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von Neumann Algebras

A. Connes

For every selfadjoint operator 7 in the Hilbert space H,' f(7) makes sense
not only in the obvious case where f is a polynomial but also if f is just measurable,
and if f,(x)—~f(x) for all xéR (with (f;) bounded) then f,(T)—f(T) weakly,
ie. (f(DEn)~{(T)¢ nyVE, neH. Moreover the set {f(T), f measurable}
is the set of all operators S in H invariant under all unitary transformations of
H which fix 7. More generally, if (T}), i=1, ..., k, are operators in H then the
weak closure of the set of polynomials in T, T;* is the space of all operators in
H invariant under all the unitaries fixing the 7}, as follows from the bicommutation
theorem of von Neumann (1929):

A subset M of L(H) is the commutant of a subgroup G of the unitary group
U(H) iff it is a weakly closed * subalgebra of L(H) (containing the identity 1).

Such an algebra is called a von Neumann algebra (or ring of operators). Any
commutative one is of the form {f(7),f measurable} for a selfadjoint 7, ‘and
hence is the algebra of essentially bounded measurable functions: L (Spectrum 7,
Spectral measure 7). In general the center of M is a commutative von Neumann
algebra and hence an L= (X, u) for some measure space X, then M={(T(x)),x,
T(x)eEM(x) Vx€X} is the algebra of all essentially bounded measurable sections
of a family M(x), x€X, of von Neumann algebras with trivial centers, i.e. factors.
If M==n(G) is, to start with, the commutant of the unitary representation = of
the group G, by the above decomposition, n= becomes the direct integral of factor

1 With infinite countable orthonormal basis.
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representations T, , i.e. representations with 7,.(G)" a factor. As subrepresentations
of © correspond bijectively to selfadjoint idempotents of M==n(G)’, to say that
7.(G)’ is a factor means that any two subrepresentations of 7z, have a common
subrepresentation. In finite dimension this says that x, is a multiple of an irreducible
subrepresentation, i.e. that n,(G)" is M,(C), with n=multiplicity of =, but in
infinite dimension it is not always true that =, has an irreducible subrepresentation,
or equivalently that a factor always has a minimal projection. In fact it does iff
it arises from an honest factorization of H as a tensor product: H=H,Q H,
with M={T®1, T€L(H,)}. Murray and von Neumann discovered the existence
of factors M not coming from the above trivial factorizations of H, and traaslating
in terms of projections in M (i.e. selfadjoint idempotents e=e?=e*c M) the
comparison of subrepresentations they obtained the following multiplicity theory:

THEOREM Let M be a factor, then there exists a unique (up to normalization)

injection of equivalence classes of projections of M in [0, + ] such that:
dimy, (e+f) = dimy (e)+dimy, (f) whenever el f,?2

and its range is

{0,1,...,n} then M is of type 1,,

{0, 1, ..., 0} then M is of type I..,

[0, 11 then M is of type 11,

[0, + <] then M is of type 1l..,

{0, + <} then M is of type IIL

The simplest example of a factor not of type 1 is the group algebra of an infinite
discrete group I' such that the normal subgroup of finite classes is trivial. One lets
R(I') be generated in [%(I) by the right translations, it is the commutant of the
left translations, and is a factor. If & is the basis vector associated in /*(") to the
unit of I' then the functional Trace, (4)=(A4¢, &) on R(I') satisfies:

Trace, (AB) = Trace, (BA) VA, B,
Tracer (1) =1

which is impossible if M was of type I_, i.e. isomorphic to L(H,;) since every
A€L(H,) is a finite sum of commutators. What is amazing in case II; (or IL.)
is that the relative dimension of projection e€ M (or equivalently the relative mul-
tiplicity of subrepresentations of n) can be any real number «, even irrational,
in [0, 1]. Moreover, if one defines for any selfadjoint T€M, its relative trace by
Tracey (T)= [ A dimy (dE,) (where E,=1,__ ,(T) is the spectral resolution
of T), then, while it is easy to check that Trace, (TT*)=Tracey(T*'T)=0 VT€M,

2Je.ef=fe=0.
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the additivity of the trace, Tracey (Ty+ Tp)=Tracey (T7)+Tracey (Ty), VT, T
was another striking result of Murray and von Neumann.

Around 1940 Gelfand and Naimark discovered a remarkable class of infinite
dimensional algebras over C. Among all * algebras over C the C* algebras are
characterized by the very simple condition [1]:

x|l = VSpectral Radius x*x is a complete norm.

The commutative ones (with unit) are canonically isomorphic to the algebra of
continuous functions on their compact spectrum. Every normed closed * sub-
algebra of L(H) is a C* algebra and conversely every C* algebra has a faithful
representation in a Hilbert space. If 4=C(X) is a commutative C* algebra and
n a representation of A4 in H then each coefficient f—(n(f)¢, &) is a positive
linear functional on C(X), i.e. a Radon measure on X. In the noncommutative
situation, positive linear functionals (i.e. elements ¢ of A* with ¢(x*x)=0)
always exist in profusion (thanks to the convexity of {x*x, x€ A}) and each deter-
mines a Hilbert space: the completion H, of 4 with the scalar product (x, y),=
¢()*x) and a representation 7z, of 4 in H, by left multiplication. This extends
the usual construction of L2(X, p) for a Radon measure u on the compact space X,
and as in the commutative case the integral extends from continuous functions to
measurable functions, i.e. here to the von Neumann algebra 7,(4)” generated by
A4 in H,.

As an example let us describe the non commutative analogue of the construction
of the probabilily space associated with the experiment of coin tossing. Instead
of the Radon measure u on the cantor set, X=]JJ;°X,, X,={a, b}, defined by

H1®,®...8f,®1) = ]ju(f,-)

one considers on the C* algebra A, inductive limit of the ®¥ M,(C), the positive
linear functional ¥ such that

k
P(x;0x,Q...0x,1) = [T ¢ (x;)
1

where ¢ is a positive linear functional on M,(C) with @(1)=1 (such a ¢ is
called a state, because it corresponds to a state of a quantum mechanical system
with M,(C) as algebra of observables). Up to unitary equivalence ¢ is always
of the form

@, () = (—]—j—l}_—A] X+ [1—_1}_—):] Xy VX = [x;;]€ My(C).

The corresponding von Neumann algebras Rz=("m (A))” are factors of type III
and R. Powers (motivated by quantum field theory) proved in 1967 that they are
mutually nonisomorphic. Previously only finitely many nontype I factors were
known. The problem of classification of von Neumann algebras up to spatial
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isomorphism (i.e. as pairs (H, M)) was since the beginning of the theory reduced
to the problem of algebraic isomorphism. (If M is a factor, then the isomorphisms
of M with von Neumann algebras in H are parametrized up to equivalence by an
integer n€{l, ...} in the type I case, a real A€]0, + o] in the type II case and
are all equivalent in the type III case.) Moreover an abstract * algebra M is a von
Neumann algebra iff (1) itis a C* algebra (2) as a Banach space it is a dual [31].
Moreover the predual of a C* algebra M is unique, if it exists, and is the space
of g-additive linear functionals ¢ on M (ie. ¢p(JE)=3¢(E,) for any family
of pairwise orthogonal projections). A foliated manifold § gives rise in a natural
way to such an abstract von Neumann algebra R(f). Let Q be the set of leaves
of f, a random operator T=(T});, is 2 bounded measurable family of operators,
T, acting in L*(f) for all f. Sums, product and * are defined pointwise, and as
in usual measure theory, one neglects any set of leaves whose union in V is negligible
(here for the smooth measure class) and any random operator 7' with 7,=0 for
almost all leaves. Thus R(f) plays the role of the algebra of all bounded operators
in “L2 (generic leaf of f)”. It is not of type I in general, it is a factor iff f is
ergodic (i.e. any measurable function on ¥, constant on the leaves, is a.e. constant),
and can be of type I or IIl. If A is a holonomy invariant transverse measure
for § one can give a meaning to ¢@(7)= f Trace (T;) dA(f) for every positive
random operator 7,¢ and this defines on the von Neumaun algebia M of randoin
operators (modulo equality A almost everywhere) a functional ¢ satisfying:

(1) ¢ isaweighton M i.. ¢ isalinear map from M to[0, + <], o (Sup 7)) =
Sup ¢ (T,) for any increasing bounded family, and there are enough T with
@(T)<< to generate M.

(2) ¢ is faithful: @(T)=0,YT=0 in M.

(3) ¢ is a trace i.e. is unitarily invariant, @ (UTU "Y)=¢ (7).

Here (3) is the translation of the holonomy invariance of A.

Every von Neumann algebra M has a faithful weight; those which possess a faithful
trace are called semifinite. The additivity of the trace of Murray and von Neumann
shows that a factor fails to be semifinite iff it is of type III. Around 1950, Dixmier
and Segal showed many important consequences of semifiniteness. One can define,
as in usual integration theory, the L? spaces by the norms

lixll, = (Tracey [x?|)? where x€ M, |x| = Vx*x.
Then L' is the predual M, and the representation n of A by left multiplication
in L? satisfies the commutation theorem:
n(MY = Jn(M)J, J:L* L% J? = 1

where J is the isometric involution x—x* in L2 As a corollary one gets the

commutation theorem for tensor products ((M @M, =M,®M,) for M, and

3 This can be finite even if Trace T,=+ for all €€, see [8] for more details.
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M, semifinite and for any unimodular locally compact group G the fact that the
right regular representation generates the von Neumann algebra R(G) of left
invariant operators in L%(G). The natural weight ¢g(f)=s(e) (e the unit of G)
on the convolution algebra R(G) isatraceiff G is unimodular. J. Dixmier obtained
the above result also for nonunimodular G, and it was Tomita who succeeded in
proving the two other results (existence of (m, J) and commutation theorem for
tensor products) for arbitrary von Neumann algebras — this theory, once supple-
mented by the general theory of weights (Takesaki, Combes, Pedersen, Haagerup)
can be summarized as follows:

Instead of a trace, one starts with a faithful weight ¢ on A4, The lack of tracial
property for ¢ creates two natural scalar products ¢ (x*x) and ¢ (xx*) and hence
a positive (unbounded) operator 4, in the Hilbert space H, of the first scalar
product. In the group algebra situation #, is identical with L*(G) and 4, is
the multiplication by the module 4, of G. In this special case, since 4, is a homo-
morphism (from G to R%) it follows that the one parameter group of unitaries
A‘;,f normalizes R(G). The most remarkable result of Tomita is that this is a general
fact:

THEOREM. Let M act in H, by left multiplications, then AfMA,"=M Vt¢R.

This result became central when Takesaki discovered that the corresponding
one parameter group of automorphisms of M (a;”(x)zAf;xA; it \/t€R) is charac-
terized (in its link with ¢) by an algebraic form* of the condition long known in
quantum statistical physics as the Kubo Martin Schwinger condition. (If 4 is
the algebra of observables, ¢ a statistical state, and o, the time evolution, a group
of automorphisms of A, then (¢, o) satisfies the Kubo Martin Schwinger condi-
tion at inverse temperature f ifl ¢(xo_, ()= (yx) Vx, y€A. When A=L(H)
and o,(x)=c"¥xe~ " where H is the hamiltonian, the unique ¢ satisfying this
condition is the Gibbs state x--Trace (e~ #”x)/Trace (e~#).) After the discovery
of Powers in 1967 of the non isomorphism of the factors R,, A€]0, 1[, Araki and
Woods analyzed the infinite tensor products of finite dimensional factors by means
of two invariants, computable in terms of the eigenvalue list,

rw(M) ={Ac R, |M®R, is isomorphic to M},
o(M) ={A€ R |M®R, is isomorphic to R,}.

My point of departurc was the existence of simple {formulae relating, in the special
case considered by Araki and Woods, those invariants and the Tomita—Takesaki

theory, namely:
rw(M) = N Sp4,, (M) ={e", TeJKero*}.
[ 4

This suggested that one ought Lo study for their own sake the invariants S(M)=

4 Identified by Haag Hugenholiz and Winnink in 1966.
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Ny Sp 4, and T(M)={J, Ker ¢®. The first question was computability. In the
semifinite case, all weights ¢ are of the form ¢(x)=Trace,,(¢x) where ¢ is a
positive operator and the spectrum of A4, is the closure of the set of ratios
A4/A5, A;€ Spectrum ¢ while a,(x)=g"xo™" for x€ M, taking ¢ =Trace,,, S(M)={1},
T(M)=R. In the type III case, the one parameter group ¢ is never inner but the
following result solved completely the problem of computability of S and 7.

THEOREM. Let M be a von Neumann algebra, Aut M its automorphism group,
g: Aut M—~Out M=Aut M/Int M the canonical quotient map, and ¢ a weight
on M. Then a one parameter group of automorphisms of M, (a,),cx is of the form
o* for a suitable ¥ iff e(a,)=e(c?) Vt€R.

In particular together with a type III factor there is a canonical homomorphism
é:R—Out M, with 5(t)=¢e(s?) for any weight ¢. Moreover with a suitable notion
of spectrum for 6 one has:

S(M) = Spectrum ¢, T(M) = Kernel of d.

In particular both are subgroups (of R} and R). As S is closed and as closed
subgroups of R* form a compact interval [0, 1], one gets a finer classification of
type ITT factors:

M s of type TII;, A€]0,1[ if S(M)={0}ui?,
M s of type Il if S(M)={0,1},
M is of type III; if S(M)=[0,+ [.

In the case of foliations the invariant S of the von Neumann algebra coincides
with the ratio set introduced by W. Krieger in ergodic theory as a generalization
of the Araki-Woods ratio set.

Roughly speaking to evaluate the ratio set of a foliation, one travels on the generic
leaf from the point a 1o a point b which is close to @ in ¥V (but at any distance
on the leaf) and one compares a unit of transversal volume in a with its transformed
under holonomy at b; the set of all essential such ratios coincides with S, and
is thus a natural obstruction to the existence of a holonomy invariant choice of
unit of volume in the transverse bundle.

Exactly as in noncommutative algebra where one uses the cross product of an
algebra by a group of automorphisms, one defines the cross product of a factor
N by an automorphism 0 (it is characterized as a von Neumann algebra M gene-
rated by N and a unitary U with UxU*=0(x) Vx€N, so that the equality o,(x)=x
Vx€N, 6,(U)=€"U defines an automorphism of M for all ¢€R).

The general theory of factors of type III,, 1€]0, 1[ is summarized as follows:

(a) Let N be a factor of type II_ and 6 an automorphism with mod (6)=1
(i.e. Traceyof=A Tracey); then the cross product N®,Z is a factor of type III,.

(b) Any factor of type III, is of the form (a), and in a unique way (i.e. if (¥, 0,)
give the same M there exists an isomorphism N;—~N, carrying 6, on 6,.
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In case 1II, we proved an analogue discrete description but the definitive under-
standing and solution of the 111, case is contained in the following result of Takesaki:

Any factor of type IILis of the form N®,R% where N isa von Neumann algebra
of type II, (i.e. in its central decomposition N={(x(w)),c., x()EN() VucA}
every N(u) is a factor of type II.) and where for some irace © on N one has
t00,=21. Moreover this decomposition is unique as above, and:

The restriction of 0, to A defines an ergodic flow F(M), which is an invariant
of M. This flow has a very natural interpretation as an abstract flow of weights
on M.

One has S(M)={A, F,=id}; when M is of type III, it follows that N is a
factor so one gets the analogue of (a), (b) with the group Z replaced by R.

In the IIl, case, N={(x()),cs1» X()EN(u), Yu€ S} so that N “fibers over
a circle”, and the 0 of (a), (b) is 0,. The above structure theorem for factors of
type III, reduces the problem of classification in this case to

(1) Classify factors of type II_, .

(2) Given a factor of type II__, N, classify (up to conjugacy) its automorphism
with module A, 4€]0, 1].

Every factor of type 1I_, is the tensor product of a factor of type II, by the type I,
factor. In the last of their papers, Murray and von Neumann had shown that,
though there exists more than one factor of type II; (they exhibited 2, in 1968
D. MacDufl constructed a continuum of them) there is among them, only one
having the following approximation property: V finite subset F of N, Ve=0, 3
a finite dimensional * subalgebra K with distance (x, N)<g, Yx€F (where the
distance is in the hilbert space L? of the tracey). As any other factor of type II,
contains this hyperfinite one, it was hence natural 1o think it is the simplest of all
and to consider problem (2) in this case. The answer is the following:

For 1€]0, 1[ there is, up to conjugacy, only one automorphism of R, ;=R®I,,
with module A.

If 1/2 is an integer n, one can construct 0, as the shift on Ry ; built as an
infinite tensor product of nXn matrices. As another example, if T is the Anosov
diffeomorphism of the 2 torus R?%Z? defined by the matrix [} ;] then T defines
an automorphism of its stable foliation, and hence of the corresponding factor
which is R, ;, this automorphism has module A where (4, A7) are the eigen-
values of the above matrix. A crucial motivation in the proof of the above theorem
is that, since the study of automorphisms of abelian von Neumann algebras is
equivalent to ergodic theory of a single transformation, one would expect many
results of this theory to have an analogue in the non abelian situation. This turns
out to be the case in particular for the Rokhlin tower theorem.

There is however a striking difference with usual ergodic theory, the existence of
a complex valued invariant {or periodic automorphisms. If N is a factor, it can
happen for 0¢Aul N that 6% is inner for some k=0, but that no automorphism
0, e(0’)=¢(0) satisfies 0"*=1, the resulting obstruction is a kth root of 1 in C, y(0)
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which is invariant by multiplication of 6 by an inner automorphism. This happens
when N=R, every pair (k, z), k=0, z€C, z*=1 appears from a 6cAut R and
moreover the pair (k, z) is the only invariant of £(f)€Out R, in other words the
group Out R=Aut R/Int R has only countably many conjugacy classes para-
metrized by (k, z). As a corollary one gets that Int R is the only normal subgroup
of AutR.

Elaborating on the existence of this complex valued invariant, we showed that
not all factors (even of type II,) are antiisomorphic to themselves.

In general if N is a factor of type II_, one has a lot of non conjugate automorphisms
with the same module A€]0, 1[; it was thus very natural to decide when, given
a factor M of type III,, the corresponding factor of type II_, is R, ;. If one knows
that it is Ry, then by the above theorem one knows M is isomorphic to Powers
factor R,.

As seen above R is characterized, among factors of type II,, by the approximation
property of Murray and von Neumann. In the general (non IL,) case, a factor M
is called approximately finite dimensional® when:

VF finite subset of M,V % strong neighborhood V of 0

3K finite dimensional % subalgebra with K4-V.

As an elaboration on Glimm’s theorem characterizing C "-algebra with only type I
representations, it follows from the work of O, Marechal [221 and Elliott-Woods 131

1w il

that for any approximately finite dimensional factor M (not of type I,, n<woo,
orII)) and any C*-algebra 4 not of type I, there is a representation = of 4 which
generates M as a von Neumann algebra. Thus as soon as one goes beyond type I
C *-algebras one meets this whole class of factors. Moreover if 4 is the C*-algebra
corresponding to the “non commutative Cantor set” i.e. 4= My(C), then for
any representation of A, n(4) is approximately finite dimensional.

This obviously raises two questions:

(e) Classify the approximately finite dimensional factors.

(B) Characterize the C*-algebras which generate only approximately finite dimen-
sional factors.

In 1968 after trying to characterize R, ; (among factors of type II.) by the
approximation property above, V. Ya. Golodets succeeded in showing that this
class is stable under crossed products by abelian groups. It follows in particular
that if M is of type III,, and M is AFD then the associated II_ also is AFD.
This indicated the interest of the problem: is Ry, unique among AFD of typeII,.
The difficulty is that while any II__ is II,®I_, it is very difficult to see what property
inherited by the II, would force it to be isomorphic to R.

In fact the characterization of R, of Murray and von Neumann involves * sub-
algebras, and hence has still some descriptive flavor. The second factor of type II;
which they discovered was distinguished by “property I'"” which they considered

5 In short AFD.
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technical; this property had no reason to characterize R since for any N, N®R
possesses it, and in fact in 1962 J. T. Schwartz distinguished between N, R and NQ R.
But in doing that, he found another property of R which was the germ of many
later developments.

Property P. M in H has property P iff for any bounded T€L(H), the norm
closed convex hull of the w7w*, u unitary of M, intersects M’

He proved that among N, R and N®R only R has property P, and moreover
that the group algebra R(I') of a discrete group has property P iff I' is amenable.
Any AFD factor possesses property P, but it is not clear from the definition that
if M=N®Q then N has property P if M does. In fact the most important
consequence of property P is the existence of a projection of norm one E [rom
L(H) to M’, with E(1)=1. By a result of J. Tomiyama any such projection satisfies
E(aTb)y=aE(T)b Ya,beM’, YVTcL(H), and the existence of such a projection
of L(H) on M is independent of the choice of representation. The family of
von Neumann algebras satisfying it has the following remarkable stability properties:

(1) It is a monotone class (under decreasing intersections and weak closure of
ascending unions).

(2) It is stable under commutant.

(3) Stable under cross products by amenable groups.

(4) Stable under tensor product.

The name used to qualify this class is injectivity, since it characterizes, thanks
10 a noncommutative version of the Hahn-Banach theorem due to W. Arveson,
those von Neumanu algebras which are injective objects in the category of C*
algebras, with completely positive maps as morphisms. As shown by Choi and
Effros, it is also equivalent 1o the existence of a solution in M of the equation
yQ®a<b (wherc ac M,(C), a=a* and be M® M, (C) are given) as soon as a solution
exists in L(H). This is very useful because it allows us to ireat direct integrals:

(5) M={(x(5))sc 4> X (s)EM(s) Vs€ A} is injective ifl almost all M (s) are injective.

So let M be an injective von Neumann algebra, (5) and the reduction theory
of von Neumann allow to assume that M is a factor, then the corresponding von
Neumann algebra of type II_ is injective by (3) and again by (5) one can reduce
to analysing injective factors of type II_, and finally of type I1,, writing M=NQ®I_.
Then N is injective of type II; and by Tomiyama’s theorem any projection of norm
one E:L(H)—N, with E(1)=1 satisfies E(aTb)=aE(T)b, Ya,bcN, YTcL(H).
It follows that ¢ =TraceyoE is a state on L(H) invariant under all unitaries of N.
We call such a state an hypertrace. In 1960 M. Takesaki had shown that if 4,, 4,
are simple C* algebras then 4, ® 4, is also simple (here 4,® A4, acts in H,QH,
il 4, and A, actin H,, H,), his proof involved a characterization of the norm on
the algebraic tensor product A4,® A4, coming [rom the representation in H,®H,
as the least of all possible C* norms on 4,0 A4,. The corresponding completion
A1 ® nin 45 is called the minimal tensor product of A, and A4,. He showed more-
over that (as in Grothendieck theory for locally convex spaces) for certain C*
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algebras (the nuclear ones by definition), only one C* norm exists on 4®B for
arbitrary C* algebras B ([34], [31]). In 1972 Effros and Lance discovered that some
factors (all the Araki—Woods factors at the time) give very good factorizations of
L(H) inasmuch as the natural map 5 from Mo M’ in L(H) given by n(3a,8b,)=
>a;b; is not only an injective homomorphism but is an isometry from MQ;, M’
to the C* algebra C*(M, M’) generated by M and M’ in L(H). They called
this remarkable property semidiscreteness and proved semidiscreteness = Injectivity.
So we get

Approximately finite

dimensional Semidiscrete

roperty, P
Injective
In fact, these properties are all equivalent.

Assume first that N is a factor of type II; and is injective, the existence of an
hypertrace on N implies that it is semidiscrete; then Takesaki’s theorem shows that
C*(N, N") is simple and hence that it cannot contain a nonzero compact operator
in H. The following dichotomy then shows that N has property I. Let N be
a factor of type I; in H; then N has property I' or C*(N, N’) contains all
compact operators. (This was suggested by fine computations of C. Akemann and
P. Ostrand showing that for the group algebra of free groups C*(N, N’) contains
all compact operators.)

Now N has property I' iff the group Int N is not closed in Aut N (where
Aut N is gifted with its natural topology: 6,—0 iff 6,(x)—~0(x) strongly for any
x€N). Moreover in general the closure of Int N is characterized in terms of
C*(N, N’) by the existence of an extension 8 of 8 on N which is identity on N’.
As in our case C*(N,N’) is NQu N’ we see that Aut N= IntNdInt N.

The next step is to show that N® R is isomorphic to N. A remarkable result
of D. MacDuff asserts that this is true as soon as N has a central sequence which
is not hypercentral, which once translated in terms of automorphisms implies that

Int Ndct N= N ~ NQR

where ct N is the normal subgroup of all automorphisms 6 of N which are trivial
on central sequences. Here one has ct N=Int N because if 6¢€ctN then
f®1€cct (N®N) (this is due to a characterization of ct using C*(¥, N’)) and
as the symmetry oy(x®y)=y®x in NQN is in Int NN one has @61
inner (and hence @ inner), because e(ct) and e(Int) always commute and
s(0®0 ) =[e(0®1),e(oy)]. From the properties N~N®R and aNEI_tﬁ one
finally deduces the approximation property of Murray and von Neumann. This
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can be very simply seen if one assumed N to be a subfactor of R but for the general
case one uses the existence of an isomorphism of N with a subfactor of the ultra-
product R® where w is a free ultrafilter, which in turn follows from the analogue
of the Day—Namioka proof of Falner’s characterization of amenable groups.
The role of the invariani mean is played by the hyperirace and L(H) replaces
[=() where I' is the discrete group. Among those proofs the most technical
are those relating properties of automorphisms (like 6¢Int N) with properties
of C*(N, N’) (like the existence of 0). They involve an exhaustion method, allowing
to pass from some infinitesimal information to a global one, and a probabilistic
way of taking the polar decomposition of an operator (the usual way x —~u(x)|x| being
too discontinuous), based on the inequality [[|E*(h*)—E(k®)|3da=|h—k|y|h+k]||;
where E“ is the spectral projection 1, ;. So we have now that all injective
factors of type II, are isomorphic to R. As an immediate corollary, since all von
Neumann subalgebras of R are also injective, one gets their complete classification
up to isomorphism. It follows that R is the only factor contained in all others,
which fully justifies the original belief of Murray and von Neumann that it is the
simplest. Also if I is a discrete amenable group then its group algebra is isomorphic
to R assoonas {g€rl, class of g finite}={e}. If M is injective of type II_ then
it is isomorphic to R, ;. It follows that if G is an arbitrary connected locally
compact group then the non type I part of its group algebra R(G) is of the form
A®R,,; where A is an abelian von Neumann algebra. Moreover the type III
theory, allows to deduce from that, that the above 4 properties are equivalent in
general. We thus have only one class which has, on the one hand, the nice charac-
terization seen after Glimm’s theorem, and on the other all the stability properties
of the injective.

Furthermore in their work on C* tensor products, Effros and Lance had shown
that (1) all representations of nuclea1r C* algebras generate injective von Neumann
algebras (2) that if all representations of a C* algebra are semidiscrete, then the
C* algebra is nuclear. Hence the C* algebras satisfying condition (3) are exactly
the nuclear ones (as a corollary C*(G) is nuclear for G locally compact connected).
Let us mention also that for foliations the injectivily of the associated von Neumann
algebra is equivalent Lo the amenability of the {oliation, a remarkable and very useful
property developed by Zimmer for ergodic group actions. (For instance the action
of the fundamental group I of a compact Riemann surface ¥ on the natural
Poisson boundary 0V of its covering space ¥ is always amenable ergodic and is
often of type III,.) Let us turn now to injective factors of type 1. If M is of
type 111, 2€]0, 1[ then M is isomorphic to Powers factor R,. Wolfgang Krieger
has shown in 1973 that for factors associated to a single ergodic transformation of
a measure space, the flow of weights is a complete invariant and can be any ergodic
flow. It follows from a very powerful cohomological lemma in his proof, and from
the discrete decomposition of factors of type 111, that any injecLive factor of type 111,
arises from a single ergodic transformation of a measure space and is thus one of
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Krieger’s factors. Thus in the III, case, the classification problem is transferred
to ergodic theory: there are as many injective factors of type III, as ergodic (non-
transitive) flows. There is only one injective factor M with r_(M)=[0, + ],
it is the Araki—Woods factor R,, arising as algebra of local observables in the
free field, but it is still unknown if it is the only injective of type III, (i.e. if »_(M)=
S(M) for any injective). This factor R, is associated to the Anosov foliation of
the geodesic flow of a Riemann surface of genus >1. We have used foliations above
to illustrate the general theory by examples but von Neumann algebras can be very
useful for the study of foliations per se. Ruelle and Sullivan have shown how, for an
oriented foliation { of the compact manifold ¥ (i.e. the subbundle F of TV,
tangent to { is oriented), the holonomy invariant transverse measures A cor-
respond exactly to closed currents C, ‘“positive in the leaf direction”. For such
a measured foliation it is natural to define the Euler characteristic as {e(F), [C]),
the Euler class of the bundle F evaluated on the cycle [C] created by the current C.
Now von Neumann algebras allow to define the Betti numbers

B, = [dim H'(f) dA(f) <<,

where H'(f) is the space of square integrable harmonic forms on f (with respect
to some Euclidean structure on F, of which f§; turns out to be independent).
One has then N(—1)'B —(e(F),[CT). As B, is the measure of the set of compact
leaves with finite holonomy, one gets that for 2 dimensional foliations without
such leaves, the mean curvature of leaves is negative. The above formula is a special
case of an index theorem computing for elliptic differential operators on | the

scalar
[ Dim (Ker D)) dA(f)— [ Dim (Ker D) dA(f)

as ChD-t(FQC)[C], where ChDecH*(V,Q) is the chern character of the
symbol of D, t(FQC)cH*(V, Q) the Todd class of FQC and [C]€H,(V,R)
the homology class of the Ruelle—Sullivan current.
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