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A factor M is of type III, if and only if the action of its unitary group on its 
state space by inner automorphisms is topologically transitive in the norm 
topology. 

I. INTRODUCTION 

The states on the algebra M,&) f o n x 71 matrices over C are classified 
up to unitary equivalence by their eigenvalue list (X3)i=1,...,n , i.e., the list of 
eigenvalues of the associated density matrix. Let M be a factor with separable 
predual; then it is a natural problem to try and classify the normal states of M 
up to unitary equivalence, viz., I$~ ~4~ when c#~ is in the norm closure of the 
orbit of & under inner automorphisms of M. If M is of type # III, it is an 
easy exercise, using the results on the flow of weights of M to get such a clas- 
sification. If M is of type III, the flow of weights is trivial and one is led to 
conjecture (cf. [SJ) that any two normal states are topologically equivalent. 

We prove this fact below, and obtain some easy consequences. The first 
is that M has property LA of Powers [S] if and only if h/(1 - X) E S(M). We 
then show that if M is of type II or III then there exists a faithful normal state 
on M whose centralizer contains the hyperfinite factor. This last result makes 
it very easy to prove a conjecture of Dell’Antonio [6] to the effect that type I 
factors are the only factors in which weak convergence of a sequence of normal 
states to a normal state implies norm convergence of the same sequence. 

In order to prove the main result we study in Section 2 the skew information 
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I(+, x) of an operator x relative to a state 4. If M is a factor of type I with trace 
Tr and 4 the state b(x) = Tr(hx) the skew information was introduced by 
Wigner and Yanase [9] as the quantity -Tr([h1/2, xl”) when x is self-adjoint, 
and is a measure of how far x is from commuting with 4. 

2. COMMUTATION OF OPERATORS WITH NORMAL STATES 

Let M be a von Neumann algebra with separable predual. Let M act standardly 
on .%? and Pb be the natural cone associated with some cyclic and separating 
vector [l, 3, lo]. Let J be the involution associated with BQ. If + is a normal 
positive linear functional on M let 5, be the unique vector in Bb representing 
4: d(x) = (x&, , &), x E M. When $ is faithful we let d, be the modular 
operator for (44, 6,). In order to estimate the commutativity of x E M with 4 
we use the quantity 

I(#, 4 = 4 II(Jx*J - x)& 112; 

cf. [9]. By construction 0 < I($, x) < (11 x 1132, where (11 x 11:)s = /j x.$ l/a + 
II x*& 112. We list a few properties of I(#, x) which will be used below, 

PROPOSITION 1. Let $ be as above. Then 

(4 I($, XYP' < 4, xY2 II Y II + II x II 46 yY2, x, Y E M. 
(b) IIWJ, XIII < 23’2+(1)1’2&4 x)l”, x 6 M. 
(c) If $ is faithful and x E M(c+, [(I - 8)2, (1 + S)2]), where the spectral 

subspace is taken with respect to the group IF&+, then I(+, x) < &82(lj x lj6)2. 

(d) Let e be a projection in the centralizer M, of 4, then I(@, x) = I($, x), 
where+e =$lM,andx~M,. 

(e) Let e be aprojection in Mb , Zet x E eM, y E (1 - e)M. ThenI(& x + y) = 

I(& 4 + WY Y>- 

(f) I II d$ II - II x*&5 II I < (24$, xY2. 
(g) Let 0 = (i i) be the functional C$ @ Trace on M @ M,(C). Then 

I(& (2 :*)I = W!, x), x E M. 

(h) Given k = k* E M there exists a positive jinite measure TV on Rs such 
that for any bounded real Bore1 function f on R we have 

Mf (4) = ; j- If (4 -f WI2 4&y), 

4(fW) = j-f@, 4 = j+f(r) 4. 
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Proof. (a) Since JMJ = M’ we have 

lKJ(xy>*J - xyk$ II < II y II II(Jx*J - $b II + II x II II(Jy*J - y)& II. 

(b) If y E M we have 

I[54 439 = KXYSm ? 4m> - (YX5.35 Y MI 
G KY&, x*fd - <Y& 3 JxJSm>I + I<rJx*Jb, Lb - <rxL, &)I 
G 2 II Y II II 5, II II(Jx*J - 46~ Il. 

(c) Let S = [(l - S)2, (1 + 8)2] and x E M(d, S). Then x5, belongs to 
the range of the spectral projection of d, corresponding to S, so that 

VW, x)Y’~ = II A:‘2&, - x5r II < ~g I P2 - 1 I /I x54 /I. 

(d) Let x E M, and identify x with exe in M. Since the involution of et, 
with respect to M, is eJe [3], and Je&, = e5, , we have 

-&P, 4 = t WJ4 x*(eJe) - @G II2 
= 4 II Jex*eJ& - x6,+ II2 
= 4 II Jx*& - xc% II2 
= w 4. 

(e) As in (d) we have eJx*& = Jx*Je& = Jx*e&, = Jx*& when 
x~eM. Thuse(x - Jx*J)& =(x - Jx*J)&, . Similarly(l - e)(y - Jy*J)&, = 
(y - Jy*J)&, for y E (1 - e)M, and (e) follows. 

(0 Use that I II ~54 II - II x*6 II I = I II ~56 II - II Jx*Jh II I G II ~5 - 
Jx”Jb II. 

(g) We have (E i*) = (T :)(z ,“*), and (i i) commutes with 0, so that 
I(0, (“, z’)) = 1(0, (t $)) = 21($, x), using (d) and (e). 

(h) Let A and B be Bore1 subsets of IF!. Let lA , la be their characteristic 
functions. Put p(A x B) = (Z,(k)& , JZ,(K)&). Then p(A x B) > 0 since 
JI,(k) JI,(k) > 0, so there exists a unique positive measure p on R2 determined 
by these values on rectangles. If f and g are bounded real Bore1 functions on R 
we get 

I f(x) g(y) 44x, Y) = (f (4 5+ ) -ii@) !u 

Sf (x) 44x> Y) = <f (4 5m 3 cd = (6% ) Jf (4 &) = If(Y) 44% Y). 

Hence we have 

Il Jf (A) 5, -f (4 e6 II2 = 2 Ilf (4 & II2 - Xf (4 54 9 If (4 b) 

= s (f(x)” + f (y)2 - 2f (x)f (y)) 44~s Y) Q-En 
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Next, as in [4], we let E, be the characteristic function of the interval 
[a, + co) C (w for each a > 0. For x E M we put u,(x) = U(X) I?,(/ x I), where 
x = U(X) ] x 1 is the polar decomposition of X. Let da be the Lebesgue measure 
on R. 

THEOREM 2. For any + E M,+ and x E M we haae: 

(4 .fy (II ~,w(~II~)~ da = (II x 11$)2, 
(b) ST W, u,&>) da < WA xY2 II x ll$ 

Proof. (a) We have u&x)* u&x) = .?&P(] x 1) = &(x*x) and 
jr E&*x) da = x*x. Since z+,s(x*) = u&x)* (a) is immediate. 

(b) First replace $ by 0 = (g i) and x by (z t*). We have (z g*)(z t*) = 
(f” z,*), and hence 

Thus we have 

Using Proposition I(g) and the computation of ]I(: ~*)I$ we see that to prove 
(b) we can assume that x = x*. Then by Proposition l(h) we just have to show 
that with the Bore1 functions F,: R -+ R, F,(t) = sign(t) E,(I t I), we have 

Jbu (1 I Fa&) - F,&)12 44, y,) da 

< 4 (j- 1 x - y I2 dp(x, y))“’ [( j- I x I2 dc”(x, 9)“’ + (j” I Y t 2 44x, Y))~‘~] 

for any positive finite measure p on R 2. For sign x = sign y we have, since 

-G/44 = %(x2), 

j I Fad4 - Fax/s(~)l~ da = j- I E&x2) - EJr”)l da = I x - y I (I x 1 + / y I). 

For sign x = -signy we have 1 F,I/z(x) - F,llp;(y)12 < 2(&(x2) + E,(y2)), so 
that 

I I F,&) - Fae4~)12 da < 2(x2 + Y”) < 4(x - y)” = 4 1 x - y 1 (I x / + 1 y I). 

The desired inequality now follows easily from the Schwarz inequality. Q.E.D. 
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COROLLARY 3. Let + E M,+ and x E M satisfy x # 0, I(+, x) < ~(11 x \I:)“. 
Then there exists a > 0 such that v = u,(x) # 0 and I($, v) < 7~~/~(/1 z, I]:)“. 

Proof. By hypothesis I($, x)l12 < &2 I/ x 11:; hence by Theorem 2 

= W2 s (II y&)ll.$2 da. 
As x # 0 it is impossible that 

for all a > 0, 

hence the conclusion. 

3. HOMOGENEITY OF THE STATE SPACE OF FACTORS OF TYPE III, 

It was shown in [5] that if M is a factor of type III, with unitary group U 
then the action of U by inner automorphisms on the space of weights with 
infinite multiplicity, gifted with a natural topology, is topologically transitive, 
i.e., each weight has a dense orbit. Moreover it was conjectured that the same 
is true for the action of U on the set of normal states of M. We shall prove: 

THEOREM 4. Let M be a factor type III, with separable predual. Then for 
any E > 0 and normal states C$ and # there exists a unitary u in M such that 
II $u - 4 II < 6, %dx) = W”4, x E Ml. 

Before we give the proof we include some applications. Our von Neumann 
algebras will always have separable preduals. Note first that if M # C is a 
factor satisfying the conclusion of the theorem then it is easy to see that S(M) = 
R,. ; cf. the proof of the next corollary. 

COROLLARY 5. Let h E [0, 4). Then a factor M has property L, of Powers 
if and only if h/(1 - X) E S(M). 

Proof. By [8, p. 1571, M has property L, if and only if M is of infinite 
type, hence if and only if 0 E S(M). If X E (0, -$) by [2, ThCoreme 3.5.4 and 
Corollaire 3.7.71, all that remains is to show that if M is of type III, then M 
has property L, . Using a state of the form w,, @ 4 on M2(C) @ M, where 
We = Tr((t Y-J.), it is clear that condition L, is satisfied for some state on M 
for all ;\ E (0, &I, hence by all states using the homogeneity (Theorem 4). 

COROLLARY 6. A von Neumann algebra M acting standurdly on an infinite- 

580/28/z-4 
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dimensional Hilbert space 2’ is a factor of type III, if and only if the product 
CWY” of the unitary groups of M and M’, respectively, acts topologically transitively 
on the unit sphere in 2’. 

Proof. The “if” part is easy; cf. the proof of Corollary 5. Conversely, 
to show that given unit vectors 5 and 17 in .Y? and E > 0, there exist u E @‘, 
v E %’ with ]I uvt - 17 I/ < E, one can assume that 6 and 7 are separating and 
cyclic by [7] and that 17 E Pb& by [2, Lemma 3.551. Then one applies Theorem 4 
to the vector states uE and w, . 

COROLLARY 7. Let (MV),,a be a denumerable family of factors of type III, . 
Then the infinite tensor product BvEA (M, , 4”) is up to isomorphism, independent 
of the choice of the sequence (&), 4” normal state of M, . 

Proof. Immediate by homogeneity. 

COROLLARY 8. Let R be the hyperfinite factor and let M be a non-type-I 
factor. Then there exists a faithful normal state 4 on M whose centralizer contains R. 

Proof. When M is semifinite or of type III, , 0 < p < 1, the conclusion 
is easy (cf. [2]), so we assume M is of type III, . From the proof of Corollary 5, 
M has property L,,, , so if +a is a normal state of M then there exists a subfactor 
K,, of type I, of M such that II& - &-,I K’s @ 7k0 11 < E for E > 0, where 

“%I is the normalized trace on K0 , and 4 I K’, the restriction of 4, to the com- 
mutant of K,, in M. Repetition of this procedure gives a sequence (& , K,), 
where &, is a normal state of M, the Kj are pairwise commuting I, subfactors 
of M, and K1 ,..., K,, belong to the centralizer of & . Moreover, we can assume 
II & - &+r 11 < 2-“; hence the 4,, converge in norm to a normal state 4. By 
construction the von Neumann algebra K generated by the Kj is contained 
in the centralizer of + and hence is the hyperfinite factor R. Now 4 can fail 
to be faithful, but as its support e belongs to the relative cornmutant of K in M 
we obtain the conclusion of the corollary for M, . Since M is isomorphic to 
M, we are through. 

Following Dell’Antonio [6], a factor M has property U if each sequence 
of normal states of M which converges weakly to a normal state already con- 
verges in the norm topology. Dell’Antonio showed that every factor of type I 
has property U and conjectured the converse [6]. 

COROLLARY 9. A factor has property U if and only if it is of type I. 

Proof. Let M be a factor not of type I. By Corollary 8, there is a faithful 
normal state + on M whose centralizer M, contains the hyperfinite factor R. 
Composing the canonical expectations of M onto M.+ and of M, onto R we 
get a normal expectation @ of M onto R. Since R does not have property U 
[6] there is a sequence (4,) of normal states on R which converges weakly to 
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a normal state but not in norm. Then the sequence (+n . @) has the same 
properties in M, , so M does not have property U. 

Note that since we might consider a reduced algebra M, , Corollary 9 remains 
true without the hypothesis that M, is separable. 

We now prove two lemmas which will be important for the proof of 
Theorem 4. 

LEMMA 10. Let 4 EM*+, where M is a factor of type III, . Let e’, f’ E M+ 
be nonzero projections smaller than the support of q5. For any c > 0 there exists 
a partial isometry u # 0 in M such that u*u = e < e’, uu* = f < f’, and 

(4 w, 4 < 4 u /l$)2, 

(8) &4 4 G +hZ(4,f) d +(f ). 

Proof. We can assume that 4 is faithful [7]. Since M is a factor of type III, , 
for any 6 > 0, there exists x # 0, x E M(o”, [I - 6, 1 + S]), x Ef ‘Me’; see 
[2, Sect. 2.11. Now by Corollary 3 and Proposition l(c), we can find a partial 
isometry u E f ‘Me’ such that I(+, u) < ~(11 u 11:)2, u # 0. Next, by Proposition 
l(f) we get, with u*u = e, uu* = f, that 

I +(e> - b(f )I d I #W2 - &f F2 I I d(e)‘/2 + +(f Y2 I 
< 2W V2(fb(e) + #(f ))‘I2 

< 2~‘/“Me> + d(f )). 

Hence by assuming E i/a < i we get &j(e) < d(f) < 24(e). By Proposition 
l(a) we haveZ(4, U*U) < 4Z(+, u) < &(#(e) + 4(f)). Hence (/3) follows. Q.E.D. 

LEMMA 11. Let EEYQ, and e E M be a projection. Put 5’ = eJeJ.$ + 
(1 - e) J( 1 - e) Jf. Then 

(a) 5’ belongs to 8’1 and with obwious notation, #‘(e) = 4(e) - I(+, e). 

(b) Let u be a partial isometry in M such that ue = u, eu = 0. Then 
W’, 4 < &A 4. 

Proof. (a) Both e Je J.$ and (1 - e) J( 1 - e) J[ belong to B Q [3], so I’ E ph. 
We have (et’, 6’) = <eJeJt, eJeJ4) = (et, JeJO, but 1(&e> = $(e) - 
(4, JeJO. 

(b) We have (u- Ju*J)eJeJ=uJeJ, since u*e=O.Also,(u- Ju*J)x 
(1 - e) J(l - e)J = -(l - e) Ju*J. Thus (u - Ju*J)[‘= JeJu[ - (1 - e)x 
Ju*J[ = (1 -e) JeJ(u - Ju*J)[ since (1 - e)u = u and eu* = u*. Since 
\I(1 - e) JeJl\ ,( 1, (b) follows. Q.E.D. 

Proof of Theorem 4. Let 6 > 0, 6 < 1, &, , &, be faithful normal states 
of M and & , q,, be the corresponding unit vectors in 8”. Let R be the set 
of all triples Y = (w, OL, /I), where w is a partial isometry in M, 01, /I E %‘, and: 
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(a) With a = w*w, b = ww*, we have am = OL, b/3 = p. 

(b) II a /I2 < %U4 II B 11’ < Sh(b). 

(4 f = E, - a- Ja and 7 =qa-p- J/3 belong to Bb and 

(a - JaJ)E = 0, (b - JbJ)v = 0, II 5 II < 1, II T II < 1. 
(d) Let 4, # E M*+ correspond to [, 7, let 0 = ($ $); then w = (,” z) 

satisfies 1(0, C7) < S(li W II:)“. 

We define a partial ordering on R by setting r < r’ when 

(1) w’ is an extension of w (i.e., w’a = w, w’*b = w*), 

(2) a(d - a) = 0, b(P’ - /3) = 0, 

(3) II a’ - a II2 d Vda - 4, II P’ - B II2 G %W’ - 4. 
This relation is transitive, in fact if r < r’ and r’ < r” then a(ol” - a) = 0 

because a’(@” - 01’) = 0 and a < a’. Also I] a” - OL iI2 = II a” - a’ II2 + 
\I a’ - 01 II2 because a’(oT’ - a) = 0~’ - 01 while a’(a” - cu’) = 0. It follows that 
< is indeed a partial ordering on R. 

To prove the existence of a maximal element in R we note that the map 
r = (w, 01, /3) -+&(a) (a = w*w) is injective on any totally ordered subset 
of R since a = a’ implies r = r’ whenever r < r’. Hence we just have to 
show that any increasing sequence (rn)nEN in R is majorized. To see that, 
let a = lim, a, , b = lim, b, in the strong topology. Furthermore, since 
the wn’s are extensions of each other they converge in the strong *-topology 
to a partial isometry ecr such that w*w = a, ww* = b. By (3), 11 01, - OL, II2 < 

%(am - a,) whenever n < m. Thus 01 = lim, ollE , /3 = lim, Pn exist, and 
by continuity we have r = (w, 01, /3) E R. The relation r, < r for all rr also 
follows by continuity. 

Now let by Zorn’s lemma r = (w, (Y, /I) be a maximal element of R. We 
assume that a = w*w # 1, b = ww* # 1 and shall obtain a contradiction. 

Let e’ = 1 - a, f’ = 1 - b, 8’ = (E’ z), 3’ = (z “,,), and 0 = (t ,$, where 
4 and 16 are as in (d). By construction 8 and 3’ commute with 0, moreover 
Be’ is identical with de’; 4”’ 1s represented in 9’s by the vector e’Je’J[ = 
(1 - a) J(l - a) J[ = (1 - a) J( 1 - a) J&, because E = &, - (Y - Ja and 
(1 - a)a = 0. Since lo is separating and cyclic for M, it follows that p’, which 
corresponds to e’Je’J& , is faithful on M,, . In particular I’ is smaller than 
support 0. Similarlyf ’ ,( support 8. Thus Lemma 10 gives us a partial isometry 
of the form e = (“, i) with support ii = (i E), support Q* = (g F), where 
e~e’,f~f’,u*u=e,uu*=f,and 

(4 w4 4 < wxll ~lls”)2> 
M W, 4 d @/2) 4+>, Wf) < P/2) $(f). 

AS e is orthogonal to a and f to b we let w’ = w + u and obtain a partial 
isometry in M extending w. Let a’ = a + e, b’ = b + f be, respectively, 
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the support and range of w’. Let 0~’ = 01+ eJ( 1 - e) Jf, /3’ = /3 + fJ( 1 - f) Jv. 

We assert r’ = (w’, OI’, fl’) E R and r < T’. 
Clearly (a) holds. To show (b) note that e(ol’ - a) = 0~’ - c11, and hence 

a(or’ - a) = 0, and OL is orthogonal to 01’ - 01. But 1) 01’ - OL 11s = 11 eJ(1 - e) J[ 112 = 

1) e(e - JeJ)[ /I2 < 21(4, e). Since 469 = be’(e) = (41 - 4 J(1 - 4 J& , 
(1 - 4 JO - 4 J&> = <JU - 4 J4, T J(1 - 4 J&,> < q&,(e), we get by 
(8) 11 01’ - 01 II2 < 21(4, e) < 64(e) < &j,(e) = 8$,(a’ - u). Since 01 and 0~’ - 01 
are orthogonal, we get (b). To show (c) let 5’ = t,, - 01’ - Ja’ and 7’ = 
70 - B’ - JP’. Then 5’=5-eJ(1-e)J5-(1-e)JeJ~=eJeJ~+ 
(1 - 4 JU - +5 so 5’ E 8b and e commutes with t’, i.e., (e - JeJ)s’ = 0. 

As a commutes with 5 we have Jaf = a,$ and u( 1 - e) JeJ[ = Jea,f = 0. 

Thus a[ = af’ and (JuJ - a).$’ = 0, so that (Ju’J - a’)[’ = 0, and (c) 

follows. 
To show (d) let 4’ and I,Y in M,+ correspond to 5’ and q’, respectively, and 

let 8’ == (t’ i,). F rom the preceding paragraph a commutes with 4’; thus 
a = (z z) commutes with 0’ as well as 6 = (z f). As the support of a = (L i) 
is contained in a and that of ii = (z i) in 1 - 2 we get by Proposition l(e) that 

I@‘, fi7 + iq = I(F, q + qe’, u). 

Now by construction E = (0” t) commutes with 0 = (t ,$, and 8” = (e’)E 
as can be seen using qP = (#J’>“, $b = (z+Y)~. As a E (M @ M2(C))E we hence 
get by Proposition l(d) and (d), 

We claim that I(&, a) < I(0, ti). Indeed, we can apply Lemma 1 l(b) twice, 
since in .z? @ s4 , where H4 is the Hilbert space of 2 x 2 Hilbert-Schmidt 
matrices, the vector (i’ I,) 
FJ%Jf + (1 - t?) J(l - s)J 

is obtained from (i II) by applying the operators 
and jJjJ+ (1 -P> J(l -j>~? where -f = 

J @ complex conjugation. 
Next (II fillZj2 = d(e) + #(f) ad (II ~ll$>~ = 4’(e) + f(f) and by Lemma 

1 I(a) and (,!I) we have C’(e) 2 B+(e), #‘(f) > i+(f), since 6 < 1. Thus we have 

Since (11 ti’ II$)2 = (11 ti ll,“,)2 + (11 u\I$)~, we therefore have 

Ice’, iq = qe,, i6) + r(er, ti) G ~(11 ii7 !1;,)2 + s(ll ii ll;y = ~(11 d gy, 

and (d) follows. 
Thus r’ E R as asserted. From the above discussion it is clear that Y < Y’ 

and r + r’. This contradicts the maximality of Y, so that either w is an isometry 
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or a coisometry. By symmetry we may assume w*w =: 1 and let CJ$ L= 4 and 
+i be the reduced of $ by b = ww*. By (b) and (c) we have 

/I& - dl I/ < 2 11 5 - to 1; < 4P1’; 

in particular, O(~O*ZO) = $(I) > 1 - 4W2. By Proposition l(f), 1 B(w~*)l/a - 
0(,-*3)1/z 1 < (248, w))l12 < 21i2W2 I/ w 11,” < 2S1/2. Thus #(b)1/2 = B(ww*)‘/~ 2 
f?(~*ti)l/~ - 2W2 > 1 - 6W2, and we have 

11 $!J - i/J1 11 < 2 /I b7) - 7) I/ = 2$!J(l - by < 146112. 

In particular, 

II $0 - $1 II < II q4, - $ II + II G - $1 II < 4W2 + 14W2 = 18W2. 

As 1(0, W) < 2S we have from Proposition l(b) that / O(@y - yzo)I < 8W2 II y 11 
for any y EM @ M,(C). It follows that I +(xw) - #(wx)l ,< 8W2 /j x jl for any 
x E M. In particular, since ww* = b E n/r, we have 

I Mw*4 - t&)l < 8w2 II x IL XEM. 

Since M is of type III standard arguments show that we can find a sequence 
of unitaries (v,) in M converging strongly to w. Then v,[ --f w[ in 2, so 
that for large enough n we have 

I4&,*%) - h(x)l G 9W2 II x IL XEM. 

Thus 1 &,(v,*xv,) - &,(x)l < 31W2 /I x 11, x E M, and the proof is complete. 

REFERENCES 

1. H. ARAKI, Some properties of modular conjugation operator of von Neumann algebras 
and a noncommutative Radon Nikodym theorem, Pacific J. Math. 50 (1974), 309-354. 

2. A. CONNES, Une classification des facteurs de type III, Ann. Sci. &Cole Norm. Sup., 
Sk. 6 4 (1973), 133-252. 

3. A. CONNES, Caracterization des algebres de von Neumann comme espaces vectoriels 
ordonnes, Ann. Inst. Fourier (Grenoble) 26 (1974), 121-155. 

4. A. CONNES, Classification of inject&e factors, AnnaIs of Math. 104 (1976), 73-115. 
5. A. CONNES AND M. TAKESAKI, The flow of weights on factors of type III, to appear. 
6. G. F. DELL’ANTONIO, On the limit of sequences of normal states, Comm. Pure Appl. 

Math. 20 (1967), 413-429. 
7. J. DIXMIER AND 0. MARECHAL, Vecteurs totalisateurs d’une algebre de von Neumann, 

Comm. Math. Phys. 22 (1971), 44-50. 
8. R. T. POWERS, UHF algebras and their applications to representations of the anti- 

commutation relations, in “Carg&se Lectures in Physics, 1969” (D. Kastler, Ed.), 
Vol. 4, pp. 137-168, Gordon & Breach, New York/London/Paris, 1970. 

9. E. P. WIGNER AND M. M. YANASE, Information contents of distributions, Proc. Nat. 
Acad. Sci. U.S.A. 49 (1963), 910-918. 

10. S. L. WORONOWICZ, On the purification of factor states, Comm. Math. Phys. 28 
(1972), 221-235. 


