Homogeneity of the State Space of Factors of Type III₁

ALAIN CONNES

Université Paris VI, France

AND

ERLING STØRMER

University of Oslo, Blindern, Oslo 3, Norway

Communicated by the Editors

Received September 22, 1976

A factor M is of type III₁ if and only if the action of its unitary group on its state space by inner automorphisms is topologically transitive in the norm topology.

1. Introduction

The states on the algebra $M_n(\mathbb{C})$ of $n \times n$ matrices over \mathbb{C} are classified up to unitary equivalence by their eigenvalue list $(\lambda_i)_{i=1,\ldots,n}$, i.e., the list of eigenvalues of the associated density matrix. Let M be a factor with separable predual; then it is a natural problem to try and classify the normal states of M up to unitary equivalence, viz., $\phi_1 \sim \phi_2$ when ϕ_2 is in the norm closure of the orbit of ϕ_1 under inner automorphisms of M. If M is of type $\neq III_1$ it is an easy exercise, using the results on the flow of weights of M to get such a classification. If M is of type III_1 the flow of weights is trivial and one is led to conjecture (cf. [5]) that any two normal states are topologically equivalent.

We prove this fact below, and obtain some easy consequences. The first is that M has property L_{λ} of Powers [8] if and only if $\lambda/(1-\lambda) \in S(M)$. We then show that if M is of type II or III then there exists a faithful normal state on M whose centralizer contains the hyperfinite factor. This last result makes it very easy to prove a conjecture of Dell'Antonio [6] to the effect that type I factors are the only factors in which weak convergence of a sequence of normal states to a normal state implies norm convergence of the same sequence.

In order to prove the main result we study in Section 2 the skew information

 $I(\phi, x)$ of an operator x relative to a state ϕ . If M is a factor of type I with trace Tr and ϕ the state $\phi(x) = Tr(hx)$ the skew information was introduced by Wigner and Yanase [9] as the quantity $-Tr([h^{1/2}, x]^2)$ when x is self-adjoint, and is a measure of how far x is from commuting with ϕ .

2. COMMUTATION OF OPERATORS WITH NORMAL STATES

Let M be a von Neumann algebra with separable predual. Let M act standardly on \mathscr{H} and \mathscr{P}^{\natural} be the natural cone associated with some cyclic and separating vector [1, 3, 10]. Let J be the involution associated with \mathscr{P}^{\natural} . If ϕ is a normal positive linear functional on M let ξ_{ϕ} be the unique vector in \mathscr{P}^{\natural} representing $\phi: \phi(x) = \langle x\xi_{\phi}, \xi_{\phi} \rangle$, $x \in M$. When ϕ is faithful we let Δ_{ϕ} be the modular operator for (M, ξ_{ϕ}) . In order to estimate the commutativity of $x \in M$ with ϕ we use the quantity

$$I(\phi, x) = \frac{1}{2} ||(Jx^*J - x)\xi_{\phi}||^2;$$

cf. [9]. By construction $0 \le I(\phi, x) \le (\|x\|_{\phi}^{\#})^2$, where $(\|x\|_{\phi}^{\#})^2 = \|x\xi_{\phi}\|^2 + \|x^*\xi_{\phi}\|^2$. We list a few properties of $I(\phi, x)$ which will be used below.

Proposition 1. Let ϕ be as above. Then

- (a) $I(\phi, xy)^{1/2} \leqslant I(\phi, x)^{1/2} ||y|| + ||x|| I(\phi, y)^{1/2}, x, y \in M.$
- (b) $\|[\phi, x]\| \leqslant 2^{3/2}\phi(1)^{1/2}I(\phi, x)^{1/2}, x \in M.$
- (c) If ϕ is faithful and $x \in M(\sigma^{\phi}, [(1-\delta)^2, (1+\delta)^2])$, where the spectral subspace is taken with respect to the group \mathbb{R}_{*}^+ , then $I(\phi, x) \leq \frac{1}{2}\delta^2(||x||_{\phi})^2$.
- (d) Let e be a projection in the centralizer M_{ϕ} of ϕ , then $I(\phi^e, x) = I(\phi, x)$, where $\phi^e = \phi \mid M_e$ and $x \in M_e$.
- (e) Let e be a projection in M_{ϕ} , let $x \in eM$, $y \in (1 e)M$. Then $I(\phi, x + y) = I(\phi, x) + I(\phi, y)$.
 - (f) $| \| x \xi_{\phi} \| \| x^* \xi_{\phi} \| | \leq (2I(\phi, x))^{1/2}.$
- (g) Let $\theta = \begin{pmatrix} \phi & 0 \\ 0 & \phi \end{pmatrix}$ be the functional $\phi \otimes \text{Trace}$ on $M \otimes M_2(\mathbb{C})$. Then $I(\theta, \begin{pmatrix} 0 & x^* \\ x & 0 \end{pmatrix}) = 2I(\phi, x), x \in M$.
- (h) Given $k = k^* \in M$ there exists a positive finite measure μ on \mathbb{R}^2 such that for any bounded real Borel function f on \mathbb{R} we have

$$I(\phi, f(k)) = \frac{1}{2} \int |f(x) - f(y)|^2 d\mu(x, y),$$

$$\phi(f(k)) = \int f(x) d\mu = \int f(y) d\mu.$$

Proof. (a) Since JMJ = M' we have

$$||(J(xy)*J-xy)\xi_{\phi}|| \leq ||y|| ||(Jx*J-x)\xi_{\phi}|| + ||x|| ||(Jy*J-y)\xi_{\phi}||.$$

(b) If $y \in M$ we have

$$\begin{aligned} |[\phi, x](y)| &= |\langle xy\xi_{\phi}, \xi_{\phi}\rangle - \langle yx\xi_{\phi}, \xi_{\phi}\rangle| \\ &\leq |\langle y\xi_{\phi}, x^{*}\xi_{\phi}\rangle - \langle y\xi_{\phi}, JxJ\xi_{\phi}\rangle| + |\langle yJx^{*}J\xi_{\phi}, \xi_{\phi}\rangle - \langle yx\xi_{\phi}, \xi_{\phi}\rangle| \\ &\leq 2 \|y\| \|\xi_{\phi}\| \|(Jx^{*}I - x)\xi_{\phi}\|. \end{aligned}$$

(c) Let $S = [(1 - \delta)^2, (1 + \delta)^2]$ and $x \in M(\sigma^{\phi}, S)$. Then $x\xi_{\phi}$ belongs to the range of the spectral projection of Δ_{ϕ} corresponding to S, so that

$$(2I(\phi, x))^{1/2} = \|\Delta_{\phi}^{1/2} x \xi_{\phi} - x \xi_{\phi}\| \leqslant \sup_{\lambda \in S} |\lambda^{1/2} - 1| \|x \xi_{\phi}\|.$$

(d) Let $x \in M_e$ and identify x with exe in M. Since the involution of $e\xi_{\phi}$ with respect to M_e is eJe [3], and $Je\xi_{\phi}=e\xi_{\phi}$, we have

$$I(\phi^{e}, x) = \frac{1}{2} \| ((eJe) \ x^{*}(eJe) - x) \xi_{\phi} \|^{2}$$

$$= \frac{1}{2} \| Jex^{*}eJe \xi_{\phi} - x \xi_{\phi} \|^{2}$$

$$= \frac{1}{2} \| Jx^{*}\xi_{\phi} - x \xi_{\phi} \|^{2}$$

$$= I(\phi, x).$$

- (e) As in (d) we have $eJx^*\xi_{\phi} = Jx^*Je\xi_{\phi} = Jx^*e\xi_{\phi} = Jx^*\xi_{\phi}$ when $x \in eM$. Thus $e(x Jx^*J)\xi_{\phi} = (x Jx^*J)\xi_{\phi}$. Similarly $(1 e)(y Jy^*J)\xi_{\phi} = (y Jy^*J)\xi_{\phi}$ for $y \in (1 e)M$, and (e) follows.
- (f) Use that $|\|x\xi_{\phi}\| \|x^*\xi_{\phi}\|| = |\|x\xi_{\phi}\| \|Jx^*J\xi_{\phi}\|| \le \|x\xi_{\phi} Jx^*J\xi_{\phi}\||$.
- (g) We have $\binom{0}{x} \overset{x^*}{0} = \binom{0}{1} \binom{1}{0} \binom{x}{0} \overset{0}{x^*}$, and $\binom{0}{1} \binom{1}{0}$ commutes with θ , so that $I(\theta, \binom{x}{0} \overset{x^*}{0}) = I(\theta, \binom{x}{0} \overset{0}{x^*}) = 2I(\phi, x)$, using (d) and (e).
- (h) Let A and B be Borel subsets of \mathbb{R} . Let l_A , l_B be their characteristic functions. Put $\mu(A \times B) = \langle l_A(k)\xi_{\phi} \rangle$, $Jl_B(k)\xi_{\phi} \rangle$. Then $\mu(A \times B) \geqslant 0$ since $Jl_B(k) Jl_A(k) \geqslant 0$, so there exists a unique positive measure μ on \mathbb{R}^2 determined by these values on rectangles. If f and g are bounded real Borel functions on \mathbb{R} we get

$$\int f(x) g(y) d\mu(x, y) = \langle f(k) \xi_{\phi}, Jg(k) \xi_{\phi} \rangle,$$

$$\int f(x) d\mu(x, y) = \langle f(k) \xi_{\phi}, \xi_{\phi} \rangle = \langle \xi_{\phi}, Jf(k) \xi_{\phi} \rangle = \int f(y) d\mu(x, y).$$

Hence we have

$$|| \int f(k) \, \xi_{\phi} - f(k) \, \xi_{\phi} ||^{2} = 2 || f(k) \, \xi_{\phi} ||^{2} - 2 \langle f(k) \, \xi_{\phi} \, , \, \int f(k) \, \xi_{\phi} \rangle$$

$$= \int (f(x)^{2} + f(y)^{2} - 2f(x)f(y)) \, d\mu(x, y) \quad \text{Q.E.D.}$$

Next, as in [4], we let E_a be the characteristic function of the interval $[a, +\infty) \subset \mathbb{R}$ for each a > 0. For $x \in M$ we put $u_a(x) = u(x) E_a(|x|)$, where x = u(x) |x| is the polar decomposition of x. Let da be the Lebesgue measure on \mathbb{R} .

Theorem 2. For any $\phi \in M_*^+$ and $x \in M$ we have:

- (a) $\int_0^\infty (\|u_{a^{1/2}}(x)\|_{\phi}^{\#})^2 da = (\|x\|_{\phi}^{\#})^2,$
- (b) $\int_0^\infty I(\phi, u_{\alpha^{1/2}}(x)) da \leq 6I(\phi, x)^{1/2} ||x||_{\phi}^{\#}$

Proof. (a) We have $u_{a1/2}(x)^* u_{a1/2}(x) = E_{a1/2}(|x|) = E_a(x^*x)$ and $\int_0^\infty E_a(x^*x) da = x^*x$. Since $u_{a1/2}(x^*) = u_{a1/2}(x)^*$ (a) is immediate.

(b) First replace ϕ by $\theta = \begin{pmatrix} \phi & 0 \\ 0 & \phi \end{pmatrix}$ and x by $\begin{pmatrix} 0 & x^* \\ x & 0 \end{pmatrix}$. We have $\begin{pmatrix} 0 & x^* \\ x & 0 \end{pmatrix} \begin{pmatrix} x^* \\ x & 0 \end{pmatrix} = \begin{pmatrix} x^*x & 0 \\ 0 & x^*x \end{pmatrix}$, and hence

$$\begin{vmatrix} \begin{pmatrix} 0 & x^* \\ x & 0 \end{vmatrix} = \begin{pmatrix} \begin{vmatrix} x & 0 \\ 0 & |x^* \end{vmatrix} \end{pmatrix}, \quad u \begin{pmatrix} \begin{pmatrix} 0 & x^* \\ x & 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 & u(x)^* \\ u(x) & 0 \end{pmatrix}.$$

Thus we have

$$u_a\begin{pmatrix}\begin{pmatrix}0&x^*\\x&0\end{pmatrix}\end{pmatrix}=\begin{pmatrix}0&u(x^*)\\u(x)&0\end{pmatrix}\begin{pmatrix}E_a(\mid x\mid)&0\\0&E_a(\mid x^*\mid)\end{pmatrix}=\begin{pmatrix}0&u_a(x^*)\\u_a(x)&0\end{pmatrix}.$$

Using Proposition 1(g) and the computation of $\|\begin{pmatrix} 0 & x^* \\ x & 0 \end{pmatrix}\|_{\theta}^{\#}$ we see that to prove (b) we can assume that $x = x^*$. Then by Proposition 1(h) we just have to show that with the Borel functions $F_a : \mathbb{R} \to \mathbb{R}$, $F_a(t) = \text{sign}(t) E_a(|t|)$, we have

$$\begin{split} &\int_0^\infty \left(\int |F_{a^{1/2}}(x) - F_{a^{1/2}}(y)|^2 \ d\mu(x,y) \right) da \\ &\leqslant 4 \left(\int |x-y|^2 \ d\mu(x,y) \right)^{1/2} \left[\left(\int |x|^2 \ d\mu(x,y) \right)^{1/2} + \left(\int |y|^2 \ d\mu(x,y) \right)^{1/2} \right] \end{split}$$

for any positive finite measure μ on \mathbb{R}^2 . For sign x = sign y we have, since $E_{a^{1/2}}(x) = E_a(x^2)$,

$$\int |F_{a^{1/2}}(x) - F_{a^{1/2}}(y)|^2 da = \int |E_a(x^2) - E_a(y^2)| da = |x - y| (|x| + |y|).$$

For sign $x = -\sin y$ we have $|F_{a^{1/2}}(x) - F_{a^{1/2}}(y)|^2 \le 2(E_a(x^2) + E_a(y^2))$, so that

$$\int |F_{a^{1/2}}(x) - F_{a^{1/2}}(y)|^2 da \leqslant 2(x^2 + y^2) \leqslant 4(x - y)^2 = 4 |x - y| (|x| + |y|).$$

The desired inequality now follows easily from the Schwarz inequality. Q.E.D.

COROLLARY 3. Let $\phi \in M_*^+$ and $x \in M$ satisfy $x \neq 0$, $I(\phi, x) \leqslant \epsilon(||x||_{\phi}^{\#})^2$. Then there exists a > 0 such that $v = u_a(x) \neq 0$ and $I(\phi, v) \leqslant 7\epsilon^{1/2}(||v||_{\phi}^{\#})^2$.

Proof. By hypothesis $I(\phi, x)^{1/2} \leqslant \epsilon^{1/2} ||x||_{\phi}^{\#}$; hence by Theorem 2

$$\int I(\phi, u_{a^{1/2}}(x)) da \leq 6\epsilon^{1/2} (\|x\|_{\phi}^{\#})^2$$

$$= 6\epsilon^{1/2} \int (\|u_{a^{1/2}}(x)\|_{\phi}^{\#})^2 da.$$

As $x \neq 0$ it is impossible that

$$I(\phi, u_{a^{1/2}}(x)) \geqslant 7\epsilon^{1/2}(\|u_{a^{1/2}}(x)\|_{\phi}^{*})^{2}$$
 for all $a > 0$,

hence the conclusion.

3. Homogeneity of the State Space of Factors of Type III₁

It was shown in [5] that if M is a factor of type III_1 with unitary group U then the action of U by inner automorphisms on the space of weights with infinite multiplicity, gifted with a natural topology, is topologically transitive, i.e., each weight has a dense orbit. Moreover it was conjectured that the same is true for the action of U on the set of normal states of M. We shall prove:

THEOREM 4. Let M be a factor type III₁ with separable predual. Then for any $\epsilon > 0$ and normal states ϕ and ψ there exists a unitary u in M such that $\|\phi_u - \psi\| < \epsilon$, $(\phi_u(x) = \phi(u^*xu), x \in M)$.

Before we give the proof we include some applications. Our von Neumann algebras will always have separable preduals. Note first that if $M \neq \mathbb{C}$ is a factor satisfying the conclusion of the theorem then it is easy to see that $S(M) = \mathbb{R}_+$; cf. the proof of the next corollary.

COROLLARY 5. Let $\lambda \in [0, \frac{1}{2})$. Then a factor M has property L_{λ} of Powers if and only if $\lambda/(1-\lambda) \in S(M)$.

Proof. By [8, p. 157], M has property L_0 if and only if M is of infinite type, hence if and only if $0 \in S(M)$. If $\lambda \in (0, \frac{1}{2})$ by [2, Théorème 3.5.4 and Corollaire 3.7.7], all that remains is to show that if M is of type III_1 then M has property L_{λ} . Using a state of the form $\omega_{\lambda} \otimes \phi$ on $M_2(\mathbb{C}) \otimes M$, where $\omega_{\lambda} = \mathrm{Tr}(\binom{0}{0} \ \frac{0}{1-\lambda})$; it is clear that condition L_{λ} is satisfied for some state on M for all $\lambda \in (0, \frac{1}{2}]$, hence by all states using the homogeneity (Theorem 4).

COROLLARY 6. A von Neumann algebra M acting standardly on an infinite-

dimensional Hilbert space \mathcal{H} is a factor of type $\mathrm{III_1}$ if and only if the product $\mathrm{W}\mathrm{W}'$ of the unitary groups of M and M', respectively, acts topologically transitively on the unit sphere in \mathcal{H} .

Proof. The "if" part is easy; cf. the proof of Corollary 5. Conversely, to show that given unit vectors ξ and η in $\mathscr H$ and $\epsilon > 0$, there exist $u \in \mathscr U$, $v \in \mathscr U'$ with $\|uv\xi - \eta\| < \epsilon$, one can assume that ξ and η are separating and cyclic by [7] and that $\eta \in \mathscr P^{\natural}\xi$ by [2, Lemma 3.5.5]. Then one applies Theorem 4 to the vector states ω_{ξ} and ω_{η} .

COROLLARY 7. Let $(M_{\nu})_{\nu\in A}$ be a denumerable family of factors of type III₁. Then the infinite tensor product $\bigotimes_{\nu\in A} (M_{\nu}, \phi_{\nu})$ is up to isomorphism, independent of the choice of the sequence (ϕ_{ν}) , ϕ_{ν} normal state of M_{ν} .

Proof. Immediate by homogeneity.

COROLLARY 8. Let R be the hyperfinite factor and let M be a non-type-I factor. Then there exists a faithful normal state ϕ on M whose centralizer contains R.

Proof. When M is semifinite or of type III_μ , $0\leqslant \mu<1$, the conclusion is easy (cf. [2]), so we assume M is of type III_1 . From the proof of Corollary 5, M has property $L_{1/2}$, so if ϕ_0 is a normal state of M then there exists a subfactor K_0 of type I_2 of M such that $\|\phi_0-\phi_0\|K'_0\otimes\tau_{K_0}\|<\epsilon$ for $\epsilon>0$, where τ_{K_0} is the normalized trace on K_0 , and $\phi \mid K'_0$ the restriction of ϕ_0 to the commutant of K_0 in M. Repetition of this procedure gives a sequence (ϕ_n,K_n) , where ϕ_n is a normal state of M, the K_j are pairwise commuting I_2 subfactors of M, and K_1 ,..., K_n belong to the centralizer of ϕ_n . Moreover, we can assume $\|\phi_n-\phi_{n+1}\|<2^{-n}$; hence the ϕ_n converge in norm to a normal state ϕ . By construction the von Neumann algebra K generated by the K_j is contained in the centralizer of ϕ and hence is the hyperfinite factor R. Now ϕ can fail to be faithful, but as its support e belongs to the relative commutant of K in M we obtain the conclusion of the corollary for M_e . Since M is isomorphic to M_e we are through.

Following Dell'Antonio [6], a factor M has property U if each sequence of normal states of M which converges weakly to a normal state already converges in the norm topology. Dell'Antonio showed that every factor of type I has property U and conjectured the converse [6].

COROLLARY 9. A factor has property U if and only if it is of type I.

Proof. Let M be a factor not of type I. By Corollary 8, there is a faithful normal state ϕ on M whose centralizer M_{ϕ} contains the hyperfinite factor R. Composing the canonical expectations of M onto M_{ϕ} and of M_{ϕ} onto R we get a normal expectation Φ of M onto R. Since R does not have property U [6] there is a sequence (ϕ_n) of normal states on R which converges weakly to

a normal state but not in norm. Then the sequence $(\phi_n \cdot \Phi)$ has the same properties in M_* , so M does not have property U.

Note that since we might consider a reduced algebra M_e , Corollary 9 remains true without the hypothesis that M_{\star} is separable.

We now prove two lemmas which will be important for the proof of Theorem 4.

LEMMA 10. Let $\phi \in M_*^+$, where M is a factor of type III₁. Let $e', f' \in M_\phi$ be nonzero projections smaller than the support of ϕ . For any $\epsilon > 0$ there exists a partial isometry $u \neq 0$ in M such that $u^*u = e \leq e'$, $uu^* = f \leq f'$, and

- (a) $I(\phi, u) \leqslant \epsilon(||u||_{\phi}^{\#})^2$,
- (β) $I(\phi, e) \leqslant \epsilon \phi(e), I(\phi, f) \leqslant \epsilon \phi(f).$

Proof. We can assume that ϕ is faithful [7]. Since M is a factor of type III₁, for any $\delta > 0$, there exists $x \neq 0$, $x \in M(\sigma^{\phi}, [1 - \delta, 1 + \delta])$, $x \in f'Me'$; see [2, Sect. 2.1]. Now by Corollary 3 and Proposition 1(c), we can find a partial isometry $u \in f'Me'$ such that $I(\phi, u) \leq \epsilon(||u||_{\phi}^{\#})^2$, $u \neq 0$. Next, by Proposition 1(f) we get, with $u^*u = e$, $uu^* = f$, that

$$|\phi(e) - \phi(f)| \leq |\phi(e)^{1/2} - \phi(f)^{1/2}| |\phi(e)^{1/2} + \phi(f)^{1/2}|$$

 $\leq 2I(\phi, u)^{1/2}(\phi(e) + \phi(f))^{1/2}$
 $\leq 2\epsilon^{1/2}(\phi(e) + \phi(f)).$

Hence by assuming $\epsilon^{1/2} < \frac{1}{8}$ we get $\frac{1}{2}\phi(e) \le \phi(f) \le 2\phi(e)$. By Proposition 1(a) we have $I(\phi, u^*u) \le 4I(\phi, u) \le 4\epsilon(\phi(e) + \phi(f))$. Hence (β) follows. Q.E.D.

LEMMA 11. Let $\xi \in \mathscr{P}^n$, and $e \in M$ be a projection. Put $\xi' = eJeJ\xi + (1-e)J(1-e)J\xi$. Then

- (a) ξ' belongs to \mathscr{P}^{\natural} and with obvious notation, $\phi'(e) = \phi(e) I(\phi, e)$.
- (b) Let u be a partial isometry in M such that ue = u, eu = 0. Then $I(\phi', u) \leq I(\phi, u)$.
- *Proof.* (a) Both $eJeJ\xi$ and $(1-e)J(1-e)J\xi$ belong to \mathscr{P}^{\natural} [3], so $\xi' \in \mathscr{P}^{\natural}$. We have $\langle e\xi', \xi' \rangle = \langle eJeJ\xi, eJeJ\xi \rangle = \langle e\xi, JeJ\xi \rangle$, but $I(\phi, e) = \phi(e) \langle e\xi, JeJ\xi \rangle$.
- (b) We have $(u Ju^*J) e J e J = u J e J$, since $u^*e = 0$. Also, $(u Ju^*J) \times (1 e) J (1 e) J = -(1 e) J u^*J$. Thus $(u Ju^*J)\xi' = J e J u \xi (1 e) \times J u^*J\xi = (1 e) J e J (u Ju^*J)\xi$ since (1 e)u = u and $eu^* = u^*$. Since $||(1 e) J e J|| \le 1$, (b) follows. Q.F.D.

Proof of Theorem 4. Let $\delta > 0$, $\delta \leqslant 1$, ϕ_0 , ψ_0 be faithful normal states of M and ξ_0 , η_0 be the corresponding unit vectors in \mathscr{P}^{\natural} . Let R be the set of all triples $r = (w, \alpha, \beta)$, where w is a partial isometry in M, α , $\beta \in \mathscr{H}$, and:

- (a) With $a = w^*w$, $b = ww^*$, we have $a\alpha = \alpha$, $b\beta = \beta$.
- (b) $\|\alpha\|^2 \leqslant \delta\phi_0(a)$, $\|\beta\|^2 \leqslant \delta\psi_0(b)$.
- (c) $\xi = \xi_0 \alpha J\alpha$ and $\eta = \eta_0 \beta J\beta$ belong to \mathscr{P}^{\sharp} and $(a JaJ)\xi = 0, (b JbJ)\eta = 0, \parallel \xi \parallel \leqslant 1, \parallel \eta \parallel \leqslant 1.$
- (d) Let $\phi, \psi \in M_*^+$ correspond to ξ, η , let $\theta = \begin{pmatrix} \phi & 0 \\ 0 & \psi \end{pmatrix}$; then $\overline{w} = \begin{pmatrix} 0 & 0 \\ w & 0 \end{pmatrix}$ satisfies $I(\theta, \overline{w}) \leqslant \delta(\|\overline{w}\|_{\theta}^{\#})^2$.

We define a partial ordering on R by setting $r \leqslant r'$ when

- (1) w' is an extension of w (i.e., w'a = w, w'*b = w*),
- (2) $a(\alpha' \alpha) = 0, b(\beta' \beta) = 0,$
- (3) $\|\alpha' \alpha\|^2 \leqslant \delta\phi_0(a' a), \|\beta' \beta\|^2 \leqslant \delta\psi_0(b' b).$

This relation is transitive, in fact if $r \leqslant r'$ and $r' \leqslant r''$ then $a(\alpha'' - \alpha) = 0$ because $a'(\alpha'' - \alpha') = 0$ and $a \leqslant a'$. Also $\|\alpha'' - \alpha\|^2 = \|\alpha'' - \alpha'\|^2 + \|\alpha' - \alpha\|^2$ because $a'(\alpha' - \alpha) = \alpha' - \alpha$ while $a'(\alpha'' - \alpha') = 0$. It follows that \leqslant is indeed a partial ordering on R.

To prove the existence of a maximal element in R we note that the map $r=(w,\alpha,\beta)\to\phi_0(a)$ $(a=w^*w)$ is injective on any totally ordered subset of R since a=a' implies r=r' whenever $r\leqslant r'$. Hence we just have to show that any increasing sequence $(r_n)_{n\in N}$ in R is majorized. To see that, let $a=\lim_n a_n$, $b=\lim_n b_n$ in the strong topology. Furthermore, since the w_n 's are extensions of each other they converge in the strong *-topology to a partial isometry w such that $w^*w=a$, $ww^*=b$. By (3), $\|\alpha_n-\alpha_m\|^2\leqslant \delta\phi_0(a_m-a_n)$ whenever $n\leqslant m$. Thus $\alpha=\lim_n \alpha_n$, $\beta=\lim_n \beta_n$ exist, and by continuity we have $r=(w,\alpha,\beta)\in R$. The relation $r_n\leqslant r$ for all n also follows by continuity.

Now let by Zorn's lemma $r = (w, \alpha, \beta)$ be a maximal element of R. We assume that $a = w^*w \neq 1$, $b = ww^* \neq 1$ and shall obtain a contradiction.

Let e'=1-a, f'=1-b, $\bar{e}'=\binom{e'=0}{0}$, $\bar{f}'=\binom{0}{0}$, $\bar{f}'=\binom{0}{0}\frac{0}{f'}$, and $\theta=\binom{0}{0}\frac{0}{\psi}$, where ϕ and ψ are as in (d). By construction \bar{e}' and \bar{f}' commute with θ , moreover $\theta^{\bar{e}'}$ is identical with $\phi^{e'}$; $\phi^{e'}$ is represented in \mathscr{P}^{\natural} by the vector $e'Je'J\xi=(1-a)J(1-a)J\xi=(1-a)J\xi=$

- (a) $I(\theta, \bar{u}) \leqslant (\delta/2)(||\bar{u}||_{\theta}^{\#})^2$,
- $(\beta) \quad I(\phi, e) \leqslant (\delta/2) \, \phi(e), \, I(\psi, f) \leqslant (\delta/2) \, \psi(f).$

As e is orthogonal to a and f to b we let w' = w + u and obtain a partial isometry in M extending w. Let a' = a + e, b' = b + f be, respectively,

the support and range of w'. Let $\alpha' = \alpha + eJ(1-e)J\xi$, $\beta' = \beta + fJ(1-f)J\eta$. We assert $r' = (w', \alpha', \beta') \in R$ and $r \leq r'$.

Clearly (a) holds. To show (b) note that $e(\alpha'-\alpha)=\alpha'-\alpha$, and hence $a(\alpha'-\alpha)=0$, and α is orthogonal to $\alpha'-\alpha$. But $\|\alpha'-\alpha\|^2=\|eJ(1-e)J\xi\|^2=\|e(e-JeJ)\xi\|^2\leq 2I(\phi,e)$. Since $\phi(e)=\phi^{e'}(e)=\langle e(1-a)J(1-a)J\xi_0, (1-a)J(1-a)J\xi_0\rangle = \langle J(1-a)Je\xi_0, J(1-a)Je\xi_0\rangle \leq \phi_0(e)$, we get by $(\beta)\|\alpha'-\alpha\|^2\leq 2I(\phi,e)\leq \delta\phi(e)\leq \delta\phi_0(e)=\delta\phi_0(a'-a)$. Since α and $\alpha'-\alpha$ are orthogonal, we get (b). To show (c) let $\xi'=\xi_0-\alpha'-J\alpha'$ and $\eta'=\eta_0-\beta'-J\beta'$. Then $\xi'=\xi-eJ(1-e)J\xi-(1-e)JeJ\xi=eJeJ\xi+(1-e)J(1-e)\xi$, so $\xi'\in \mathscr{P}^1$ and e commutes with ξ' , i.e., $(e-JeJ)\xi'=0$. As a commutes with ξ we have $Ja\xi=a\xi$ and $a(1-e)JeJ\xi=Jea\xi=0$. Thus $a\xi=a\xi'$ and $(JaJ-a)\xi'=0$, so that $(Ja'J-a')\xi'=0$, and (c) follows.

To show (d) let ϕ' and ψ' in M_*^+ correspond to ξ' and η' , respectively, and let $\theta' = \begin{pmatrix} \phi' & 0 \\ 0 & \psi' \end{pmatrix}$. From the preceding paragraph a commutes with ϕ' ; thus $\overline{a} = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ commutes with θ' as well as $\overline{b} = \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix}$. As the support of $\overline{w} = \begin{pmatrix} 0 & 0 \\ w & 0 \end{pmatrix}$ is contained in \overline{a} and that of $\overline{u} = \begin{pmatrix} 0 & 0 \\ u & 0 \end{pmatrix}$ in $1 - \overline{a}$ we get by Proposition 1(e) that

$$I(\theta', \overline{w} + \overline{u}) = I(\theta', \overline{w}) + I(\theta', \overline{u}).$$

Now by construction $\bar{c} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ commutes with $\theta = \begin{pmatrix} \phi & 0 \\ 0 & \psi \end{pmatrix}$, and $\theta^{\bar{c}} = \begin{pmatrix} \theta' \end{pmatrix}^{\bar{c}}$, as can be seen using $\phi^a = (\phi')^a$, $\psi^b = (\psi')^b$. As $\bar{w} \in (M \otimes M_2(\mathbb{C}))_{\bar{c}}$ we hence get by Proposition 1(d) and (d),

$$I(\theta', \overline{w}) = I(\theta, \overline{w}) \leqslant \delta(\|\overline{w}\|_{\theta}^{\#})^2 = \delta(\|\overline{w}\|_{\theta'}^{\#})^2.$$

We claim that $I(\theta', \bar{u}) \leq I(\theta, \bar{u})$. Indeed, we can apply Lemma 11(b) twice, since in $\mathscr{H} \otimes \mathscr{H}_4$, where \mathscr{H}_4 is the Hilbert space of 2×2 Hilbert-Schmidt matrices, the vector $\binom{\epsilon'}{0}\binom{0}{n'}$ is obtained from $\binom{\epsilon}{0}\binom{0}{n}$ by applying the operators $\bar{e}\tilde{f}\bar{e}\tilde{f} + (1-\bar{e})\tilde{f}(1-\bar{e})\tilde{f}$ and $f\tilde{f}f\tilde{f} + (1-f)\tilde{f}(1-f)\tilde{f}$, where $\tilde{f} = J \otimes \text{complex conjugation}$.

Next $(\|\bar{u}\|_{\theta}^{\#})^2 = \phi(e) + \psi(f)$ and $(\|\bar{u}\|_{\theta'}^{\#})^2 = \phi'(e) + \psi'(f)$ and by Lemma 11(a) and (β) we have $\phi'(e) \geqslant \frac{1}{2}\phi(e)$, $\psi'(f) \geqslant \frac{1}{2}\psi(f)$, since $\delta \leqslant 1$. Thus we have

$$I(\theta', \bar{u}) \leqslant I(\theta, \bar{u}) \leqslant (\delta/2) (\|\bar{u}\|_{\theta}^{\#})^2 \leqslant \delta(\|\bar{u}\|_{\theta'}^{\#})^2$$

Since $(\|\bar{w}'\|_{\theta'}^{\#})^2 = (\|\bar{w}\|_{\theta'}^{\#})^2 + (\|\bar{u}\|_{\theta'}^{\#})^2$, we therefore have

$$I(\theta', \overline{w}') \stackrel{\cdot}{=} I(\theta', \overline{w}) + I(\theta', \overline{u}) \leqslant \delta(\|\overline{w}\|_{\theta'}^{\#})^2 + \delta(\|\overline{u}\|_{\theta'}^{\#})^2 = \delta(\|\overline{w}'\|_{\theta'}^{\#})^2,$$

and (d) follows.

Thus $r' \in R$ as asserted. From the above discussion it is clear that $r \leqslant r'$ and $r \neq r'$. This contradicts the maximality of r, so that either w is an isometry

or a coisometry. By symmetry we may assume $w^*w=1$ and let $\phi_1=\phi$ and ψ_1 be the reduced of ψ by $b=ww^*$. By (b) and (c) we have

$$\|\phi_0 - \phi_1\| \leqslant 2 \|\xi - \xi_0\| \leqslant 4\delta^{1/2};$$

in particular, $\theta(\overline{w}^*\overline{w}) = \phi(1) \geqslant 1 - 4\delta^{1/2}$. By Proposition 1(f), $|\theta(\overline{w}\overline{w}^*)^{1/2} - \theta(\overline{w}^*\overline{w})^{1/2}| \leqslant (2I(\theta, \overline{w}))^{1/2} \leqslant 2^{1/2}\delta^{1/2} \|\overline{w}\|_{\theta}^{\#} \leqslant 2\delta^{1/2}$. Thus $\psi(b)^{1/2} = \theta(\overline{w}\overline{w}^*)^{1/2} \geqslant \theta(\overline{w}^*\overline{w})^{1/2} - 2\delta^{1/2} \geqslant 1 - 6\delta^{1/2}$, and we have

$$\|\psi - \psi_1\| \leqslant 2 \|b\eta - \eta\| = 2\psi(1-b)^{1/2} < 14\delta^{1/2}.$$

In particular,

$$\|\psi_0 - \psi_1\| \le \|\psi_0 - \psi\| + \|\psi - \psi_1\| < 4\delta^{1/2} + 14\delta^{1/2} = 18\delta^{1/2}.$$

As $I(\theta, \overline{w}) \leq 2\delta$ we have from Proposition 1(b) that $|\theta(\overline{w}y - y\overline{w})| \leq 8\delta^{1/2} ||y||$ for any $y \in M \otimes M_2(\mathbb{C})$. It follows that $|\phi(xw) - \psi(wx)| \leq 8\delta^{1/2} ||x||$ for any $x \in M$. In particular, since $ww^* = b \in M_{\psi}$ we have

$$|\phi_1(w^*xw) - \psi_1(x)| \leqslant 8\delta^{1/2} ||x||, \quad x \in M.$$

Since M is of type III standard arguments show that we can find a sequence of unitaries (v_n) in M converging strongly to w. Then $v_n \xi \to w \xi$ in \mathscr{H} , so that for large enough n we have

$$|\phi_1(v_n * x v_n) - \psi_1(x)| \leq 9\delta^{1/2} ||x||, \quad x \in M.$$

Thus $|\phi_0(v_n*xv_n) - \psi_0(x)| \leq 31\delta^{1/2} ||x||$, $x \in M$, and the proof is complete.

REFERENCES

- H. Araki, Some properties of modular conjugation operator of von Neumann algebras and a noncommutative Radon Nikodym theorem, Pacific J. Math. 50 (1974), 309-354.
- A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup., Sér. 6 4 (1973), 133-252.
- A. Connes, Caractérization des algèbres de von Neumann comme espaces vectoriels ordonnes, Ann. Inst. Fourier (Grenoble) 26 (1974), 121-155.
- 4. A. Connes, Classification of injective factors, Annals of Math. 104 (1976), 73-115.
- 5. A. Connes and M. Takesaki, The flow of weights on factors of type III, to appear.
- G. F. Dell'Antonio, On the limit of sequences of normal states, Comm. Pure Appl. Math. 20 (1967), 413-429.
- J. DIXMIER AND O. MARECHAL, Vecteurs totalisateurs d'une algèbre de von Neumann, Comm. Math. Phys. 22 (1971), 44-50.
- 8. R. T. Powers, UHF algebras and their applications to representations of the anti-commutation relations, in "Cargèse Lectures in Physics, 1969" (D. Kastler, Ed.), Vol. 4, pp. 137–168, Gordon & Breach, New York/London/Paris, 1970.
- E. P. WIGNER AND M. M. YANASE, Information contents of distributions, Proc. Nat. Acad. Sci. U.S.A. 49 (1963), 910-918.
- S. L. Woronowicz, On the purification of factor states, Comm. Math. Phys. 28 (1972), 221-235.