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Noncommutative Differential Geometry 

A. GONNES 

Cyclic cohomology appeared independently from two different streams of 
ideas, algebraic üf-theory and noncommutative differential geometry. I shall 
try to explain in this paper the meaning of noncommutative differential geom
etry, Its main object is a new notion of space, The need for considering such 
spaces and developing for them the analogues of the usual tools of differential 
geometry is best understood in the following two examples. In both, one tries to 
prove a result of classical differential geometry, and a heuristic proof is possible 
provided one accepts the new notion of space. 

First example. 

THEOREM (LICHNEROWICZ, 1961). If M is a compact spin manifold 
whose Â genus is nonzero, then it is impossible to endow M with a Riemannian 
metric of strictly positive scalar curvature, 

The proof of the result uses a simple global idea. By the Lichnerowicz identity, 
the square of the Dirac operator is V* V + \x where V* V is a positive operator 
and x is the scalar curvature. Thus for x > 0> the Dirac operator has index 
equal to zero. But by the index theorem index (Dirac) = A(M) ^ 0. Q.E.D, 

A stronger result about the nonexistence of metrics with positive scalar cur
vature is the following 

THEOREM [14]. Let M be a compact oriented manifold with A(M) ^ 0. 
Then there is no integrable spin subbundle F of TM with strictly positive scalar 
curvature. 

Let me give a heuristic proof of this result which will work when we get the 
right tools. The idea is the following: Given an integrable subbundle F of the 
tangent bundle of Af, one can a priori integrate it and get a foliation of M which 
creates a new space B of leaves of this foliated manifold. (See Figure 1.) 

Now A(M) is the index of the Dirac operator, at least if M is spin, or, equiv
alenti^ it is the pushforward 7r!(L) of the trivial line bundle L on M by the 
map 7r: M —• pt. As TT = 7Ti O 7T2, where 7T2 is the projection of M on the space 
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^ Pt 

FIGURE 2 

V = K(TT,1) 

of leaves B, one has 7r!(L) = 7Ti! (7^ !(£)), but 7r2}.(L) G K(B) is the index of 
the family of Dirac operators along the leaves and hence is zero since the scalar 
curvature of leaves is strictly positive. This reasoning does work if one has just a 
fibration; one then applies the index theorem for families. However, in general, 
given an integrable subbundle F it is impossible to decide whether it creates a 
fibration or a foliation. For instance, on the two torus T 2 = R 2 / Z 2 the equation 
dy = Odx defines a fibration iff 6 is rational. Thus it is impossible to restrict 
to the case of fibrations, and one needs to handle spaces such as the space B of 
leaves of an arbitrary foliation. One needs new tools to understand and use such 
spaces because when just viewed as ordinary topological spaces they are of no 
use; in general they would carry the coarse topology and K(B) would be trivial. 

Second example. We now pass from the space of leaves of a foliation to another 
example related to discrete groups. It comes from a problem stated by Novikov— 
the homotopy invariance of the higher signatures. Let M be a compact oriented 
manifold and (p a map from M to a üC(7r, 1) space V. For instance, one could take 
for <p the map which classifies the universal cover of M. For each cohomology 
class (jj € i /*(F, C) = H*(TTî C), the higher signature of the pair (M, ip) is given 
by the scalar (ZM • V*^), [M]) where CM is the L genus of M and <p*(w) the 
pullback of a; by <p. The problem is the following: Is the well-defined number 
above a homotopy invariant of the pair (M, ip)l (See Figure 2.) 

When V — pt, one gets the ordinary signature of M, which is a homotopy 
invariant. By the work of Wall and Miscenko, on equivariant surgery theory, 
one can assign a 7r-equivariant signature to the covering M of M pullback by 
<p of the universal cover V of V. Moreover, this equivariant signature belongs 
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(neglecting torsion) to the Witt group of the group ring CTT and is a homotopy 
invariant, Signature^ (M) E Witt(C7r). When IT is commutative, one can prove 
the homotopy invariance of higher signatures as follows. There is indeed a space 
assigned to the group 7r, the space of characters, i.e., the dual 7r, which is Haus-
dorff and compact, finite-dimensional if 7r is finitely generated. Then the group 
ring CTT embeds as a subring of the ring C(it) of continuous functions on it: 

CTT C C(TT). 

The diagonalization of quadratic forms on G (IT) yields a map from the Witt 
group of CTT to the K° group of TT\ 

WittC7T^# 0 (7r ) . 

Now any 
u>eHn(V>C) = Hn(w,C) 

is represented by a group cocycle (^(g1,,,., gn) totally antisymmetric in the #ns, 
One then defines uniquely a current G on w by the equality: 

{c,f0df1A-..Adfn)= £ /0(ff°)/1(ff1)--- /B(ffBMff1 . -- .PB) 

n0v=i 
where the /* are functions on TT SO that their Fourier transform /* are functions 
on the group TT itself. The current G is closed because u is a group cocycle. 

The main lemma, then, which is a corollary of the index theorem for families, 
says that if you pair G with the Chern character of the equivariant signature 
you get the higher signature; 

(C,Ch(Signature7r(M))) - (ßM • p » , [M]). 

Thus the right-hand side is a homotopy invariant. Q.E.D. 
In general, when TT is not commutative, there is no interesting space of charac

ters and one cannot really talk about the dual of IT as a space. However, and this 
will be the key to this discussion, one can assign a noncommutative (7*-algebra 
to 7r; it is the completion of the group ring GIT acting in the Hilbert space 12(TT). 

A careful scrutiny of the two previous examples reveals that one needs, in 
order to proceed, a suitable generalization of the notion of space, which would 
allow one to handle both leaf spaces and duals of noncommutative groups as if 
they were ordinary spaces. 

Grothendieck Category of sheaves on X 

Space X 

Gelfand 

Algebra of complex functions on X 

Space"* 

„Topos 

"Noncommutative (7*-algebras 
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The basic idea underlying the new notion of space discovered by Grothendieck 
—and which he named "topos"—is that in an ordinary topological space the 
main part is not so much played by the points and their proximity relations, but 
by the category of sheaves on the space. Indeed the original topological space 
can be recovered from this category, and, moreover, if one keeps only the truly 
relevant conditions satisfied by such categories one obtains the notion of topos 
which plays a fundamental implicit role in the new algebraic geometry. The new 
notion of space that we shall deal with is based on a similar idea, but assigns 
a specific role to the complex numbers C or, equivalently, to functional analy
sis. It goes back to Gelfand's theory of C*-algebras. It asserts that a compact 
topological space X is characterized by the *-algebra G(X) of complex-valued 
continuous functions on X and that such algebras are the most general commuta
tive C*-algebras. That there is no good reason to restrict oneself to commutative 
C*-algebras versus noncommutative ones, goes back to the early development of 
quantum mechanics with the discovery by Heisenberg of matrix mechanics. In 
understanding, from a very positivistic point of view highly enforced by exper
imental evidence in spectroscopy, the interaction of matter with the radiation 
field, Heisenberg showed that the usual observables of classical mechanics have 
to be replaced by matrices which violate the commutativity of mutliplication. 
Thus the phase space of quantum particles is an early example of the new type 
of spaces that we shall deal with. To take this second idea of space further, we 
need many examples, each being used as a small laboratory in which to test ideas 
and to see what works. We summarize a few examples in the following table: 

Space Algebra 

X G(X) 

X = 7rdualof C*(TT)DCTT 

a discrete group (completion in 12(TT)) 

X = M/F leaf space G* (M, F) 

Example: Kronecker foliation VU = (exp2iTiO)UV 

X = Q/G orbit space CQ(Q) X G crossed product 

We have already discussed the first example. The second comes from folia
tions. There is a very natural C*-algebra coming from operators which differ
entiate only in the leaf direction, and are elliptic in that direction. These turn 
out to have natural parametrices; they are invertible modulo operators which 
are smoothing in the leaf direction. These operators constitute a C* -algebra, 
C*(M,F). An example would be to take the Kronecker foliation of the two 
torus, which is induced by the equation dy = Odx where 0 is irrational. In that 
case you get a C*-algebra generated by two unitary elements which do not com
mute, but do commute up to a phase A = exp27ri0. This is an algebra with 
which one may do many computations, exactly as if one were computing with 
the ordinary functions on the two torus using Fourier analysis. 
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Another very important example was discovered by Bellissard [6] from solid 
state physics and the quantum Hall effect. In the study of disordered systems, 
the Hamiltonian Hu is labelled by a parameter u) G fi. Moreover, ifw fails to 
commute with i?rx(w) where T is the action of the translation group on the 
parameter space fi. Thus the translates of the Hamiltonian generate a non-
commutative C*-algebra, which corresponds to the "energy spectrum" of the 
system. 

Given these examples one needs the right tools, The first comes from my orig
inal field of study: "von Neumann algebras." These algebras together constitute 
exactly the noncommutative analogue of measure theory. Their classification 
and understanding have now reached a fairly complete and satisfactory stage, 

But what we need then is a little more than just measure theory; we need 
topology. I will now describe the basic tool in topology, first introduced by 
Grothendieck in algebraic geometry, and then by Atiyah for the purposes of 
topology. That tool is if-theory. There is a quite simple relation between com
plex vector bundles over the space X and projective modules over the algebra 
A = G(X)\ this is the Serre-Swann theorem: 

Ki(X) = Ki(A = G(X)). 

It allows us to do lf-theory of spaces by doing linear algebra where the field 
C is replaced by the ring A. Then the group of dimensions of finite projective 
modules is the üf-group KQ(A). The Bott periodicity theorem tells us that the 
/f-groups of a C*-algebra A are the homotopy groups of the gauge group, i.e., 
of the unitary group U of infinite matrices over A: 

Kì(A)=TTH1(U). 

Whenever a space is constructed by patching together two spaces, such that 
one has a short exact sequence of algebras, there is a corresponding long exact 
sequence of üf-groups, which is shortened thanks to periodicity: 

Ko(J) >• K0(A) 

Ki{A) -< K^J)* 

Moreover, there is a general principle which is absolutely crucial. Above, we 
used twice the index theorem for families. Now the principle is that a "space" X 
will be described by a noncommutative algebra A, and that when one has a family 
(Dx), x G X indexed by X, such as the family of leafwise Dirac operators indexed 
by the space of leaves, then the index of this family belongs to K°(X) = Ko(A). 
This principle is very important because it allows us to translate into if-theoretic 
terms the basic analytical properties such as: 

• The vanishing of the index of the family of leafwise Dirac operators: 

Index(DiracL)LGM/F = 0 

when the scalar curvature of leaves is strictly positive. 
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• The homotopy invariance of the 7r-equivariant signature: Signature7r(M) G 

The first vanishing above takes place in the if-group KQ(C* (M, F)). Both K-
groups are countable abelian groups but are at first extremely mysterious objects, 
being defined through the above C*-algebras. When dealing with ordinary spaces 
one gets some intuition about their if-groups, but this is less clear when dealing 
with C*-algebras. The first real breakthrough which got everything started was 
done by Pimsner and Voiculescu [26] who, in particular, computed the if-groups 
for the Kronecker flow foliation discussed above. It allowed P. Baum and the 
author to guess what the answer should be in both general and geometric terms. 
The situation is described as follows: We construct both a geometric group, 
the if-homology of the classifying space, and a map ß to the if-group of the 
C*-algebra. The classifying space makes sense in all the above situations since 
topologists have a way of making sense, up to homotopy, of spaces like the leaf 
space of a foliation or the orbit space of a group action. What they do is to 
amplify the space, say M, on which the group T acts, by crossing M with a 
contractible space ET on which T acts freely; then the quotient M x r E T makes 
sense and is "nomotopic to M/ r . " 

if * (Classifying space) -̂ » K (G* -algebra) 

The map fi is difficult to construct [5, 4, 12, 24] and even when one deals with a 
one point space, its mere existence is the Atiyah-Singer index theorem [5]. It is 
essentially a Poincaré duality map to the extent that it reverses functorialities. 
The main problem of the theory is to handle this map p,\ all computations so 
far indicate that it is a bijection [4, 23, 24, 27]. An important tool developed 
by the Russian school, by Miscenko and Kasparov in particular, and also by 
Atiyah, Brown, Douglas, and Fillmore (cf. [23, 24, 1, 7]), is if-homology for 
C*-algebras. Since this theory played a crucial role in the understanding of the 
analogue of de Rham's theory of currents for the above spaces, I shall sketch 
it briefly. For ordinary spaces, if-homology is defined, using duality, by a gen
eral theorem which states that given any cohomology theory (such as if-theory) 
there is a corresponding homology theory, called here if-homology. One wants 
to realize this homology theory concretely. It is quite striking that if one was 
very conservative and wanted to stick to ordinary spaces, not accepting "spaces," 
one would not be able to describe the theory if-homology (X) (there is a ifeven 
and if odd) as homotopy classes of maps from spaces Zeyen,Z0^ to the space 
X. However, with "spaces" this is possible; Zey is obtained by glueing together 
two contractible "spaces," and the C*-algebra G(Zey) is the noncommutative 
algebra Aey of pairs of operators (a;, y) in Hilbert space k whose difference x — y 
is a compact operator. Similarly C(Z0dd) = A)dd5 which also appears in Beyond 
Affine Lie Algebras, by I. Frenkel, is the algebra of 2 x 2 matrices (XìJ) of opera
tors, such that x\2 and £21 are compact. Of course a "continuous map" from Zey 

to X is given by a homomorphism from C(X) to C(Zey), i.e., a homomorphism 
from the C*-algebra A = C(X) to Aey. This is called a Fredholm module over 
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A because it amounts to giving a Z/2 graded Hilbert space, h © h with grading 
e = [ J J \ ] , with a left A-module structure such that 

(1) ea = aeVae A, 
(2) [F, a] is compact Mae A where F = [ ° J ] . 

There is a similar notion of odd Fredholm module. On any even-dimensional 
compact spin0 manifold, the module of L2 spinors, with Z/2 grading given by 
the 75 matrix [5] and operator F given by the phase F = .D|.D|-1 of the Dirac 
operator, is a Fredholm module which represents the fundamental class of the 
manifold in if-homology [5]. If one puts together this notion of a Fredholm 
module with the ideas of Helton and Howe, Carey and Pincus [18, 9] on operators 
commuting modulo trace ideals, one is led to the noncommutative analogue of de 
Rham's theory: cyclic cohomology. Helton and Howe associated to any operator 
T, normal modulo trace class operators, a de Rham current on R 2 with boundary 
carried by the essential spectrum of T. Their work was very inspiring because it 
showed that the calculus of differential forms could be born from purely operator 
theoretic considerations in Hilbert space. This is what is done in [11]; given a 
Fredholm module over A, one can define differential forms on the corresponding 
"space," not by using local charts and patching these together but directly as 
operators in Al- It is exactly the same step as the replacement, in quantum 
mechanics, of Poisson brackets by commutators. Thus 

da = i[F, a] Mae A 

defines the differential of a function. The forms of degree q are obtained as sums 
of products of 1-forms: QQ = {$2%° dx1 • • • dxQ, a:-7 G ^4}. In this way, one gets 
a graded differential algebra; the product is the product of operators and the 
differential is given by 

du = i(Fu - (-l)quF) for Lj e nq. 

One has d2 = 0, and the main point is to obtain an integration of forms u) —• 
/ W G C satisfying f dw = 0 and f U2W1 = (-l)QlQ2 Ju\U)2. 

The formula which works is quite simple: f w = Tracera;). This is where the 
dimension appears, the trace only makes sense if OJ is a trace class operator. By 
the Holder inequality this holds, for any CJ G f2n, provided [F,a] G Jßn Va G A. 
Here, for every real number p G [l,oo], jßp is the ideal of compact operators T 
with X)^g(l^l)p < °°5 where Ag(|T|) is the qth. eigenvalue of the absolute value 
of T. The dimension of a Fredholm module over an algebra is the infimum of 
the p's for which [F, a] G ßp Va G A. For the fundamental class of a manifold 
M described above, it yields the dimension of M. In general it need not be an 
integer. Given an even Fredholm module of dimension p on A one can integrate 
only the forms u) G fin of degree > p. Moreover, odd forms have integral 0. 
Thus the above construction yields for each even integer n > p, the functional 
rn called the n-dimensional character of the Fredholm module: 

r n ( a ° , . . . , a n ) = f aóda1---dan W G A. 
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Carefully analyzing these functionals led me to discover cyclic cohomology in 
1981. It was discovered independently from algebraic if-theory by Feigin and 
Tsigan [17, 30], replacing group homology by Lie alagebra homology in the 
basic construction of Quillen's algebraic if-theory. It also appeared, at least in 
implicit form, in the work of Hsiang and Staffeld on the algebraic if-theory of 
spaces [20]. It is of course quite striking that from different streams of ideas one 
gets to the same theory: cyclic cohomology. 

A crucial and simple lemma is the following. 

LEMMA. Let A be an algebra and r an (n+1) -linear map AxAx- --xA —> C 
such that 

(1) r(a\ ..., an, a0) = (-l)nr(a°, ...,an) W G A; 
(2) E S ( - 1 ) M û ° . • • •. ajai+\..., an+1) + ( - l ^ + M a ^ a 0 , . . . , an) = 0 W 

e A. 
Then the map e G A, e2 = e —• r(e,..., e), gives a morphism of KQ(A) to C. 

In fact ifo(^) is generated by idempotents e2 = e in matrices over A, Mq(A) = 
Mq(C) ® A, and one has to extend r to Mq(A) by the equality: 

rq(m° <8> a 0 , . . . ,mn <g> an) = Trace(m° • • • mn)r(a°, ...,an) (*) 

VmJ eMq(C), a? e A. 
Here are a few examples of functionals r satisfying (1) and (2): 
EXAMPLE a. Let A = C°°(M), the algebra of smooth functions on a compact 

manifold, and C a closed current on M of dimension k. Then r ( / ° , . . . , fk) = 
(C,f°df1 A • • • A dfk) Mp e A has exactly the properties (1), (2) of a cyclic 
cocycle. In fact r satisfies ra = sign(o-)r for any permutation of { 0 , 1 , . . . , fc}, 
but since Trace(m° • • • mk) is invariant only under cyclic permutations it is only 
(1) which is satisfied by all rq. One has Ko(A) = K°(M) and the lemma gives 
back the ordinary Chern character, viewed as a pairing with the homology of M. 

EXAMPLE ß. Let TT be a discrete group, A = CTT the group ring, and 
<d e £n(7r,C) a group cocycle suitably normalized so that ^(g1,... ,on) = 0 
if g1 • • • gn = 1. Then the equality 

T{g°,...,gn)=0itg0---gn?l V € ir, 

T(g0,...,gn)=u(g1,...,gn)iîg°g1---gn = l Vg* € TT, 

defines an n-cyclic cocycle r o n i l . Moreover, extending r to infinite matrices 
over A one can show that 

(r,Signature7r(M)) = (£M • <p*(u), [M]) 

with the notations of the higher signature problem. The cyclic cohomology of 
group rings is computed by Burghelea in [8]. 

EXAMPLE 7. For each even n > p, the n-dimensional character rn of a 
Fredholm module over A is a cyclic cocycle. Moreover, the pairing with KQ(A), 

(rn ,e), is given for any idempotent e by the index of a Fredholm operator, and, 
in particular, lands in Z c C. It corresponds to the Z-valued pairing between 
if-theory and if-homology, which ensures that it is highly nontrivial. 
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Given any algebra A, there is a trivial way to construct cyclic cocycles on A, 
namely r = b(p where (p G C^" 1 is an n-linear functional on A satisfying (1), 
and b(p its Hochschild coboundary given by formula (2). The relevant group is 
the quotient H%(A) = Z^^/bC^1, where Z% = Kerb, and is called cyclic 
cohomology of A. It turns out that just by working with Example 7, of Fredholm 
modules, all the properties of cyclic cohomology fall into one's lap. First a 
Fredholm module has many characters rq, one for each even integer q > p, and it 
would be unreasonable to expect that 7"g+2>Tg+4>... bring new information not 
contained in rq. Explicit computations show that there is a natural periodicity 
operator 

S:H%(A)^HZ+2(A) 
given in fact by cup product by the generator of H2(C) and such that rq+2k = 
Skrq in H^2k(A). Then, in order to find the smallest n for which rn is defined, 
one needs to determine the image of S. But by construction, the complex (C%,b) 
is a subcomplex of the Hochschild complex (Cn,b) where Cn is the space of all 
(n + l)-linear functionals on il, It turns out that r G Im S iff r is trivial in 
the latter complex, whose cohomology Hn(A,A*), the Hochschild cohomology 
of A with coefficients in the bimodule of linear forms on A, is computable by the 
general methods of homological algebra. The final point is the construction of 
a natural operator B from Hochschild cohomology Hn(A,A*) to H'^~1(A) and 
the proof of the exactness of the following sequence: 

D VffJ(/0 -^ H^2{A) -4 Hn+2(A,A*) 

B >-Hl+\A) •£• HZ+3(A) -4 Hn+3(A, A*)^ 

Thus Hochschild cohomology and cyclic cohomology from an exact couple which 
together with the associated spectral sequence becomes a basic tool to compute 
cyclic cohomology of algebras. The power of this tool is illustrated by two 
examples: 

EXAMPLE a. Let M be a compact manifold, A = G°°(M). Imposing obvi
ous continuity conditions to cochains one finds that the Hochschild cohomology 
groups Hq(A,A*) are identified with the space Qq of de Rham currents of di
mension q on M. The map I o B of the exact couple is the de Rham boundary 
d*, and one gets 

H\(A) = {Kerd* C Qq} + iJ g_ 2(M,C) +Hq-4(M,C) + • • • . 

The de Rham homology of M identifies with the periodic cyclic cohomology of 

EXAMPLE b. Let (M,F) be a foliated manifold, A = C*(M,F) the cor
responding C*-algebra. In A there is a natural dense subalgebra A of smooth 
elements and one has to compute its cyclic cohomology. One has 

Hp„{A) = # ; (Classifying space) 
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where the right-hand side is the cohomology with complex coefficients of the 
classifying space of the holonomy groupoid or graph of the foliation. The index r 
means that this cohomology is twisted by the orientation of the transverse bundle 
r of the foliation. Using sheaves on M and the naturality of the construction of A, 
one constructs a localization morphism AM? which is a far-reaching generalization 
of the Ruelle-Sullivan current: 

and one reaches the following cohomological formulation of the longitudinal index 
theorem for foliations [12]. 

THEOREM. Let (M,F) be a compact foliated manifold, D a longitudinal 
elliptic operator, and r a cyclic cocycle on A. Then 

(r,Index(D)) = {XM(r)Td(Fc)ChaD,[M}) 

where OB is the longitudinal symbol of D. 

There is, however, still a really hard step in order to use cyclic cohomology 
as ordinary de Rham theory for our "spaces"—such as the space of leaves of a 
foliation—and to prove Theorem 2 of this paper, for instance [14]. The point is 
that A C A, in Example b, is not in general an isomorphism in if-theory, and the 
analytic information lies in if (A) not if (A). This problem is fully resolved in [14] 
for the transverse fundamental class of M/F and all classes coming by pullback 
of the Gelfand-Fuchs cohomology by the map B (Classifying space) —• BTq. 

The difficulty is that for a general foliation it is impossible to reduce the 
transverse structure group to a compact group. Equivalently, for a group of 
diffeomorphisms acting on a manifold, one cannot find an invariant Riemannian 
metric. The result implies, in particular, the Novikov conjecture for Gelfand-
Fuchs cohomology classes on BÇDiff N) for any N. 
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