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Annals of Mathematics, 115 (1982), 291-330 

The L2-index theorem for homogeneous 
spaces of Lie groups 

By ALAIN CONNES and HENRI MOSCOVICI 

Introduction 

The L2-index theorem for covering spaces of Atiyah [3] and Singer [20] 
asserts that, given a discrete group F acting smoothly and freely on a manifold M 
with compact quotient M = F \ M, and an elliptic differential operator D on M 
which is F -invariant and thus descends to an elliptic differential operator D on 
the compact manifold M, then the P-index indrD = dimrKerD - dimrKerD* 
of D coincides with the ordinary index ind D = dim Ker D - dim Ker D* of D. 
Here Ker D is the space of L2-solutions of Du = 0, and dim r denotes the 
dimension function corresponding to the trace (on the commutant of F acting on 
the Hilbert space of L2-sections over M) naturally associated to P. The impor- 
tance of this theorem lies in the fact that indD > 0 implies the existence of 
nontrivial L2-solutions for the equation Du = 0, and as such it was used in a 
crucial way by Atiyah and Schmid [5] to construct explicit realizations of the 
discrete series representations for semisimple Lie groups. Indeed, if G is a Lie 
group which possesses a discrete, torsion-free, cocompact subgroup F, and H is a 
compact subgroup of G, then the L2-index theorem applied to the covering space 
M = G/H of M =F \ G/H, combined with the index formula of Atiyah-Singer 
[6], yields existence results for L2-solutions of G-invariant elliptic equations on 
the homogeneous space G/H. 

It is relevant to note that, with D denoting this time a G-invariant elliptic 
differential operator on G/H, the ratio between the F-index of D and the 
covolume of F gives a number independent of F. This real number, indG D, can 
be in fact intrinsically defined as the difference of the two "formal degrees" 
corresponding to the representations of G on Ker D and Ker D* respectively, and 
hence makes sense for any unimodular Lie group G, even when it has no 
discrete, cocompact subgroups (which, outside the semisimple case, is the generic 
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292 A. CONNES AND H. MOSCOVICI 

situation). Furthermore, it follows from the abstract theory of traces that the 
G-index indGD depends only on the principal symbol a(D) of D, and hence 
should be computable in terms involving only a(D), according to a formula 
which is easy to guess from the F-index case. In the present paper we shall (1) 
prove this formula in full generality, and (2) show, for a large class of groups G, 
that the representation of G on Ker D is a finite direct sum of irreducible discrete 
series. These two results give criteria for both existence and vanishing (see 
Corollary 6.3) of L2-solutions. 

Our proof of (1) is based, with no surprise, on the heat equation method (cf. 
[4]) and extensive use of the theory of von Neumann algebras, with the 
McKean-Singer identity applied to the G-trace on the commutant of the left 
quasi-regular representation of G. An expected difficulty arises at the K-theory 
level, since the equivariant K-theory of the isotropy representation is not simply 
generated as a module over the representation ring R(H) (unless there is a 
G-invariant spin-structure, which is an undesirable restriction). We overcome it 
by showing that, for a priori reasons, the formula for the G-index of D depends 
on the principal symbol a(D) in a continuous way with respect to the IH-adic 
topology on R(H) (IH being the augmentation ideal), and then using the 
signature operator. The proof we outlined in [10] avoided this difficulty from the 
start, but the use of the index theorem for foliations (cf. [8]), on which it 
essentially relied, was not very enlightening. 

As already mentioned in [11], the main step towards (2) is to handle the case 
when G is semisimple. The main ingredients we use in order to show that the 
support of the measure class on G corresponding to Ker D is located in the 
discrete series are the very precise results of Harish-Chandra on the construction 
of the Plancherel measure, and the existence of a G-invariant parametrix for D 
(cf. Proposition 1.3 below). 

The plan of the paper is the following. In Section 1 we develop the basic 
calculus with G-invariant pseudo-differential operators on a homogeneous space, 
with special emphasis on the properties of order zero operators. The main device 
we use in the process is the "averaging" operation, which, as shown in Section 2, 
also allows us to control the G-trace in terms of the local, ordinary trace. Section 
3 is devoted to the definition and elementary properties of the analytical index 
for G-invariant elliptic pseudo-differential operators, which are then used to 
prove that it factors through the symbol map. The topological index is introduced 
in Section 4, and the index theorem is proved in Section 5. In Section 6 we 
establish the fact that the space of L2-solutions of the equation Pu = 0, where P 
is a G-invariant pseudo-differential operator and G satisfies certain conditions, 
decomposes as a finite direct sum of irreducible square-integrable representa- 
tions. Finally, in Section 7, we collect a few applications of the main results, 
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THE L -INDEX THEOREM 293 

together with some comments on the behaviour and the nature of the G-index 
map. 

1. Invariant pseudo-differential calculus 

To begin with, we shall discuss some basic facts concerning the pseudo-dif- 
ferential calculus with G-invariant operators on a homogeneous -space. 
Throughout, G will denote a unimodular Lie group with at most countably many 
connected components, H a compact subgroup, and M = G/H the correspond- 
ing homogeneous space of left cosets gH, g E G. 

Given a representation E of H on a finite-dimensional complex vector space 
E, we denote by & the associated homogeneous vector bundle over M. The space 
C?(M, 6) (resp. C,( M, 6)) of all C'-sections (resp. C'-sections with compact 
support) of & will be identified with the space (C?(G) 0 E)H (resp. (C?(G) 0 
E)H) of all elements in C?(G) 0 E (resp. C?(G) 0 E) which are invariant 
under the representation h + R(h) 0 c(h) of H, where R stands for the right 
regular representation of G. Suppose now that the representation - is unitary. 
Then, the H-invariant inner product on E determines a G-invariant Hermitian 
structure on S. Further, after choosing a Haar measure dg on G and giving M the 
G-invariant measure dg/dh, where dh denotes the normalized Haar measure on 
H. one can define, in an obvious way, a global inner product on C?(M, 6), 
invariant under the left action L(g) of any g E G. The corresponding comple- 
tion, denoted L2( M, 6), will be also regarded as being the (closed) sub- 
space (L2(G) 0 E)H of all H-invariant elements in the Hilbert tensor product 
L2(G) 0 E. 

If 6&1 62 are homogeneous vector bundles over M, we will write 
nP(M, 6&1 62) for the space of all pseudo-differential operators P: Cs(M5 ) 
Ca( M, 62), of order n. Here, the term " pseudo-differential" refers to the class of 
operators used in [6], which corresponds to the case p - 1, 8 = 0 in Hdrmander's 
notation (see [15]). Given P E 'n(M, &1 , 62), we write an(P), or simply a(P), 
for its principal symbol. Recall that, if T'M denotes the cotangent bundle T*M 
with the zero-section removed and 'n: T'M M stands for the corresponding 
projection, then c(P): 7T*61 T*62 is a smooth bundle homomorphism and, on 
each fibre of T'X, U((P) is positively homogeneous of degree n. 

For P E Jn(M, 61, 62) we shall denote by Kp its distributional kernel, 
which will be regarded as an element in the following space of distributions on 
G X G: 

(C-'(G X G) 0 Hom(E1, E2))HXH = {K E C-O?(G X G) 0 Hom(El, E2); 

K(x, y) = c2(a)K(xa, yb)c(bY , (x, y) E G X G, (a, b) E H X H). 
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294 A. CONNES AND H. MOSCOVICI 

Thus, if u E CC (M, 61) = (CC(G) 0 El)H, one has 

(Pu)(x) f Kp(x, y)u((y) dy, x E G. 

We will say that P E *'(M, 6 1 62) is compactly supported when Kp has this 
property, and we will denote by *IN'(MI 61, 2) the subspace of 'I(M, 61, 62) 
consisting of all such operators. Further, we say that P E *'(M, 615 62) is 
G-compactly supported if K (x, y) 0 0 for x-ly outside a compact set in G; 
these operators form a subspace of *'(M, 61, 62) which will be denoted by 
'In(M, 61,62) Note that if P E Cln(M, 6;1 62) and Q E IcM(M, 62,63) their 
composition makes sense and QP E fcn+(M, 61, 63). 

A pseudo-differential operator P E In(M, 61, 62) is called G-invariant if 
L(g)PL(g)-l = P for any g E G. For such an operator 

Kp(x, y) = kp(x-'y ), (x, y ) E G. 

where kP is an element in the space of distributions on G. 

(C-'(C) 0 Hom(El, E2)HXH = {k C C-X(G) 0 Hom(E1, E2); 

k(x) = c2(a)k(a-lxb)c1(b) 1, x c G. (a, b) e H X H}. 

The subspace of In(M, 61, 62) formed by G-invariant operators will be denoted 
In(M, 61, 62)G. Note that P c 'cn(M, 61, 62)G if and only if kp has compact 
support. 

G-invariant pseudo-differential operators can be constructed by averaging 
over G ordinary pseudo-differential operators, which are compactly supported. 
Indeed, if P C *NI(M, 61 62), then for each u c CC(M, 61) the integral 

Av(P) u fL(g)PL(g') u dg 

makes sense, since it only involves integration over a compact subset of G. and it 
defines a Co-section of 62. Moreover, using the formula which describes the 
transformation of the asymptotic symbol under a diffeomorphism (see, for 
instance, [15], Theorem 2.16), one can show that: 

1.1 LEMMA. If P e 'IN'(M, 61, 6'2) then Av(P) C *cIn(M, 61 62)G and one 
has 

u(Av(P)) f L(g)a(P)L(g) ldg. 

Conversely, every element P e 'cn(M, 61, 62)G arises in this way. Before 
giving the precise statement, let us introduce the following definition: a function 
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THE L -INDEX THEOREM 295 

f e C (G) is said to be a cut-off function if 

(a) f is positive; 
(b) f(gh) = f(g) for any g c G and h ? H; 
(c) JGf(x)dx 1. 

1.2. LEMMA. Let P E 'IQ( M, &, &2).G Then P = Av(fP), for any cut-off 
function f on G. 

Proof Clearly, fP C TcIc(M, &1, 2); therefore Av(fP) makes sense. For 
u Cc (M,&1) one has 

(Av(fP)u)(x)= f(L(g)fPL(g)F'u)(x)dg= (L(g)fL(g)F'Pu)(x) 

= ,,f(g-1x)(Pu)(x) dg =(Pu)(x). Q.e.d. 

Using this averaging procedure one can construct G-invariant parametrices 
out of ordinary parametrices. 

1.3. PROPOSITION. Assume that P c 'cI(M, 61 &;2)G is elliptic. Then there 
exists Q e 'cIn(M, 6&25 &)G such that I - QP c 'cI '(M, 61& 61)G and I - PQ 

E~~~Q Cc 4r'Sn(M. 
Proof Let Q' 6 ;2'7(M, S 12, S) be an ordinary parametrix for P; in parti- 

cular S' I- Q'P Tc-I'(M, &, 5). Choose a cut-off function f and define 
Q = Av(fQ') E 'Pn(M,&2, &2)G. Then, for any u c C7?(M, & ), 

(QPu)(x) = (L(g)fQ'L(g) 'Pu)(x) dg f(L(g)fQ'PL(g)'1u)(x) dg 

fi(g -Ix) (Q PL (g)- u) (g 
- 
x) dg 

= |f(g-lx)(u(x) -(S'L(g)' u)(g'-x)) dg 

= u(x) -(Av(fS')u)(x). 

Since S Av(fS') c Tc- '(M, 61 61)G, Q is a left parametrix for P. Similarly, 
Av(Q'f) C 'fPn(M 6&25 61)f is a right parametrix for P. Therefore, Q is also a 
right parametrix for P. Q.e.d. 

The remainder of this section will be devoted to the study of G-invariant 
pseudo-differential operators of order zero. Recall that any P e 'Icc(M, M 1, 62) 
satisfies an estimate of the form 

IIPUIIL2 ? CIIUIIL2; u e (m, 61) 
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296 A. CONNES AND H. MOSCOVICI 

and thus extends to a bounded operator P: L2(M, 61) -- L2(M, 62). This is false 
for arbitrary P E TI'(M, 61, 62). However, as follows from the next proposition, 
it is true for operators in I(?(M, ;11, 62 )G. 

1.4. PROPOSITION. Let P E T''(M, 6&1 62) with support (Kp) C C X C for 
some compact C in G. Then Av(fP) E 4Ic<(M, 6&1 62)6 extends to a bounded 
operator from L2( M, & 1) to L2( M, 62). In addition 

IIAv(P)II ' c 11 P 11, 

where the constant c depends only on C. 

The proof will be based on the following useful lemma, which we will also 
need later. 

1.5. LEMMA. Let SC be a Hilbert space and assume that F E L2(G, SC) has 
the property: there exists a compact K in G such that (F(x), F(y))= 0 for 
x-1y ( K. Then 

(i) JF(x) dx exists, as an element in Xk7; 
(ii) IIJ F(x)dxII2 -I K I J IIF(x)112dx, 

where I K I denotes the Haar measure of K. 

Proof Let C be an arbitrary compact in G. Then 
2 

f|F(x) dxA f (F(x), F(y))I dx dy 

IcXK(x-1y) I (F(x), F(y))I dxdy 

IF(x)II1XK(X Y)IIF(y)ll dy) dx, 

where XK is the characteristic function of K. If we put 

A~x) = IXK(X-1y)IIF(y)ll dy, 

it follows that 
2 

JF(x)dx A IIF IIY(G X)11 IfIIL2(G) K | IIF) 

since 

1/2 

11f I11 L2(G) - l 
K II L' (G)| || F(y ) 112 dy = K I 11 FIIlL2(GX3) *Q-e-d. 
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Proof of Proposition 1.4. With P as in the statement and u E Cc(M, 61), 
define 

F(x) = L(x)PL(x) 'u. 

It is easy to check that ( F(x), F(y)) 0 0 for x'- y ( CC-'. Choose now f E 
Cc (G) such that f =1 on C. Then Pf = P, hence 

fIfF(x)l2dxd=f rPfL(x)l1uII2dx? C P112fIL(x)fL(x)lu 112dx 

11 p112 A||fX- y) 12 11 u(y)11 2 Ax dy c5 11 p112 11 f 11 22C U11 
2 

Applying now the previous lemma one gets 
2 

IIAv(P)u112 J F(x) dx C C-l I lPI1211if 112(2) uI 11 2. Q.e.d. 

From Proposition 1.4 and Lemma 1.2 it follows: 

1.6. COROLLARY. Any P E T'?(M, 61, 62)G defines a bounded G-invariant 
operator P: L2(M, 61) - L2(M, 62)* 

Due to this result, we can form a larger class of G-invariant bounded 
operators, which turns out to be very useful. Precisely, we shall define 
''G*(M, 61, 62) as being the norm-closure in qJ (L2(M, 61), L2(M, 62)) of 
T'(M, CG, *2)G. Also, we define Q(M, 61, 62) as being the norm closure 
of 'Pc- (M, 6&1 62)G. The reason behind this notation is the following. Remark 
first that 

(1.1) CJ(M, 61, 62)G 

= R1(w): L2 (M, 6) L2 (M, 62); q E (CC o(G) 0 Hom(E1, E2))X } 
where 

(R(cp)u)(x) f cp(x-ly)u(y) dy, u E CC?(M, I). 

When 61 =2 = 6, both TG*(M, S6, ) and CG*(M, S6, ) are C*-algebras of 
G-invariant operators on L2(M, 5), and 'G*(M, 6, 5) is an extension of 
CG*(M, 6, L). Moreover, as we shall see in Section 7, when & corresponds to the 
left regular representation of H, then CG*(G, 5, 5) is canonically isomorphic to 
the reduced C*-algebra C,*(G) of the group G. 

To simplify the notation a little bit, we shall drop the letter M in most of the 
symbols defined up to now. Also, whenever 61 62 6 we shall write & only 
once. 
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298 A. CONNES AND H. MOSCOVICI 

The symbol map, initially defined on 'I'2(6 62)G, can be extended to the 
whole \'G*(61& 62). Indeed recall that, for P E \IVo(6I, 62), its principal symbol is 
given by the formula 

(1.2) a(P)(x, dq)(x))u(x) r lim e`t9(x)P(eitPu)(X), 
t- 00 

where q E C'(M), dcp(x) # 0, and u E Cc (M, 61). It is easy to check that 

a(L(g)PL(g) 1) = L(g) f(P)L(g) 1, foranyg E G. 

In particular, when P is G-invariant, a(P) is completely determined by its value 
at o 1 H E M, which we will denote uo(P); precisely, 

o(P)(() - u(P)(o, A) e Hom(El, E2), 0 # ( E ToM. 

Let g denote the Lie algebra of G and b the Lie algebra of H. We identify To*M 
with V = e = {t E q*; I b = O}. Since ao(P)(t() = qo(P)((), t > 0, for any P 
of order zero, uo(P) can be viewed as a smooth H-equivariant map of the unit 
sphere (with respect to a fixed Ad*(H)-invariant metric on V) S= S(V) to 
Hom(El, E2), i.e. uo(P) E (C'(S, Hom(El, E2))H. The completion of the latter 
space with respect to the sup-norm is, obviously, the space of all continuous 
H-equivariant functions from S to Hom(E1, E2), (C(S, Hom(E1, E2 ))H, for which 
we shall also use the simpler notation C,(S, E1, E2). By use of (1.2) it can be 
seen that 

ll90(P)l? < IIPII, P E c(61, 62)G. 

Therefore a0 extends by continuity to a map 

0: 'G'(S 1 5 62) -* CH(S, E1, E2). 

1.7. PROPOSITION. The following sequence of separable C*-algebras 

0 --> CG*( - G() -'C C(S E) -> 0 

is exact. 

Proof. Clearly, CG*( S) is contained in Ker a0, since a0 vanishes on 'PV X( 6 )G. 
Conversely, let us prove that Kerao is contained in CG*(S). Clearly, it is enough 
to check that, if P E Pc2(6 )G and 11 uo(P)II < 8, then the spectrum of the class of 
P in the quotient C*-algebra VG*(S)1CG*(6) is contained in {z E C; I z I 6 }. To 
see this, assume that X E C and I X I> 8; then P - XI E 'CP(&)G is elliptic and, 
by Proposition 1.3, invertible modulo 'Pc- (S)G. 

Finally, let us prove that any a E (C'(S, End(E))H is the symbol of an 
operator PEE \'cP(6;)G. Since a is H-equivariant, there exists a globally defined 
G-invariant symbol a: 7r*6 7 *6 whose value at the base point o E M coincides 
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with a. Let f be a cut-off function. Using the usual construction of a pseudo-dif- 
ferential operation out of its symbol, we can produce Q E 'I',(S) such that 
a(Q) = fd. Applying now Lemma 1.1 to Q., we get P = Av(Q) E *I?(S)G with 
u(P) = Av(fi) = a; thus uo(P) = a. Q.e.d. 

1.8. COROLLARY. The sequence 

0 -> CG*(1 &2) -> 'G'(S1, 62) > CH(S, E1, E2) -> 0 

is exact, and a0 induces an isometry of 'G*(611 6&2)CG*(6S1 S2) onto 

CH(S, El, E2)' 

Proof When &S =2 this is just the preceding proposition. The present 
statement follows by the standard trick of replacing P E 'G*(SI SO) by P E 
*G*(I fl S2), with 

p=0 P*1 
jP 0] 

and observing that 1I I 11-11 P II and I I a(P)II = 1ao(P)III 

2. The natural trace 

Let us first recall the definition of the natural trace on the commutant 
'A C Bo( L2(G)) of the left regular representation L of the unimodular Lie group 
G. The von Neumann algebra 6YG is canonically equipped with a faithful, 
normal, semi-finite trace trG, which, once a choice of a (two-sided) Haar measure 
dg on G has been made, is determined uniquely by the property 

trG(R(f )*R(f )) = | |f(g ) 12 dg | 

for f & L2( G) with Rf f) bounded on L2( G). Here R denotes, as before, the right 
regular representation of G. 

Let now S be a homogeneous bundle over M, associated to a unitary 
representation e of H on E. We continue to denote by L the restriction to the 
closed, G-invariant subspace L2(M, =) (L2(G) 0 E)' of the representation 
L 0 I of G on L2(G) 0 E. Its commutant 'G(S) is the reduced algebra of 
%AG 0 End(E) corresponding to (L2(G) 0 E)H and we let trG be its natural 
trace, obtained from the natural trace on 6AG and the ordinary trace on End(E). 

The crucial fact for us, pointed out in [8, ? 6] in a more general context, is 
that the "G-trace" trc on ?1G(S) can be related, by means of an averaging 
operation, to the ordinary trace tr on ?q(&) =5 L2( M, &)), as we shall now 
explain. A general reference for the notions and results used in the following few 
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300 A. CONNES AND H. MOSCOVICI 

lines is [13]. First of all trG, initially defined on the positive part 6'@ (&) has a 
unique extension to the "extended" positive part 1+j (&). Next, there exists a 
normal, faithful, semi-finite operator valued weight AvG: J+ (&) * +j (&), 
given by 

AvG(T) = L(g)TL(g ) ldg, T c 'qG+ (S ) 
G~~~~~~~ 

such that 

trGAvG(T) = tr(T) for any T e q3G (&). 

The various domains of AvG are defined, as usual, by 

Dom172(Av) {T eJ G((); IIAvG(T*T)II < X}i, 

Dom(AvG) { Si*Ti; Si, T1 e DomL/2(AvG) neN} 

and one has: 
(a) Dom(AvG) = { En1jXiTj; T1 E qJG (S), IIAvG(Tj)II < Xc, i EX C, n C N}; 
(b) Dom(AvG) and Doml/2(AvG) are two-sided modules over %G(S); 
(c) AvG has a unique linear extension AvG: Dom(AvG) --> 6iG(&;), which 

satisfies 

AvG(PTQ) = PAvG(T)Q, T e Dom(AvG), P, Q e 6 G(O 

2. 1. LEMMA. Let T = T* c Dom(AvG) n Dom(tr). Then 
(i) AvG(T) E Dom(trG) and IIAv(T)ll trc ? 11 T fl tr; 
(ii) trGAvG(T) = tr(T). 

Proof Let T T+-T- be the Jordan decomposition of T. Since by 
hypothesis tr(T+) < x, it follows that AvG(T+) C Ll(6AG(&),trG) and 
IIAvc(T )IItr =lT+- I tr. Next, the equality AvG(T+) = AvG(T-) + AvG(T) 
holds in L'(6AG(&),trG), because T e Dom(AvG), so that for any u c L2(M, &), 

J(L(g)T+L(g) 'u, u) dg = (L(g)T-L(g) 'u, u) dg + (AvG(T)u,u). 

Applying the triangle inequality in L1( %G( ), trG), we get 

IlAvG(T)II trG II T+ II tr +1 T 1 tr = 1l T 1tr 
Finally, the equality (ii) follows from the linearity of trG as a functional on 
L1(6AG( 6 ), trG ) Q.e.d. 

The link between the two averaging operations Av (see Section 1) and Av. is 
given by: 

2.2. LEMMA. Let P C TIjS). Then P C Dom(AvG) and AvG(P) = Av(P). 
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Proof. Let C be a compact in G, such that support (Kp) C C X C. Choose 
a function f E Cc(G) with the following properties: f(xh) = ftx), for x E G, 
h eH; f(x) >O, x& G; f(x) = 1 for xe C. One has P=fl/2Pfl/2, and 
because f1/21 e Doml/2(AvG), it follows that P E Dom(AvG). The equality in 
the statement is then obvious. Q.e.d. 

2.3. COROLLARY. One has l' ?(M, &3 G C Dom(trG). Moreover, for any 
p E (C7?(G) 0 End(E))HXH, trGR(cp) = trqp(l). 

Proof: Let P E TV ?(M, S )G and let f be a cut-off function. Then fP E 
*cc '?(M, &) C Dom(AvG) n Dom(tr), so that, by Lemma 2. 1, P - Av(fP) E 

Dom(tr,) and 

trG(P) = tr(fP) J f(x)Kp(x, x) dx = kp(l). Q.e.d. 

3. The analytical index 

In this section we introduce the analytical index for G-invariant elliptic 
pseudo-differential operators and establish its elementary properties. We then use 
these properties to prove that it factors through the symbol map, and thus 
defines a real-valued map on the equivariant K-theory group of the isotropy 
representation. 

The set of all elliptic operators in 'IQ(,1, 22)G will be denoted Idj(&1, &2)G 

Since we need to let them act on L2( M, &), we shall first prove: 

3.1. LEMMA. Let P C 1n(S1 S2)G6 with n - 1, be regarded as an operator 
from L2(M, ;1) to L2(M, 62) with (dense) domain Cc (M, &1). Then, the domain 
of its closure coincides with the subspace of all u F L2(M, 6 1) for which 
Pu E L2(M, Si2) in the distributional sense. 

Proof. One inclusion being obvious, we have only to prove that if u c 
L2(M, 61) is such that Pu E L2(M, 62), then (u, Pu) is in the closure of the 
graph of P. Using Proposition 1.3, we can assume, by the same argument as in [3, 
Proof of Proposition 3.1], that u E C?(M, &1). 

Let { Ki) be an increasing sequence of compacta with U K, = G, and let f 
be a cut-off function. Then 

Us =K L(x&)fL(x)l ECc (M, 61) 

and, because Av(fI)u - u, u, u in the L2-norm. To prove the convergence in 
the graph norm of P, we will show that {Puj is a Cauchy sequence. Note that, 
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since P is G-invariant, 

(3.1.1) Pu.+k-PUj L(x)PfL(x) 1udx. 

With Xi denoting the characteristic function of K,, let us put 

Fj k(x)- (Xi+k(X) - Xi(x))L(x)PfL(x)Yu. 

We want to show that 

(3.1.2) | F Fk(X) 12dx O0, when j so. 

Using the usual local estimate for the elliptic operator P, one has 

11 P(fv)II ? c(OI f'Pv 11 + 11 f'v 1), V E CC(M, 61), 
where f' E CC(G) and f' =1 on a neighbourhood of support (f), and c is a 
constant depending on P and f. So, (3.1.2) will follow from 

(3.1.3) -| f(x)L(x)*lv112 0, whenj x. 
G\Kj 

Let us prove (3.1.3). Given 8 > 0, choose w ( CC(M, 61) such that 
lIv - wll <8. Then 

| llf (x)L(x) lW 11dx f | (L(x)f'L(x)-'w, w) d 0 
G\Kj G\Kj 

for j large enough (precisely, when C C- 1 C Kj, C being the support of w), and 
on the other hand 

| llfL( x)(v - w)112dx = Avc(If 12Ilv w112 ? 8211f IIl (2). 

This proves (3.1.3), and hence (3.1.2). 
Lastly, by applying Lemma 1.5 to the function F, k we get, in view of 

(3.1.1), 

IPu+k - 
Puj 11 0 when j oo. Q.e.d. 

With this result in mind, we can afford to keep the same notation P and P* 
for the closure of these operators. 

Given a closed, G-invariant subspace T3 of L2(M, 8), we define its 
G-dimension by 

dimGX = trG K, 

where K is the orthogonal projection onto 'W. 
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3.2. LEMMA. Let P E &n 6; 2)G. Then dim GKerP < ox. 

Proof Let Q be a G-invariant parametrix for P, so that S1 = I-QP E 
lc OO(&1). For any u C KerP in L2(M, &1) one has S1u = u. As, by Corollary 
2.3, S1 is of G-trace class, it follows immediately that dimGKerP < oo. Q.e.d. 

In view of this lemma, we can define the analytical index of P E FD n(S, S2)G 

as being the real number 

indGP = dimGKerP - dimGKerP*. 

3.3. LEMMA. Let P E Dn(S 6&2)G and let Q E 7(D 2 n ' &1)G be a parame- 
trix for P. Then 

indGP = trGS - trGS2 

whereS= I - QP e '(S-), 2 = IPQ C '(S2). 

The proof is formally the same as in [3, ? 5], so we shall omit it. 

The basic properties of the G-index are summarized in the following 
statement. 

3.4. PROPOSITION. (i) If P1 E t>c(SF, 62)G, P2 E t'q(S2, 63) then indcP2P 
- indGP1 + indGP2. 

(ii) indG: 4?O(6 62) - R is locally constant with respect to the norm 
topology. 

(iii) if P E FO(&15 &2)G and S E 'I'71(&6,&2)G then ind2G(P + S) = indGP. 

Proo~f (i) Let Q1 &E FP(&;2 &L)G Q2 C 6(;3( &2) be parametrices for P1, P2 
respectively. Precisely, 

I- Q1P1 S(1) E c *C0(&l) G I- P1Q1= S( 2) 
G 

I- Q2P2 2 e~S2 (&;) I P2Q2) S(2) G.wo(&) 

Then 

I -Q1Q2P2P1 =S(1), with S(1) =S() + Q1S~l)P 

and 

I - P2P1Q1Q2 2 with S(2= S22 + P2S1)Q2. 

Since 

trGQS(')P = tr S')1 tr~S' - tr 4S~l~S(2) tGS2 P1 tGS2( PlQl =tGS2(1) -tGS2 l)l) 

and 

trGP2S(2 Q2 trSl Q2P2 trGS(2) - trGS(2)S~ ) 
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one has: 

indGP2P1 - trGS111 - trGS(2) = trGS( ) + trGS(') - trGS(2) - trGS(l2) 
= indGP1 + indGP2. 

(ii) Fix P E *? 1( 6S )G and then a parametrix Q E o(f 621 )G G Let us 
first prove a particular case of (iii): 

(3.4.1) indG(P + S) =indGP, foranyS Ec (61&S62 )G. 

Indeed, since Q is a parametrix for P + S too, one has 

indG(P + S) trG(I - QP - QS) - trG(I - PQ - SO) 
- trG(I - QP) - trG(I - PQ) - trGQS + trGSQ = indGP. 

We will now show that any P' E F?(61& 62)G such that 

Ip, - Pill < I QII-' 
has the same G-index as P. Indeed, let Q' E O(&2, 6 )G be a parametrix for P' 
and put: 

S I I-QP5 S2 = I - PQ S1 Q-UP1 S'2=I-'. 

Notice that, since IIQP - QP'II < 1, 

S1 + QP' I - I (QP -QP') 

is invertible and thus, by the definition of the G-index, indG(S1 + QP') 0 O. In 
view of (i) and (3.4.1), 

indGQ' indG(S1 + QP)Q' ) indGP'QQ indGQ(I - S2) indcQ. 

But, clearly, 

indGP' -indGQ' and indGP -ind GQ, 

which concludes the proof of (ii). 
Finally, (iii) follows from (ii) and the fact that the map t + P + tS from [0,1] 

to F?(&1, 62)G is norm continuous. Q.e.d. 

In analogy with the classical case, we proceed now to define the index map 
at the K-theory level. Recall that V = f E I*; t I b 0 ). By KH(V) we denote, 
as usual, the abelian group associated to the locally compact H-space V in the 
equivariant K-theory (with compact supports). Since V happens to be a vector 
space on which H acts linearly, one way to describe KH(V), convenient for our 
purposes, is the following. The basic objects to start with are smooth H-equiv- 
ariant maps a: S -- Iso(El, E2), where S = S(V) is the unit sphere in V with 
respect to an Ad*(H)-invariant metric, and E1, E2 are finite-dimensional unitary 
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H-modules. Two such maps 

ao E (COO(S,Iso(E0, F0))H a, C (C (,S,Iso(Ej, F, ))H 

are called isomorphic, and we shall write a0o- al, if there exist p E IsoH(E0, El), 
4 E ISOH(FO, Fl), where ISOH denotes the H-equivariant isomorphisms, such that 

4a0o(() = aj(()9, for any ( E S. 

Further, a' and al are said to be homotopic if there is an a E (C00(S x I, 
Iso(E, F))", where I [0, 1] with the trivial action of H. such that a I S X {0o 
-= ao and a I S X { 1) al. The set of all homotopy classes of such maps will be 
denoted C. This is an abelian semigroup, under the obvious direct sum operation. 
Let C0 denote the subsemigroup of all classes which can be represented by a 
constant map a, a(() = q, ( E S, with p E ISOH(El, E2). Then C/C0 is not only 
a semigroup but actually a group, which is isomorphic to KH(V). 

We are now in a position to formulate the main result of this section. 

3.5. PROPOSITION. There exists a unique homomorphism of abelian groups 
ind(,: K,(V) R such that, for any P E 4V(&,, 62)G, 

inda[( n(P)] = indcP, 

where [oun(P)] denotes the class in KH(V) defined by aon(P). 

Proof: Let a E (C?(SIso(El, E2))H. As shown in Section 1 (during the 
proof of Proposition 1.7), there always exists Pa E IG(&,, 6)G such that a 
ao(P). The problem is to prove that indcP0 depends only on the K-theory class 
[a] of a. 

10. Assume that ai E (COO(S, Iso(Ei, Fj))H5 i -0,1, are isomorphic, via the 
isomorphisms 99 E IsoH(EO, El), 4 E IsoH(FO, Fl), and choose Pi = P, EE 

C ( ;i)G such that a0(Pi) = aj. Let A: SO 61, 4: 6Jo0 -- '>15 be the isomor- 
phisms of homogeneous bundles induced by qp, 4 respectively. Then P1 = l'P, 
has the same principal symbol as P0, hence PI- P0 ( 'I'( Boo ). By Proposi- 
tion 3.4, indGPO= indGPf. On the other hand, it is clear from the definition 
of the G-index that indGP, = indGP1. 

20. In order to check that indcPa depends only on the homotopy class of a 
in C, we have to show that if a0, a1 E (Ce(S, Iso(E, F))H are sufficiently close in 
the sup-norm topology, then indGP0= indGP,. So, let us suppose that 
Hao - al < 8. By Corollary 1.8, there exists S E tI'7(&, ')G such that 
11 P0- P + Si i < 28. In view of Proposition 3.4, it follows then that, when 8 is 
small, indGPO = indGPl. 

30. Finally, we must check that indGP, = 0 when a is a constant map, i.e. 
a(() = 99 E IsoH(E,, E2), ( E S. But this is obvious, since we can take Pa: 

This content downloaded from 134.153.184.170 on Sun, 23 Nov 2014 00:04:18 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


306 A. CONNES AND H. MOSCOVICI 

CcO (M,) - Cc (M, 62) as being given by the formula 

(Pau)(X) = (u(X)). 

Summing up, we get a well-defined map inda: KH(V) -- R, which is clearly 
a group homomorphism. The last fact we have to prove is that, for any 
Pe Ffl(& & 2)G with nEz, 

(3.5.1) ind P = inda[u (P)] 

Choose R E Fn(&1, S1)G such that con(R) I; by replacing R with '(R + R*) 
we can assume that R is self-adjoint. With Q E F7-n(&2, 61)G being a paramretrix 
for P. set 

P' RQ E- 0 , 

Then, by Proposition 3.4(i), as R R* and thus indGR = 0, 

(3.5.2) indGP' indGQ =-indGP; 

on the other hand 

Uo ( p,) Un(p = )-I, 

so that, again by Proposition 3.4(i), and by the very construction of inda: 
KH(V) -- R, one has 

(3 5.3) indao O(P')] = -indao n( P)] 

Clearly (3.5.1) follows now from (3.5.2), (3.5.3) and our definition of the index 
for a symbol of class. 

3.6. COROLLARY. Assume that M = G/H is odd-dimensional and H is 
connected. Then, for any P . (4( &1, 62)G, indcP 0. 

Proof: Let i: T -- H be the inclusion of a maximal torus. It is known that the 
induced map i*: KH(V) -> KT(V) is injective. Since V has odd dimension, 
KT(V) = 0 by the periodicity theorem. Thus, KH( V) = 0 and the result follows 
from Proposition 3.5. 

4. The topological index 

The purpose of this section is to define the "topological" index of an 
element in KH(V). Due to Corollary 3.6, only the case when V has even 
dimension is meaningful, at least when H is connected. So, we shall assume that 
M= G/H is even dimensional. The connectedness assumption can be slightly 
relaxed by requiring only that H preserve the orientation of V. We shall do so 
and fix an H-invariant volume element o E AmV, which determines the orienta- 
tion of V. 
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There is a very natural way to define the topological index when one has a 
Thom isomorphism T: R(H) -* KH(V), where R(H) denotes the representation 
ring of H. For instance, if the co-isotropy representation Ad*: H -* SO(V) lifts to 
Spin(V) (in other words if M admits a G-invariant spin-structure), one can 
exhibit explicitly the Bott class /3 E KH(V), which freely generates KH(V) as an 
R(H)-module; indeed, /3 is just the symbol class of the Dirac operator. The 
general case will be dealt with by passing to a suitable double covering of H and 
then reducing the problem to the previous situation. 

So, let us first suppose that Ad*: H -- SO(V) lifts to Spin(V). Then, the 
half-spin representations S-? can be regarded as H-modules, and we can form the 
"Dirac complex" over V. Indeed, let S+ = V X S ? be the corresponding trivial 
H-bundles, and consider the homomorphism c: S- S - given by c(t, t) 
(I, c(()I), where c(() denotes the Clifford multiplication by ( E V. Then 

0 -* SS+ A-?- S 0 
is a complex with compact support over V, so it defines an element a E KH(V). 

4.1. LEMMA. The Bott class /3 E KH(V) is given by 3 = (- 1)'a, so that the 
Thom isomorphism i-: R1(H) -* KH(V) has the expression: 

T(a) = af = (-1) naa, a E R(H). 

This is certainly well-known. The case m 0 0 (mod8) is explicitly treated in 
[2, ? 6], and the arguments given there work actually for m even too. 

Let us now take up the general case, when M does not necessarily admit a 
G-invariant spin-structure. We construct a double covering H of H as follows: H 
is the subgroup of H X Spin(V) consisting of all elements (h, s) such that 
Ad*(h) coincides with the orthogonal transformation of V defined by s E 
Spin(V). The group H comes up with two natural representations: (h, s) E H O 

Ad*(h) E SO(V) which gives V the structure of an H-space and (h, s) E H O s 
E Spin(V) which shows that the Dirac complex over V is an H-complex. If we 
denote by a the class in KH( V) defined by the Dirac complex, in view of Lemma 
4.1, the Thom isomorphism f: R(H) -- KH-(V) is given by 

f(a) =afi, a eR(fi)5 

where /3 = (-1)n is the Bott class in K17(V). 
Let u E Spin(V) denote the generator of the kernel of the covering homo- 

morphism Spin(V) -* SO(V). Then u = (1, u) is central in H so that, if E is an 
irreducible representation of H. e(u) = .+1. Clearly 

RAi = Ra,~ -G _Rai)\ 
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where R(H)i is generated by the equivalence classes of irreducible representa- 
tions E of H such that e(u) ( 1)I1; in particular R(H)0 can be identified with 
R(H). 

Similarly, let us define KH(V)' to be the subgroup of all classes in KH7(V) 
represented by H-complexes with compact support on which u acts by (-l)11, 
i = 01. 

4.2. LEMMA. K,7(V) = K7(V)0 0D K,7(V)l and, with respect to this de- 
composition, K,7(V) is a Z2-graded module over the Z2-graded ring R1(H) 
R(H)? (D R(H)1. In addition, K,7(V)0 is canonically isomorphic to KH(V). 

Proof: Let W be an H-bundle over V. Since u leaves each fibre invariant 
and since u2 - 1, it is easily seen that W= W0 0D W1, with W? = {w E W; 
uw =(-1)'w}, i - 0, 1. The same argument shows that any H-complex over V 
splits into two complexes on which u acts by ? I respectively. With this 
understood, the proof is just a matter of routine. 

Combining the two lemmas we get: 

4.3. PROPOSITION. Every class k E KH(V) _ K;(V)0 can be written in a 
unique way under the form k = a3, with a e R(H)1. 

The next ingredient we need, in order to define the topological index, is the 
Chem character ch: R1(H) -- H*(g, H,R). Here H*(g, H,R) denotes the relative 
Lie algebra cohomology with trivial coefficients, i.e. the cohomology of the 
complex (C( g, H, R), d), where 

Cq(q, HR) = {t e Aqg*; txa = 0 for X EE , Ad*(h)a = a for h e H) 
and d: Cq(q, H,R) __ Cq'H(g, H,R) is given by 

da(X1, ... 5Xq+1) 

= + 
1 _)'+'+la([xiv 5s xJ . , ..5 . 

5Xi5 
.. 

Xq+J) q+1 1?i<i<q+1I 

Let us fix for the moment an Ad(H)-invariant splitting of g, g 0 ( m. This 
specifies a G-invariant connection on the principal bundle H -> G M, whose 
connection form is given by the projection 0: g - t parallel to m, and whose 
curvature form is prescribed by 

0(X5 Y) = -2H[ Y) X, Y em. 

Now let c be a unitary representation of H on E. We denote by the same letter its 
differential, c: t) -gl I(E), and we then define 0, e A2m* 0 tIc(E) by the 
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formula 

0,(X, Y) = ie(o(X, Y)), X, YE m. 

Further, let us consider the form tr exp eE A m * 0 C. Actually, because E is 
unitary, tr exp EE E A m *. In addition, since for h E H with image h E H one has 

0 E(Ad(h)X,Ad(h)Y) = E(I;)o JX Y) E(I) 1, X, Y E m, 

one can see that tr exp OE is H-invariant. This shows that its pullback to A q, via 
the projection I- 6: - m, defines a cochain in E Cq( , H, R), which we will 
continue to denote by the same symbol. Standard arguments in the Chern-Weil 
approach to characteristic classes imply first that tr exp eF is closed, and next that 
the cohomology class in H*( 5, H, R) it defines, and which will be denoted che, 
does not depend on the choice of the Ad(H)-invariant splitting of q. Finally, it is 
clear that chel = che2 if El and e2 are equivalent unitary representations, so that 
we can define unambiguously ch: R(H) -- H*(g , H, R). A 

The last ingredient we need is the analogue of the 8-polynomial of 
Hirzebruch. To define it, we start from the (real) H-module V (which can be also 
viewed as an H-module) and form, as above, Ov e A 2m* 0 Itc(V). Then we 
construct the element in Amm* 

exp(!Ev) - exp(-1eV)' 

pull it back to an element in A q * and, after noting that it is in fact a cocycle, we A 
define d (, H) E H*( , H, R) as being its cohomology class. 

Remark now that dim Hm( g, H, R) = 1, since G and H are unimodular; in 
fact, Hm(g, HR) C Cm(g, HR) _ AmV. If 52 - 2(q) E H*(g , HR), we define 
the scalar S2[V] by the relation 2(m) = (Q [V])c. 

With these preparations, we are finally able to define the topological index 
indt: KH(V) -* R. as follows. Let k E KH(V); in view of Proposition 4.3 there is 
a unique class a EE R(H)' such that k = aB, and we define 

indtk -- (ch(a )9,(g5 H)) [V], 

Note that the definition depends, up to a multiplicative constant, on the choice 
of a G-invariant volume element on M, which gives the orientation and the 
evaluation map 52 O? 5[V], 52 E H*(g, HR). 

5. The index theorem 

Before taking up the proof of the index theorem, let us recall our basic 
assumptions: G is a separable unimodular Lie group, H is a compact subgroup, 
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M = G/H has even dimension and it is G-invariantly orientable. Further, in 
defining both the analytical and the topological index, we had to fix a scale: the 
Haar measure dg on G for the analytical index, and a G-invariant volume 
element on M= G/H for the topological index; we shall assume that they are 
chosen in a coherent way, i.e. the quotient measure dg/dh (where dh is the 
normalized Haar measure on H) is given precisely by the volume element chosen 
on M. 

As a first step, we shall prove the index formula for the signature operator 
with twisted coefficients. So, let us fix a G-invariant Riemannian metric on M 
and denote by ATC*M = A' Tc*M 0D A- Tc*M the bundle decomposition of the 
total exterior bundle of the cotangent bundle corresponding to the canonical 
involution associated to the metric (for details see [4, ?5] or [6, p. 575]). Then 
D = d + d*, where d is the exterior differentiation on forms, splits into two 
operators, D = D+ SD-, with 

D 
+ 
: CC((M5 A+ Tc*M) -* CC?(M, A+ Tc*M) , 

elliptic, G-invariant and formal adjoints of each other. Now if E is a finite-dimen- 
sional unitary representation of H and 6 denotes the induced homogeneous 
vector bundle over M, we set - = 0 A' Tc*M and then, using a G-invariant 
connection on 6, we form as in [4, ?6] the ( + )-signature operators with 
coefficients in S, DC+: CC(M5 6 

- 
) C C ? C(M5 S:+ ). 

With the same conventions as in Section 4, let us define E(q , H) E 
H*( 5, H, R) as being the cohomology class determined by 

det 2@V eAm* 
tanh( eV) 

This being agreed, we can now state: 

5.1. THEOREM. indGD), 2 (ch(e)Q&(, H))[V]. 

Proof Let -+= D:DF-. It is an (unbounded) self-adjoint operator on 
L2(M, & 5 ) so we can form the bounded operator ete, for any t > 0. We claim 
that e-t'A is of G-trace class and that its G-trace has an asymptotic expansion of 
the form 

(5.1.1) trGe-t " ck(&+ )tk/2 as t -- 0, 
k?-m 

whose coefficients can be computed from the local expression of A' in any 
coordinate chart. 

Let us fix, once and for all, a relatively compact open subset U in M, which 
is also a coordinate chart. Further, let ?WJ(U, 6 -) be the "local" Sobolev spaces, 
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obtained by completing C?(U, S+ ) with respect to the usual s-norm (s E Z+ ), 
which we will denote by II II s, LJ* The norm of a bounded linear operator B: 
L2(U, - ) __ SK(U, S+) will be denoted II B II1,5 

To prove (5.1.1), we start as in [12, Ch. 3] by inverting locally the analytic 
family of elliptic operators AE- XI, X E C\ R. So, let f be a cut-off function 
whose support (modulo H) is contained in U. As in [12, loc. cit.], one can 
construct an analytic family of pseudo-differential operators PX E 'CI'j(U &+) 
such that 

(5.1.2) fPj = PA and R. = PJA+ Al) f E *c-c(U. 
Moreover, according to [12, Lemma, p. 59], given s E Z+, there exists a number 
Ck > 0, independent of X, such that 

(5.1.3) 11 RX 11 S U C Ck(l + IXI) 

Let us now observe that the operators Rx: L2(U, &+) L2(U, + ) are trace-class 
and, assuming s > m, 

(5.1.4) 11 RI 1 tr C C 1 RA 11 s, u 
for some C > 0. independent of X. Indeed, since s > m, the inclusion operator IS: 
L2(U, & s) -Cs(U, S+) is nuclear; on the other hand, RX = ISRx so that 

II RAltr c I's I tr RAI s [l 

The operator RX (resp. PA) can be extended, by zero outside U. to a 
bounded operator on L2(M, S+ ) which we will continue to denote R. (resp. PX). 
Evidently, (5.1.4) remains valid when, in the left hand side of the equality, RX is 
viewed as an operator on the whole L2(M, S+ ). 

From now on we will assume that dist(X, R) R 1. This clearly implies that 
1(- XI)-1 11 _ 1, therefore, in view of (5.1.2), (5.1.3) and (5.1.4), one has 

(5.1.5) IPX - - XI) lItr 0((1 + I X I)) 

Let rF {X X C; dist( X, R) R 1), clock-wise oriented, and consider the opera- 
tor 

E(t)= 
2i 

-tfePAdX. Assuming 0 < t < 1 and using the analyticity in X, one has 

E(t) -fe-tA = 2 e(Px - P f(A+-XI)1') dX 

2ig Xlt- F t t 
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by (5.1.5), we then get 

(5.1.6) IIE(t)-fe Itr C 2 e | 1e (1 + 9 ) 0(t 

As proved in [12, Ch. 3], E(t) is a smoothing operator, so that E(t) E 
'JC( M, &S+). In particular it is a trace-class operator. Furthermore, in view of 
Lemma 2.2, E(t) E Dom(AvG). Now from (5.1.6) we can see that fe-t' is also 
of trace-class. On the other hand, because AvG( Ji) = I, it follows that fe-"+ EE 
Dom(AvG) and AvG(fe-tA) e-tAe. Thus, E(t) and fe-tAe are both in 
Dom(AvG) n Dom(tr). By Lemma 2.1, e-t and AvG(E(t)) are then in 
Dom(trG), and moreover 

I trGete - trE(t) 1|< IIe e - AvGE(t)IItr ? 211 fete - E(t)lltr. 

From (5.1.6) it follows that 

(5.1.7) trGe-tA - trE(t) O(tk), foranyk eZ+ . 

At this stage we use the remarkable fact, proved in the classical theory (cf. 
[4, ?4] or [12, Theorem, p. 57]), that trE(t) has an asymptotic expansion of the 
form 

trE(t) tk12 fttk(U), 
k--m 

where the local measures ti+(U) are local invariants of i+. As a first conse- 
quence it follows that, A+ being G-invariant, each 1+ (U) is the restriction to U 
of an invariant measure p+ on M. In particular one can see that ff1+(U) = ff4+ 
does not depend on the cut-off function f. (Recall that any cut-off function f 
satisfies, by definition, the condition ff(g) dg 1.) Together with (5.1.7) this 
proves the assertion (5.1.1) with the additional piece of information that the 
coefficients Ck(A ) are given by 

(5.1.8) Ck(A-- ) -k (U). 

A further consequence of the fact that p -` (U) are purely local invariants is 
that one can explicitly compute the difference 1+ (U) - - (U). Indeed, as 
follows from the local version of the "generalized signature theorem" (cf. 
[4, ?? 5-6]), Q(U) = 1+ (U) - - (U) is an r-form, which can be expressed as 

0 (U) = 2n (tr exp O,(U) -det 2ah V (3vU)) 
tanh( th (U)) J 

where the superscript (in) indicates the top-degree component of the form under 
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brackets, and eE(U), Ev(U) are the restrictions to U of the global G-invariant 
differential forms eE(M), 0 v(M) determined by the corresponding cocycles in 
ffl Cq( q, H, R) defined in Section 4. It follows that i( U) is the restriction to U of 
a global G-invariant form U(M), and also that 

0(M) = 2n(ch(,,)E(q, H))[V] -@(M) 
where @(M) is the G-invariant volume form on M determined by X E AmV. 

So, the constant term in the asymptotic expansion of trGe-te - trGe-tA 
can be computed as 

(5.1.9) co(Aj) - co(/<) fff2(U) =f 72(M)= 2n(ch(c)E(q, H))[V] 
UM 

the last equality being true because 

J (M) = f(dg/dh) = f fdg 1. 

The McKean-Singer identity with respect to the G-trace 

(5.1.10) trGe-te -trGe e = dimGKer D+- dimGKerDe, for any t > 0, 

together with (5.1.9), concludes the proof. 

For completeness, let us include a proof for (5.1.10). Denote by H the 
orthogonal projection onto Ker D.' . Then 

tr e- -dimGKerD+ = trG(e t H(1-H+)) 

= trG((i - H)e-tA (I - H+)) 

=trGe-t(H tI-+ 

On the other hand, with D U+ D+ I being the polar decomposition, one has 

U + U I =I-H + , 
which clearly implies 

trGe-t( H F ( = trGe-t-H) (H) Q.e.d. 

As a next step towards the general index theorem, we shall now treat the 
case of Dirac-type operators. This time by c we denote a representation of H with 
[c] E R( H)L. As in Section 4, let S - denote the half-spin representation of 
Spin(V). Since u E H acts by -I on E and on S , it follows that E - = E 0 S - 
are (unitary) H-modules, so we can form the induced homogeneous vector 
bundles & ? over M. Let 

b ian o Ct (M pal whC(Mt te ia 

be G-invariant connections, compatible with the Hermitian structure of S- 
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inherited from E We define the ( -?)-Dirac operator with coefficients in E as 
being the composition 

A-? CC ( M, $ ) Cc ( M, Tc*M 
{$ 
6;:) Ccc" ( M , 6 ) 

where c is the bundle homomorphism induced by the Clifford multiplication. 
Clearly, A' and A- are G-invariant first order elliptic differential operators, 
formal adjoints of each other. 

5.2. THEOREM. indGA = (-A1)'(ch( )6i(q, H))[V]. 

Proof 10. We shall first establish this formula for the special case when E is 
of the form p 0 a, where w is a unitary representation of H on a (finite-dimen- 
sional, complex) vector space F and so [L] E R(H)0, and a = a+ ED a- with 
a+, a- being the representations of H on S+, S- obtained from the half-spin 
representations of Spin(V). Indeed, if A+ Vc denotes the SO(V)-module whose 
associated vector bundle over M (equipped with the natural SO(2n)-structure) is 
A' Tc*M, it is well-known that S 0 S A' Vc, as SO(V)-modules, hence F O S 
0 S F 0 A' Vc as H-modules. Using this, and the formula relating the 
Clifford multiplication and the exterior differentiation, we then see easily that the 
principal symbols of the Dirac operator A'?0 and of the signature operator Dr+ 
are related by the equality 

aJ(A-+?0G) = (-l)nao(D+) 

no matter which G-invariant connection we employ to construct each of them. 
From Proposition 3.5 it follows that 

indGA+(&. =(1)'indGD+ 

and so, by Theorem 5.1, 

indc A+i, a 1)'2(ch(q9)e( . H))[V] 
Since 

ch(u) 2'detcosh(2oV) 
and thus 

2nE(q, H) = ch(a )d(q~, H), 
we finally get 

(5.2.1) ind A +p, =-)n (ch((p)ch(a )9(q( g H)) V 

2?. Let 6d: R(H)1 -* R be the map given by 

dC[e] =indcA?+ for [ec] & R(fH)1'. 
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THE L2-INDEX THEOREM 315 

We shall first show that d( depends in a polynomial way on (the matrix 
coefficients of) c, and then, using the central theorem of invariant theory for the 
unitary group as a key argument, that 6( is continuous with respect to the IT-adic 
topology on R1(H); here IH denotes the augmentation ideal. 

Since we are only interested in the G-index, there is no loss of generality in 
assuming that A' is constructed by means of the G-invariant connection induced 
by an Ad(H)-invariant splitting q = m ED b. In that case, if we denote by 
{X1 ,... ,X an orthonormal basis on m and by {f1 wm} the dual basis on 
V m*, A>: (Cc(G) 0 E 0 SI )H ' (C??(G) 0E 0S-)H is given by the 
formula 

n 

As+ 
- 

R(Xi) (9 I(9 i) 
i~1 

where R(Xi) is the left invariant vector field on G determined by Xi E m. 
Let us now compute the local expression of A+ . As a local chart we take a 

neighbourhood U of o E M such that 
,.,tm) ) (exp(t1Xl) . exp(tmXm ))H 

is a diffeomorphism of a neighbourhood of 0 E Rm onto U. Also, after fixing a 
basis { Y1,. . ., YI } of b, we have 

(D( t, I .. ., tM, SP, '',Sr) =exp( tXlX) ..exp( tm Xm)exp( sYl ) . .. exp( Sryr) 
defines a system of local coordinates in a neighbourhood V of 1 E G. There exist 
then functions a', fk E C'(J - 1(V)) such that 

M d r d 
(R(Xi)f ) o (D ai (fo ) +ee ikd(fo( 

for any f E C?(V). 
If f e Cc7(M, E+) = (Cc,(G) 0 E 0 S+)H and support (f) C V, then 

m d 
(R(Xj)f)(expt1Xj... .exptmXm) - a d(tO) (fo D)(tO) 

0) d 
+ 2 f3i(t, ?) ds (fo FD) (t, 0) 

k=1 
k 

dSk 
where t =(t. . . ttm) E Rm. Further 

d d 
dSk ) dSk | oftp(tX ... exp(tmXm)exp(siYl) . exp(srYr)) 

_d 
=- I (exp(- Sryr )) e+(exp( - s jYj)f(exp(t tXl ) . .. exp( tm Xm)) 

dSk s=O 

-(I 0& a (Yk) + - (Yk) 0 I)f(exp(t1X1j) . .. exp(tmXm)). 
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This shows that the local expressions of A>+ with respect to the system of 
coordinates (tl,. ..,tn) on U., is 

(5.2.2) A+ T = R(t, O) dt I 0 c(Wi ) 
i,j 1 

- 2 fPk(t,0)(I 0 C(Gi)a (Yk) + c(yk) 0 C((i)). 
i, k 

In fact our concern with this formula is only qualitative. As follows from the 
classical theory (cf. [4], p. 303) the local measures y ' (U) associated to D ?F 
Aj A- depend polynomially on the local coefficients of E ? and their derivatives. 
Formula (5.2.1) shows then that tt' (U) are polynomial functions in 
c(Y1),. . . ,E . By (5.1.9), the same is true for the constant terms co( , and 
further, by the Singer-McKean identity, for ind A+. That is, there exists a 
polynomial P e C[Z1,. . ,ZN] with N = rp2, p dim E, such that 

(5.2.3) indGAE = P(C11(E(Y1k))5 . * Ccpp(c(Yr)); 

here ci(T) = KTej, ej) are the coefficients with respect to an orthonormal basis 
{el,... .,ep} of E. Each monomial Pa = Z.....ZNN defines, by complete polariza- 
tion, a multilinear functional on 0 lalEnd E, where I a 1= a, + * - - +aN. By 
averaging it over the unitary group U(E), acting by the I a 1th tensor power of its 
adjoint representation on End(E), we get an invariant element Pa c 
HomL/(E)( 01a1 (E 0 E*), C). Since ind A + does not depend on the orthonormal 
basis chosen on E, the equality (5.2.2) remains valid when P is replaced by 
P = 2' Pf. Now, according to the fundamental basis theorem for the invariants 
of the unitary group (see [4, p. 325] for a two-line argument translating Weyl's 
original proof for GL(E)), HomU(E)( 0 4End(E), C) is spanned by elementary 
invariants, i.e. of the form 

InvT (TL 0 ... 0Tq) tr(TIT7(). .. TTnl(l)). . tr(TirTT(ir)... TTn(ir)) 

where T is a permutation of {1,... , q) and each factor in the above product of 
traces corresponds to one of its cycles. We can conclude then that ind A+ is a 
linear combination of products of the form tr(cE(Yi,) ... E(Yi)) with il,...is 
ranging over the set {1,. . ,r) and 1 < s < deg(P). 

Let us now prove that 6: R(H)1 -* R vanishes on (IH-)P for p > deg(P). It 
is enough to check that L(a) = 0 if a = ([a1]-dim a,) ... .([ap]-dim a p), with 
a1,... , P representations of H such that a E R( H)1. Of course, we can write 
a = IElI- [2], with e1, e2 acting on the same space E and [c1], [c2] E R(f) 
and we must show that 

(5.2.4) indcA+= ind A+. 
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Let X(a) denote the character of a representation a of H. Since 

X(61)- X(62) = (X(a) - dimaj)... (X(a.) - dima.), 

it is clear that X(Ej) and X(E2) have the same p-jet at 1 E H. But 

(R (Yil. * * Ys )X (Ed) () = tr( Ei(Yil )..* *i t(yis)), =1,2. 

Combined with (5.2.3), this proves the equality (5.2.4). 
3?. We are finally able to prove the index formula for the operators of Dirac 

type. As we already mentioned in 10, a 0 a is isomorphic to the representation X 
of H on AVc - S 0 S. Since dim X = 2', 1 - 2m[X] E I -and the sequence 

Pk =1 + (1 - 2-m[X]) + + (1 - 2m[A]) 

converges to 2m[X]-l in the completion (R(fH) 0Q) A; also, note that Ck E 

R(H)0 03 Q = R(H) 0) Q. By 20, for any E E R(H)1, 

(5.2.5) 2. CT[] El= 'i ( [a] fk[a]), if k is large enough. 

On the other hand, as follows from (5.2.1) in 10, applied to [9I = [E][a]Ck E 

R( H)0 0 Q, 

'([El ][a] k[la]) - (-1)'(ch(e)ch(a)2ch(Ck)&i(q H))[V]. 

Since, for k sufficiently large, 

ch(fk) = 2mch(X) = 2mch(a)2, 

it follows that 

d([E] [a] [k][a]) = (-1)n2m(ch( )&(q, H)) [V], 

which, together with (5.2.5), completes the proof of the theorem. 

With all these preparations, it is now an easy matter to get the general index 
theorem. 

5.3. THEOREM. For any G-invariant pseudo-differential elliptic operator P 
E 4p(M' 6;' 6lG' ind P =indtO() 

Otherwise formulated, the theorem says that the two index maps ind , ind : 
KH(V) -- R coincide. 

Indeed, by Proposition 4.3, it is enough to check that they coincide on 
elements of the form [E] c, where E is a representation of H such that [E] E R(f H), 
and & is the K-theory class of the Dirac H-complex. But clearly [E] = [co((A ) 
so that the statement follows from Theorem 5.2. 
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6. L2-solutions and discrete series 

Elliptic differential operators of Dirac or Laplace-Beltrami type were used to 
realize geometrically the discrete series representations, for certain classes of 
unimodular Lie groups, as spaces of L2-solutions. The most familiar instance is 
the geometric realization of the discrete series in the semisimple case (see [5], 
[19] and the references given there); other examples, occurring for a larger class 
of Lie groups, are discussed in [18]. It is our purpose here to put in evidence the 
converse phenomenon: subject to some restrictions on the structure of the group, 
the space of L2-solutions of any invariant elliptic system of equations, defined 
over a homogeneous space whose isotropy subgroups are compact, decomposes as 
a finite direct sum of irreducible discrete series. 

To begin with, we shall treat the semisimple case, which already displays the 
main difficulties in working out the proof. 

6.1. THEOREM. Let G be a connected semisimple Lie group with finite 
center, H a compact subgroup, c, c' two finite-dimensional unitary representa- 
tions of H. Then, for any C-invariant pseudo-differential elliptic operator P E 
FDp(M, 6, 6,)G, the unitary representation of G on the space of L2-solutions of 
the equation Pu = 0 is a finite direct sum of discrete series representations. 

Proof. Due to the existence of a G-invariant parametrix, Ker P C Ker(1 - S) 
for some S E T'P ?(M, & )G. Thus, it is enough to prove that Ker(I - S) has the 
stated property. Recall now that S is of the form 

(R(T)u)(x) = f(x-Ly)u(y) dy, u E (L2(G) 0 E)H, 

with Tp E (C?(G) 0 End(E))HXH. In general, if 77 is a unitary representation of 
G on the Hilbert space JC(77), we define 7(jp): (9C('T) 0 E)H .. (iC(7r) 0 E)H 

by the formula 

fcp(y)(,g(y) 0 I)(dy, 0 E (IC(r) 0 E )H. 

The Plancherel theorem gives the following direct integral decomposition for 
S: (L2(G) 0 E)H _> (L2(G) 0 E)H, 

S f A I0 ST (T) dM(); 

here ,i is the Plancherel measure on the unitary dual G, IW is the identity operator 
on XC(,7) and 7T denotes the contragredient representation of rn. It follows that 

(6.1.1) Ker(I - S) =| SC(q) 8) (Ker(I - 7T((p d u( 
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We will show that the continuous part of the Plancherel measure gives no 
contribution to the direct integral decomposition (6.1.1). More precisely, denot- 
ing by Gd the discrete series of G, we claim that: 

A A 

(6.1.2) The set of all g_ E G \ Gd such that Ker(I- r(p)) # 0 has zero Plancherel 
measure. 

To prove this we shall rely on Harish-Chandra's work on the explicit 
description of the Plancherel measure, and we shall freely use some of his results 
in [14]. The first observation is that it is enough to concentrate our attention to 
the contribution given to the Plancherel measure by a single conjugacy class of 
non-compact Cartan subgroups. Accordingly, after fixing a maximal compact 
subgroup K in G, we shall look at the series attached to a Cartan subgroup 
C = T X A with T the anisotropic part and A the vector part (by hypothesis, 
nontrivial). The component of the Plancherel measure supported on this series 
can be described as 

dfc =,(X,v)dX 0 dv, 
A A 

where (A, v) E C - T X A*, ,i(X, v) is an explicitly known function (invariant 
under the Weyl group), d X is the counting measure on the lattice T and d v is the 

A 

Lebesgue measure on the vector group A*. Thus, with A E T fixed, g,, denoting 
A 

the irreducible representation of G corresponding to (A, v) E T X A* (A* is the 
open dense subset of A* consisting of regular elements), and 4 E (Cc(G) 0 
End(E))HXH denoting the function A(x) T(x-l)*, we are reduced to prove: 

(6.1.3) N {v E A*; Ker(I - gj()) # 0) has zero Lebesgue measure. 

At this stage let us recall (cf. [14, ?4]) that the family of representations { '; 
v e A* } can be analytically continued in the parameter v to the complexifica- 
tion A* of A*, and that all the representations thus obtained, gT with v E A* , can 
be realized, as admissible representations, on the same Hilbert space 'C. Here the 
analyticity means that, for any f E CQ(G), the mapping v '- 7T,(f) from A* to 
q3(3C) is weakly (and thus strongly) analytic. Also, for any v E A* andf E CC(G) 
,( f) is a trace-class operator. Finally, the restriction of each g, to the maximal 

compact K is a fixed unitary representation 7TK of K on C, independent of 
v e A*. Since we can assume that H is contained in K, it follows that 
(5C(q7,) 0 E)H does not depend on v E A*; indeed, it coincides with the space 
(SC 0 E)H of all vectors in 'KC 0 E which are invariant under the representation 
h 'z7-K(h) 0 c(h) of H. It follows further that with 4 as above, g7(4): (C 0 E)H 

(9J 0 E)H is compact, and that the mapping: v I - ;(4'), defined on A*c 
and taking values in the set of Fredholm operators on (9C 0 E)H, is analytic. In 

This content downloaded from 134.153.184.170 on Sun, 23 Nov 2014 00:04:18 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


320 A. CONNES AND H. MOSCOVICI 

turn, this implies that the set of singularities 

l: = {v E A*; dimKer(I - T"()) > MO), 
where 

in0 =min{dimKer(I - T,(4)); v E A* 
is analytic, and therefore of zero Lebesgue measure. We will show that N C E by 
proving that mo = 0. Indeed, let us assume that mo ? 1. Then, for any v, 
11 7TVP)II HS > 1, where II IIHs denotes the Hilbert-Schmidt norm. On the other 
hand, the Plancherel formula gives 

trGR(A)R(+)* := J7I T(+) 11 2df(,) ' r |21T(A1 sfi(p) dp, 

where MA(V) = (X, v). Since fA*M (V) dv = x, it follows that trGR(4)R(()* 
oo which is a contradiction. 

Summing up, we can conclude that 

(6.1.4) Ker(I - S) = E fC(7T) 0 Ker(I -T(T)). 
TT CGd 

Now dim Ker(I - S) < xo, while dim GC(77) coincides with the usual formal 
degree deg( T) of r (cf. [8], Proposition 20). Since there is a strictly positive lower 
bound for the formal degrees (actually, with an appropriate choice of the Haar 
measure, they are all strictly positive integers), it follows that the direct sum 
(6.1.4) involves only finitely many non-zero components. Q.e.d. 

We will now extend the result to a larger class of Lie groups, whose 
significance is put in evidence by the recent work of Anh (see [1]). First let us 
recall that, in Anh's terminology, a connected Lie group A is said to be an 
"XCgroup" if there exists a linear functional a on the Lie algebra a of A such that 
Ad*(A) a {=a + '; c aE * 13 = 0}, where 3 is the Lie algebra of the center Z 
of A. Such a group is necessarily solvable and unimodular ([1], Lemma 2.2 and 
Theorem 2.9) and its representation theory is very similar to that of nilpotent Lie 
groups with discrete series (cf. [1], Theorem 2.12 and Proposition 2.14). In 
particular the irreducible representations of A which are square integrable mod Z 
are parametrized by the set AA of all X c 3* which integrates to a character Xx of 
Z and can be extended to a functional a on a satisfying the above property. 

The class of groups we are concerned with can be described as follows: G is 
a semi-direct product of an 'JCgroup A with compact center Z, such that Z is 
central in G, and a connected reductive Lie group S with compact center. The 
center ZG of G is then of the form ZG = Z C, with C central in S. By Ks we 
denote a maximal compact subgroup of S. 
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6.2. THEOREM. Let G be a Lie group as above, H a compact subgroup of G 
such that ZGC H C ZKS, C1, C2 two finite-dimensional unitary representations 
of H whose restriction to Z is a multiple of a character X = Xx with X E AA, and 
let P E bDn(M, 6&, 62)G Then KerP is a finite direct sum of irreducible discrete 
series. 

Proof. Clearly (L2(G) 0 E1)H is a closed subspace of (L2(G) 0 Ef)Z 
L2(G, X) 0 Ei, where L2(G, X) = (L2(G) 0 C)z. By Theorem 2.12 in [1], 

L2(A, X)- C(,gx) 0 ( 
v 

), 

where rx denotes the irreducible representation of A with central character X* 
On the other hand, in view of [1, Theorem 3.6] (after passing to an at most 
double covering of S. which does not affect the substance of our problem), 'rx can 
be extended to an irreducible representation 5x of G. and every irreducible 
representation of G whose restriction to Z is a multiple of X is of the form 

Xx 0(as) = 5x(as) 0 a(s), a E A, s E S 

with a an irreducible representation of S. 
It follows that 

L2(G. X) JC (7TX, a) (X(v a )dp(a) 

A 

[ being the Plancherel measure on S. and further that 

(L 2(G) 0 E)H fD7J c(,x a) 0 ( ( v a) 0 Ei)H d( a ). 

This being established, the proof of Theorem 6.1 goes through with virtually 
no change in our present situation, once we notice that, due to the special form 
of? X,,xa the "piece-wise" analyticity in the parameter a is preserved. 

Combining Theorem 3.6 in [1] and the well-known criterion of Harish- 
Chandra for the existence of discrete series for real reductive groups, one gets, as 
an immediate consequence of the above theorem, the following vanishing crite- 
rion for L2-solutions of invariant elliptic pseudo-differential operators: 

6.3. COROLLARY. With the same notation as above and under the hypothe- 
ses of Theorem 6.2, one has KerP = {0} if rank Ks < rank S. 

It should be mentioned that, when G is semisimple and K (resp. H) is the 
maximal compact (resp. the compact Cartan), the space of L2-solutions for Dirac 
(resp. Laplace-Beltrami) type equations on GIK (resp. GIH) is known to be 
either irreducible or trivial (for the precise statement see [5, Theorem 9.3]). 
However, for arbitrary invariant elliptic equations, neither the Decomposition 
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Theorem 6.1 nor the vanishing result 6.3 were known, even in the semisimple 
case. 

7. Concluding remarks 

We collect here a few applications of the main results in the paper, together 
with a number of further comments on the behavior of the G-index. 

7.1. In this subsection G will denote a connected and simply-connected 
nilpotent Lie group with center Z. Assuming that G has square-integrable 
(mod Z) irreducible representations (and when this is the case they are suffi- 
ciently many to support the Plancherel measure), we will show that they can all 
be realized as L2-solutions of invariant elliptic equations, more precisely as 
L2-harmonic spinors. The other possibility, of realizing them in terms of L2- 
cohomology (see [17], [18]), works only in the presence of a totally complex 
polarization which, besides being not canonical at all, might even fail to exist. 

Given X E g *, where g is the Lie algebra of G, G(X) will denote the 
corresponding isotropy subgroup of G (acting on g* by the coadjoint represen- 
tation). The Lie algebra q(X) of G(X) coincides with the radical of the two-form 
BE A2 g defined by: 

BA(X, Y) = X([X, y]); x, y E g. 
The assumption on the existence of square-integrable irreducible representations 
amounts to the existence of a functional X E q* such that g (X) is precisely the 
center 3 of g (cf. [16]). Moreover, the set of regular elements in g* 

9eg= { = X *; dim g(X) ' dim g () forany v *} 

consists entirely of such functionals. Further, if 7r denotes the irreducible 
representation of G associated to X E g * via the Kirillov correspondence, then 7X 
is square-integrable mod Z if and only if X E g *g, i.e. g(X) = 3 (cf. [16], 
Theorem 1). 

Let us fix X E g* and denote by C, the associated character on Z = G(X): 
e(exp z) = e2TiX(z) , z E 3. The corresponding homogeneous line bundle over 
M= G/Z will be denoted S&. Since the isotropy representation is trivial, any 
inner product on T0M = g/3 gives rise to a G-invariant metric on M, and we will 
fix one, once and for all. It also follows that, on the Riemannian manifold M, 
there is a unique G-invariant spin-structure, namely that given by the trivial 
homomorphism of Z to Spin(V); here, V= (g/3)* is endowed with the dual 
inner product. We can thus form the twisted spin-bundles, with coefficients in 
S& S, = SA X S0 . Further, by choosing G-invariant connections on 
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we can construct the corresponding Dirac operators AA. The center Z acts by 
the character ex on Ker A and thus, as follows from [16], the representation of G 
on Ker A' is a multiple of the irreducible representation 7. 

7.1.A. PROPOSITION. The multiplicity m+ of 7TX in KerA' is finite, and one 
has 

KerAZ - KerA- = STAN 

in the sense that mZ - - 1. 

Proof The subgroup Z= Ker(e.) acts trivially on all the entities defined 
above. Thus we can assume ZX = (1), and therefore that Z is the circle group. 
Since A` is elliptic, dim KerA+ < xo, which proves the first assertion. One has 
dim KerAA = mAdeg( r7), so that 

(7.1.1) ind A` = (m - mA )deg STA 

On the other hand, the index theorem gives 

ind A+ n ( !) (AnE)[V], n =dimM 

since ev = 0, and thus dg, Z) = 1. Also 

e) A) 2 n'/3 

where P.A is the (non-degenerate) 2-form on g/3 induced by BX; therefore 

(7.12) ind A+ 1 I (An)[V] G fl !2n(1)[] 

Let us now specify the choice of orientation on g/3 as being given by the 
condition 

(An.) [V] > 0. 

Then, according to [16, Theorem 4], 

(7.1.3) deg(7TA ) n (A /3) [ V]. n!2~ 

From (7.1.1), (7.1.2) and (7.1.3) it follows that m+ - m- 1. Q.e.d. 

It is likely that Ker A- always vanishes and thus that Ker A+ is the 
representation space of A. Here, we shall only prove that this is "almost always" 
the case. Precisely, let us assume, as above, that Z is the circle group and let us 
fix a non-zero element z E 3. Then, the characters of Z are in a one-to-one 
correspondence with the lattice of functionals {X E X p(z) = p, p E Z)}. 
Further, let us fix a splitting q = ? E m and then consider the corresponding 
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G-invariant connection on the principal bundle Z -> G -> M; this, in turn, gives 
rise to G-invariant connections on the twisted spin-bundles S& associated to XP. 
We will denote by A' the Dirac operators constructed by using these connec- 
tions. Under these assumptions, one has: 

7.1.B. PROPOSITION. There exists po E Z+ such that, for any p po, 
KerA- = 0. 

Proof We extend Xp to functionals on q, by setting Xp m = 0, and we 
denote by f3p the corresponding non-degenerate 2-forms on m. We next fix a 
symplectic basis {x1, y1,... ,xn, Y} on m, with respect to f, . and then give m the 
inner product for which this is an orthonormal basis. (This is not a restriction, 
since the vanishing of the space of L2-solutions does not depend on the choice of 
metric.) Thus, one has 

(7.1.4) /1(x,, Yk) =1jk' 11(xi, Xk) = =l1(Y,, Yk)) 1 ? I, k ? n. 

Note that C?(M, S&-+) is canonically isomorphic to C?(G, XAp) 0 S ? (in) 

where 

CO(G, XP) {f C (G);f(gexp(-tz)) = e2inpt f(g), g E G, t RI 

z is a fixed element in 3 such that X 1(z)= 1, and S ? (m) denotes the basic 
(+-)-spin representation of Spin(m). With our choice of connection, the Dirac 
operators A: C?(G, Xp) 0 S+ (m) -*CO(G, p) 0 S+ (m) are given by: 

n 

(7.1.5) A (R(x,) 0 c(x,) + R(yj) 0 c(y,)), 
H= 1 

where R(x) is the left invariant vector field on G associated to x E g. 
To get the vanishing statement, we shall prove, by a computation similar to 

that in [17], the inequality 

(7.1.6) (A' AA- (P)?c 11 (P IIH2, for any q E Cc(M) S-) 

Using (7.1.5) to compute Ap A>p one gets: 

Ap AA = i R([x,, yj) 0 c(x,)c(y,) - R(x,)2 + R(yj)2) ( I 
i i 

+ 2 R([xj, Yk]) 0 C(Xi)C(Yk) + 2 R([xj, Xk]) 0 C(Xi)C(Xk) 
j=#k j<k 

+ 2 R([yi, Yk]) (&) C(yi)C(yk)' 
j<k 

Note now that 
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By (7.1.4), it follows that: 

(7.1.7) Aqp A- = R(z) 0 c(x y,) - (R(x,)2 + R(y)2) 0 I + F0 
1 i 

where F0 is a first-order operator of the form: 

(7.1.8) F0 =1R(x,) 0 Ai + zR(yj) 0 Bi, 
i i 

with Ap, Bi c End S+ (m). 
Let us now define z; E mc by z; - x; + iyj, 1 ? j ? n. Then 

(R(x,)2 + R(yj)2) 0 I -iR(z) 0 I + R(z-,)R(z,) 0 I - Fj, 

where F; is also of the form (7.1.8). Substituting this in (7.1.7) we get 

Ap Ap =2Rz $ ~j + inR(z) 0 I l- 2R(z-,)R(z,) g 

with F. again, of the form (7.1.8). Since R(z) acts on C?(G, Xp) as the 
multiplication by -2iTrp, it follows that 

(7.1.9) AjAp A 2 npI 0 I - 2 7p I 0 ic(x y,) - R(-,)R(z,) 0 I + F. 
1 1 

At this stage we pause to choose a convenient basis on S + (im). Let J denote 
the set of all multi-indices a = (a1, ... 5an) with a1 ? 1, and set 

-+ {=a E J; a1 * an = ? 
(-1)}. 

It is not difficult to see that there exists an orthonormal basis { ua; a C J} in 
S(m) = S+ (m) 0 S- (m), with {ua; a EJ } an orthonormal basis for S- (m), 
and such that 

C(Xyi)Ua = iaua 1 1,... ,n. 

Now if qp = EaEJ:fa 0 Ua E Cc*(G. Xp) 0 S-+ (m), the formula (7.1.9) gives 

(A p A p>= 27Tp n + a )f112 + R E a R(Z )f + ? Fqp, p). 

Clearly n + 2A = 0 only if a (-1,..., -1) and this is a multi-index in J+. 
Therefore, when (p E Cc*(M, &p- ), 

(A+ Ap- 9p qq)| > 27Tp 11 kp II2 + 2 z 1R(Zj)faII2 - (l~p, p)I. 
i acJ-~ 

Since F is of the form (7.1.8), one has 

(Fq5 wp)?-< 2cE 2 11 R(Zj)fall *If,g115 
j a,,8J3E 
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for some c > 0, independent on 9p. Consequently 

| (A' A- up, (p) ? (27p -n22n-2C2)1199112 

which implies the vanishing of Ker A - for p E N sufficiently large. Q.e.d. 

7.2. The following question arises naturally: given a unimodular Lie group 
G and a compact subgroup H, is it possible to normalize the Haar measure in 
such a way that the G-index map takes only integral values? In general, the 
answer is negative. Indeed, a counterexample is provided by the 4-dimensional 
nilpotent Lie group G with compact 2-dimensional center considered in [16, ?5]. 
Namely, g is the Lie algebra generated by {x, y, z, w} with [x, y] = z + Ow, 6 
irrational, and all other brackets zero, and G is the quotient of the corresponding 
simply connected nilpotent Lie group by the central subgroup F = texp(pz + 
qw): p, q E Z}. The discrete series Gd is parametrized by pairs of integers (p, q), 
with i p I + I q 1 0, and, as shown in [16, loc. cit.], if sp, q denotes the irreducible 
square-integrable representation corresponding to (p, q), then deg 7sp q = 

p + Oq . By Proposition 7.1LA, the corresponding Dirac operators A+ q will 
satisfy indcAp7 q = A p + Oq I which is not bounded from zero when (p, q) runs 
over the lattice Z X Z \ {0). 

7.3. We now come back to the general case and assume that G is a 
unimodular Lie group, and H a compact subgroup. Let E1, E2 be two unitary 
finite-dimensional representations of H. Then any G-invariant differential opera- 
tor D: C?(M, SO) -> C'(M, &2) can be represented as 

(7.3.1) D = R(Xi) 0 Ai, 

where Xi E 9I(gc) (the universal enveloping algebra of gc), Ai E Hom(El, E2), 
and EiXi 0 Ai E (t(gc) 0 Hom(E1, E2))H; i.e., for any h E H, 

(7.3.2) Ad(h)Xio 02(h)Aiel(h) X2 O Ai. 

Let S be a unitary representation of G on the Hilbert space 'KC(7). We 
denote by 'JQ( 7r) the space of C?-vectors for 77 and, with D given by (7.3.1), we 
define the operator D,: ( 9JQ0(7r) 0 E1)H __ (_ J0(7r) 0 E2)H by the formula 

(7.3.3) D,, = (Xi) O Ai; 

as before, the superscript H indicates the subspace of H-invariant elements. The 
invariance condition (7.3.2) ensures that D, indeed, maps H-invariant vectors in 
1IiQ(7r) 0 E1 to H-invariant vectors in 1J077) 0 E2. D, can also be viewed as 

This content downloaded from 134.153.184.170 on Sun, 23 Nov 2014 00:04:18 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


THE L -INDEX THEOREM 327 

an (unbounded) operator from (JC(7r) 0 E1)' to (JC(7r) 0 E2)H, with dense 
domain (JC'(T7) 0 E1)H and, as such, it is closable. 

Assume now that D is elliptic. Then, it can be proved that (D1)* is the 
closure of (D*),, where D* stands for the formal adjoint of D, and further that 

Ker D, = the orthogonal in (JKj (ST) 0 E1 )H of the image of (XjQ0(ST) 0 E2 )H 

under D* 

consists exactly of all solutions u E (j7CQ(7r) 0 E1)H of the equation Du = 0. 
However, since we do not really use these facts, we shall omit the proof. 

The following result can be regarded as a "reciprocity theorem" and also as 
a generalization to the noncompact case of Theorem I in [7]. 

7.3.A. PROPOSITION. Let G, H, E1, E2 be as in Theorem 6.2, and let D: 
C??(M, 61) ) C'(M, &2) be a G-invariant elliptic differential operator. Then: 

(i) Ker D, = 0 for all r E C \ Gd except a set of Plancherel measure zero; 
(ii) KerD, = 0 for all S E Gd except a finite number, and dim Ker D, < x 

for all 77 Gd; 

(iii) indGD - 2 r E G~d(dimKerD, - dimKerD,*)deg(7T). 

Proof The Plancherel decomposition 

(L (G) 0 E1)H t= (T) 0 (X (7T ) 0 El)H du(7r) 

together with [19, Lemma 5] give the direct integral decomposition 

G (7.3.4) KerD '7)0 KerD*d/t(7r). 

As we saw in Section 6, the continuous part of the Plancherel measure gives 
no contribution, which proves (i). The assertion (ii) follows from the fact that 
dimc Ker D < oo, and (iii) is now obvious. 

7.3.B. COROLLARY. Let G be semisimple with finite center, H = K a maxi- 
mal compact subgroup, and D: CC?(G/K, &j) - Cc(G/K, &2) a G-invariant 
differential elliptic operator. Then, with [ 7r: ci ] denoting the intertwining number 
of ei and the restriction of r to K (i = 1,2), one has 

(7.3.5) indGD = I ([ST:1 - [7r:9]2)deg(7r), 
A 

the sum involving, necessarily, a finite number of non-zero terms. 
A 

Proof. This follows from Proposition 7.3.A and the fact that, for any 77 C 
G. 

dim(1((-T) 09 Ei ) K [7T: i] < cxc. 
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7.4. The above result displays the remarkable fact that, under the given 
circumstances, indGD depends only on the initial representations El, e2 of H, and 
not on the elliptic operator D. The following simple example shows that this 
cannot always be true. 

Let G be the 3-dimensional Heisenberg group, x, y, z a basis for q, with 
[x, y] = z, and let X E * be a functional such that X(z) > 0. With the same 
notation as in 7.1, let Dx: CC'(M5 5) CC (M, S&), M = G/Z, be the operator 

DX = R(x + iy); 

then KerDX is the representation space of the irreducible representation 7Tx, 
while Ker D* = 0. Thus, indGD = deg(r.) # 0. 

7.5. The index theorem 5.3 applies only when the Lie group G is unimodu- 
lar. We shall now indicate how to define, using K-theory for C*-algebras, a more 
primitive index map. As shown in Section 1 (Proposition 1.7), any finite-dimen- 
sional unitary representation E of the compact subgroup H gives rise to an exact 
sequence of separable C*-algebras 

(7.5.1) 0 -- CG ' 'fG(&;) - CH(S(V), E) -O 0, 

where Cc*( 5) (resp. TG*( 5)) is the norm closure of the space of G-invariant, 
End(E)-valued pseudo-differential operators 'P7 OO(5)G (resp. Tc( S)G) in 
qJ( L2( M, &;)). Now let - be the left regular representation of H on E = L2( H). If 
we replace End(E) by f(E), the space of compact operators on L2(H), then 
(7.5.1) still holds, and the first term is naturally isomorphic to the reduced 
C*-algebra C,*(G) of G. Indeed the unitary operator U: L2(G) 0 E L 12(G) 0 E, 

(Uf)(h) = R(h)f(h), f E L2(H, L2(G)) L2(G) 0 E, 

commutes with L(g) 0 1 for any g e G, and it transforms the orthogonal 
projection onto (L2(G) 0 E)H, eH= R(h) 0 e(h) dh, into I 0 el, where el: 
L2( H) -* L2(H) denotes the projection associated to the constant function 1 in 
12(H). That is, U*e U = I 0 e1, which shows that reducing C,*(G) 0 '7K(E) by 
the multipliers eH and I 0 el respectively yields isomorphic C*-algebras. (There 
is no mystery about this isomorphism once one notices that U is actually the 
natural isometry establishing the unitary equivalence between the representation 
of G induced by the regular representation of H and the regular representation of 
G.) Now the six-terms exact sequence of K-groups associated to (7.5.1) gives a 
connecting map 

IndG: KL(CH(S(V), E)) -> K0(Cr(G)) 

which allows us to define the index of an elliptic, G-invariant, pseudo-differential 
operator on M = G/H as an element in the denumerable group KO(Cr*(G)). 
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If G is unimodular, and a choice of the two-sided Haar measure p has been 
made, the corresponding trace on C,*(G) determines an additive map t*: 
KO(C1*(G)) -* R, and one has p* o IndG - indG. The refined index map IndG 
still enjoys the usual stability properties, so that it is reasonable to expect that it is 
also computable in terms of the principal symbol. In fact, this is what Bott did in 
[7] in the compact case; indeed, for G compact, KO(C*(G)) is canonically 
isomorphic to the representation ring R(G). Let us also remark that it may well 
happen that KerD and KerD* are trivial (and so indGD = 0) without IndGD 
being zero. For example, if G = R2, one has C*(G) C0( G) (= CO(R2)) so that 
KO(C*(G)) = K0(R2)- Z, whose generator can be obtained as the index of the 
a-operator on R2 C while the equations (a/az)u = 0, (a/az)u = 0 have no 
non-trivial global L2-solutions. 

Of course, to obtain a valuable formula for the index map IndG, one first has 
to compute KO(C,*(G)). When G is simply connected and solvable, it follows 
from the Thom isomorphism in [9] that Ki(C*(G)) _ K~i (point), i, i E Z2, 
where / is the dimension mod2 of G. The computation of the K-theory of C*(G) 
for an arbitrary Lie group G and the search for an "intrinsic" index formula 
certainly deserve further study. 
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