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Abstract. Motivated by multiplicative K-homology, and understanding
critical phenomena in some classical statistical mechanical models, we
construct actions of GL(c0) on the operator algebras of V. Jones and Ocneanu,
and analyse these in terms of embeddings of U(1)-current algebras.

1. Introduction

In this paper we shall describe a construction of actions of the group GL(c0) on the
V. Jones and Ocneanu algebras, to which both authors of this paper arrived at
independently and for different reasons.

The first author was motivated by the search for a multiplicative analogue of
the known additive K-homology theory. In this the Jones’ index of subfactors
would be the multiplicative analogue of the codimension of a subspace of a Hilbert
space. This analogy would be in the same way as the classification of outer
conjugacy classes of automorphisms of the hyperfinite factor of type I, is the
multiplicative analogue of the classification of unitaries modulo the compact
operators. The basic notion of a Fredholm module (}, D) on an algebra U gets
replaced by a pair (4,0,) where A is a C*-algebra, o, a one parameter group of
automorphisms, while the unitary group H(2) acts on 4 by automorphisms. It is
easy to get such a multiplicative module out of a Fredholm module (b, D) by the
CAR construction, and the possibility of replacing the CAR algebra by the
algebras of V. Jones and Ocneanu served as one motivation for the search of an
action of GL(c0).

The second author was motivated by statistical mechanics, in particular by the
transfer matrix method, and the problem of understanding critical phenomena
and the continuum limit in classical models such as those of Potts and of Andrews
et al.

The transfer matrix method allows us to reduce a two-dimensional classical or
commutative statistical mechanical model to a one-dimensional quantum or non-
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commutative model. Subsequently, taking a continuum limit one obtains an
Euclidean field theory, equipped with representations of the Virasoro algebra in
the case of conformal invariant field theory. This framework is now well
understood in the case of the nearest neighbour two dimensional Ising model [P,
AE, EL, A, CE, K]. This paper is the first part of an investigation into
understanding critical phenomena in other classical models, such as those of Potts
[B] and Andrews et al. [ABF], and representations of the Virasoro algebra at the
level of some one dimensional quantum model (before the scaling limit takes place)
set in the operator algebras of Temperley and Lieb [ TL], Jones [J], and Ocneanu
[O]. Such algebras can be regarded as deformations of the Clifford algebra. This
investigation begins here with a study of embeddings of U(1)-current algebras in
the one-dimensional quantum systems.

Consider the following two dimensional classical models on the square
lattice Z*:

(a) The Potts model [B]. At each site we have g-possible states, so that a
configuration of the system is an element of {1,2, ..., q}%". The Hamiltonian for the
(standard) Potts model is #'(g)= — ) Jd(a,, o), where the summation is over
nearest neighbours. =h

(b) The Andrews-Baxter-Forrester model [ABF]. Again we have ¢ possible
states at each site, but we only consider configurations o€ {1,2,...,7 }ZZ such that
|o,— o4 =1 for nearest neighbours o, f. The Hamiltonian is obtained by consider-
ing interactions around faces.

In the algebraic approach, we reduce the problem set classically in C(P), the
continuous functions on a configuration space P to a non-commutative
C*-algebra A [P, AE, CE, K]. The programme is, given a classical equilibrium
state p at inverse temperature f, to find a linear map ¢, on the C*-algebra 4,and a
map F—F, from local observables in C(P) to A, such that a classical correlation
function can be computed using a knowledge of the quantum system alone:

PF)=¢,(Fp). (1.1)

One expects that the map F— F; depends only on the inverse temperature 8, and
that positivity of ¢, is related to reflection positivity of u [K].

Take for example the one dimensional 2-state Potts model [B]. This can be
described using the algebra M, of complex g x g matrices. The Hamiltonian for the
Potts model with periodic boundary conditions is

Hy(0)=— ) i JO(05, 01 4). (1.2)

i=—-L

Then the partition function is

Z, =y exp— A (0)= Y exp(BJo(o;, 014 y))=tr TH 1, (1.3)

if T, , =exp(BJd(o,0")), a g x ¢ matrix when a,6"€{1,2,...,¢}. Similarly
(FYk=Y F(o)exp—pA(0)/Z,=tr FyT>* i T2 (1.4)
Consequently, letting L— oo, we have
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where Q=g V%(1,...,1) is the largest eigenvector of the transfer matrix
T=(eX—1)eX*/ if (X —1)(eX* —1)=¢g, and f is the rank one projection on Q.

One proceeds similarly in 2-dimensions by first taking a finite box [ — M, M]
x [— L, L] and pushing each column {i} x [ — L, L] onto one site (i,0) and picking
up one copy of M, for each site (i,0) in the row [ — M, M] x {0}. Thus

Zypg=tr T2EH 1 (FYEM —tp PM 2L T2+ L (1.6)

M
where now T,,, Fj' € ® M, and one can proceed to take the thermodynamic limit
-M

as before. The transfer matrix T can be expressed, up to a scalar,as T=V'2W V12,
Here V comes from vertical interactions so that

V=expKi} ey,
and

0=1®..0f®1..®1
b e . (1.7)
I position

We have taken different interaction constants J, J, in the vertical and horizontal

directions with K;= fJ,. Then W arising from horizontal interactions is diagonal,

and

W=expK,} esii1 €241 =180... ® g®1..®1, (1.8)

i,i+1

q
where g= j; g;®g;e M,®M,, and g; is the rank one projection on Q;=(d;)% ;.

The family {e;}* of projections arising from the Potts model transfer matrix
satisfy the relations [J, B]:

ee;=ee;, li—jl=2, (1.9)
€+ 1€; =76, (1.10)

where ! = g. Similarly, one can describe the transfer matrix of the ABF model (at

least at criticality) with the aid of projections satisfying similar relations with
1 Y =4cos?n/({ +1), [KAW, P]. We note from Jones’ classification of index of
subfactors [J7, that an infinite family {e;} of projections exists satisfying (1.9) and
(1.10) if and only if v 'e[4,c0)u{dcos’n/(/+1):/=3,4,...}. Observe that
2=4cos*(n/4), 3=4cos?’(n/6). One can indeed generalise the ABF models
[P] by taking any finite connected graph I', with vertices I''” and edges I'".
Then consider the space of configurations o € (I'®)%” subject to the constraint that
(0,05 €'V for all pairs o, § of nearest neighbours in Z*. Then in this model, one
gets a representation of the Jones” relations where 1~ ' =02, and o is the largest
eigenvalue of a certain incidence matrix associated with the graph I

From a lattice model, one gets a field theory by taking a continuum limit;
letting the lattice spacing ¢—0, whilst simultaneously letting the temperature
approach the critical temperature, in such a way that ¢-(correlation length) is
constant.
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This is well understood in the Ising model [SMJ, PT1, PT2, SO’C]. Belavin ct
al. [BPZ] suggested using conformal invariance to understand scale invariance of
special critical points. Conformal invariance is understood via representations of
the Virasoro algebras. A knowledge of which representations can appear tells us
something about the field theory and the nature of the critical points. The Virasoro
algebra is the unique central extension of the Witt algebra of vector fields on S?,
generated by L,, meZ and a central element ¢ with

¢ 2

12m(m Do, —y- (1.11)
Unitarity of the field theory, (coming from reflection positivity of the statistical
mechanical model) means L¥=L_,. From physical considerations, one is also
interested in highest weight representations, where the energy of L, is bounded
below. There is a vector |h), the highest weight vector, a scalar h such that Ly|h)
=hlh), L,|h>=0, n>0. In an irreducible representation, ¢ is a scalar, and so an
irreducible highest weight unitary representation is determined by a pair (c, h) of
real numbers. It is known that such representations exist if and only if either [FQS,
GKO]:

[Lm9 Ln] =(m_n)Lm+n+

c=1, h=0, (1.12)
c=1—=6/m(m+1), h=h, (c)=[((m+1)p—mq)*—1]/4m(m+1),
m=234 ....p=12,....m—1, qg=1,2,...,p. (1.13)

The question then arises of which representations correspond to certain statistical
mechanical models. The possible values of 4 are related to the scaling dimensions
or critical exponents. In this way, comparing with known exponents, one can
match [FQS, H] (1.13) m =3 with the Ising model, m =4 with the tricritical Ising
model, m =15 with the 3-state Potts model, and m = 5 with the ABF models. On the
other hand we have noted how the Potts model and ABF models are related to the
Jones’ classification via the transfer matrix method. It is thus natural to look for a
direct link between the FQS classification and that of Jones. In this present paper
we construct U(1)-currents directly from the Jones algebra, from which, using the
Sugawara formula one can construct representations of the Virasoro algebra with
central charge c=1.

The operator algebras of Jones and Ocneanu provide a natural setting for
deforming the Fermi-Dirac quantization of the classical fields on S*. The Jones
algebra A(r) is the C*-algebra generated by projections {e;},.z satisfying relations
(1.9) and (1.10). The Ocneanu algebra (see Sect. 3) A(T') is a slightly larger algebra
associated to a connected graph I such that the largest eigenvalue of its associated
incidence matrix is t~'/2. In general A(I') is generated by A(r) and a finite
dimensional C*-algebra. In Sect. 2 we show how to embed a copy of an observable
algebra in an operator algebra, simply by constructing certain representations of
the Lie algebra gl(co) from operators satisfying infinitesimal versions of the Jones’
relations. This allows us in Sects. 3 and 4 to embed the observable algebra in the
algebras of Jones and Ocneanu, with the Ocneanu algebra permitting a rich choice
of embeddings. The Hamiltonian L, = ) ne,, generates time evolution, and has a
unique KMS state wj for each temperature i (if 1~ ' <4), and a canonical ground
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state w, (Sect. 5). The restriction of w; to any observable algebra constructed in
Sect. 4 is quasi-free. In the state @, we can construct (Sect. 6) U(1)-currents T,
satisfying [T, T,,] =nd,, _, to which one can apply the Sugawara formula.

What we have achieved is to construct representations of the Virasoro algebra
in the setting of the algebras of V. Jones and Ocneanu, with central charge c=1. It
remains to construct representations of the Virasoro algebra with central charge
c=1—6/mm+1) in the setting of the algebras associated with index 77!
=4cos?’n/(m+1). However, we have strong evidence from studying the charac-
ters of the discrete series of representations of the Virasoro algebra that this can be
done. It also remains to understand how the families of U(1)-currents which we
have constructed, associated to a single graph I, fit together.

2. Representations of gl/(c0) and of the Observable Algebra

If Iis a countable set, let gl(I) denote the Lie algebra of |I| x |I| matrices over €, with
only finitely many non-zero entries, generated by the elementary matrices
{E;;i,jeI}. The first lemma shows the equivalence between those representations
of gl(I), where E;; are projections, with representations of the observable algebra
over the Hilbert space #*(I).

Lemma 2.1. Let I be a countable set, # a unital C*-algebra, and for eachi,jel, let
e;; be elements of %. Then the following pair of conditions are equivalent :

2.1) (a) e;=ef,
(b) e;kj:eji,
(c) [eij:ejz =¢€;;—¢jj,
(d) [ejpepl=ey if j*k,
(e) [eijaekl:lzo if jEk i

(2.2)  Thereis an unique unital *-homomorphismn from the observable algebra over
(1) into B such that n(a}a;)=e;;.

Proof. (2.2) = (2.1)is clear as E;;—aja; extends to a Lic algebra representation of
el(I).

(2.1) = (2.2). Suppose [ is ordered, say an interval in Z.

Let fi=ey, u;=e; ;1. From (2.1)(d) we have fu; —u, f;=u; (*). Multiplying (*)
on the left by f,, we see fiuf;=0, and then multiplying (*) on the right by f, we see
u,f;=0,and so fu;=u; Similarly, uf f; . | =0, uf f;=u¥. Hence from (2.1) (c), [u;, u¥]
=fi—fiy1, we see ufu;=f,(1—1), uuf=f(1—f,. ;). Then Lemma 2.1 will
follow from:

Lemma 2.2. Let I be a countable set, say an interval in Z. For each i€l, let f,u;
be elements of a unital C*-algebra %4. Then the following three sets of conditions
are equivalent :

(2.3)  Each f;is a projection and the map E;— f;, E; ; . = u; extends to a Lie algebra
homomorphism from gl(I) into 4.

(2.4)  Thereis anunique unital *-homomorphismn from the observable algebra over
I(I) into & such that n(afa)= f,, n(aFa,, )= u..
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(a) f; is a projection, (2.5)
(b) [fis /;1=0,

© [u, fi1=0 if j=*ii+1,

(d) [upuf1=0 if li—jlz2,

© wufu;=fir (1= 1) wuf=fi1—fiy ).

Proof. (2.5) = (2.4). Let K={—1,1}" with the equivalence relation ~ on K given
by x ~ yif x = (x(i)), y = (¥(i)) € K, x(i) = y(i) except for finitely many coordinates, and
Z (x(i)— y(i)) =0. We identify the gauge invariant CAR algebra on /*(I) with the

C*-dlgebra C*(G) of the groupoid of the equivalence relation G of ~ [R]. In
particular C*(G) contains C(K), and so g;, the projection given by the characteristic
function of {xe K:x(i)=1}. Let v; be the partial isometry with initial support
g;+1(1—g;) and final support g,(1 —g;, ), which replaces x(i)= — 1, x(i + 1) =1 with
x(i)=1, x(i+ 1)= — 1, which does not affect ) x(i) and so v; belongs to C*(G). The v;
generate the equivalence relation, since given any sequence (—1,1, —1,...,1) of
+1, one can always put the — 1’s on the left by replacing any pair 1, —1 by —1,1

Thus to show that n:g;,v;— f,u; extends to a homomorphism between the
C*-algebras C*(G) and %4, one just has to check that it gives a covariant
representation of a groupoid. It is clear that 7: g;— f; extends to a homomorphism
of C(K) onto C*(f;). To show that U:v,—u; extends to a representation of the
inverse semigroup ¢ of partial isometries on K, one notes that ¢ is the universal
inverse semigroup of partial isometries on generators {v, v¥, fi, 1 — f;} subject to
the relations 2(a)—(e), which imply the infinitesimal Jones or braid relations:

v;0,0;=0  v}=0 (2.6)

together with v}, , =0=0¥ v, To see that ¥ is universal one merely observes
that any non-zero word in {v, v¥, f;, 1 — f;} can be uniquely expressed as

f(s)v#(Jl)...v#(Jp), (2.7
where

(@) f(e)= Hf( &), f(e)=1, f; or 1 —f, and suppe={i: f;=1} is finite.
Jiz{kz,kl+1 - } Jizky Jiv1>Js kiv1 >k U#(Ji):lllﬁ l/,# We say
v*(J,) is starred, v(J}) is unstarred.
(¢) If JP={k;....j;+ 1}, and one of {v*(J,),v*(J;,,)} is starred and one is
unstarred, then J?nJ, . =0.
p
(d) supp(e)n |J JP=
i=1

We can then deduce that (7, U) gives a covariant representation of the groupoid
% on K and so gives the required embedding of the observable algebra on /(1)
in 4.

Remark 2.3. The relations (2.6) give rise to Quantum Yang-Baxter equation in
that R(s)=exp(sv,) satisfy:

R(5) Ry (s +5) R(s) =R (5) R{s +5") Ry 1(s),
RURAS)=R{SIRAs)  i—jl+1. 23)
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3. Local Structure

We start with a C*-algebra 4 with the following type of local structure over Z. To
every subset 4 CZ is associated a C*-subalgebra A(A4)CA in such a way that

if AcA, then A(A)CA(A'), (3.1)
if d(A4,4)=1, then A(A) and A(A’} commute. (3.2)

Here d{A, A)y=min{|i—jl:ie A4, je A'}. We are also given an automorphism o of 4
such that

a(A(A))=A(A+2), forany AeZ. (3.3)

Example 3.1. The Jones Algebra. If t7'e[4, 0)uidcos’n/m:m=3.4,...}, let

A=A.= A(7) be the C*-algebra generated by projections e,, n e Z satisfying the V.
Jones’ relations

€4€m = €mCh, |m——n|§r, (34)

€t 1€n="TEC,. (3.5)

Foreachsubset A CZ,let A(A)be the C*-subalgebra generated by e,,ne A. Let a be

the shift of 2, a(e,)=e,, ,, so that conditions (3.1)—(3.3) are obviously satisfed.
There is an unique positive trace Tr on A(t) called the Markov trace, such that

Tr(xe,)=1Tr(x) xed(—oo,m—1]7, (3.6)
Trle,)=1, Tr(1)=1. (3.7)
In particular, for 1~ ' =4 =4 cos?n/4, A(}) can be identified with the even part

of the Clifford algebra over Ix(Z). More precisely let {7, :neZ} satisfy the Clifford
relations y, =y, {7 Vi) =20, S0 that U, =1iy,7, .  are self adjoint unitaries in the
Clifford algebra A"=C*(y,:neZ) satisfying the relations U,U,=U,U,,
m—n|=2,and U,U,,,=—U,, U, Hencee,=(1+U,)/2=(1+1y,7,+)/2 satisfy
the V. Jones relations (3.4) and (3.5), so that A() can be identified with the even part
of the Clifford algebra, namely A", = C*(y,;:1,j€ Z). (The algebra A" is graded so
that y, is odd.) Going from this real or Clifford picture to a CAR picture, one takes
a complex structure on [Z(Z) with real basis u, such that in,,=n,,41,
Myns 1= —Ha, Then the creation operators a,=(y,,+y,,41)/2, are odd, and
satisfy the canonical commutation relations {q,,a,}=0, {a, a%}=95,,. In this
language we identify:

Cop= a:(an s (38)
62;1+1:[1+(an_a:<)(an+1+a:<+l):]/2' (39)

Then afa,=e,,, afa,.=e, (1 —2¢,,.1)€s,., defines a Lie algebra homomor-
phism of gl(c0) into A(3).

Example 3.2. The Ocneanu Algebra. Let I be a graph, with base point *, I'* the
set of vertices, I''") the set of edges, so that I''!) consists of certain two element
subsets of I'¥. We say that y e ' is even (respectively odd) if it can be joined to *
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by an even (respectively odd) number of edges. We let I'{” (respectively I''”) denote
the even (respectively odd) vertices. Let K be the Cantor set of all sequences (x,), .z
with

VV,(XV,XHI)GF(I), (310)
X, 1seven. (3.11)

On K consider the equivalence relation ~ with countable orbits given by (x,) ~(y,)
if and only if x,=y,, except in some finite set of v’s. Let 4 =A"= A(I') be the
corresponding C*-algebra. For each (finite) subset 4 CZ, let A(A)= A"(A) be the
C*-subalgebra generated by the following partial isometries f, .: Both y and 7’ are
elements of

Gr={e(T' N (7140 )T, € I, 24 1 €T,
if ii+1,2m2n+1ed’}, (3.12)

where A'={i:d(i, /) <1}, and y(j)=7'(j) if j ¢ A. The partial isometry f, .. has as
initial domain the cylinder set Z, = {(x,): x;=y;, ie A'}, and it replaces any such (x,)
in Z,, by (y,) in the cylinder set Z where y,=x,,v¢ A, y,=7,, ve A. The shift by 2
on K induces an dutomorphlsm a of A(I') satisfying (3.1)—(3.3).

Associated to the graph I is a symmetric 0—1 matrix 4, indexed by the vertices
r'®, with entries A,, equal to 0 or 1, according as (g, 7)e 'V or (0, )¢ I'". We let
tin)={0eI"?:(g,n)e I'V}. If the graph is connected, then there exists an unique
eigenvector (v,),. ro with strictly positive entries, and «€(0, 1] such that

vy= Y v, 3 vy=1. (3.13)
oet(n) neven
Then X(n)=((ow,/v,)""?),c 1 defines a unit vector in /(t(n)). fk</eZ,6,feT'"”,
let @%71={ye @™V y(k—1)=4, (¢ +1)=p}. Then for each neZ, let

ZX (@) X(m (@) f, (3.14)

where the summation is over all ne I if n is even or all yeI'™ if n is odd,
v,V € ”ﬁﬁ,” »and y(n)=g,7'(n)=¢". Then e, is a projection, being identified with a sum
(over odd or even vertices depending on whether n is even or odd) of the rank one
projection on X(x) in End(/*(t(y))). The family e,, satisfy the Jones’ relations (3.3)
and (3.4) for t=02, so that A(«?)C A(I).

We define a trace Tr, called the Markov trace, on A(I') to be the unique state on
A(I') such that

Tef, =0 if y+y, (3.15)
Trf, =o' "F 2oy, if yedl. (3.16)

Then
Tr(xe,)=o?Tr(x), xe A(—o0,m—1], (3.17)

Tr(e,) =0 Tr(1)=1. (3.18)
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Consequently Tr|A(x?) is the Markov trace on A(«?).
We emphasize that A(I')= A(«?) in general, and we shall indeed see in Sect. 6
that

A7°{0,1,2} =C+A4"{0,1,2}

eo(l —e2) eo(l —ez) "

However we claim that A(I') is generated by A(«?) and a finite dimensional algebra.
Let ¢ (respectively n) denote the left (respectively right) action of 4, on 4, so that
o(A4,) =n(A4,). We first note that there is an action ¢ of 4, , ,=A[0,k+1] on A4,,
whose commutant is the (right) action of A4, _, on 4,. The right actiont of 4, _; on
A, is given by

T fyr) oy = Fonte

if ' =9,% 7,7 €9OH, y,7 €@ pe g™ M and n(f,, ) f, =0 otherwise.
To describe the commutant of the action of {f,, ,,:7(k—1)=06} on f, .. we note
that we have the freedom to change 7€[0, k+2], where §|[0,k] =7, j(k+1)=34,
which can be described as an action ¢ of A4, as follows:

. 1/2,,—1/2
Q(f?,?’)'fy,y’—’vm/ Uy, ! f?o,y(w

if 7,7 €918, 3,7 € g1 90 [0,k]=7, o =7I[0, k], 5[0,k ~1]='|[0,k— 1],
Yo(k)=7(k), ny=y(k)=7y'(k), n,=7(k), and o(f; ;) f, , =0 otherwise. The factor
vy/?v,/% is inserted to make g a *-representation with respect to the inner product
{x,yy=try*xon A4,_,.Then (4, . ;) =7(A4,), and g is faithful ifevery vertex which
isaright-hand end point of a path of length k+ 1, is also a right-hand end point of a
path of length k — 1 (with the same left-hand and points). We assume that this is the
case. This will certainly be the case if the two restrictions of 4% to even and odd
vertices are irreducible matrices. Then g(e, ., ;)= E, , { 1s the orthogonal projection

of A, on A, ;.
Lemma 3.3. If k is sufficiently large, A, ., is the C*-algebra generated by A, and
€r+i1

Proof. We take k sufficiently large that ¢ is faithful. Let xe(o(4,), 0(e,.,))
Co(A4y) =n(A,). Then xE,,,=E,,;x shows that x=xE,, ()=(E. x)!
=E,1(x)ed, . Hence  (o(Ay),0(eps 1)) Cm(Ay—y), and  so  o(4;y)
D(e(Ap, oler 1) DAy - 1) Do(Ay s 1)

Corollary 3.4. The C*-algebra A(I') is generated by A(o?) and a finite dimensional
C*-algebra.

4. Embedding the Observable Algebra in Local Algebras
Let A be a C*-algebra with local structure as in (3.1)—(3.3) of Sect. 3.

Lemma 4.1. Let f, € A{0} be a projection and u, € A{0,1,2} a partial isometry; with
initial support o(fo)(1— fo) and final support fo(1—a(f,)). Then there exists an
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unique *-homomorphism j from the observable algebra O over /*(Z) to A such that

jUQ(X)ZGA(x):XE@> (41)
Jagao)= fo, (4.2)
Jlada)=u,. (4.3)

Remark 4.2. Here g, 1s the automorphism of the observable algebra ¢ which is the
restriction of the automorphism o on the Fermion algebra given by a(y,) =7, , or
o(a;)=a;,, (see Example 3.1).

Proof of Lemma 4.1. Let fi=d'(f,)e A{i}, u;=0'(uo)e A{2i,2i+1,2i+2} forie Z.
Then { f;, u;} satisfy conditions (2.5) of Lemma 2.2.

Let us now examine Lemma 4.1 in the context of the Jones and Ocneanu
algebras.
Lemma 4.2. Let A, be the V. Jones algebra as in Sect. 3.
(4.4)  In A{0,1,2} the projections ey(1 —e,) and (1 —eg)e, are equivalent.
(4.5)  The reduced algebra of A{0,1,2} by e (1—e,) is one-dimensional.

Proof. (44). If u=1t"les(1—e,)e;(1—ep)e,=eo(1—17"'e))e, e 4{0,1,2}, [cf.
(Example 3.1)] then

utu=(1—egp)e,, uu*=e,(1—ey).
(4.5) is clear from (4.4), 4{0,1,2} = C*(eq, ey, e,) and the Jones’ relations.

Theorem 4.3. (a) For 1~ 'e[4, 0)u{4cos’n/m}, let A= A(x) the V. Jones algebra.
Then for each teT, there exists an unique *-endomorphism j, of the observable
algebra O into A(t) such that

Jodx)=04(x), xe0, (4.6)
jdaFa)=ey;, ieZ, (4.7
jt(a;kai-f1)=6f4(t')e2i(1_T¥162i+1)eli+25 ieZ. (4.8)

(b) For I' a connected graph, let A= A(I') be the Ocneanu algebra, and G* be
the unitary group of the reduced algebra of A™{0,1,2} by eo(1 —e,). Then for each
te G, there exists an unique *-endomorphism j, of the observable algebra O into A(T)
satisfying (4.6)—(4.8).

Proof. Using Lemmas 2.2 and 4.2, it only remains to show that the embeddings
are faithful. This can be shown by computing the Markov trace on the projection
f(¢) (in the notation of the proof of Lemma 2.2) in the centre C((+ 1)%) of ¢, and
observing that this is non-zero.

It only remains to compute the group G'.

Proposition 4.4. For I' a connected graph, let A= A(I') be the Ocneanu algebra.
(4.9)  Any function of x,, ve A\A =04 lies in the centre of A(A).
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(4.10)  Let ¢\ be the function ¢"(x,))=0if x,*n, and q\"((x,))=11if x,=n. Then
6§ VeodV =0 if n+1.

(4.11) Let P®(n,n') denote the paths of length k from n to n'. Then if n=+n',
(" Veoq V(1 —e,)qY) is a projection of dimension # PP(n,n') in A{0,1,2}.
(Here :H:((b)=0.)

(4.12) ¢ VeoqV(1—e,)qy) is a projection of dimension #t(n)—1 in A{0,1,2}.

Proof. (4.9): Any function of x,, ve 04 is alinear combination of {g: #}. Then g
=Y f, ,€ A(A), where the summation is over all y € 4* such that y(v) 7. Moreover
g is a unit for {f, ,:9,9'€e%", y[dA=y|04, y(v)=n} and annihilates
{foy 0y ed”, y[oA=y104, y(v)+n}. Hence g\ commutes with A(A)
ZHm{f,,, ir.y' €94, 914 =04},

(4.10): We have

A{0} = @ End/*(P*(n, 1), (4.13)
n.n
where the summation is over odd n,7'el®. We have as in (4.9) that
g\ " (respectively ¢\V) is a unit for End/*(P*(wf)) if n=a (respectively
n=/p), and annihilates End/Z*(P*(a, f)) if n#o (respectively n+p). Hence
g,V End/?P(o,a)qy’ =0 if n=n'. Consequently qi Ve,q’=0 if n+n' as
eoe 69 End/*(P(n, ;7)) [where we identify P?(a, 2) with #(a)].

aod

(4. 11) Take 5,1’ odd vertices in I'"?), y=#". Then
64" = L Sy

where the summation s over all y € 912} . Take y € 41", such that ¢ ”eoqff) being a
rank one projection in End/*(t(n)), there exists a unitary u in End/*(t(y))e 4{0}
such that ¢\~ Yeoq{" =uf, ,u*. Hence, since [u, f,. ] =0 for each y' e %), we see

n,n"
that

3 3
q,, ”eoq(l’(ﬂ*e )qi’ )_ 71 1)eoq(l) ( )_u Z.ﬁ/?'»?‘/')u*,

where the summation is over all y' € %n 1> and which is of dimension 4 P‘z’(r; ') in
End(Z2(P®(n,n))). (Here if y e 911,y € 42, with y=9" on A~ A,, we let 7y’ denote
the obvious element of {9"‘“‘“.)

(4.12): As in the proof of (4.11), we see that the dimension of
4, Veoq(1—e5)q in End/*(P®(n,n)) is the same as that of g{”(1—e,)q}? in
End#?(t(n)). Now e, is a rank one projection in End/(t(y)), and consequently its
complement is of dimension #t(x)—1.

Corollary 4.5. If I is a connected graph, the reduction of the algebra A™{0,1,2} by
eo(1 —e,) can be identified with

@ M(NMm,7). (4.14)
7, n"odd

where M(N) denotes the algebra of complex N x N matrices, and the summation is
over odd vertices i1’ in I'? with

(n.n') = { # P, )  when nn’

#t(n)—1 when y=yn' (4.15)
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and #0=0. In particular, when I is the graph of a simply laced Dynkin diagram
(with base point * as indicated below) the group G" is as follows:

r G"
Ay 0 ! 2 .. zm—1 x=0,1 T3~ b
0 1 2 2m x=0 T2
Ayt i _
*:1 "lr3m 1
D e 2 . . w2 *=0 TPOUQR)
2m O'/ =1 3"
T S =0 TmeUR
2m+1 (_)./ w—1 T3"'+l
YR S D S S s=0  T®
L x=1 T*®U(_2)
E, ¢ ! : 3 B H £=0 T
l x#=1 T’®U(2)
Eq 0 ! 2 3 4 2 6 w«=0 T

‘_ =1  TQUQ)

5. The KMS States of the Hamiltonian X ne,,

Let I" be a connected graph, with Jones index t~ ' as in Sect. 3. If H,,= Y ne,,.

n{Zm

then lim Ad(e”") defines a strongly continuous one parameter group o, of

x-automorphisms of A({"), whose generator we denote by L. Clearly o, leaves A(t)
and j(() invariant for any embedding j of the observable algebra ¢ in A(I') as in
Sect. 4, and on such an observable algebra coincides with the time evolution given
by the Dirac operator.

Theorem 5.1. Let I" be a connected graph with Jones index 1~ ' <4.

(5.1) Foreach p>0, there exists an unique KMS state wg, at inverse temperature
B for Lo. Moreover, the restriction wg| A(t) is also an unique KMS state for Lo| A(t)
at inverse temperature f.

(5.2) The states wy, w4 A" are factorial, and if T~ ' +2, of type 1.

(5.3) If j is any embedding as in Sect. 5 of the observable algebra in A(I'), there
exists a projection E of norm one from A(I') onto j(O), such that wg=1; < E, wherep,
is the restriction of the quasi-free state w4, to the observable algebra, and where
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Wy, is the unique KMS state on the Clifford algebra Cliffo(£*(SYHg) for the
Dirac Hamiltonian, with chemical potential B~ 'log(t/(1—1), namely D.=D
— B ogt/(1—71). If j=j, for te TC Gy, then E takes A(z) onto j(0)C A(z).

Proof. The Markov property of the unique trace Tr on A(I') shows that w(x)
= lim Tr(e ?"mx)/Tr(e #H=)defines a state on A(I'), and which is KMS at inverse

temperature f for g, Let ¢ be any KMS state for g, at inverse temperature f3, and
Gn=P/A,, A,=A"T—2m,2m]. Then v, = ¢, (" )/P, (e’ is a normalised
positive trace on 4,,. Let 4,, denote the compact convex set of normalised positive
traces on A,,, which can be identified with a subset of 4,, = {xeR?: x, 20, x;= 1},
where p=(4(I"?)%. Then by [E, Sects. 5-6], 4,,04,,. ,, diameter 4, —0, and

[ 4,,can beidentified with the unique normalised trace Tr on A(I'). Hence given
m=1

¢>0, there exists mg, such that for m=my, (1 —¢) Tr=y,, <(1 +¢)Tr. Hence for
mzmg:

¢(x)=Tr(e ")/ Tr(e )=y, (e "rx)/p, (e ") —Tr(e PHrx)/Tr(e ")
S((1+2)(1~&) "' = 1) Tr(e” "mx)/Tr(e ).

Thus ¢(x)= lim Tr(e #"7x)/Tr(e” #"»)=w(x), which shows uniqueness.

The state wgoj~ 1@ on the observable algebra ¢/ is independent of the choice of
embedding j of O in A(I'). In fact it is the restriction to ¢ of the quasi-free state w4,
where A,=te "?/(te PP+ (1 —1))=e "P(e P +1), D,=D— B~ 'logr/(1—1). In
particular, taking f§ =0, the restriction of the trace on A(I') to @ is the restriction of
the Powers state ¢, on Cliffp(/*(Z)), for 2=1/(1—1).

Next we show that there exists a projection of norm one from A(I") onto the
observable algebra j(0O).

Lemma 5.2. Let I be a connected graph. Consider the type I1, representation
associated with the trace Tr on A(I'), and E the orthogonal projection on j((). Then
E(x)ejO[ —2m,2m], for all xe A™(—2m,2m), if we let O(A)=AY?*(A).

Proof. We have xy=yx for all xeA(—2m,2m), yel((— o0, —2m—1]
u[2m+1,0)). Hence E(x)y=E(xy)=E(yx)=yE(x) for all xeA(—2m,2m),
yeO(— o, —2m—1]u[2m+1, w0)). Consequently, if R,(A) denotes the weak
closure of A'%(A) in the Powers state ¢, and R%(A) denotes the centraliser
(A2, then

E(x)eR,(—0,2m—1]®R,[ —2m,2m]@R,[2m+ 1, )N RY(— o0, 2m+1]

QC®RL[2m+1,00)CR,[--2m,2m].
To calculate w;, take x€.o7,, m=n, then
wy(x)=Tr(e”mx)/Tr(e ") =Tre " E(x)/Tr(e "'m) = wy(E(x))

using H, €j(0). Factoriality is clear, by uniqueness of KMS states for o, Now
wye,,)—0 as n—o0, and wy(1—e,,)—0 as n——oo. Thus it is convenient to
introduce the projection in .# = A(I')" given by

f=lime ,ye_on12--€_4¢ (1—e))(1—ey)...(1—eyp).

N-w
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The automorphism group o, extends to a weakly continuous one parameter group
of #-automorphism of .#. For xe 4,,, N=m,

o(fxf)=lim o(fyxfy)= lim Ad(expitHy)(fyx/y)
N— w0 N—-
= lim fyxfy=/xf as [Hy, fyx/y]=0.
N—-w

Consequently, wy|.4; is a trace. But

a(f(1—eo)=fe,, and gl feo)/wy(f(1—ep)=1/(1—1). (5.4)

This means that .# is not of type II, for if ¢ is then the trace of 4, ¢ oo =¢ and
¢|AM;=w, would contradict (5.4). Note moreover that

d"(f(1—ep))=...e_sn ... €0y ... 31 —€sp45) ...,

n=0,1,2,... are a family of orthogonal projections whose sum

ZOJ"(f(i—eo)): € N € 4Cpey ... =0
=

has finite trace. Thus (A(I")), is a factor of type I1,. On the other hand note that
A(I), can be identified with A0, o).

6. Implementation of the Action of the Current Algebra at Zero Temperature

Let I' be a connected graph, with Jones’ index ™', and j an embedding of the
observable algebra ¢ in A" as in Theorem 4.3. We first seek a canonical ground
state for L,. In analogy with what was done in the Fermion algebra (see the
appendix), we consider the dynamics L = L, +&d, corresponding to the pertur-
bation D+ ¢ of the Dirac Hamiltonian, where J, is the derivation

(X)— ZlD an%ka ] (61)

defined on the elements x of finite support in A”. The derivations J, leave the Jones’
algebra A and the observable algebra j(() invariant. Then I, has an unique KMS
state wj at inverse temperature f# with

wy(x)=Tre Hnx/Tre” i 6.2)
for xe A"[—2m,2m], if Hi,= Y (n+¢)ey,
Define b
0 ,(x)=lim lim wj(x)= hm Tr(fyx)/Tr fy (6.3)
el 0 p—-0

for xe AT, where fy=e_,y...e_,e_,(1—ep)(1—e,)...(1—e,y). Then w, is a
ground state for L, on A%, and w@l(ﬁ ® 4]0 (for any embedding j of the
observable algebra in A7), where 4 18 the ground state (Appendix) of Ly|0.
For fe C(S',R) consider the potential function @ = &/ defined on finite subsets
X CZ by -
= fnj(a:':!-i-nam) + f— n.i(a:‘xarm m) (64)
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if X={mm+1,...,m+n}, meZ, neN, and ¢(X)=0 otherwise. Let
%z{feC(Sl,lR):oc=oc}= Z n+1)f,,,<oo for some /1>0},(6.5)

and for f € %, construct the derivation J( /) on the local elements A, in A”, using the
potential @/ defined above.
Thus

JN )= Y il fufag ) X1, x€ Aq, (6.6)
and by [BR, Theorem 6.2.4], 4, consists of analytic elements for J(f), J(f) is
closable and its closure, also denoted by J(f) generates a strongly continuous one-
parameter group of *-automorphisms 6/ of A" such that

i U (), xed, 6.7)
= llm Ad(exp(iH/1)(x), xe€A, (6.8)
where Hf = Y f,_silatay).
fal. [l <n
Moreover, lf}ll [BR, Theorem 6.2.4],
[ ()] = Raj/A)" [ x| n! exp A2m+1) (6.9)

for x e A[ —2m,2m], and it is clear from (6.7) that 0/09=0/"9, f, g%, teR.
Let (n,, K, Q) denote the GNS triple of w_, on A". For fe®, let

GCI(f))= {g”eK: lim Y [ jtatag)é exists}, (6.10)

N=o lal.[fl<n

and let

J(f)é=1lm Y ﬁ_ﬁnwj(:a;"aﬂ:)cf for (e 2(J(f)). (6.11)

N-oo faf,[fl=n

Then xQe (. J(f):) for all xe A, as
lim ¥ f, 7. jaka,)Q in the Hilbert space [m,j(¢)Q]~ (6.12)

N—-w

exists [and is :J(f):©] by the classical theory in the appendix, and
J()G)=lim > iLfpiCazag), x] (6.13)

n—>x || |fl<n
by (6.6). Consequently for xe A,:
I xQ=J(f)(x)Q+ix:J(f): Q. (6.14)
Inductively we see that 4,QCZ((:J(f):)") and

(i J(f))'xQ= ZEO "CINOT) G I()) Q. (6.15)
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Hence by (6.9) and (Appendix), for x € &/ —2m, 2m]:
=) x €2

< Z "Co(200/ A" x| (n =)t exp A2m + 1) (2r)!/r) 2 (| £1/2)

r=0

=

It

3@ @I RS20 ] expiGm 1) (616)
Thus
3 NIl
< xl oxpAm-+1) Y (@Lf/2F 0! )32 § ey
=l exp22m+1)(1=2/3) " L (FJ2F @) ()

< oo for sufficiently small ¢, (2]t]a}/2<1).

Hence the symmetric operator : J(f): has a dense set of analytic elements and so
is essentially self adjoint. We again denote its closure by :J(f):.

The derivations J(f) and J(g) commute (for f, ge%). Thus for xe A,, we have

(L J () i0J(): 1, x1Q = [1J(f), J(g)], x] Q2 =0.

Hence

[:J(f):,:J(g):]xQ:x[:J(f):,J(g):]Q:x%jfde,

where in the last equality we have used the classical theory of the Appendix in the
Hilbert space [n,,j(0)Q] .
We summarize this as follows, using the notation
U(C*(8")={he U(C*(SY):h=U"expig,meZ,gc %} .

Theorem 6.1. Let [' be a connected graph with Jones index 1~ 1.

(6.18) J(f)= Y .0, f€% defines a distribution with values in the derivations

of A" (respectively A°) and a representation of U(C®(S') in the group of
automorphisms of A" (respectively A¥). )

(6.19) The time evolution o, satisfies J(f)=—J(f").

(6.20) The action of the current algebra leaves the state w,:

B Tr(e_y...e_s(1—e¢p)...(1—ey)x)
0= i o) (i —ex)

on A" (respectively A*) quasi-invariant, and is implemented by self adjoint operators
J(f): (fe¥b) satisfying

LJ(f): J(g)] W'If g. (6.20)
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To get a representation of the Virasoro algebra, with ¢ =1, from the currents
T,=:J,:, one uses the Sugawara formula:

LH=Z%ZTm+nT—m27 (6.21)
where
o o T,T, if m<O0.
T’"T"{TT m>0.
Appendix

We recall the Fermi-Dirac quantisation of the classical fields on S*. If H is a real
Hilbert space, the Clifford algebra Cliffi(H) is the universal C*-algebra generated
by the range of a linear map 7 on H with the relations y(h)* =y(h), y(h)* = ||h|?,
he H. Cliffo(H) has a Z/2 grading so that each y(h) is odd. If i is a complex structure
on H then a(f)=[7y(f)—iy(if)]/2 for fe Hg, the complexification of H, defines a
representation of the canonical anti-commutation relations. If {e;};., is a complete
orthonormal basis for Hg, we let a; = a(e;). The field algebra .« is Cliffg(/*(Z)g), and
(@)=Y a,e ™" gives the Fermi quantum field.

The gauge group U(1) of the first kind acts on ./ by «a,)=¢" “a,. The
corresponding derivation 6=(a,);-, takes a, to —ia, and is given by d(x)
=iy lafa, x]. The algebra of observable ¢ is the o-fixed point algebra, and is
generated by {ajfa,,1}.

The gauge group U(C(S")) of the second kind acts on .7 by f:yp(h)—y(fh).
Moreover C¥(S!, U(1)) (CC(S', U(1))= U(C(S"))) is generated by the shift U and
the Lie algebra of real valued smooth maps on S', in that we can write any
feC*(S',U(1)) uniquely as f'=U"f,, where m is the winding number of f and
fo=expig for some ge C*(S*,R). Then ge C*(S',IR) gives a *-derivation J(g) on
«# , the *-algebra generated by {a,,}. Complexifying, and taking g =¢", there is a
derivation §,, such that d,,(a,)= —ia, ., o (a¥)=iak_,. Then 6%¥=45 ,, and

O X)=1Y 1afF, ptm X1 .

-m>

. 1 .
For g=Y2¢,e™, J(g=Y §,0,= Ej' f(0)J(0)dO, where J(O)=Y e ™5, is a

distribution taking values in the derivations on o7,
Time evolution is given by ¢, = Cliff(e"?) on ./, where D is the Dirac operator
—id/df on S*, or ¢,(a,)= e~ ™a,. The *-derivation L,=(q,), -, takes a, to ina, and

LO(X) = Z il’l [a:lkam X] .

Conservation of the current is expressed by [L,, J(0)]= —J'(6).

If Cis a positive contraction on a complex Hilbert space K, we let w. denote the
quasi-free state on Cliff(K ) such that w(a*( f) a(g))=<Cf, g)>. If D is a self-adjoint
operator, then for all 0 < f < oo, there exists an unique KMS state w; at inverse
temperature f8 for o,= Cliff(¢"”), which is quasi-frec with covariance operator
Ap=e "P(e” PP 4-1)" ' The Dirac Hamiltonian has a kernel, there is no unique
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ground state, so we take the canonical ground state w,, with covariance operator

A, =1lim lim e AP+ APFO L 47" 1 =(1 - F)/2,
£l 0 fow

where F = lim(D +¢) [D -+¢| "' is the “phase” of D. In the state w , using the normal
¢l 0

ordering :affa;: =afa;—w(afay), L, is implemented by ) n:a¥a,: and J, by

Jiy=>Yaf a,:. Then Jf=J_,, and [J,,J,]=no, _, Consequently J(g) is im-

plemented by :J(g): =Y g,.J,,» and

1
I @) )= fd
LJ(f):,:J(g)] 2ni.§1f‘g
for f,ge.of ={heC(S"):|h*= ¥ [kI*|h|* < o). Thus f—expi:J(f): is a represen-
tation of the canonical commutation relations on .oZ. Moreover, the vacuum
vector Q gives the Boson Fock state

Cexpi: J(f):Q,Q) =exp—|f1*/4.
Thus f—:J(f): is a free Bose field and

GIf)0,05 =

n!

en)t (1Y
W)
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