] and a hypertrace as
an analogue of an invariant mean on such a group. Then the proof, given
above, of 7. = 6. is exactly analogous to the proof, given by Namioka, of
Folner’s theorem [23].

VI. Stability properties of the class of injective von Neumann algebras

This section is an exposition of definitions and results due to J.T.
Schwartz [42], Choda and Echigo [6], [7], Hakeda and Tomiyama [25], Arve-
son [3], Effros and Lance [19] and Choi and Effros [5]. If some of the state-
ments are new they are simple to deduce from the quoted papers, except
perhaps for Corollary 6.9 (¢c). One considers the category of C* algebras
with units, the morphisms being the completely positive, unit preserving,
linear maps.

A C* algebra A is called injective when the following analogue of the
Hahn-Banach theorem is true (cf. [19]):
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For any C* algebras B C and any morphism 6 of B in A, thereis an
extension G of 6 to C: §: C — A.

Arveson’s theorem [3] shows that ©(J() is injective for any JC.

Definition 6.1. A von Neumann algebra M is called injective when it is
injective as a C* algebra.

This definition ties up with the extension property of [25] by:

PROPOSITION 6.2. A von Neumann algebra M in JC is injective if and
only if it is the range of a projection E of morm one from £(3C).

As in many categories, the injectivity of von Neumann algebras is
related to the existence of solutions to certain equations, more precisely
Choi and Effros prove in [5] that:

PROPOSITION 6.3. For each n let F', = M,(C). Let M be a von Neumann
algebra in JC. Then M is injective if and only if foreach s = s*ec M@ F,,
each 0 = 6* € F', such that b@ g < s for some b = b* € £(I(), there exists an
xeMsuch that x Qo s, ||z||Z||b]l, x = a*.

The next proposition shows that the injective von Neumann algebras form
a monotone class.

PROPOSITION 6.4. Let J3C be a Hilbert space.

(a) If M in IC, is an injective von Neumann algebra, then so is its
commutant M’ (cf. [25]).

(b) The weak closure of an ascending union of injective von Neumann
algebras is injective (cf. [19]).

(¢) Same as (b) with intersections of decreasing families.

In particular, as each finite dimensional or each type I von Neumann
algebra is injective so are the approximately finite dimensional ones (see [20]
for equivalent definitions of this class).

PROPOSITION 6.5. Let JC be a separable Hilbert space, X, a standard
Borel space with probability measure ¢ and a — M(e) a Borel map from X
to von Neumann subalgebras of £(JC). Then M = S M(a)d(c) (elements of
M are classes of essentially bounded Borel functions (2.).cx, X, € M() for
all a € X) is injective if and only if almost all M(ct), & € X are injective.

Proof. By the Hahn-Banach separation theorem, and by 6.3, if a von
Neumann algebra N in X is not injective, thereisneN, s=s*ec NQ F,,
be &(X),b=1>0*|bl|<1,0 =0*cF,and ¢ €(&X)® F,)i, ¢ >0, such that:

6.6) bRo=s, dxR0o)=4(s)+ ¢, forany x =2*eN, ||[z|]| = 1.
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Replacing s by s + ¢/2 one shows that (6.6), with ¢/8 instead of ¢, is still
satisfied for ¢ in a (norm) open subset V of the self adjoint part of F,.

For each n e N let (a,,;);.x be a norm dense sequence in the self adjoint
part of F',. Then N is not injective if and only if for some integers =, 7, q, k,
thereexists = s*e NQ F,, b = b*, be &(X),[|b|| = 1,and ¢ € (AK) R F,)i
with

”3H§k’ ”¢”§k7 b®0ma’§s
and
#(2 @ 0,,5) Z ¢(s) + 1/g, forany v =2*eN, |[z][=1.

Now, if M(«) fails to be injective for a non-negligible set of a’s there are
integers n, 7, q, k such that the corresponding set of a’s is non-negligible,
and, say, is equal to X. Then for each a € X we choose (using [10], Appendix
V) a b, e £I0), ||b.]| =<1, b, = b¥, an s, = s¥ e M(@), ||s.|| <k and a ¢,¢
(&(X) ® F,)%, with || ¢.|| < k and such that the corresponding families are
Borel, while

ba ® ] é Sa ¢a(x ® Un,:i) g ¢a(sa) + 1/q

6.7
6.7) for all xe M(a), x = z*, ||z|| < 1.

The above selection is possible because one needs to check (6.7) only for
a strongly dense set of x € M(«). Then let

b= (eexe | 200U =P, 5= (Ire MO F,,

and ¢ € (M ® F,); be such that for any ¥ = (¥o)sexs ¥« € M(@) ® F,, one has
#(v) = | 9(v)dp(). Then

b®0n;=s, $r®0,;)2¢(s)+1/g forallxeM,x=u|lz|l=1.

This shows that M is not injective, by 6.3. The inverse implication follows
by a similar argument. Q.E.D.

PROPOSITION 6.8. Let M be a von Neumann algebra generated by a von
Neumann subalgebra N and a subgroup S of the normalizer of N. Then if
N is injective and S is amenable as a discrete group M s injective.

Proof. By 6.4(a) we just have to show that M’ is injective but M’ is
equal to (N')%, for the natural action of S on N’. As § is amenable, there
exists a projection of norm one from N’ to (N')%. One then applies 6.4 (a)
and 6.2. Q.E.D.

COROLLARY 6.9. (a) Any continuous representation « of an amenable
locally compact group S is such that (7(8))” and 7(S) are injective.
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(b) The group measure space construction from a triple X, p, S with 9
amenable discrete, gives an injective von Neumann algebra.

(c) Any representation m of a separable connected locally compact group
G 18 such that n(G) and ©(G)" are injective.

Proof. (a)and (b) follow trivially by (6.6). To get (c) one can restrict to
factor representations by 6.5, then to real connected Lie groups by [31],
Proposition 2.2, and finally apply (6.6) using [16], Proposition 1.7 and Pro-
position 2.3. Q.E.D.

We are grateful to J. Dixmier for pointing out to us the proof of 6.7 (c).

VII. The classification of injective factors

We restrict our attention to factors acting in a separable Hilbert space.
The types I,, » < o and I. are well known; there is up to isomorphism only
one factor in each of those types.

THEOREM 7.1. Up to isomorphism, the hyperfinite factor is the only
injective factor of type 1l; all its subfactors are hyperfinite and hence
classified by their type (I,, n < o, or II).

Proof. Let N be an injective factor of type II, acting standardly in a
separable Hilbert space J. Let E be a projection of norm 1 of £(3() onto
N; then by classical results of Tomiyama [47], it is a conditional expectation:

E(axb) = aE(x)b, x€ £(3(), a, be N .
So 7o E (r the normalized trace of N) satisfies condition 7. of Theorem 5.1:
duxu*) = ¢(x), xe &(F), w unitaryin N . Q.E.D.

By Theorem 7.1, R is the only infinite dimensional factor which is con-
tained in all others. The terminology hyperfinite is also justified by condition
7. of Theorem 5.1: an infinite dimensional factor is the hyperfinite factor R
if and only if there exists on £(3() a state invariant under inner automor-
phisms of R, a strengthening of the condition of existence of a trace on R.

COROLLARY 7.2. Let S be a discrete countable group with infinite
conjugacy classes; then the left regular representation of S generates the
hyperfinite factor R if and only if S is amenable.

Proof. If §is amenable, apply 6.7 (a) and 7.1. Otherwise see [42].
Q.E.D.
Combining Theorem 7.1 and Proposition 6.5, we see that any von

Neumann subalgebra M of R is a direct integral of hyperfinite factors or of
type I,, n < o, factors. This observation has the following important
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consequence:

COROLLARY 7.3. Let & be a self-adjoint subset of R. Then the von
Neumann subalgebra of R generated by S is: M = {x e R, [z, y,] T 0
strongly, for any bounded sequence of elements of R such that[y,, s]T.;'oT’O
strongly for s € S}.

Proof. Let N be the von Neumann algebra generated by S. We have
Nc M. Let (N.)..x be an increasing sequence of finite dimensional sub-
algebras of N, generating N. Assume that for some ¢ > 0 and y € M one
has ||y — 2|, = ¢ for all z€ N. Then as the relative commutant of N, N R
in R is equal to N, for each k€ N (because N, is finite dimensional), there
exists a unitary u, € N; N R such that || u,yu} — y [, = ¢ (because the strongly
closed convex hull of the uyu*, w unitary in N, N R, contains an element of
(N: N R) by standard arguments). Then the sequence (u,)..yx satisfies
[, s] T 0 strongly, for s € S but [u,, y] - 0 strongly. Q.E.D.

By Proposition 6.4 the next theorem shows that up to isomorphism there
is only one factor of type II., which is the weak closure of an ascending union
of finite dimensional von Neumann algebras. The terminology “hyperfinite”
to designate the last property is inadequate; we shall follow [20] and call it
“approximately finite dimensional”.

THEOREM 7.4. Let R,, = R Q £(J). Then up to isomorphism R, , is the
only injective factor of type ll., hence the only approximately finite dimen-
stonal one.

Proof. Let M = N Q £(J() be injective, with N of type II,. Then using
a conditional expectation of M on N one gets that N is injective (by 6.2) and
hence 7.1 applies. Q.E.D.

Combining Corollary 6.7 (c) and the theorem of Dixmier-Pukanzky ([37])
one gets that R, is, with £(J(), the only factor which appears in the direct
integral decomposition of the von Neumann algebra generated by the left
regular representation of a connected separable locally compact group.

THEOREM 7.5. Let M be an injective factor of type 1ll,; then M is a
Krieger’s factor, i.e., it is the cross product of an abelian von Neumann
algebra by an ergodic automorphism.

Proof. Let M = W*(N, 0) be a discrete decomposition of M. By con-
struction N is the centralizer of a weight on M and hence is injective as M.
So, combining 6.5 with 7.4, we find that R, is the only factor occurring in
the direct integral decomposition of N. Hence Theorem II.1 [10] applies.

Q.E.D.



114 A. CONNES

COROLLARY 7.6. Two injective factors of type IIl, are isomorphic if
and only if their flows of weights are isomorphic.

This is a known result of W. Krieger [29] combined with 7.5 and [13].

THEOREM 7.7. For each )\ €0, 1], the Powers factor R; is, up to isomor-
phism, the only injective factor of type III, (see [8]), and in particular the
only approximately finite dimensional one.

Proof. Let M = W*(N, 6) be a discrete decomposition of M (cf. [8]).
Then, as above, N is injective and Theorem 7.4 shows that N is isomorphic
to R,,,. Then by [12] one gets the conclusion. Q.E.D.

THEOREM 7.8. Any tinjective factor of type III, is semi-discrete and
approximately finite dimensional.

Proof. By [8], p. 167 and Theorem 7.7 the cross product of M by o,
the modular automorphism for a T, # 0, is isomorphic to R;, T,log A = 2.
The conclusions follow easily. Q.E.D.
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