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Abstract. We define, using cocycles with infinite support in the fundamental (b, B) bicomplex of cyclic
cohomology, a Z/2 graded cohomology of entire functions on a Banach algebra, which pairs with topological
K-Theory. We then construct, using an algebra of operator-valued distributions with support in &,
a canonical entire cocycle Ch(#, D) on A for every f-summable Fredholm module (#, D) over a Banach
algebra A.
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1. Introduction

We showed in [4] that in order to handle infinite-dimensional spaces such as those
occurring in constructive quantum field theory, or the noncommutative spaces which
are duals of nonamenable discrete groups (cf. [4], [6]), it is necessary to consider
Fredholm modules (#°, D) which are no longer finitely summable (i.e. Trace((1 +
D?)7?) < oo for some finite p) but satisfy the weaker condition of f-summability:
Trace(e ~*?*) < 0.

Our aim in this paper is to show that the construction of [2] of the Chern character of
finitely summable Fredholm modules can be extended to the new class of -summable
Fredholm modules. To achieve this goal one needs

(1) to extend cyclic cohomology to incorporate infinite-dimensional cycles,

(2) to extend to the new theory the pairing with topological K theory

(3) to define the character of f-summable Fredholm modules by explicit formulae,

(4) to show that the index of the Fredholm module with coefficients in a K-theory
class is given by the value of its character on that class.

While ordinary cyclic cohomology H’(A) of an algebra A4 is based on monomials of
degree n + 1, the new theory is based (with 4 a complex Banach algebra) on entire
functions on A. More specifically, one considers in the fundamental (b, B) bicomplex
([2] p. 123) of cyclic cohomology, the cochains (¢,,),.y OF (@2, +)sen Such that

E“—(%—”ﬂ (oo Vr)0.



520 A. CONNES
Thus, to each even cochain corresponds an entire function

Fy(x)=Z(-1)" ?Lx;ﬂ___i)

on A. In Section 2 we show that if we endow the universal differential algebra QA4 with
the norms || ||, of Arveson [1] and the corresponding inductive limit topology, the
following three notions are identical.

(a) Normalized entire cocycles (¢,,) in the (b, B) bicomplex.
(b) Continuous functionals g on QA such that:

w0y — (= 1)20,0,) = 3~ 1) p(do, do,) Vo€ Q%,j=1,2.
(c) Continuous traces t on the algebra §4 = QA x,Z/2 such that 106 = —1.

In (c), we consider the free product algebra Q4 = A * 4 of A by itself with the topology
it inherits from the canonical linear isomorphism QA ~ QA4 ({3]), and let £4 be the
crossed product of QA by its canonical involution ¢ [11].

A pair (Q, ) of a graded differential algebra Q with Q° = 4 and a functional
wsatisfying (b) is an infinite-dimensional cycle over A, cycles of dimension n in the sense
of [2] are special examples of such objects.

Interpretation (c) is most useful for actual construction of infinite-dimensional cycles
such as the character of a #-summable Fredholm module.

The pairing with K-theory is given by the formulae

ee Proj A — Fyle) = t(—— L ),
V1 —(ge)?
where the equality is between the notions (a) and (c) and F € £4, F* = 1.

The construction of the character occupies Sections 3 and 4 of the paper, and Section
5is the proof of the estimates showing that this character is an entire cocycle. It relies
heavily on the existence of an algebra of convolution of operator-valued distributions
T(s), s € [0, + oo satisfying suitable analyticity and Schatten class properties. Finally,
in Section 7 we prove the relevant index formula. This paper can be considered as an
improvement of the basic tools [2] of noncommutative differential geometry, necessary
(by [4]) to handle several really important examples which are ‘infinite dimensional’.

1. Entire Cyclic Cohomology of Banach Algebras

Let A be a unital Banach algebra over C. Let us recall the construction ([2], p. 119) of
the fundamental (b, B) bicomplex of cyclic cohomology. For any positive integer n € N,
one lets C"(A4, A*) be the space of continuous n + 1 linear forms ¢ on A. For n < 0 one
sets C" = {0}. One defines two differentials b, B as follows:
(1) b:C"—>C"*1,
(be)a’...,a""")

=Y (= 1Y@, .., aTaT @) 4 (— 1P @O, a),
4]
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(2) B:C"—>C"" 1, (Bp) = AB,¢,
where

(Boflb)(aos' =i sa"_l}
= ¢(19 aO’“ -aa"_l) . (_l)nqb[a(]’.”,an—l, 1) V(tbe C";

(4Y)(@®,...,a""")
= ")_:1 (— 1)~ Viy(a), al*,...,a"" 1) YpeC" L
(1]

By [2], Lemma 30, one has b* = B> =0 and bB = —Bb so that one obtains
a bicomplex (C™™; d,, d,), where C"™ = C""" for any n, me Z,

dipg=n—m+ 1)bp VYopeC™™, dzq’):ﬁ&j) YpeC™™

(cf. [2], p. 123). The main lemma (36, p. 121) of [2] asserts that the b cohomology of the
complex Ker B/Im B is zero, so that the spectral sequence associated to the first
filtration has the E, term equal to 0. Since the bicomplex C™™ has support in {(n, m),
(n 4+ m) >0} this spectral sequence does not converge in general when we take
cochains with finite support, and by [2], Theorem 40, the cohomology of the
bicomplex, when taken with finite supports, is exactly the periodic cyclic cohomology
H*(A). If we take cochains with arbitrary supports, without any control of their growth,
then by the above lemma we get a trivial cohomology. (This statement is dual to the
p-torsion property of cyclic homology [7], p. 403.) It turns out, however, that provided
we control the growth of || ¢,,|| in a cochain (¢,,) or (¢,,, ,) of the (b, B) bicomplex, we
then get the relevant cohomology to analyze infinite-dimensional spaces and cycles.
Because of the periodicity C™™ — C"**™*! in the bicomplex (b, B) it is convenient,
following C. Kassel [8], to just work with

CcY= {(d)Zn)neN! ¢2n € CZ“VH € N}
and
COdd = {(¢2n+l)m;ma ¢2n+1 € C2”+1, Vn e N}

and the boundary operator é = d, + d, which maps C*' to C** and C** to C**. We
shall enforce the following growth condition:

DEFINITION 1. An even (resp. odd) cochain (¢,,),cx € C (resp. (¢ 2,4 1 Juen € C°%)
is called entire iff the radius of convergence of Z | ¢,, || (z"/n!) (resp. £ || ¢, ., || z"/n!)is
infinity. '

Here for any m and ¢ € C™, the norm || ¢|| is the Banach space norm:
ol = sup{|p(a®,...,am); lla’| < 1}.

It follows, in particular, that any even cochain (¢,,) € C** which is entire, defines an
entire function F, on the Banach space 4 by

F,(x) = i (—=1)"¢,,(x,...,x)/n!
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Next, let ge N and A, = M, ® A = M (A) be the Banach algebra of ¢ x g matrices
over A. For any ¢ € C™, let ¢ be the natural extension ¢* = Tr #¢ of ¢ to M, (A) (cf.
[2], p- 108), i.e. by definition one has

U’ ®a%...,u"®a™) = Trace (u°... u™@d’,...,a™),
where /€ M (C) and a’ € A. Then one has

LEMMA 2. (1) For any entire even (resp. odd) cochain (¢,,) (resp. (¢s,4,)) on A the
cochain (¢3,) (resp. (¢%5,+1)) on A, is also entire.

(2) The map ¢ — @¢* is a morphism of the complexes of entire cochains.

Proof. (1) One has an inequality of the form [|¢?| < g™||¢ || for ¢ € C™, hence the
answer.

(2) It is an immediate check (cf. [2]). [

LEMMA 3. If ¢ is an even (resp. odd) entire cochain, then so is (d, + d,)¢ = d¢.
Proof. For ¢,e€C™ one has [bg,| <(m+2)|¢,l and [Byd,l <2[¢,l,
[|4By ¢, || < 2m| ¢, |, thus the conclusion. O

DEFINITION 4. Let A be a Banach algebra, then the entire cyclic cohomology of A is
the cohomology of the short complex:

C(A) - C2(A) - C*(A)
of entire cochains in A.

We thus have two groups H:'(A4) and H%¢(A). There is an obvious map from H(4) to
H (A), where H(A) (cf. [2], Theorem 40) is the periodic cyclic cohomology of A. We also
i have a natural filtration of H_ by the dimensions of the cochains, where (¢,,) say, is of
* dimension <k if ¢,, =0Vn, 2n > q. However, unlike what happens for H, this
filtration does not, in general, exhaust all of H, in fact it exhausts exactly the image of
H(A) in H,(A).

Let us now compute H, for the simplest case, i.e. when 4 = C is the trivial Banach
algebra. An element of C{" is given by an infinite sequence (4,,),.x: 42, € C such that
E|A,,|(z"/n!) < o for any z and, similarly, for C2%Y. The boundary é = d, + d, of(4,,)is

0, since both b and B are 0 on even cochains. For m odd and ¢, € C™, ¢(d°,...,a™) =
Aa®...a" one has

(bd)(@®,...,a" )= ia®...a"",  (BP)d’...,a" ') =2mia®...a" ",
thus

d,d)@,....a"" )= im + 1)a°...a""*, (dy9)@°,...,a" ") =20a"...a""".

So the boundary d(4) of an odd cochain (4,,.) is given by d(4),, = 2ni,, _; +
249,41 Thus, é(4) = 0 means that 4,,,, = (—1)"n!4, and, hence, is possible only if
2 =0, for 1 e C2. Moreover, for any (1,,) € C¢", the series a(4) = £ (—1)" (4,,/n!)is
convergent and ¢(4) = 0 iff € ¢C2%. Thus we have
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PROPOSITION 5. One has H**(C) = {0} and H{*(C) = C with isomorphism given by

L=l
oG =3

(1,...,1).

Let us now go back to the general case; we shall say that a cocycle (¢,,) (resp. (¢, ,)) 1S
normalized iff for any m one has

Byt =~ ABos. “

In other words, the cochain B¢, is already cyclic: By¢,, € C7 ™' so that (1/m)A
(Bo#,,) = By,,. Only the normalized cocycles have a natural interpretation in terms of
the universal differential algebra QA and the algebra QA.

LEMMA 6. For every entire cocycle there is a normalized cohomologous entire cocycle.
Proof. Let ¢p,, € C™ be such that b¢,, € Im B, B¢, € Im b (which is the case for the
components of a cocycle) we shall construct e C™~* with

(a) By =0,
(b) Boby = By, — (1/m)AB¢,,
© Iyl <9mld,l
It follows that ¢, = ¢, — by satisfies
By¢m = By, — Boby = % ABy¢,, = é ABy¢

(since Bby = —bBy =0), 50 that (b,,) > ($5s) and ($5,4,) = (hes1) are the
required normalizations. Now let § = B¢, —(l/m)ABO(ﬁ One has A0 = 0 so there
is a canonical fe C™ 1,

g__l i (k + De(*0* ([3)),
]

191 <

DO =0, with D =7 — e(A)F* ([3]).
Let us show that B,b8 = 6. Since D = Byb + b'B, ([2] p. 117), we want to show that
b'B,d = 0. One has ([2], p. 117)
(Bo)a?, o 072 = (—AP20G0 o ™2, 1),
(b'By0)(a",...,a" ")
= (=" b, (L, a%....a" " 1) — (b, )@ ... .am " 1 1) +
+ b(Bgp,)(@°,...,a" 1, 1} =0,

since b¢, €Im B and bB¢, = 0. Next, since b'B,d = 0, there exists a canonical



524 A. CONNES

0" e C™3 such that b'¢" == B,f. One has
0'@°...,a" %) = (BO)(a"...,a"3,1)
so that
16 < 1Bl < D)) = 6] < 4[]

Let 6" € C™~2 be such that AB,8" = A0, |6"] < 2/l¢'||. To construct §”, one can use
a linear form L on the Banach space A such that |[L|| = 1, L(1) = 1 and use the formula
of [2], p. 117, corollary 31. Now one has

BO" = A0,  Bb" = —bBO" = —bA0' = —Ab'® = —AB,0 = —B0.
Thus, = § + b8" satisfies
(@) By =0,
(b) Byby = B,bT =8,
(c) Iyl < 181 + (156"

ﬂm—llfi‘ll +(m—D)0"[ < (m + D] ¢,] + 8m — D,

< 9m| ¢yl O

LEMMAT7. Let(¢,,),. be anormalized entire cocyele on A, thenif ¢ € Im ¢ < C;*, one
has

(=1

2 baler..r8) =0

for any idempotent e € A.

Proof. Let ({/5,,,) € C2% be such that &y = ¢. Thus for each n,

Gb —2“b¢2n Lt BYau-

2n+1

Now since ¢ is normalized, B,¢,, € C3" is cyclic so that
1
Bobyop-y = n By 9,
is cyclic for any n. Let

an = (Bow2n+1)(e:"'v ) w2n+l(e’ s € )

One has, since e? = e, that
o, = (B'Bo¥zp+1)(E ..., €) = (D — Bob)Y3,41)(e, - )
=(DYryps1)e;....0) =205, (e...,0).

2n+1
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Also
bYane1)le, ... ) =VYsu1,(e...,0) = 300,
Thus
bonle, ..., €) =2nka, _, +a,
so that
Z(_—l)"(i)z,, o= i ——(not,, L +a,)=0. O

0

THEOREM 8. Let ¢ = (¢,,),.. be an entire normalized cocycle on A, and

1
Fﬁb(x):z('_])"; Zrl(x!‘“!x)

the corresponding entire function on M ,(A). T'hen the restriction of F ; to the idempotents
e = e* ee M (A) defines an additive map: K 4(A) — C. The value {¢, [e]) of F,(e) only
depends upon the class of ¢ in HE (A).

Proof. Replacing A by 4 and ¢,, by ¢,,,

GanX® + 2°L,..., x2" 4+ 12"1) = ¢, (x, ..., X) + 1By, (X%, ..., x*")

one can assume that each ¢,, vanishes if some x', i > 0 is equal to 1. We just need to
show that the value of F; on ee Proj M (4) only depends upon the connected
component of e in Proj M (A). Since the map ¢ — ¢? is a morphism of complexes, we
can assume that ¢ = 1. Then let t — ¢(t) be a C' map of [0, 1] to Proj(4). We want to
show that (d/dt) F 4(e(t)) = 0. One has (d/d¢)(e(r)) = [a(t), e(r)], where a(t) = (1 — 2e(t))
(d/dt)e(t). We just need to compute (d/dt) F 4(e(t)) for t = 0, and we let e = ¢(0), a = a(0).
We have:

2n+1

d
(a;f.bz.,(eﬂ),---,e(t})) = Y 9ule....[a¢€l,....€)

t=0

Thus, by Lemma 7, in order to show that the above derivative vanishes, it is enough to
prove that the following cocycle is a coboundary.

2n+1

((ﬁ'ln)ne;\-: ¢'2n(x03 sy xln) = Z ¢zn(x0r e [ﬂ, xj]a G x?.n}.

Let

] 2n-1 B ‘
Wiger i O o™ 1)“— Z (=1 by (x0 ..., x0a, %/t .., x?h),

Using the equality By,,_, = Af,,_,, where
O2n—20x% ..., x*"7%) = (B ¢,,)(a, X°, . .., x*" ")
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one checks that for any n one has:

dl‘l’Zn—l I d2¢2n+i = ¢'2n-

2. Infinite Dimensional Cycles and Traces on the Algebras QA4, £4

In this section, we shall establish a canonical one-to-one correspondence between the
following three notions on an algebra A:

(1) Cocycles with infinite support in the (b, B) bicomplex which satisfy the
normalization condition of Lemma 6.
(2) Linear functionals | on the universal graded differential algebra QA such that

J(w1wz —{= 1)6‘6"‘5‘32(91) =4(-1)* jdwl dw,

(3) Odd traces on the algebras Q4, €4 ([3]).

At first, this correspondence will be established at a purely algebraic level, then we shall
have to translate in cases (2), (3) what entire cocycles give.
Thus, let A be an algebra over C, and C” be the space of (n + 1) linear forms on A.

PROPOSITION 1. Let (¥3,)ycns Wan € C2" (resp. (Wan+ 1)nens Yans1 € C2H1) be such
that

(a) bl/’m = Boﬂbm+2 Vm&

6) B = AByth, ¥

Then the functional it on QA given by
(@) w(@®da’---da™) =y, (a°%a’,...,am),
(B w(da' - da™) = Boyr)(@s .., a"™,
(y) ww)=0if dw is odd (resp. even),
satisfies the following equality:
w0, — (=1 %20,0,) = (—1) pdo, do,) (0)

(i.e. equality (2) without the factor of 3).
Proof. Let us prove the even case. Let us check that for a € 4, da belongs to the
centralizer of . The equality

w(da(da’ ---da® ")) = (= 1)*"" 1 p((da’ - da? ') da)

follows from the cyclicity of By, (i.e. b)). One has By, = b,, _, sothatbBys,, = 0,
and also Byby,, = 0, since byr,, is cyclic. Thus, the equality B,b + b'B, = D ([2])
entails that:

Youl@,....a*" Y a) — (= 1)*",,(a, 0% ...,a*" " 1) +

+ (—=1)*"Byy,,(aa’ al,...,a>" ) =0,
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Le. that
p(da(a®dat --- da*" 1) = (= 1) ! u((a® da’ ---da®" ") da).
Thus, we have shown that any dw belongs to the centralizer of p. Let us now show that
Haw — wa) = p(da dw) Vae A. (*)
With @ = a®da’ --- da*" one has
p(wa) = w(@®(da' --- da®"a) = ¥,,(a° a',...,a*" "1, a*"a)—
— (@ aty . @ a? a) + o +
+ (=), (@, ... ,a*" e i e+ e +
+ (= 1)*"y,,(a%a", ..., a).
Thus
Wwa — aw) = by,,(a° a',...,a*, a) = Boy,,+2(a%...,a*" a)
= p(dw da) = — p(da dw).

Finally, we just need to check thatif w, = a dwis of degree 0, witha € 4, and w, e Qis
of degree d,, one has (0). Since dw is in the centralizer of u we have

ww, 0, — (=112 m,m,)
= plado @, — (= 1)""20,a dw)
= pla dw w, — dw(w,a)).
Using (*) we get
wlw,w, — (=112 w,m,) = p(da ddow,)) = (- 1% p(de, do,). 0

The above proof shows that, conversely, any functional y on QA which is even (resp.
odd) and satisfies

Hww, = (=172 w,0,) = (= 1) p(dw, dw,),

defines an even (resp. odd) normalized cochain (¥,,) (resp. (Y;,.,)) such that
by, = By, . , for any m, by the equality

Y@’ ..,a™ = pua® da' --- da™).
Thus, since QA is the universal differential graded algebra over A4, we see that

PROPOSITION 2. Let (Q, d) be a differential graded algebra such that Q° = A, and
i an even (resp. odd) linear form on Q such that

e, 0, — (=112 0,0,) = (= 1) pdo, do,) Yo, Q.
Then the equality
Ya@°,...,a" = uada' ---da™) Va'e A
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defines a normalized even (resp. odd) cochain such that

Y = BoWpsy V.

In [2], we took as a starting point of cyclic cohomology the notion of cycle of dimension
n, given by a diflerential graded algebra (Q, d) as above and a homogeneous linear form
| of degree n such that

(1) Jm1w2 —(=1)"%20,0;, =0 Vo,eQ%j=1,2

®) J.dw =0 VYoeQ .

The above Proposition 2 shows that in order to handle cocycles with infinite support,
one has to replace conditions (1), (2) by the single condition

J(wlwz = (=12 0,0,) = (- 1) jdml dw,. 0)

Note also that the condition by, = By, . , which we use in Propositions 1 and 2 is
slightly different from the cocycle condition of Section 1, namely:d ¢, + d;y¢,,., =0,
the exact relation is given by

Gop = (=1)"Cn — )= 3.1 ¢y, (ev)
Ganrr = (—1)"2m)(2n —2) 21 Y1y 4 4. (odd)

We let (cf. [5]) QA be the algebraic-free product of A by itself. It is generated as an
algebra by the subalgebra 4 = {a*1,a € A} and the elements ga = ax1 — 1*a,a € A.
Also we let o € Aut(QA) be the involution given by

ola)=a—qla), olga) = —qgla) VYaeAd,

and &A be the crossed product algebra §4 = QA x,Z/2 (cf. [11,3]). Welet F, F* =1
be the canonical generator of £4 over Q4. We shall say that a linear form Ton QA4
(resp. §A)is odd iff Tog = — T (resp. Te ¢ = — T, where ¢ is the involution dual to o).

In {3] J. Cuntz and the author give the general form of odd traces on both 04 and
£ A, so it might appear at first sight that such traces are easy to construct and are not
interesting from a cohomological point of view. It turns out, however, that the explicit
construction of [3] is the translation of the triviality of the first spectral sequence of the
(b, B) bicomplex (thm. 40 of [2]). Thus, provided we impose a suitable growth condition
on components T, of T (when A4 is a Banach algebra), this explicit construction
becomes incompatible with the growth condition and does not exclude the existence of
nontrivial traces. We first establish at a purely algebraic level, the correspondence
between odd traces on £4 (resp. QA) and even (resp. odd) functionals on QA satisfying
(0). Let us recall (cf. [3]) that we can identify QA with QA as a linear space and obtain
the product of 04 by a simple formula. We let = be the linear bijection QA4 — QA such
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that
n(a®da' --- da") = a®qa’ .- qa" Vd'e A,

n(da' ---da") = ga' ---qa" Va'e A.

PROPOSITION 3. Let T be an odd linear form on QA (resp. & A) and y the restriction
of Ter to Q% (resp., the restriction to Q" of the linear form w — T(Fn(w)). The map
T — pq is a canonical bijection between odd traces on QA (resp. £ A) and odd (resp. even)
functionals p on QA such that
w0, — (=112 0,0,) = 3(- 1) pdo, dw,). (@)
Proof. First let T be an odd trace on QA and u = Ton. Let us check (0'). We can
assume that the degrees ¢; of w; are ¢, = 1 (2), &, = 0 (2). One has

T(al(w,)n(w,)) = T(rl(w,)n(w,)),

ie.

Ton(w,m,) + Ten(w, dw,) = Ten(w,m,).
Now

Torn(w, dw,) = - T(e(r(w, dw,)))
and

a(n(w, dw,)) = ©(w, dw, — dw, de,),
since on QA as a linear space, a(w) = (—1)“(w — dw), thus
U@y — ©,01) = = Ton(w, dw,) = —1Ton(dw, dw,) = (- 1) pdw, do,).

Conversely, let 1 be a functional on Q°% satisfying (0'). Then let T be the linear form on
QA given by:

(1) T(n(w)) = u(w) if dw =1 (mod 2),

(2) T(n(w)) = u(dw) if dw =0 (mod 2).
We have to check that

T(n(w,)n(w,)) = T(dw,)n(w,)) Yo, 0,cQ.

There are three cases to consider, which we label by the degrees modulo 2 of w, and o,

(0,0). One has

m(w, w,) = n(w,)n(w,), (w,m,) = nlw,)r(w,)
thus one just needs the equality

.u(d(wl w,)) = .u'(d(wZ(ﬂl )
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which follows from
w(dow,)w,) = plw, dw;) and p(w, do,) = u(dw,)o,),
by (0).
(1,0). One has
m(w, )n(w,) = (w0, + ©,dw,). (@), ) = n(w,m,)
thus one has to show that
w0, — 0,0,) + u(dw, do,) =0
which follows from (0').
(1,1). As above, we have to show that
Ton(w,w, + 0, dw,) = Ten(w,w, + w, do,),
ie. that
Fu(d(w,,)) + plo, dw,) = 3pd(,0,)) + po, do,).
But this follows from:
(o)) = ple,(do,)),
pw do,) = p(dw,)o,).
The case of £ 4 and even p’s is treated similarly. O
It we put together Propositions 1, 2 and 3, we see that we get at a purely algebraic level,
the identity between:
(1) Normalized cocycles (¢,,),,, as in Section 1,
(2) Linear functionals x on Q¥4 such that
w0, — (=12 0,m,) = (= 1) p(do, dw,),
(3) Odd traces on §A4 = QA %, Z/2.

Starting with a cocycle (¢, )nen (TeSP. (5, 1 )nen) as in Section 1, the corresponding
functional pu on QA is given by Proposition 1 with components

Yo = (=113 2n — 1)) 7' @y, (resp. Y5,y = (=1)" 24 20) " 5, ).
Thus, if A4 is a Banach algebra and we endow (cl. [1], p. 262) QA4 with the Banach

algebra norms

oo

= z rk”wk ”sr:

r ]

o0

PN

0

where || |, is the projective-tensor product norm on tensor powers of A, we get

PROPOSITION 4. Let A be a Banach algebra. Then Propositions 1 and 2 establish
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a canonical bijective correspondence between normalized entire cocycles on A and linear
forms on QA satisfying (0) which are continuous for all the norms || |, on QA.
Proof. One has
| |
ol _ oy 0
n!
A similar statement holds for 04 and &4, moreover, if we translate the pairing
(Theorem 8) at the level of 0 4, £ A we obtain the following, where Q4 ~ QA isendowed
with the inductive limit topology of the norms | ||,, and §4 ~ QA @ QA (as linear
space) of the direct sum topology:

THEOREM 5. Let 1 be a continuous odd trace on & A, then the map of K ,(A) to C given
by Theorem 8 and the entire even cocycle associated to 1 is obtained by the formula

ecProjA— r(F-—g—h).

V1~ (ge)?

Proof. Up to an overall normalization constant, the entire cocycle ¢ associated to
7 has components ¢,, given by

G2 (@ ..., a%") = (=1)27"2n ~ 1)--- 3.1 1(Faq(a") - q(a®")).

Thus, the answer follows from the formula giving F,.

3. The Algebra ¥ of Operator Valued Distributions

In this section we shall introduce an algebra of operator valued distributions which will
play an important technical role in the estimates of the character of f#-summable
Fredholm modules.

We let # be a Hilbert space. By an operator valued distribution we mean a norm
continuous linear map T from the Schwarz space S(R) (with its usual nuclear space
topology) to the Banach space #(#) of bounded operators in #. Thus, there exists by
hypothesis a continuous seminorm p on S(R) such that | T(f)| < p(f)V f € S(R). We
let & be the space of operator-valued distributions T which satisfy the following
properties:

(1) Support T R* = [0, +oo[.

(2) There exists r > 0 and an analytic operator valued function i(z) for ze C =
{s>0 sU, where U is the disk with center at 1 and radius r such that

(a) t(s) = T(s) on JO, + oo,
(b) the function
h(p) = sup |[[t(z)],, pe]l, +oo[
ze(l/pU

is majorized by a polynomial in p for p — o.
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In (2), the norm [#(z) |, is the Banach space norm [10, 2] of the Schatten class £ 7(#).
In particular we see that (1) € % () is a trace class operator. The operator valued
analytic function t(z) is, of course, uniquely determined by the distribution T and we
shall use the abuse of notation T'(z) instead of t(z). Two distributions T, T, € % such
that T,(z) = T,(z) V z € 0, + oo[ differ by a distribution with support the origin, of the
form Za, 6§, where a, € Z(#), and 6§ is the kth derivative of the Dirac mass d,, at the
origin.

LEMMA 1. (a) Let Te & then the derivative T' = (d/ds)T also belongs to #.
(b) Let Te %, there exists an integer q and S € & such that T — S has support {0}
and that
sup sup [S(z)|l, < oo,
p ze(lipU
where U= {zeC, |z — 1| <r}.

Proof. (a) By definition, T'(f) = — T(f")V f € S(R), so that T" is an operator-valued
distribution satisfying property (1). Let r and U be as in (2) for T and let ¥’ = r/2, then by
Cauchy’s theorem, the operator T'(z)forze 1/pU’, U’ = {ze C, |z — 1| < r'} is of the
form [ye(1/mu T(u) du(u), where p has total mass less than 2p/r, thus

] 2 1
sup [T'G), <= sup TG,

ze(l/p) U’ ze(1/p)U

which proves that T satisfies property (2).

(b) By hypothesis, there exists C < co and g € N such that, with the notations of (2),
h(p) < Cp®. Let T, be, for k=0, 1,..., the operator-valued analytic function in
C = [ Js» 05U, defined inductively by T,(z) = T(z) and Ty, (z) = | Ti(u) du. For
ze(1/p)U one has

1T 1@, < 2.f1 hk(((l -1+ f})_ )dt

where

h(p) = sup T,
ze(l/p U

(since [T (), < [ Ty ()]l for p" < p).
Thus we see that h, is of the order of p* *for k < g, and that h_is of the order of log p
while h,, , is bounded. Then let S be the operator-valued distribution given by

S(N) = jf(3)2+1(3) ds VfeS(R)

It is well defined, since | T, ,(s)| is bounded on [0, 1] and by a polynomial for large s.
By construction the g + Ith derivative of S agrees with T outside the origin, thus the
conclusion. =

We can now show that # is an algebra under the convolution product, which at the
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formal level can be written

3

(T, % T,)(s) = J T, (W) T(s — u) du.

0
More precisely, given feS(R), one can find a,, b, € S(R) such that the restriction to
] —1,00[ x ] — 1, co[ of the function (s, u) = f(s + u) is given by the convergent
series a, ® b,. Then (T, * T,)(f) = £T,(a,) T,(b,) € L ().
LEMMA 2. If T\, T, € & then T, *T, e Z.
Proof. By Lemma 1 one can assume that T; is given by

T,(f) = J : FET() ds,

where T(s) is an analytic operator valued function in C = | J,.,(tU), U = {zeC,
lz—1| < r}, and where
C,=sup sup [T, < oo.
p (pU
Then let T(z) = [§ T,(2z) T,((1 — 2)z)z dZ. It is by construction an analytic operator-
valued function defined in C. One has, for z € (1/p) U, that
1 1
Jze—U, (l—Aze—U
Py Pa

where

1 1 1

P b P
so that by Holder’s inequality:

I Ty (A2) To(1 — D2)li, < IT,(42)],, | To(1 — A)2)ll,, < C,Css
thus we get, for any ze (1/p) U:

1
IT@), < J IT,(A2) T, (1 — 2)2) | ,lzl dA < 12| C, C,.
]
It follows that T(z) defines an element of % and it coincides with the convolution
product T, *T,. O

Let / = d; be the derivative of the Dirac mass at 0. One has 4 € %, and as an operator
valued distribution, 4 has a natural square root (for the convolution product) given by

1
T =—=
T
but this square root does not define an clement of the algebra %, since (when
dim(#) = oo) it fails to satisfy condition (2) above, because the identity operator does
not belong to any #7. We thus need to adjoin the square root 42 of 4 to .% and for this
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we consider the algebra 2 of pairs (T,, T,) of elements of ¢ with product given by:
(Tos T1)*(So, S1) = (ToSo + AT Sy, ToS; + Ty So).

Since A belongs to the center of ¥, one checks that the above product turns Z into an
algebra. This algebra Z contains % (by the homomorphism T —(T,0)), and the
central element A'/? = (0, §,) so that every element of 2 is of the form A + BA'/? with
A, Be?.

LEMMA 3. The equality ©(T,, T,) = trace(T, (1)) defines a trace on the algebra 2.
Proof. By condition (2) we know that T(1) belongs to £ so that the trace is well
defined. Since

(To, T))%(So, S1) = (TS + AT, Sy, ToS; + T, 8,),

it is enough to check that T — trace T(1) is a trace on the algebra #. The proof of
Lemma 2 shows that for T, € % of the form T(f) = j'f(s) T,(s) ds, with

sup sup [|Ti(2)], < oo,
p ze(ljp)U

one has:

trace(T, * T, )(s) = trace(T,* T, )(s) VseU.
Thus for any power of 1 one has

trace((A* T, * T,)(1)) = trace((2* T, * T,)(1)).

Now by Lemma I, to show that trace(S, *S,)(1) = trace(S, *S,)(1), we can assume
that §; = A4 T, + U;, where T is as above and U, has support the origin. Thus, we just
need to check, say, that trace(i*' T, U,)(1) = trace(U, A" T;)(1) which follows from
trace(ab) = trace(ba), a € L(H), be F(H). O

4. Construction of the Character of a 6-Summable Fredholm Module

Let A be an algebra and (#, D, &) an even §-summable Fredholm module over A cf. [4],
Def. 23. Thus by hypothesis ¢éD = — De and exp(—tD?) is of trace class for any positive
t. Our aim is to construct, using D, an element F of the algebra # such that F2 = 1,and
to use the homomorphism a — ad, of A in .2 as well as the trace t to define the
character of (#, D, ).

LEMMA 1. One has, withs=Re z > 0, pe[1, co[,
™|, = (trace(e P2, | D e*0%|, < s™H2[ e~ DO
Proof. One has
le~*%]|, = fle** ], = (trace(e™ ")\

To prove the second inequality it is enough to show that the operator norm of
| De~ 2P| is bounded by 1/\/§. But this follows from the inequality x e”®/#*" <
l/\/.; for x real and positive. 0
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Lemma 1 shows that we can define an element N of & by the equality
1
N

The integral makes sense since the operator norm of 1 /\/.; e~*P? is integrable near the
origin. We shall, however, also need to define the distribution DN which is formally
given by

1 1 ,
oM =7 j Sl D¢ ds

By Lemma 1, one has an analytic operator-valued function,

1
N(f)= jf{s} ﬁ e™Pds, feS(R).

1 1 =
(DN)(z) = —=—=De™*?,
ﬁ \/;
defined for Re z > 0 and such that sup,y [ (PN)(2)||, is of the order of p, p = c0.
However, since the operator norm of (DN)(s) is of the order of 1/s, s — 0, and is not
integrable, we have to be very careful in the definition of the distribution DN.

LEMMA 2. (a) The Laplace transform of the distribution N is given by [§ N(s)e ™**ds =
(D* + A)~ M2, '

(b) There exists a unique element of &, noted DN, whose Laplace transform is equal to
D(D?* + 1)~ 2, one has (DN)(s) = DN(s) for any s > 0.

Proof. (a) Follows from the equality

2 1 .
f —=e" e ds = (a? + A)" V2

(b) The uniqueness follows from [9], let us prove the existence. One has

D(D* + A)~Y2 — D(D* + 1)~ 12

1 [ ]
:EJ D(D*+i+p) ' =D*+1+p) " ")p 2 dp

4]

a
- %(l = A)I D(D? + 4+ p) "' (D> + 1 + p)1p™ 2 dp.
[4]

Now D(D? + 1)"'2 is the Laplace transform of the element of % given by
D(D? + 1) 24, thus we just have to show, using Lemma 1, that [§ D(D? + 4 + p)
(D*+1+p)"'p~'2dp is the Laplace transform of an element of #. But
D(D* + 1+ p)~ ' (D* + A+ p)~' is the Laplace transform of D(D>+ 1 + p) !
e *P**# and it is enough to check that the operator norm of

T(s) = [§ D(D* + 1 4 p) ' e s®P**0) p-li2 4y

is integrable near s = 0. One has:

[ T(s)| EJ‘ (1+p)y 1Perp124dp,
0
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since [|[D(D* + 1 + p)~'|I < (1 + p)~ '/, thus since

.f (14 p)" e p "2 dp < (3 — logs) = O(|log s|)

0

when s — 0 we see that the operator norm of T'(s) is integrable near 0. The same estimate
works for the £7 norm | T(z)|, for ze(1/p)U and shows that Te Z. O

PROPOSITION 3. The equality F = (DN, eN) defines an element of Z of square &,,.

Proof. By Lemma 2, the element DN € % is well defined. Since £ anticommutes with
D, DN anticommutes with ¢N so that the square is given by F? = ((DN)? 4+ AN?,0).
Now the Laplace transform of (DN)? is (Lemma 2) equal to D*(D* + 1)~ ! and that of
AN?is A(D* 4+ A)~ ', Thus, the Laplace transform of (DN)* + /AN?*is equal to 1 and we
get F% = (3,, 0). O
Recall (cf. [117]) that &A is the crossed product of QA by Z/2 so that a homomorphism
from &A to an algebra B is given by

(1) a homomorphism from A to B,
(2) an element F of B of square 1.

DEFINITION 4. Let (3, D, £) be a 8-summable Fredholm module over A, then its
character is the odd trace T on A given by T(x) = t(n(x)) where n: §4 — & is the
homomorphism given by @ — ad, and the element F.

The next lemma defines the components ¢,, = I'(n + %) 1,, of the character.
LEMMA 5. For each n let t,, be the 2n + 1 linear form on A,
B0 =_r{Fa°[F, al--[F,a*"]).
1
(@) 14(a) = T Trace(cae™?*) Vae A
b/
(b) Boty,sz = —2b1,,
(C) dlrlen ng d2¢2n+2 =, O thrc ¢2n _— r(ﬂ & }2_}12"‘

Now it follows from the construction that each of the functionals t,, is norm
continuous on A for the operator norm a — |la/|. However, one cannot estimate | 1,, |
using only the operator norm, so as to get an entire cocycle on A. One needs to use the
finer norm ||[D, a]|l, a € A. This is the aim of the next section.

5. Estimate of the Character of a -Summable Fredholm Module

Let A be an algebra and (3, D, &) an even 0-summable Fredholm module over A. Let
& and Z be the algebras defined in Section 3 and N e &, F = (DN,eN)e Z as in
Proposition 3. Our aim in this section is to estimate the functional ,,,

1,,(a°,...,a*") = t(Fa°[F, a*] --- [F, a*"])
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in terms of the operator norms [a°| and |[D, a']|,i = 1,2,...,2n. Given an element
T of &%, we shall say that an L' function f(s), s € [0, 1] is a majorizing function for
T when the following holds for a suitable neighborhood U = {ze C, |z — 1| < r}of lin
C:

1
(@ Vpe[l, o[, sup (| T(Z)Ilp)éf(g),

ze(l/pU

(b) T(¢) = r T(s)¢(s)ds for any ¢ € S(R).

0

LEMMA 1. Let T;e % have f, as majorizing function, i =1, 2. Then 2f, * f, is

a majorizing function for T, *T,.
Proof. Let T =T,*T,. As in Lemma 3.2, one has

1
T(z) = J. T,(A2)T,((1 — A)z)z dJ,
0

1

1T, < J. ITy(A2) ]l pall T2((1 = A)2) g - )2} dA
0

< j FGIP)f (1 — 2)/p)lz] di

o

< (suplzl) J f1G/p) (1 - i)/p]%di
o

<Af,* fz)@

for any ze (1/p) U. O

Now let a € A, so that [D, a] is bounded. Considering a as the element ad, of .Z, we
shall find majorizing functions for the commutators [N, a] and [DN, a].

LEMMA 2. Let U= {z€eC, |z — 1| <%}. Then, relative to U, the commutator [N, a]
(resp. [DN, a]) has majorizing function 12||[D, a]| é* (resp. 20/ \/JE [[[D,a]llé°) where
& = trace(e (/D%

Proof. Let Uy = {z€C, |z — 1| < }. One has N(s) = IJ\/E e*P?, with majorizing

function n(s) = s™*/* (trace(e~*/»?*))* relative to U,. One has [N,a](s) = 1//xs
[e™*P* a] and

1
[a,e" %] = J‘ e MTDE qle VAR e qd
0
1
= I (e *P*D)[D,a]e U~ MPigd) +
4]

1
+ J e #PI[D,a] (De ' ~MsP)5 4, (%)

0
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Now, by Lemma 4.1, the element T, of &, T,(s) = D e"*”?, has majorizing function
t1(s) = (s/2) "2 (trace(e~/4P*))* relative to U,. Thus, since T,, T,(s) = e™*>* has
majorizing function t, = (trace(e ™ */#?*))* relative to U, we see by Lemma 1 that
[e™*P*, a] has majorizing function

f(s) =4|[D, a]ll, (t;*t;)(s).
One has

(ty *t,)(s) = ('r (uf2)-12 du)é‘ < Sﬁés

thus [N, a](s) has majorizing function (lf\ﬁ) f(s) < 12{[D, a]ll, 0% Next [D, a]N has
majorizing function ||[ D, a] | n(s), thus we only need to consider the term § = D[N, a].
Since S(s) = (l/ﬁ)D[e“m, a] we just need to prove that |[D, a]| 6% is a majorizing
function for T, T(s) = D[e~*P*,a]. The above equality (*) shows that T = A[D,a]T, +
T,[D,a]T,, where A(s) = D? e *P*. More precisely, 4 is the element of ¥ whose
Laplace transform is given by A — D2/(D? + A) = 1 — (4/(D* + 1)) so that 4 = §, +
(T,). Thus

T=[D,alT, +(T,[D,alT,) + T,[D, a]T,.

The first term has majorizing function |[D, a]|t,, the last ||[D, a]|¢, #t,, thus it
remains to estimate (T,[D, a]T,). But relative to U,, the element T,[D,a]T,
has majorizing function |[D,a]ljt,*t,(s) = [[[D,a]llsé* so as in Lemma 3.1 (a),
Cauchy’s theorem shows that its derivative (T,[D, a]T,)’ has majorizing func-
tion 4(|[D, a]| o° d

LEMMA 3. Let (#, D, &) be an even 0-summable Fredholm module over A. Then for any
a®,...,a*" € A one has

( 1 0)4:1

]‘[2"(00, ala LR aZn)l < T

2n
Ia®| TT LD, a’]||trace(e ™ +/9P%),
1
Proof. For each subset J of {1,2,...,2n} let T, % be given by the product
B,...B,,, where B; = [DN, a’] for j¢ J and B; =[N, a’] for je J. The product in
P of the [F,a’],j=1, 2,...,2n, is given by the pair (S,, S,) where:

So = Z Z Ty,

m=0 |J|=2m
n—1
S,=¢ Y Y T,
m=0 |J|=2m+1
Now by Lemma 2, each T, has a majorizing function given by the product

in

T1 1D, a/1li x (20)*" x trace(e™M/*'P?*y x t,,
1

where ¢, is the convolution product of 2n — |J| functions l,f\/E and |J| functions equal
to one. Thus, the Laplace transform of t, is given by i— A~M j=/2@n=lh =
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AWV o that

1

: g2 =1
C(n +31J1)

t,(s) =

Next by definition of 7,, one has
1,,(a% . .., a*") = trace(DNa’S, + eNa®S,)(1).
Thus we have to estimate the following terms:
(1) trace(e Na®A™T,)(1) for |J| = 2m,
(2) trace(eDNa°A"T,)(1) for |J| =2m + 1.

Now Na°T, has majorizing function given by

2n
la®l [T LD, @111 (20)>" trace(e™ 49P*)*(nx1,)
1

relative to U = {z € C, |z — 1] < §}, so that by the Cauchy formula the m th derivative
at the point 1 € C of f(z) = trace(eNa®T,)(z) is smaller than

C4mm| (ﬂ e tJ)(l)s
2n
C = [a®|| TT ILD, a’11i (20)*" trace(e ~*/4)P*).
1
One has

1 1
(nxt,)(1) = /= Ta+di+) Jr

Cn+m+3)
As

i

Th+m+%) (-1

we get that each term of the form (1) is majorized by 4"C ﬁ/(n - 1!
Next DN € & is by the proof of Lemma 4.2(b) of the form D(D? + 1)" 12§, +
2/m(1 — A)T, where T has majorizing function t(s) = (4 — log 5)8°. Thus,
DNa°T, = D(D* + 1)"'2a°T, + §(1 — A)TaT,,
b3

where the first term has majorizing function Ct,, and Ta®T, has majorizing function
Ct*t;. Now one has

trace(eDNa®i™T,)(1)

= ((—%)m trace(eD(D* + 1) 12a°T,)(s) +

2 dAy dAR 5
E - (l + Eg) (a) trace(sTa® f_,)(s))ﬁl,
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where by the above reasoning, each term is majorized by

4"m\Ct,(1) + %4%16(:*:3(1) + %4*"“(:?: + DIC(E*t,)(1)

1
< C4"+* D (m + 1)! (l + 2-[ (4 —logs) dS)f.r(l)
0

S C4"* im+ ) 12,(1) <12 x 4" x C x

X (m + 1)! N O

6. Formulae for the Character Ch(s#, D, ¢).

The technical part of the preceding three sections does obscure the algebraic aspects of
the formula defining the character, ch(2#, D, &), of a f-summable Fredholm module.
Using the inverse Laplace transform, we shall now prove a formula showing that at
a formal level (i.e. permuting the trace with an integral which is in general not possible)
one can think of ch(s#, D, ) as the integral with respect to the Gaussian measure
e ™ dm/ ﬁ, of the cocycles constructed from the action of 4 in 2 and the operators
of square 1 given by F(m) = (D + me)(D* + m?)~'/? taken for imaginary m.

THEOREM 1. Let A be a unital Banach algebra and (#, D, &) an even -summable
Fredholm module over A.

(1) Foranyad®,...,a*" € A, the even part of the following operator is of trace class and
independent of o > 0

T@°,...,a*"

= s '[ F(im + 2)a®[F(im + a), a*] -+~ [F(im + ), a®*] e *®” dm

(2) The functionals
¢2m qb?,n(ao: sees a2n) =0, TI'BCG[T((IO, vasy az»» Cp = {ﬂ = QL.) TR %]ZL

define an entire even cyclic cocycle on A, equal to Ch(#, D, ¢).

Proof. The operator F(z) = (D + z&)(D* + z*)™'/* is well defined for Re z > 0,
and its norm is majorized by

|z]
[Im(z?)|'/*
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since for any real x one has

x? |2|> |z| |z|?

ix2 + 22| " |Im 22| X2 + 22 " Im 22|

Thus, the norm of F(im + a)is for large m of the order of (jm{/a)*? which shows that the
integral defining T is convergent in norm. Since F(z) is an analytic operator valued
function of z, Re z > 0, it follows that the above integral is independent of & > 0. The
Laplace transform L is a homomorphism of the algebra % of Section 3 in the algebra of
analytic operator-valued functions of a complex parameter 4, Re 4 > 0, we thus get two
homomorphisms p, and p_ of Z given by

p((Xy, X)) = L(X,) £ j-luthl}a
where 4'/2 is the branch of the square root equal to 1 for 2 = 1. The image p, (F) of the
element F of Proposition 4.3 1s given by

pAF)A) =D+ AM2g)(D? + )™,
Thus
P+ (F)(Z) = F(A1?), p_(F)(4) = —eF(A'?)e.

The image p. (n(a)) of the element (ad,, 0), a € A is given by p((ad,, 0}() = a. The
inverse Laplace transform L~' applies to any element of L(%) and gives for any
X=(XoX,)e2

i£
&m:LMJ Ko, (X) — p_ (X)) * A2 d.

27 ey J-iz
Now, given a°,...,a*" € A4, let

X = Fa°[F,a']-[F,a*]e 2. One has p,(X)(A)=S(A'?) where, for
Rez >0,

S(z) = F(z)a°[F(2), a'] -~ [F(z), a®"].

Also p_(X)(4) = —&S(A'?)e so that 3(p . (X) — p_(x)) is the even part S,,(A"/?) of the
operator S(A1/?),
Thus, in order to prove Theorem 1, it is enough to show that

lim J - S, (A1) e }m12 4] = 25J. S, (im + ) e+ 9% dm,
E—+w ek 14 s

o

Since S, (z) is an analytic function of z, Re z > 0, it is enough to show that when m — oo,
with &,, = 2m? one has

Gig, )12 5
J‘ S.(2e’ dz]| = 0.

im+a
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im+o¢ T
llzml = im+m

sz

e i

-im+a

One has

(ig,)112
‘ J S..(2)e¥ dz

im+a

m
S J [Suylim + £)] ™ de

-4

m : 2 n+(1/2)
<e v i e ™ de
[Im((im + t)%)|

a

m 2 2 +(1/2)
o C‘[ (m s ot 5 )" e-mH qyp
e 2mt

m? + t2
2mt
it is clear that the integral from o to m/2 tends to 0 when m tends to co. The other part

m 2 L 2\n+(1/2) 1
J (m2 e ™t dr= | f (W)du
{2 mt 1/2

Since

] |3

3

where

2\ n+1/2
I +u ) e ~m( —uzlm,

Jul) = ( 2u
converges to 0 by the Lebesgue-dominated convergence theorem, since

_",2“_ _"1})

h(u) = Sup(me

is integrable on [4,1] (it is of the order of 1/\/1 — u?). O
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We shall now state the result analogous to Theorem 1 in the odd case. In order to
obtain it from the even case applied to the Z/2 graded algebra context, one uses the
same method as in [2] part L.

We let

U(m) = (D + im)(D* + m*)~ % for Rem > 0.
For m real, it is a unitary operator with
U(m)™* = Um)* = (D — im)(D® + m*)~ /2.
For Rem < 0 we define U(m) by
U(m) = U(—m)~! = (D + im)(D* + m?)~1/2
where the square root is given by
7]
212 = |z|12 exp (ii) with z =|z|expif,0e]—n,n[.
As defined, even when m, ¢ Sp D, the operator-valued function U(m) has a discontinuity

near im,, as the square root does. But the discontinuity

oU(img) = lim U(im, + &) — U(im, — &)

e=+ 0+

only invokes the eigenvalues of |D| smaller than |m,|, and is equal to the finite rank
operator 2E, (D)U(im, +), where E, is the characteristic function of the interval

[—a,a].

THEOREM 2. Let A be a unital Banach algebra and (#,D) an odd 0-summable
Fredholm module over A.

(1) Foranyad®,...,a* "' € A, the following operator is of trace class and independent
of o> 0

T(a’,...,a""") = \% JAm HB(im + o) — B(im — «))e™*»* dm
MTJ—-m

with
B(z) = a%a' — U(2)a'U " }(z))...(a*"** — U(z)a®* ‘U~ (2)).
(2) The functionals
Tani @ laisl@ e 8% Y = Tracsl e . .., a2t

define an odd entire cocycle on A.

7. The Index Formula
In this section we shall prove the following index formula:

THEOREM 1. Let A be a unital Banach algebra and (#,D, &) an even 8-summable
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Fredholm module over A. Let (t,,),. be the character v = ch(#,D,¢). Then for any
element e of Ky(A) one has: Index D = (z,¢e).

In order to prove this theorem, we can take for A the Banach algebra A = {a € Z(H#);
¢a=ae, |[D,a]| <oo} with norm given by [|al|= [la| + (|[D,a]|. We can,
moreover, assume that e is a self-adjoint idempotent of A. We wish to use the following
homotopy among operators D to go back to the easy case where [D,e] =0:D, =
D — 18,06 = eD(1 — e) + (1 — e)De.

One has Dy =D,D, =D — eD(l — ¢) — (1 — ¢)De so that D, commutes with e.
Moreover, § = —e[D,e] + [D, e]e is bounded, so that for any t, (D, e] is bounded.
However, we need to control the trace of exp — (D )%, where Df = D* — t(Dé + éD) +
t26? and for this we shall prove:

LEMMA 2. (a) Without changing the class of e in K o(A) one can assume that [|D|'/?, ]
and [|D|'/?,[D, e]] are bounded.
(b) With e as in (a) one has

Sup Tr(exp — (D)) < oo.
te[0.1]
Proof. (a) Let us first show that [[D|*? a] is bounded for any a € A. One has

2

®* D
142 b | 1/4 41
|D|** = (ﬁn) L D2+ OL JL]ZA d’

= (\/En)_lj. | G— Dll+ A)ﬁ.”“dl
o Ak

so that

» 1
(D["%a] = (\/frr)“J -1—2(D[D, al + [D,a]D)m}.““ da.

D* +
Moreover | D(D? + 2)™*| < (24*?) ! so that for 4 large, the norm of the term under
the integral is of the order of ||[D,a] (|24 /2 271 A/* ~ 2734 There is no problem near
4 = 0, since one may always replace D by an invertible operator D’ such that D — D’
and |D|"2 — |D’|*? are both bounded.
It follows that for any ae A the map

teR — o,(a) = exp(it| D|*)a exp(—it|D|"?) e L(H),

is norm continuous. Thus, if we let B = {a€ A; t — «(a)e A of class C* }, we see that the
closure of B in Z(#°) is the same as the closure of 4.

We have two subalgebras B = A4 of the norm closure of A4 in £(#), both norm dense
and stable under holomorphic functional calculus so the inclusion B < A4 induces an
isomorphism in K-theory.

(b) Let e and & be as above, one has D7 = D? — t(Dé + 6D) + t* 3%, and since d is
bounded, it is enough to show that Trace(exp — (D* — t(Dé + 0D))) is bounded. One



ENTIRE CYCLIC COHOMOLOGY OF BANACH ALGEBRAS 545

has
Dd = |D|Fé = |D|Y2[|D|*? F&] + |D|*? Fé6|D|?

where D = F|D| = | D|F is the polar decomposition of D. By hypothesis on e, we know
that [|D|'/?, 8] is bounded, and F commutes with | D|*/? so that [| D|*/2, F§] is bounded.
Thus D = |D|**T + |D|**T’|D|"/?, where T and T’ are bounded operators. Hence

Do + 8D = |D|Y*T, + T,|D|Y? + |D|'2T,|D|*3,
where Ty, T, T, are bounded operators. Then the equality

Trace (exp(—D? + t(Dd + D))
= zz"J- ds, ...ds, Trace exp(—s,D?*)(Dd + dD) x
(4] O=s1£=s5p=l

X exp(—(s, — s{)D?)...(DS + dD)exp — (1 — s,)D?

together with Lemma 4.1 and the Holder inequality give a bound of the form:

ZI“C"f ST, =5, ) =Ny s
0

O=sis<mmsl

which is enough to ensure the convergence O

Lemma 2 shows that in order to prove Theorem 1, one can assume that e satisfies 2(a)
and, hence, gives rise to a family (D))o ,; of f-summable Fredholm modules over 4,
such that
=ellv o

d
(1) Sup|| 3D,

(2) Sup Trace(exp — 5D?) < .

PROPOSITION 3. Let D, be a family of unbounded self-adjoint operators in # such
that (#,D,, ¢) is an unbounded Fredholm module over A for any t € [0, 1], and satisfying
(1),(2). Then the characters of D, and D, differ by a coboundary.

Proof. Let F, be the element of .2 given by Proposition 4.3 applied to D,. Let N (EYL
correspond similarly to D,. For each n let

2n—1

(. i {—I)ET(F,aG[F,,a‘]..‘[F,,ai] x
0

x (%F,)[F,,a*“] ...[F,,a“-*]),

where for i = 0 one takes

T(ag(%Ft)[F,, a i lEa ’]).
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Since (d/df)D, is bounded, the proof of Lemma 5.2 applies verbatim, replacing
commutators with a by d/dt to show that (d/dt)N, (resp (d/dt)(D,N,)) has majorizing

function
d 20
12||—D,||C* resp—— C‘)
oo (e
where

C = SupTrace (exp — D?).
4

d

—D
dr "

It follows then as in Lemma 5.3, that

( 1 0)4n

n!

H*Vzn—xﬂ S X C (*)

d
2 foe
X 2n x “er,

Using the equality

d d
(EF,)F, + F,(H-EF‘) =0

a direct calculation in .2 yields

(bwan—l}(aos ey aln)
2n—~1

=-3 r(FtaD[F,,al]...[F,,aj][-c%F,,ai“][F,,a”z]...) +

25 (@R (G a1 )

i=0

Thus, with 15, the components of the character of D, we get

(bwa.,-l S ,)(a", .. )

dt
— dF F 1 F 2n o
=1 a} 1 a(}[ r'!a]"'[ pd ]
2n-1 ) ) d .
N G IR G T R B
i=0

One has

(- l)ft(a“[F:,a‘] . [F, a‘](%fﬂ) [F a4 s az"])

= _%T([F" aU] [Fv al] G [F:!ai]F!d(%Fl[Fr: aH l] LA [F“ azn])
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and
d (] 1 7 o 2n
T aFr a[‘Fha]"‘[Pba ]
d
= _‘ET((F‘EP})[F{, aD] iy [Fh aZH])_
Thus
d 1

bd‘fln—l + Effzn T _EAHE;”

where

@ ., a2 = r((ﬂa‘%ﬂ)m a]...[F, ah])

Similarly, one has

Bl iila®; . ...a*)
2n+1 ) d )
-y r([F,,a°] ol a"l](F,aF,) [F,d]...[F, a“]),
i=0
so that:
AByy, 1 = (2n + 2)A65,
Hence

d 1 1
—HETEH =bjh1 + 3 mBlﬁ‘an

Equivalently with
@5, =2""%x1x3x%x - x(2n— ),
Van-1=m)" ! x 27" x I x 3 x - x (20— DYha-1,

we get

d
—drrp‘ =(d, +d,)y".

Since by (*) (y2,_ 1 )nen 1S an entire cochain the conclusion follows.

547

)

Proof of Theorem 1. We can assume that e is a self-adjoint idempotent of A4 satisfying
the conditions of Lemma 2(a). Then Proposition 3 and Theorem 1.8 show that we can
replace D by D, =D —eD(l —¢) — (1 — ¢)De without changing the value of
(ch(#,D,¢), e). Thus, the latter is given by Trace(seexp — D?) which by the

MacKean-Singer identity is equal to the index of the operator ¢ De™.

O
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