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We write three particle models in terms of nencommutative gauge theory: the Glashow-Weinberg-

Salam model, the Peccei-Quinn model and the standard model.

I. Introduction.

While quantum field theoretic miodels of pure Yang-Mills
type are appealing both physically and geometrically (as the
Yang-Mills action has a clear geometric significance) they
are unphysical since they only givs rise o massless vector
bosons. In order to circumvent this problem one adds new
fields, the Higgs fields, with a symmetry-breaking
mechanism which provides masses for bota the vector
bosons and the fermions. Our aim in this paper is & show
that at the expense of modifying the usual notions of a
geometric spacetime, one can recover several models of
particle physics, all involving Higgs fields, as pure Yang-
Mills models.

It gradually emerges from problems in pure mathematics
[Col] that the class of Riemannian metric spaces is ton
narrow to encompass some interesting spaces, and that to
do so one must reformulate notions of geometry in
operator algebraic terms. The basic objects of such a
geometry are a (possibly noncommutative) algebra &, a
Hilbert space on which the algebra acts and an operator on
the Hilbert space. The algebra can be considered to be
generalizing the idea of a manifold, while the operator
provides the metric structure. (One finds usual Riemannian
geometry as a special case when a manifold M is replaced
by its commutative algebra & of functions, the Hilbert
space is that of spinors on M and the Riemannian metric is

replaced by the Dirac operator.) It is then possible to write
an action functional on operator-theoretically defined gauge
potentials. In the special case of an ordinary Riemannian
manifold, the action functional reproduces the standard
pure Yang-Mills action.

One can consider doing gauge theory on many types of
spaces. (For example, instead of thinking of lattice gauge
theory as a simulatior of the continuum theory, one can
imagive doing a r=al gauge thcory on the lattice.) While the
original mathematical motivation was t0 encompass new
situations in which the algebra O is no longer taken 10 be
commutative, it hes wider scope even when the algebrz is
commutative i.e. when the aigebra arises from an ordinary
point set. This is because the generalized metric can be
taken to be different from a usual metric, by using an
operator different from the usual Dirac operator. As was
shown in [Co2], a gauge fieid on an appropriate
generalized Riemannian space consists of an ordinary
gauge field and a Higgs field. The pure Yang-Mills action
on the generalized space will decompose as the sum of the
Yang-Mills action for the ordinary gauge field, the kinetic
action for the Higgs field and a symmetry-breaking Higgs
potential.

The underlying fields in noncommutative gauge theory
are the spinor fields. The bosonic fields anse from
representing the differential forms, which depend only on
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the algebra, on the Hilbert space. Thus to build our particle
models we enter the phenomenological data of the fermion
representations and the desired symmetry breaking. The
fermion representations will determine which algebra we
should use, and the vector bundles associated to the
algebra. The desired symmetry breaking will determine
how the generalized metric will differ from an ordinary
metric. As the basic fields are fermionic, the fermionic
action can be written in a straightforward way.

Our purpose is to recover models of particle physics by
suitable choices of our generalized Riemannian metric
space. This paper contains the results of calculations for
specific models, along with their geometric interpretation.
The outline is as follows. In section II we discuss
noncommutative geometry and noncommutative gauge
theory. In section III we give the Glashow-Weinberg-
Salam (GWS) model for leptons. Our treatment is basically
the same as for model II of [Co2], but we show that a
defect of that model is corrected by the presence of several
generations of leptons with different masses. The
corresponding geometric space can be thought of as a
spacetime of Kaluza-Klein type, where the fiber is formed
of a two-point set. In section IV we add quarks to give the
Peccei-Quinn model. The algebras of sections I and TV
are both commutative. In section V we show that a
quaternionic algebra yields the standard model. Section VI
has a discussion of thé results.

We wish to emphasize that in this paper we only work at
the classical level. Despite the appearance of Dirac
operators, which sometimes have a quantum connoiation,
they are only used to define classical geometries.

J.L. would like to thank M. Berger and the IHES for
their hospitality, and the Sloan Foundation for partial
support.

II. Noncommutative Gauge Theory.

We will give a self-contained summary of what we need
from noncommutative geometry. At the end of the section
we give two point-by-point examples. The first is that of
ordinary commutative geometry. The reader may want to
follow this example concurrently with the definitions. The
second is that of a two-point space. For more motivation
and details, we refer to [Col,Co2] and references therein.

(1) A noncommutative space is given by a * algebra ¢
with unit.

Because & can be noncommutative, we will have to be

careful in distinguishing between left and right actions.
Given Q, the algebra Mn(Cl) of n x n matrices over

forms another noncommutative space.

(2) IfQ is acomplex commutative algebra, define the
character space C, or spectrum, of ¢ to be the space of
algebra homomorphisms from ¢ to €.

A right (left) module over C is a2 complex vector space
on which ¢ acts on the right (or left). The tensor product
6'®,, & of aleft module &' and a right module & is

generated by
(E®E:Ee 8,Ee 8}, with the relation

Ea®E-E ®at=0. If & and & are right Cl-modules
then we will write Endg 8, F) for

{u: 8 3 F, ulinear, u(a) =u)aforall{e & ,ae
@} and we will write Endcl(S) for Endm(s, 8).

(3) A vector bundle & associated to ¢ is a finite
projective right module over €. This means that € is the
image e&™ of &t™ under some orthogonal projection

ee M, (Q).

The dual space &* = Endg, (8, Q) is a left module over
Q& with the € action given by (an)(€) = an(&) for all

ae U,§e 8,ne 8* Thereis apairing
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(): 8*x & » & given by M.8) =nE).

(4) The space of universal k-forms Qk(e) is the
bimodule generated by elements a,da; ...da, ,

with aj,a,,...,3, € €, and the relations

d(ab) - (da)b - a(db) = 0 and d(1) =0. The space Q" (@) =
@ Q¥(€1) of all differential forms is a graded differential
algebra, with the differential given by

d(a, da, ... day) = da, da, ... dak. There is an involution
on Q'(CY) given by

(8, da, ... da)* =da,* ... da* ag*.
(5)  Ahermitian metricon & isamap
<,>:8x 8 - ¢ suchthat

L <§a,8a,>=a* <€,.k,>a, forall I IRIL 8.
ajae

2. <€) B>* =<E)8,> forall £,5,€8

3. <&,E> is a positive element of ¢ forall £ & and
<t€E>=0 iff {=0.

(6) The group of unitary gauge transformations of 8
isU=(ue Endcl(G) ru*fu=uu* =1).

(7) A hemnitian connectionon & is a linear map
V: 8- 6 ®, Q@) such that

1. VEa)=(VEa+E®da forall Ee §,2e A
2. d<Em> = <VEM> + <E,Vn> forall Ene 6.

We can extelld Vtoa differer;tiation of 8 -valued forms,
V:88,Q (- 8 ®,, Q (Q), by requiring

3. V) =(VEn+E®do foral £ 8,06
Q' @).

If we write & in the form & =eCi® and p is an n x p magrix
of 1-forms, p & M,(€1) ®,, (@), such that

ep=p,p = — p, then we obtain a Hermitian connection
by putting VE =edf +pE , where e Q" ande§ =E.
Conversely, any Hermitian connection can be writtea in
this form for some p. We will define the curvature of V to
be 8=V2e Endy(8 ®, 2 (). Actingon & alone,
0 is an element of Endﬁ(e, & ®q QZ(Q)).

There is a dual connection V" : e* s al@ ®q &*
defined by

dnE) = (VB + VO foraline 8",k e 8.

For any element u of U, we obtain a new Hermitian
connection, the gauge transform of V,by V%= uVul.
The curvature of V' is given by 6" = wou'L.

(8) In order to proceed further, we will want a K-cycle
on @ , that is, a * representation of & by bounded
operators on a Hilbert space 3 and a (possibly
unbounded) self-adjoint operator D on % such that

1. [D.a] is a bourded operator forall ae &

2. (1+D?? is acompact operatoron %.

We will also assume a Z, grading operator Ton %
such that TD +DI'=0andal’=Taforalla ¢ &.

We will write B(36) for the space of bounded operators
on 96 and B(36, 36") for the space of bounded operators
between two Hilbert spaces 3 and 35",

(9) If 1 is a complex commutative algebra then any K-
cycle gives a metric d on the character space Cby

d(p,q) = sup {Ip(H) - qDI: fe &, HDf<1}).

(If € is a general C*-algebra then the same definition gives
a metric on the state space of C.)

(10) Define a map x : Q¥(C) = B(3b) by



32 A. Connes, J. Lott / Particle models and noncommutative geometry

=¥ dal ... da¥) =a,i[Da,] ... iDal

This is an algebra homomorphism (but not a
homomorphism of differential algebras). There are
extensions of &, which we will also denote by X, t0a
{right) module homomorphism

x8 ®e Q*(Q) —-B(%. 8 ®¢, %) and to a linear map
7:Endy (8, 8 8y Q"(@)) - B(E 8, %).

(11) Given a hermitian connection V, we obtain a self-
adjoint operator Dy, on the Hilbert space & ®,, ¥ by

Dv(§®n)=§®Dn—in(V§)n forall Ee 8,ne .

There is an action of U on & ®q % for which Dy, is

L _ -1
gauge covariant in the sense thatD | =uDgu™.

v
(12) We will define the spinor action as
I, =<V¥:Dg > for ye & ®, %.

In order to define the Yang-Mills action of a connection,
we will need the notion of the Dixmier trace of a compact
operator [Di]. Although we will only need this in a special
case, where the Dixmier trace is effectively computable, we
will give the general definition. For an infinite-dimensional
Hilbert space 36, define an ideal by

N
331"'(%) = {T e B(3): T is compact, Z W=

i=0

O(log(N+1))},

where {j;} are the eigenvalues of ITl. If @ is a mean on the

space 1°(2%) of bounded sequences on 2%, and T is a
positive elsment of 31"'(‘}5), define

N
Try(M =a(( Y, 1(T)/ logN+1))).
i=0

What is nontrivial is that if @ is chosen to be scale-invariant
in an appropriate way then Tr, is a linear functional and

extends to a positive trace on & 1+(‘JG), the Dixmier trace.
(If 36 is finite-dimensional then we will define Tr, to be

the usual trace.)

We will only need the Dixmier trace of pseudodifferential
operators. Suppose that Z is n-dimensional and that Pis a

pseudodifferential operator of order -n acting on sections of
a vector bundle over Z. ThenPe &I l"'(% ). Letop

denote the principal symbol of P, a matrix-valued function
on T*Z. Then regardless of the mean ® used to define the
Dixmier trace, one has

Trm(P) = (21:)“)‘1 f . trace(cp) du,
S Z

where S*Z is the cosphere bundle of Z (the subset of the
cotangent bundle consisting of unit covectors) with the
standard measure dy [Co3]. In this case one sees that the

Dixmier trace is the integral of a local expression over Z.

(13) Let us consider the Dixmier trace on

5 1"'(6 ®¢, ¥6). Suppose that D is such that

DZ*e B 1"'(‘J(',) for some integer k. (We will want to
choose the smallest such k.) Then we will define the Yang-
Mills action to be Iy =Tr, ( (1(8))%> Dy"2%). One can also

define a topological action, for which we refer to [Co2].

(14) One can take the product of noncommutative spaces
as follows. Let (Qy, 36, Dy, ') and (A, 365, Dy, Ty)

be two noncommutative spaces with K-cycles. Form a
new noncommutative space with K-cycle by putting

andT=T; ® T,.

The character space for & is C= C; x C,. The space of
differential forms Q*((’.l) maps to Q*((’l e Q*(Q 2)-
Given vector bundles 61 (associated to € ) and 62
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(associated to (’12) with Hermitian metrics, there is a vector
bundle 8 =8; ® 82 associated to ¢{ with Hermitian

metric.
Examples
A. utative me|

(1) LetZ be an even-dimensional smooth compact spin
manifold and take & = C*(Z) ® €.

(2) C =27, with z € Z corresponding to the
homomorphism f > f(z).

(3) Take E to be a smooth finite-dimensional vector
bundle over Z and put 8 = C™(E), the space of smooth
cross-sections of E. &# is the space of smooth cross-
sections of E¥, the vector bundle whose transition
functions are the inverse transpose of those of E.

(4) Qk(ﬂ) can be identified with the space of smooth
functions g: ZK*1 5 @ such that

8(Z 152y 152322 4022 4+ =0forall 1<i<k. The
left action of € is given by

&)z o2y 4 ) = 1(21) (21512 1) and the right action
of U is given by

8024521y 1) = B(Z1 02y 1) Tzgepp)-

Note that the right and left actions are not the same, even
though € is commutative. The involution on Qk(Cl) is
given by g*(zqmr2gcyq) = (DX 8y 4 1ozp)-

The product of a k-form g and a k'-form g' is given by
(gg')(z 1 ,...,Zk+kv+ 1) =

&8z )) B a1 Bkl

The differential on Q"(Q1) is given by (dg)(Z{ -2y ,9) =

& i+l
2, (U™ 82y 1 i s )

(5)  Any smooth hermitian inner product (,) on E gives
a hermitian metric on & by sending the pair Ep5e 8w
the function < E,> € @ defined by

<§l:§2>(z) = (E;l(z)s%(z))-

(6) U is the group of smooth unitary gange
transformations of E.

(7) If & = then a connection is specified by a skew
—3 - » ‘ i

elementp-jZa]deon (C1). The curvature is

9 =dp + p2 e Q2(@1). Note that the p term does not

vanish, unlike in the useal calculus of differential forms.

{8) LetS denote the vector bundle of spinors on Z and
put 36 =L2%(S), the Hilbert space of square-integrable
sections of S. Let D be the Dirac operator and let I be the
Hermitian chirality operator on 36.

(9) This reproduces the geodesic distance on Z.

(10) If we note by da the operator Y, '\J"'auaon‘.’r‘o' then
B

n(a® da! ... da¥)=a’dal ... dak.

(11) 1 &= thenDg=B-i Y, a; by, an operator on
J

L2(S), which is recognized to be the Dirac operator coupled
to a U(1) gauge field.

(12) This gives the usual action for a spinor field in 2
U(1) background.

(13) If Z is four-dimensional and E is a €N vector
bundle over Z then one finds
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o=@t [ F2+ X% dvol,
zZ

the sum of the usual Yang-Mills action and a Gaussian term
which decouples. The topological action is proportionate to
the usual topological charge py (E).

(14) If Z; and Z, are ordinary spaces then @ is the
algebra corresponding to Z = Zy x Z,. 36 is the Hilbent

space of square-integrable spinors on Z, D is the Dirac
operator on Z and I is the Hermitian chirality operator for
Z. If 8, and 8, arise from ordinary vector bundles E, (on
Z,) and E, (on Z,) then & arises from the ordinary vector
bundle El*ﬁl @n;Ez onZ

B._Two-Point Space

(1) TakeQ=C ®C,with

Ay + Oghg) = By +2 X'y +1p) and
A1) AR9) = A2, A'4A50).

(2) Cis atwo-point space, C={p,p'}, with
p: AA) > Aand pt AAD) S AN

k k
(3) Take 8=C @®C , with the & action given by
EEYAA) = GAEQ) forall €,8) € & and

(AA) e Q. If we assume that k < k' then we can write

8 =e0X wheree isa diagonal k' x k' matrix with entries

consisting of k (1,1)'s and k'-k (0,1)'s.

(4) Q%Q) has the same interpretation as in the previous
2

example. In panicglar, QO(Q) = =C and Q@) can

be identified as € , the values of g at (p,p") and (p',p).
The involution on QI(Q) is given by (r,s)* = - (s¥,r*) for

2
all (rs) € € . The differential d: Q0(C1) > Q1(€1) is given
by d(v,v') = (v-v,v-v").

(5) Wecantake

<(§1:§1'),(§2:§2l)> = (gl' §2s é]" §2‘) € cl
for all (§1.§1'),(§2,§2') € 6

(6) U is Uk) x UKk).

(7)  If & = ¢ then a connection is specified by a skew
elementpe QI(Q), which we can write as

2
p=@NeC.

(8) Take % = CN ® €N, with the action of @ given
by A.AYM.M) = AnAm)

forall (A,A) e Q and (n.,n') € 3.

*
oM
If M is an NxN matrix, let D be the operator M 0 and

letl‘betheopemtor((l) _01}

(9) LetL denote the square root of the inverse of the
largest eigenvalue of M*M. Then the metric on C is given

by d(p.p) = L.

(10) Iffora=(AL") e Q& we denote by da the operator

*
0 -M

iA-A) M 0 then

n(a®dal ... da¥) =ada! ... da¥. In particular, for a skew

1-formp=2, o, dalj, if we write p in the form
)
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2
(0*-1,4-1) € € then n(p) is the operator

o ile-1)m’
The image n(0) of the curvature
ilo-)M 0

of p is (dp + p2) = &(Y, da® dal)) + m(p) =
J

T, w(da%) n(da'}) + w(p)?, which turns out to be the
i}

<
,[MM 0
rator (1 - ol t)
operator (1-00 ) o vy

(11) With the connection given by p as above, Dy, is the

0 &M
operator
M 0
(12) The fermionic actionis T, = y' Dy y for ye %.
(13) The Yang-Mills action is

22 2
Ig=21-1pt) Tr (M*M) . When € =Q, the
topological action vanishes. (More generally, the
topological action will be proportionate o k - k')

(14) We can take the product of noncommutative
geometries corresponding to two two-point spaces to get a
noncommutative geometry for a four-point space, in a
straightforward way.

III. Glashow-Weinberg-Salam Model.

Let Z be a closed Riemannian spin 4-manifold. (We
will make the transition later to a Lorentzian spacetime).
Let S denote the spinor bundle and let yYe B(LZ(S))

denote the Hermitian chirality operator. Let N; bethe
number of generations and let M be an N; x N; matrix, the
mass matrix.

In order to build our models, the general strategy will be
to think of the algebra €t and the vector bundle & together
as specifying the gauge group, and the action of €1 on the
Hilbert space % as specifying the fermionic representation
of the gauge group. For example, suppose that we take &
to be C°(Z) and & to be €N ® C™(Z). Suppose that the
action of f € €t on & is given by I, ®f, that i,

(v® g)f=v ®gf. Then the unitary gauge group is
Map(Z, U(N)). Suppose that % is L%(S) ® €M and that
the action of f€ @ on 36 is given by f® L, thatis,

f( ® w) =fn ® w. Then the space of fermioas is

88, % =CNeLXS) ® @M. In other words, we
obtain M distinct fermions that are in the fundamental
representation of U(N).

To write the GWS model, we will first take the structure
group to be U(1) x U(2) and later restrict to uq) x SUE).
We have seen in example A of the previous section that
when one specializes noncommutative gauge theory to the
usual commutative case, one recovers the standard
formalism of gauge fields and Yang-Mills actions. In
example B we saw that when one does gauge theory on 2
two-point space, with an off-diagonal Dirac operator, one
obtains a variable ¢, which we can interpret as a Higes
ficld. The Yang-Mills action in example B was exactly a
symmetry-breaking Higgs potential. In order to write the
GWS model, we will simply take the product of the
noncommutative spaces of examples A and B. Let us write

our two factor spaces as noncommutative spaces with K-
CyCICS, (Q 1° % 1’ Dl’ l"l) and (Qz, %2, DZ, rz).

(@, % 1» D1 ry will correspond to the usual
Riemannian geometry on Z:

o, = C°(@), %, =1%8),D; =PandT =¥
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For (Clz, %2, D,, Fz), we will take

t
oM

N,
A=C0C,%,=(CDEC)®C C,D,= M 0

10
If we write an element of ‘.}62 in the form Mm,n") with
N
NN’ e € C then the action of AA)e 02 on
m)e ‘.}52 will be taken to be
A.A) M) = An,AN’). For the product geometry
(Q, %, D, I, we have
U =C"2)®C72), % =L%S)®C2®C G,
t
oM

D--D’@IZ@ING-Py@ M 0 and

10

The character space Cl of (& v 3 1-Dy. I‘l) is Z and
the character space C, of (& 2 % 2Dy, l"z) is a two-point

space. Thus the character space C of the product geometry

is the disjoint union of two copies of Z, say Z and Z'. Let
us denote the geodesic distance on Z by dz. Let L denote

the square root of the inverse of the largest eigenvalue of
M. One can show that the distance d on C satisfies

d(p.9) = dz(p,g) for p,q € Z,
d(p'q) = dz(p'.q) for p',q’ € Z,
(Azp)? +1HY2 < dpp) < dy(pp) +L

forpe Z,p'e Z.

Thus the picture is of two copies of Z separated by a
distance L. (As one loses information in passing to the
character space, this picture should not be taken too
literally.)

For the vector bundles, let us take 61 = U and

62 = € & C ® C, with the action of (A,A) € G, on
(§:82,83) € 6, given by

(§1:82:63)(AL) = €, A.E,A" E;50"). Then the vector
bundle & is C™(Z) ® C*(Z) ® C*(Z). This can be

1,1} 0
written more succinctly as & =e€?2, with ¢ =(‘ 0 )(0’1)

. The unitary gauge group of & is Map(Z,U(1) x U(2)).
In terms of the character space, & can be thought of as a
€ bundle over Z and a €2 bundle over Z'. The

N,
fermion space is given by & ®, ¥ = Lis)ec3ecC G

€R
We can write elements of & ®¢, ¥ in the form | €L {,
VL,

h 1%S) ® € G . In thi is i
where ep.e v € (S) . this way, eg, is in
the fundamental representation of U(1) and (eL,vL) is in the
fundamental representation of U(2).

Let us write a Hermitian connection V on & =eQ? in the
formV& = ed€ + p§ ,

where £ @2, ef =€, pe My(@) ®, Q@) ,ep=p.
The matrix p is 2 2x2 matrix of one forms, the components
of which can be written as

P = 2 4 Iy i = gy - O = iy By

15k1<2,

The condition ep =p becomes f "1 i= f '22j =0.
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Let us fix k and 1 for the moment. Each aklj and bklj acts
on % as a 2x2 diagonal mawrix. Then

TPy ) = ; aygj i [Dibyy;] is a 2x2 matrix with

components

TP )11 = 2;: figj 8t ® I

Py )1g = X -ifij @78 TOM!
J

(Pyy )1 = E if i By B YO M

™Py1 )22 = ; Frj 10 ® Ing

(We are using the notation that for a function g,

dg=i[B.gl=}, ¥ 9,g)
n

‘We have that the 4x4 matrix 7(p), an operator on

& ®,, %, has vanishing third row. By its skew-

Hermiticity, it also has vanishing third column. Thus we
can write 7(p) as a 3x3 matrix. One finds that it can be
written in the form

- t - 1
A®ly, {or1)y®M o, yOM
{o,1)y8M A'®Iy, -W¢@Iy,

i0,Y®M  W®Iy, Z®Iy,

W= ? f '21j dg'ZIJ, Z= JZ f '22j dg'zzj,
01-1=2 ') @181y and
]

93 = X £'9; @&y In terms of their behaviour
J

under gauge transformations, A is an ordinary U(1)

gauge field, ( W zZ ' isa U(2) gauge fieldand

is a Higgs doublet with covariant derivative

¢
D=
(¢2

D®=dd + W Z A) d.

(In terms of the intuiiive picture of the geometry given by
the character space, the U(1) gauge field is locally given by
a differential form on Z and the U(2) gange field is locally
given by differential forms on Z'. The Higgs fields involve
the differences of functions on Z and Z', and so can be
thought of as differential forms where the differential is
replaced by a difference operator.)

The curvature 8= V2: 8 — & ®, Q%(@) of the

connection isO=edede +edp + pz. Its image =(0), a
self-adjoint operator on & ®, 16 , can be writtenasa 3 x
3 matrix T of operators. Tne only subtlety in computing
T comes from the fact that T is locally an operator with
values in the even part of the Clifford algebra. It does not
consist only of Clifford algebra elements of degree two, as
one might expect for a curvature. For example, T{; hasa

term A2 ® ING. Because A is an operator of the form
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A= Z AIJ- , instead of vanishing, AZjs actually a scalar
"

field 3 Au2 of degree zero. In general, the product of two
[

of our operator 1-forms can be decomposed in the Clifford

algebra into the sum of a 2-form and a O-form. Keeping

this in mind, when decomposed into its various degrees we

can write T as

- 2 t
T“-FA®ING+X®ING-(I¢I -D®M M

(T21)=1(Dd>)y®M
Tsy

Tyz Tas)_
(T32 Tsa =Flx .w*)® e *

v Z
X! (X")* ( t ) L4
( Xn xnv)@lN’a’ m -I ®W .

Here X, X' X" and X" are new scalar fields.

In order to obtain a U(1) x SU(2) gauge theory, we
must relate the U(1) gauge field to the U(1) part of the
U(2) gauge field. In terms of the hypercharge generator Y,
we want A=-2Y and A' +Z = - 2Y. Thus we will require
A=A'+Z.

The Yang-Mills action Iy = Tr ( (n(8))2 Dy ™) is the

sum of three terms:
s, =@rd! fz NG F o2 +
N -l t 2 2
NG(X Ng ™" (TrM M) (101 - 1) )* +

(@2 - 12 TeM™ - N1 (Tr M*™) ING)Z] dvol

E
S;=2@  TrM' M f D®' DO dvol
YA

_ (any] 2
S3=@n%) f , Ne'Fy)™ *
Ng Tr (Xy(g) - Ng ™! (TrM™™) @01 - 1) )2 +

Q@2 - 12+ 1) THM™ - Ng L (Tr M™™) I, )]
G
dvol.

Because the auxiliary fields X and XU(Z) appear

quadratically and algebraically, one can immediately
minimize over them. If there is more than one generation,
and not all of the electron-like fermions in the various
generations have the same mass, then we obtain a
symmetry-breaking Higgs potential. (If there is one
generation then MM - NG'l (Tr M*™™M) ING vanishes and

we do not have a Higgs potential). We will discuss the
question of relations among the coupling constants in
section VL

The fermionic action is

peL, yoM o |i7lp)

€R
Iw=ieReLv;i Y@M D@ ING 0 eLf-
\ 0 0 PoI, Vi

In order to write an action for a Lorentzian spacetime, we
will do the obvious changes for the bosons, and require
that the fermion field y e & ®¢, 6 satisfy 'y =y . In this

way we obtain the GWS model [G],Wel,Sa].

IV. The Peccei-Quinn Model.

We now want to add the quarks to the GWS model.
This will lead to the Peccei-Quinn model. The idea is that
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CR dR

the triplets } L | and | 9L | differ in their U(1) x SU(2)
u
VL L

properties by a total hypercharge. The up quark is left

over. This suggests having an algebra & with vector
bundle &, with gauge group U(1) x U(1) x U(2). The first
U(1) will act on ug, the second U(1) will act on ep andd,,
and the U(2) will act on (e} ,v; ) and (d; ;u;). Wealso have
to add the color degrees of freedom to the quarks. If we
can do this then the gluons are automatically generated in
our model. In order to provide the color we will add a new
algebra B which acts on the Hilbert space, and a vector
bundle ¥ associated to B. If the gauge group of &F were
taken to just be U(3), then all of the physical fermions
would have to have color. Thus we will take ® and F so
that the gauge group of & is U(1) x U(3). The U(1) will
act on the leptons and the U(3) will act on the quarks. The
total gauge group is now U(1) x U(1) x U@) x U1) x
U(3). When the various U(1) factors are related, the finai
gange group will be U(1) x SU(2) x SU(3). There will be
no Higgs fields associated to the gauge group of &, and so
the SU(3) gauge group will be unbroken.

Let us first describe the geometry of our model over a
point in Z. € will be the algebra of a three-point space:

A=COCHDC. Let B =C ® C be an auxiliary
algebra, which one can think of as taking the place of E as

a ground ring. Take ¥ tobe (C @ cleo 022) ®C G
(One can think that the first factor in 3 corresponds to up,
the second factor corresponds to eg and dg, and the third

factor corresponds to the four left-handed fermions.)
The (left) action of (f,f'.f") € € on 3 is given by

,ef,® ') ® ING , and the (right) action of (g.g)

0 g0
o[8 %) e

e B on ¥ is given by (g'lle(g
The operator D will be

0 0 M)

p-{ ° O MY o M, (0)' 2N * N,

= » Where = isa x
M, Mz 0 M, G 76

M, 0
matrix and M3=( 0°Md) isa 2Ng* 2Ng matrix.

Note that requiring that D commutes with the action of 8
gives M, and M, their special forms. The Z,-grading
operator willbe T=([, @L & (L) ® ING.

Now let us give the full model. Let & be

@) S C @) S C°2), B be C(D)®C(Z) and

N
% be LXS)®(C ® C2DCH®C C. The (lefr) action
of £'f") e € on ¥} is given by

A, efL&f "L)® ING, and the (right) action of

(g.g) € B on ¥ isgivenby
0) 2 0 _
(g'h@(ﬁ g-)e((g) g-])QING- The Dirac operator is

0 OM'
0 OM'

D=pe(eLOL)®L +1® |2 35 0 .
2 M3

0
where M2=(Mu) isa 2Ng X Ng matrix and

oM
grading operatoris I' = Y@, ol o) ® ING .

M, 0
M ( ) sa 2NgXx 2Ng matrix. TheZZ-



40 A. Connes, J. Lott / Particle models and noncommutative geometry

Take 6=C°°(Z)®C°°(Z)@C‘”(Z)@C”(Z)=e(’12,

1,1,1) 0O
with e = ‘ 0 )‘0,0,1) ,aﬂd

F=C(2)®C"Z)®CT(2)DC™(2) = B3, with

(L) 0 0
f ={ 0 (0,1} 0 |. The gauge group of & s
0 001

Map(Z,U(1) x U(1) X U(2)) and the gauge group of &F is
Map(Z,U(1) ¥ UG3)) .
An element of the physical Hilbert space

=8 ®a%®n & can be written as

(ugep-dg.€p.d; v up) € LXS) ® (€3 e; Cloche
C'ocho @' oc)ecC.

A connection on &F will provide a U(1) gauge field and a
U(3) gauge field, and no Higgs fields. If a connection on
8 is given by the matrix p then one computes that w(p),
an operator on & ®Q 36 ,isa 4 % 4 matrix of operators

A®Iy, 0 {or1hem,r ioqeM,
0 a®ly, iloy1)yeM,r iogeM,?

p=
for1jyeM, ifos1yeM,  A"ely, Wl

0,y0M,  idy®M, Wely, Z®ly,

(We are thinking of an element of & ®¢ 3 as

up © (eg.dp) © (ep.dp) ® (v.u;).) A and A’ are U(1)

A“ 'W* . ~ ~
gauge fields and w 7z |isa U() gauge field. There

are two Higgs doublets, @, = and @, =

¢, o
¢4 ¢5 ,» WIt

. . A"-A -W*
covariant derivatives D®, = dtbl + W Z- A’(Dl ,
A"-A' -W*
D®, =dP, + W Z-A')¢2'

The image 7(0) of the 8—curvature, a self-adjoint
operator on & ®Cl 36 , can be written as a 4 X 4 matrix T

of operators, with

2 t
Ty =Fp @Iy +X®ly - (0,7 -DOM,' M,

— ' 2 t
Ty =Fy®Iy +X @Ty -(9,7-HOM;' M
X'I (X"I]*
Xlll X"ll

G

_F( A" -W*)®ING+ )@IN
7.

-@ @) -DOMM," - (@, @, -DOM; My

Ty = -, ®)BM;' M,
2'<ioe)yem,
Ty 1

T32) _ 0o,y yo M
T42 =i( 2)7 3

Here X, X', X", X", X"" and ¢1 are new auxiliary

scalar fields.

We now have a U(1) x U(1) x U(2) x U(1) x U(3)
gauge theory. In order to reduce this to U(1) x SU(2) x
SU(3) , let us put that the first U(1) part A of the
connection on & vanishes, the second U(1) part A' of
the connection on & is - 2Y , the trace of the U(2) part
of the connection on & is - 2Y, the U(l) part of the
connectionon & vanishes and the trace of the U(3) part
of the connectionon &F is 4Y.

Upon computing the action as in section III, we obtain
quartic potentials for @, and ®@,. There is also a mixed
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T33T34

term coming from
43144

} which is proportionate to

I<I>l'<1>2|2. Putting everything together, we obtain the
Peccei-Quinn model [PQ]. This model has an axion
[We2,Wi] which seems to be ruled out experimentally
[EG].

Let us note that because the first U(1) gauge field arising
from & and the U(1) part of the gaunge field arising from &
both vanish, we could have taken the algebrastobe & = C
@®C™2Z)® C°(Z)and B =C & C*(Z). The only effect
that this would have would be to enforce the vanishing
from the beginning.

V. The Standard Model.

In the standard model the Yukawa term which gives
mass to the up quark involves not the Higgs doublet ®, but

— 01
the field @' =J @, whereJ=(_lo). @' has the same

isospin as @, but opposite hypercharge. One canuse @' to
form a gauge-invariant action because the fundamental
representation of SU(2) is unitarily equivalent to its
complex conjugate. That is,

(*) JTg=gJ

for all g € SU(2). Our choice of the algebra O for the

standard model is based on the observation that (*) defines
a subalgebra of M,(C), namely the quaternion algebra H.

Let us first consider an example with the algebra & = H
and a vector bundle 8 = H, with & acting on & by right
multiplication. Then End&(ﬁ) equals H, acting on 8 by
left multiplication. The unitary gauge group is the group of
unitary quaternions, n:unely SU(2).

This suggests taking the algebra ¢ for the standard
model to be C*(Z) ® (€ ® H). We will add the gluons
later. We will first work with complex vector spaces and
describe directly the full model. We will later show how to
describe the geometry of the full model as the product of
ordinary spacetime geometry and a finite geometry, both of
these factor geometries being expressed most simply using
quaternions.

Let us first give our conventions for charge conjugation
in Euclidean space. For any representation of the Clifford
algebra on ¢4, charge conjugation is given by the operator
R: €4 5> €4 defined by R(v) = C' 1+, where the matrix C
satisfies Cy*C! =- @Y7, CT =-Cand CC =-1. Also
C'yC'l = ¥. The operator R preserves chirality.

Take & = C™(Z) ® (C & H) and
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% =12(5) ® C2© C & C2® T2 ® € O. (The first
@2 factor corresponds to (ep,dp), the € factor corresponds
to u,, the second @2 factor corresponds to (e, ,d, ) and the
third €2 factor corresponds to (v, ,u;).) We will identify
H with ¢2, where the action of an element (c,B) of H =

2 0n €2 is g | 2B :
€4 on €< is given by a matrix 5 . The action of
Ba

(f,(o,B)) € A on 3 is given by

al, BI
e e|=2

) ® Iy . The operator D is
Bl aly G

given by

DW=F@® O, ®LOL) By Jv+

0 0M; 0
0 0 0 0

v® v+
M; 0 0 0
00 0 0

/
0 0 0 0
of © 0 0 -M,"

Y 0 0 o R(v),

0 M, 0

M,0\.
where M, = ( OeMd) is a 2N x 2NG matrix and

0
M, = (Mu) is a 2Ng x N matrix. D is a symmetric

operator with respect to the underlying real structure on 36.
The Z,-grading is given by

T=Y® O] &)L @Iy .

We will take the vector bundle 8 to be Q. The unitary
gauge group of 8 is Map(Z,U(1) x SU(2)). The Hilbert
space 8 ®, % is the same as 36. A connection on 8 is
given by a skew element p of Ql(Cl). A computation gives
that 7t(p) can be written as an operator on 3 in the form

T(p)(v) =
A®Iy, 0 ilorihem,r ilorem,
0 A®Iy, 0 0
. v
ifor1jyeM, 0 A®lLy, W8l
iy ®M, 0 Wely, A®Iy,
0 0 0 0
0 0 1098M,T -i{0,-1)yom,T
+ - R{v).
0 -i0;y®M, 0
0 {o.-1 yom, 0 0
*
. - A' W |,
A is a U(1) gauge field, is an SU(2) gauge field
W -A'
o). . : . -
and ® = is a Higgs doublet with covariant derivative
2
DO = dp +|AA W

W -A-A

written as an operator on 6 in the form

)(D. The image ©(0) can be

n(0)(v) =S v + T y R(v), where S is a 4x4 self-adjoint
matrix of operators with
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- 2
S11=Fo ® It X ® ING+(1 - 1013 @ M, '™,

= 2 TN -

S33 Sa4 ®1 +X'010)®I
=F( . we +
(343 S4s { ?V :‘Z') NG 01 NG

12(1- |d>|2)( (1)(1)) ® (M;M, " - MM, +

Y Y'*
(Y. N )@[M1M1'+ MyM,*]

(Ssl):i(D(I))'Y@Ml
S4

and T is a 4x4 antisymmetric matrix of operators with

Taa) Jo-1\ 2
(Tn)“‘(l o) Do ® My.
Here X, X', Y and Y' are auxiliary scalar fields.

In order to provide the color, we will add an auxiliary
algebra B = C™(Z) & C™(Z) and a left B-module

F =C=(2) ® C°(Z) ® C(Z) ® C°(Z) = B3 £, with
(L) 0 O
f =

0 (0,1) O |. The gauge group of F is
0 0 (0.1)

Map(Z,U(1) % U(3)). Let us write the Hilbert space
N
=125 @ C2ocac’ecH®C Cas

¥ =36, @® %263 %36 ¥4 We will let T3 act on the
right on ‘1{31,‘.}63 and %4, and on the left on ‘.1-52. The

action of (g,g) € T on %6, %5 and %, will be by‘g g.

® ING, and the action on ¥, will be by gT; ® ING. We
will then take the physical fermion space to be

(3,0 F) B (F*Op%,) @ (H;8,F) 0 (%,
O F).

This has the effect of adding the color to the guarks.

A connection on F will give rise to a U(1) gauge field
and a U(3) gauge field. The total gauge group is now U(1)
x SU) x U(1) x U(3). In order to reduce this to U(1) x
SU2) x SU(3), let us denote the U(1) part of the
connection on & by - Y. Let us require that the U(1) part of
the connection on & be - Y, and that the trace of the U(3)
part of the connection on & be Y. Upon computing the
action as in section III, we obtain a Euclidean version of the
standard model with Y as the hypercharge generator. We
will discuss the possible relations among the coupling
constants in section VL

When written in Minkowski space, there are some slight
differences due to the different properties of charge
conjugation. Using the same matrices C and y as above,
when we rotate to a (+,-,-,-) Minkowski space the charge
conjugation operator becomes R(v) = yOC'l v, which
changes chirality. We will again take

U=C"(2)® (@ & H)and

N,
% =125 ® @?0coclecH®C O, wih the
same action of € on 6. The operator D will be given by
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0 0M 0
00 00
ivy® v+
M; 0 0 0
00 0 0
0 0 0 0
_@ooomfR
8 5 0 o o |V
0M 0 O

(Our pure Dirac operator satisfies 132 =- 802 + ajz.) The
Z,-grading will be given by

T =Y® (5@ (1) ® (1) ® (1) @ Iy . Of the

various factors of 36, the first @2 factor corresponds to
(eR,dR), the @ factor corresponds to uRC, the second ¢2
factor corresponds to (e;.d;) and the third c? factor
corresponds to (v, ;). The rest of the discussion extends
straightforwardly to Minkowski space. We will make the
physical fermions chiral by requiring Iy = .

As with the previous models, it is possible to see our
noncommutative spacetime geometry as the product of an
ordinary spacetime geometry and the geometry over a point.
We will do this for the electroweak geometry, for which it
is convenient to use quaternions throughout and take tensor
products over the quaternions. In the Euclidean case we
use the fact that the spinor representation of Spin(4) is
quaternionic, that is, the representation commutes with the
generators of a quaternion algebra. This can be seen by
noting that the double covering of the embeddings

S0(4) » SO(5) » SO(5,1) is

(Spin(4) = SU(2) x SU(2)) » U(2,H) » SL(2,H). The
spinor bundle S has fiber H2, and we will take the Clifford

algebra to act on the right. Left multiplication by i defines a
complex structure on H 2, and the operator Lj of left

multiplication by j then defines charge conjugation. Lj is

complex-antilinear, and because the chirality operator v is

10
0-1

ordinary spacetime geometry is then given by

right multiplication by

), Lj preserves chirality. The

G, = C*(2) (a real algebra), %, = L*(S) with the right
@, action,

0 dp+id;+jo,+kos
Dy=|.9,+id, +jd,+kds 0
(a real-symmetric operator acting on the right) and I'y = .

Over a point, we will take the algebra to be
a, =C @ H, where we will think f C=R® R iasa
subalgebra of H. The (real) Hilbert space will be

N
%1 = (]H2 oHle Hle ]Hz) G with the action of

(f.9) e QU given by

fi, 0 0 O
0 fI; 0 0O
0 0qi; 0
0 0 0gql,

g v=( ® ING) v. The relation

between this quaternionic description of the action of the
algebra and the complex description is given by a change of
basis, using the identity
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0=

_|ogt+iog+jBr+kp; 0

0 ogp+iog+jBg+kBy

t
The operator Dy is 02 , with
zZO

Z= -My+iMjg  Mg+iMy
- M1R+iMu 'M21+iMlR'

Here M;p and My are the real and imaginary parts of M,
and similarly for M,.

b0 0O O
01 00
0 0-1,0
0 0 0-I,

We will take I'; tobe ® Iy,

D, takes its particular form because it anticommutes with

iI,0 0 0

loiLo o .
Iy, commutes with 0 0iL,0 ® ING, which is the

0 0 0il,
translation of the fact that in the complex description D acts

complex linearly on the down quarks and complex-
antilinearly on the up quarks, and commutes with

I, 0 0 O

0, 00 L .

0 0 0 il ® ING, which is the translation of the
0 0 -I,0

fact that D does not mix the up and down quarks.

The product geometry is ncw given by

In the Minkowski case one can perform a similar
construction using the fact that with signature (+,-,-,-), the
spinor representation is again quaternionic. This can be
seen by noting that the double covering of the embeddings
SO(3,1) » SO(4,1) » SO(5,1) is

(Spin(3,1) = SL(2,@)) » U(1,1,H) > SL(2,H). The
spinor bundle S again has fiber H2, with the Clifford
algebra acting on the right. Left multiplication by i defines
a complex structure on H2, and the operator Lj of left
multiplication by j defines charge conjugation, a complex-
antilinear operator. The (antisymmetric) chirality operator ¥
is right multiplication by i, which commutes with charge
conjugation. The ordinary spacetime geometry is then
given by

@1, = C (2) (a real algebra), %, = L(S) with the right €
action,

Da = j33+ka4 jao+jal

27\ -j9+jd; jos+kd,

(a real operator acting on the right) and I’y =v.

For the point geometry, we take the same @ and 36 as

-
intheEuclideancase,andwetakeD1=( g g ),

il, 0 0 0
0 4L, 0 0 ®1 The prodi come
r1= 0 o 0 Iz NG. ep uctg tt‘y
0 0 -1, 0
is given by
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el =Q1®Q2,% =%1®m%2,
VI. Discussion

When one considers the renormalizability of our models,
it will be important to know how restricted our actions are.
First, it is possible that there are other operator-theoretically
defined bosonic actions which reproduce the Yang-Mills
action in the ordinary case. We will only consider here the
simplest possibility, based on the Dixmier trace, as given in
section II, (13). One can then consider two possibilities.

The first uses the pure Dixmier trace to define the action, as
in II1 (13). The second uses the fact that one can break Iy

into its various gauge-invariant pieces. That is, if {P;} are
projections from B (& ®Q%) to itself which satisfy
P,(uTul) = Py(T) forallu e U and T & B(€ ®, %), then

there is a gauge-invariant action given by

1=Xc; Tr,( (P;n(®))? Dy 2¥) for arbitrary constants
(Ci}-

Let us illustrate this for the standard mode! of section V.
Even if, to give the first possibility, we use the pure
Dixmier trace, there is an arbitrary constant in front. For
the standard model there are two distinct connections,
coming from & and &, and two unrelated Hilbert spaces
corresponding to the leptons and quarks. There is no
reason why the four ensuing Dixmier traces should be
related, and so we have four arbitrary constants. This leads
to one relation among the masses and coupling consiants.
In the limit in which the other fermion masses are negligible
compared to the top quark mass, we find that the relation
becomes that the Higgs mass is 212 (imes the top mass.
On the other hand, with the second possibility we find the
same amount of arbitrariness for the constants as in the
usual standard model.

If it turns out that the mass relation is satisfied, it might
indicate that our action arises from a more unified operator-
theoretic action. One could speculate that the special action

obtained from a pure constant times the Dixmier trace is
singled out among others as the restriction of an action with
a much larger and simple invariance group of unitary
operators.

We should stress two unsatisfactory features of our
version of the standard model. The first is the need to relate
the various U(1) factors in order to get the right gauge
group and hypercharge assignments. The second has to do
with the different role played by the 1 algebra and the
chromodynamics sector. There may be some hint to the
meaning of this from looking at what happens over a point
in ordinary spacetime. There the role of the 13 algebra can
be seen as a change of the ground ring € to C® €, which is
well understood as a feature of Kasparov's bivariant KK
theory (Kal.

Let us note that as all of the fermion representations for
our models arise from representations of algebras, the
fermions must be in fundamental representations of the
gauge groups. Thus it is impossible to get GUTs by our
methods. We also need nonsimple gauge groups in order
to have Higgs fields.

In conclusion, one way to look at this paper is the
following. In the same way that Minkowski space arises
naturally from Maxwell's theory, we look for the
modification of spacetime arising from the electroweak
unification. We want to find a theory on a (possibly)
noncommutative spacetime which is comparable in
simplicity to that of electrodynamics on an ordinary
spacetime. Our noncommutative spacetime geometry can be
considered as phenomenological, in that it is obtained
unambiguously from the phenomenological action of the
standard model.
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