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Introduction

What follows is a set of lecture notes for a
seminar given by A. Grothendieck at Harvard University
in the fall of 1961. The subject matter is his theory
of local (or relative) cchomology groups of sheaves on
preschemes. This material has since appeared in expanded
and generalized form in his Paris seminar of 1962 [16]
and my duality seminar at Harvard in 1963/64 [17].
Furthermore, it may appear in the later sections of his
"Elements," chapter III [5]. However, I have thought it
worthwhile to make these notes available again, since a
short, elementary treatment of a subject is often the
best introduction to it. The text is essentially the
same as the first edition, except for minor corrections
and an expanded bibliography.

The study of local cchomology groups has its
origin in the observation, already implicit in Serre's
paper FAC [l0], that many statements about projective
varieties can be reformulated in terms of graded rings,
or complete local rings. This allows one to conjecture

and then prove statements about local rings, which then



may be of use in obtaining better global results. Thus

the finiteness theorems of Serre for ccherent sheaves

on projective varieties become statements that certain
local cchomology modules are "cofinite." Similarly the
duality theorem for projective varieties becomes a duality
theorem for local cchomology modules. This approach

was developed further by Grothendieck in his 1962 seminar
[16], where he studies local and global Lefschetz theorems,

relating =«

4 and Pic of a variety to 1w and Pic of

1
its hyperplane sections.

In Section 1 we define the local cohomology
groups of an abelian sheaf F on a topological space
X, with respect to a locally closed subset ¥, as the
right derived functors of the functor TQ{FJ, the
sections of F "with support in Y."

In Section 2 we give the first consequences of
this theory when applied to preschemes: The main result

is Theorem 2.8, which interprets the local cohomology

groups as a direct limit of Ext's.

In Section 3 we give a self-contained exposition



of the notion of depth (or homological codimension)
and relate it to the local cohomology groups (Theorem
3:B).

Section 4 contains some "general nonsense" on
functors defined on the category of modules over a
Noetherian ring. In particular, we discuss dualizing
functors and dualizing modules.

In Section 5 we give some miscellaneous appli-
cations and some technical results useful in the next
section. (In the lectures, most of this material came
before that of Section 4, and it is perhaps better to
read it first, since it is closely related to Section
3)

Section 6 contains the duality theorems which
are central results of the local cohcmology theory.

R. Hartshorne
Cambridge, Mass.
July, 1967



§ 1. Definition and Elementary Properties
of the Local Cohomology Groups

For preliminaries of homological algebra we refer to
Godement [4] or Grothendieck [6]. The results of this section will
be valid for arbitrary topological spaces and arbitrary sheaves of
abelian groups over them.

Let X be a topological space, let Z be a locally closed
subspace of X, and let F be an abelian sheaf on X. (We recall that a

subspace Z of a topological space X is locally closed if it is the

intersection of an open and a closed subset. By an abelian sheaf on a topologi-

cal space X we mean simplya sheaf of abelian groups on X.

The category of all abelian sheaves on X will be denoted by C,[x‘,-,}
Choose an open subset V C X such that Z2 C V, and Z

is closed in V. This is possible since Z is locally closed in X.

Let I‘Z{X. F) be the subgroup of F(V) consisting of all those

sections of F whose support is contained in Z. One checks

immediately that FZIX. F) is independent of the subset V chosen

above. Moreover, one sees also that the functor

from C(X) to (Ab) is left-exact. We call I"ZIIX,F} the sections

of F with support in Z. Note that if Z is closed, it is precisely




this; if Z is openin X, I"Z[X,F] = F(Z).
Let X,Z,F,V beasabove. Thenif U is any open subset
of X, the natural restriction homomorphism
F(V} — F(V mn U)
induces a homomorphism

r,(x,F) — PZHU{U’Fl u)

Thus we may consider the presheaf

AT =
U G o3 F|u)

One verifies immediately that in fact this presheaf is a sheaf, and

we will denote it by I‘ZIF}. As with I'z, one finds that the functor

F Ay I"ZI[FI

is left-exact from C(X) to £€(X).

Definition. Let X be a topological space, Z a locally
closed subspace, and F an abelian sheaf on X. Then the right

derived functors of I‘z and 1"2, respectively, are denoted by

sz (X,F) and Hi‘; (F), p=0,1, ..., respectively, and are called

the cohomology groups (resp., cchomology sheaves) of X with

coefficients in F and supports in Z.

Remark: Using the notion of a sheaf extended by zero outside

of a locally closed subset [4,II 2.9], we can give a different



interpretation of I‘Z{F] and I"'ZIF:I, Let E.Z be the constant sheaf

of integers on Z, and let Ez X be this same sheaf extended by

zero outside of Z. Then

PZ{X,F] = Hom {EZ,X’F]

and

Fz{F} = Hom (Z F) .

Z. X'

where Hom denotes the sheaf of germs of homomorphisms.

The rest of this section will be devoted to various properties
of these cohomology groups and sheaves with supports in a locally
closed subspace.

Broposition 1.1. Let Z be locally closed in X. Then

a) For any F & B(X) ’

kD
T z[X, F) = HZ{X" F)

8]
r,F-= ‘H_ZIFII

b) If 0—=F —F—F"—0 isanexact sequence

of abelian sheaves on X, then there are long exact sequences

2
s 1y —= 2 — o "y —
0 — Hz[}{. F') Hz{x. F) Hz[}{, F')

1 , 1
H, (X, F') = H, (X, F) ~ . .

and



?
o 1 — o — o 1Yy — 1 1 . 1 —rr
0 — HZ{F ) HZ[F] HZI:F ) HZ{F ) HZ{F} 5 e §

where the connecting homomorphisms ? behave functorially.

¢c) If Fe &X) isan injective object of the category, then

H%{X,F]:O for p>0, and H;{F}--D for p>0.

e

Proof. These properties follow from the fact that H; and

HPZ'. are derived functors of FZ and l"z. In fact, a.b.c

characterize the derived functors.

Proposition 1.2. With Z, X, F as above, for each p=>0,

HP (F) is the sheaf associated to the presheaf

U vn—> H;ﬁU{U. Flu)

Proof. This follows formally from the definitions. Set
_I-lp_l (F) equal to the sheaf associated to the presheaf above. Then,
since the operation of taking associated sheaves 1s an exact functor,
the _l-f_{F] form a connected sequence of functors. Moreover, for
p =0, _I—_IiL{F} = the sheaf associated to the presheaf (U > rZﬁU{U’ F1 ul),
= I"Z{F}. If F is injective, so is F|U for any U; hence, all

—_—

]
the Hgm{u,Flm _0 for p>0. Therefore, also, H (F) =0

for p> 0. Butthese properties characterize the right derived

]
functors of I'ZIIF], hence uP (F) = H;{Fl-

m—— o —



Proposition 1.3. (Excision Formula) Let Z be locally

closedin X, andlet V beopenin X and suchthat ZC VC X.

Then for any F & C(X]),

P
HZ (X, F)

i

P
H (V. F| V)

Proof. This follows from the fact that F s l"z{x, F) and

) P I‘E[V,Fi V) are isomorphic functors from C(X) to (Ab).

Proposition 1.4. (Spectral Sequence) If Z is locally closed

in X, forany F there isa spectral sequence.

h Pd _ P q

where by I—IP{}{,F} for any F we mean the right derived functors
of the functor F w3 I'(F).

This proposition will follow from the theorem and lemmas
below.

Theorem A. Let C , s e’ be abelian categories
with enough injectives, and suppose given two left-exact covariant
functors

F: e = e' » G: f;t i ﬁ.':
Suppose furthermore that F takes injectives into G-acyclic object s,

i.e., whenever I is an injective object of & RPG[F{I}} =0



for p> 0, where RPG are the right-derived functors of G. Then
for each object X in € , there is a spectral sequence relating

the right derived functors of F,G, and G ° F.
R%G ¢ F)(x) & ENY = RPGRIF(X)

For the proof of this theorem we refer the reader to [6].

vin B(X), the category of abelian sheaves on
Lemma 1.5. Any injective sheaf‘}lis flasque

Proof. Any sheaf can be embedded in a flasque sheaf, e.g.,
the sheaf of discontinuous sections of itself. But if I is injective,
and 1C F with F flasque, then I is a direct summand of F,

hence flasque itself.

Lemma 1.6. If F is flasque, sois I‘Z{F].

——

Proof. Replacing X by an open subset V which contains
Z as a closed subset, we may assume that Z is closed in X. Then

we must show that if U is any open subset of X, the map
T X.F) == T, 0T, 2(0)

is surjective, where we suppose that F is a given flasque sheaf.

Solet ot {U,F1U}, i.e., O isa sectionof F over U,

I‘ZﬁU

whose support is in Z m U. Consider the zero section of F over



the open set X - Z. This agrees with o on the intersection of
their domains U m (X - Z) =U - (Z m U). Hence, there is a section
¢' of F over the open set U ‘w (X - Z), whose restrictionto U
is o, and whose restrictionto X - Z is zero. Now since F

is flasque, there exists a section o' of F overall of X, whose
restrictionte Uw (X - Z) is o'. Clearly ¢'" has supportin Z,

and ¢" am—> ¢ under the map above. Hence I‘Z{F} is flasque.

Lemma 1.7. If F is flasque, then HY(X,F)=0 for gq>0.

Proof. Embed F man injective sheaf I, andlet C be
the cokernel:
) F—=1==0C~=0,.
Then I is flasque by lemma 1.5. Therefore, by [4, Chapter II, 3. .21,

C is also flasque, and we have an exact sequence
¢o—-T(F)—-I()— I(C) —0

Hence, HIIX.F}=D. and for p>1,

HPx,F) = HP N x,c ) =0

by induction on p, since C is also flasque.

Proof of Proposition 1.4. We have the functor I‘z: C(X) — (Ab),

which may be written as a composite functor




where

_: C(X)—C{X) and I : CX) —(Ab).

In order to apply the theorem quoted above, and thus deduce the
existence of the spectral sequence, we need only show that T z
takes injective sheaves into T -acyclic sheaves. But by the lemmas,
any injective is flasque, I"zl:fla.sque} = flasque, and any flasque is
I'-acyclic.

Lemma 1.8. Let Z be locally closed in X, let Z' be
closedin 2, andlet Z'"=2Z - Z'. Then for any abelian sheaf F

on X, there is an exact sequence

e I‘ZT{F} —*I‘Z(F} = I"z,r{F] :
Moreover, if F is flasque, we can write a 0 on the right also.

Proof. Clearly we may assume that Z is closed in X.

Then ‘FZ'{F} is the set of those global sections of F with support

in Z', which clearly contained in Pz[F]. Letting V = EZ' in

X, V isopen, and Z"=2 "V, i.e., Z" isclosedin V.

Then I, [(F)=the set of elements o & I'(V,F|V) whose support

isin Z". Now it is clear that the natural restriction map



¢ : D(X,F) — ['(V,F|V)

induces a map q&z : I"z{]{. F) — I‘z”{}{. F) . Furtherfore, to say
qﬁz[cr:l =0 istosay o iszeroon Z",i.e., o has support
in Z'. Hence, our sequence is exact.

Now if F is flasque, ¢ is surjective. Hence, if
TE I"ZHIIJ{,F], 3 o' &€ I'(X,F) restrictingto o. But since

V= E‘Z'. o' must have support in Z'. Hence, q’}z is surjective.

Proposition 1.9. Let Z, Z', Z" be asin the lernma, and

let F be any abelian sheaf on X. Then there are exact sequences,
1 1

0 I"zt{}E s ) — I"Z[X. F) — FZ"D{' F) --Hz,{X,F] - HZ{}C*F}—*. .o

and

1 1
0 B ) == T (8) =T )~ By ()= B (1S o

Corollary 1.9. If Z isclesedin X, and F isany

abelian sheaf on X, there are exact sequences
1
Q- I"Z{K,F] - I'X,F)— I'(X- Z,F) — HZ[K,F] e

— HI{X,F} — Hl{x W R
and

. 1
0 Fz{F]—*F—*J#(F|X-Z} 5_7:{1-*} 0

+1
HPZ {F}ER}L{F!K-Z] for HEE
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where j: X - Z ¢ X isthe natural injection, and is the

Ju

direct image functor.
Proofs. Take an injective resolution S = {Ii} of F:
0= = = =%
F Iﬂ 11

Then the Ii are all flasque by lemma 1.5, and so by lemma 1.8

we have an exact sequence of complexes

0—T,(§)= Ty y= Tl 3 J=0

and similarly for the sheaf functors I, 1"3. These complexes

give rise to the exact sequences written above.

For the corollary, we take the particular case where 2 =X,

and write Z for Z'. Note that I"X[F'.i-:F. and I‘K_Z{F]=j${]:‘1}{-z:l

——

by the definition of the direct ima ge functor. PX is exact, so©

—_—

HI;:EF}=U for p>0, and H

—

.z (F) = RE(F|X - 2).

Proposition 1.10. Let F be an abelian sheaf on X. Then

the following conditions are equivalent:

(i) F is flasque.

(ii) For all locally closed subspaces Y of X, and for
all i~ 0,

H:x,{X,F} =0 and HiftF] =0
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1
(iii) For all closed subspaces Y of X, HY{X, F) = 0.

Proof. (i) => (ii). Suppose F flasque, and Y C X locally

closed. Let V € X be an open set containing Y as a closed

subset. Then F|V is flasque, so by the excision formula (proposition 1.3},
we may assume that V = ¥, i.e., Y is closed in ¥. MNow using the
corollary of Proposition 1.9, and noting that Hi{K,F} = Hi{}{ -Y,F]l=0

for i>0, since F is flasque, we find that I—I;[X,F] =0 for

X, F)— Tt - Y. 7 -—H,IL,{X.F] ==

1
By the definition of flasqueness, also HY{}C,F} = 0. For any open

i

UCX, F|U is also flasque, so HYﬁU{U.FIU}zﬂ for i > 0.

Passing to associated sheaves (Proposition 1.2), we find that

H:I,{F} =0 for i>0.

(ii) == (iii) is trivial.
(iii) => (i) follows from the definition of flasqueness and the

exact sequence, for any closed Y,

I'X,F)— DX - Y,F) — H;{X,F}

Proposition 1.11. Let Y bea closed subset of X, let

V=X-7Y, let F be an abelian sheaf on X, and let n be an

integer. Then the following conditions are equivalent:




12
() Forall i< n, Hy(F)=0.
(ii) For all open subsets U of X, themap &, : H'(U, F) —

HI{U ~ V,F) is injective for 1i= 0, and an isomorphism for all i< n.

Proof. (i} => (ii). Since the condition (i) is of a local nature,
it will be sufficient to prove (ii) in the case where U= ¥X. Sowe

must show that the map

a;: H'(X,F) ~H (X - Y,F)

is injective for i=0, and an isomorphism for i< n. Using the
exact sequence of the Corollary to Proposition 1.9, it will be sufficient
to show that HL{X,F} =0 for i< n. But by Proposition 1.4 there

is a spectral sequence

i - O q
Hth.F]r:_ Es'=H L, HY[F}] :

Since by hypothesis the I-Iﬂ?r (F)=0 {for q= m, it follows that

—

the abutment HIY{X,F} =0 for i< n.

(ii) == (i). Owur hypothesis clearly insures that I—I:fﬁU{U.FIU] =0
for any open U, andfor 1= 0 and i< n. Hence, passing to
associated sheaves, H";I{F} -0 for i=0 and i< n. The only

—

remaining case is where i=n >~ 0. Then for each U, we have
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n

e un~ v, F) - Hy

n
~lU-F) = H(U, F)

This exact sequence commutes with the re striction homomorphisms
as we pass from one U to another, hence gives rise to an exact
sequence of associated sheaves. DBut the sheaf associated to the

presheaf U m~— Hn[U. F) is zero, since n > 0! 5o we have

-1 -1
HF) = R™j (F| V) = HG(F) — 0

which shows I—II;, (F) = 0.

"

Proposition 1.12. Let X be a Zariski space of dimension

n, let Y bea locally closed subset of X, andlet F be any

abelian sheaf on X. Then forall i>*n, H;,{X, F)=0, and H:[,{F} = U

—

Proof. See [6,§3.6] and [4, II, Th. 4.15.2], where the
analogous theorem is proved for Hi{}{, F). The same proof works
also for H;[X,F}, once one observes that H;[X,F] =0 for i>0
and F flasque (Proposition 1.10) and that the functor r"f commutes
with direct limits and finite direct sums. Any open subset U CX is
again a Zariski space of dim n, so H;ﬁu{u,ﬂ U)=0 for i>n.

Passing to associated sheaves gives H;_{F} =0 for 1>mn.



I —
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Remark. For suitably nice topological spaces in which sheaf
cohomology agrees with singular cohomology (e-g-
paracompact and locally contractible)} one may interpret the cohomology
groups defined above in terms of known relative cohomology. To be
precise, let Y be closedin v andlet G bean abelian group

(respectively the constant sheaf G on ¥). Then

H’;f{x,c;} = H (X, X-Y;G)

where the expression the right is singular cohomology

of X relative to ¥ - Y, with coefficients in . This 1is a canonical,
functorial i somorphism, compatible with the usual exact segquences.

Example. Let ¥ be a topological space, and Y a closed
subset, so that X looks locally like ¥ X IRd; That is, such that for
each y & Y, there is a neighborhood v of yin X, such that
the pair (Y M vV,V} is homeomorphic to (Y MV X {G} , X NN md‘j.
We consider the cohomology sheaf HiY{X,?Z}. This sheaf will

have support in Y, and we can caleulate it locally. Overa V

such as above, it 1looks like

1 d : :
H{D}{]R czy=[0 if ifd

Zz if i=d
{One can calculate this by ordinary topological methods via the remark
d
above: The pair {]Rd, 1B = {D} ) is of the same homotopy type as the

d-1
pair {'IHd. s ), so we have

*see [l4, expﬂsé XIII p.3] and [15, exposé XX, p.1l1. Compare
also [4,II5.10.1] which says that these also agree with Cech
cohomology -



15

i rY 2y - 54 Z) "Hi{u} (€, ) ~H(K, Z) ~ ..

1

d;z:l=ﬂ for i>0, and Hl{Sd-;E]={.‘r if

We know H (R
ifd-1, Z otherwise.)

Hence the sheaf Hi (X, Z) is locally isomorphic to Z

along Y. Call this sheaf "_'[['Y

X’ the sheaf of twisted integers of

Y in X. The spectral sequence of Proposition 1.4 degenerates,

since H;[X, Z)#0 only when i=4d, and we find

i i et e
HY{}{,E} & H (X, TY,X}_H (Y. TY,X] :
since 'I['Y X is concentrated on Y. Substituting in the exact
- sequence of Proposition 1.9, we have
i+l-d

i i
= H(X,Z)=H(X-Y,Z)—H (TEy

oo e



§2. Application of Local Cohomology
to Preschemes.
In this section we will apply the notions of local cohomology,
as developed in Section 1, to the case where our topological space
X isa prescheme. We will first study the case of an affine scheme,
showing how to compute the local cohomology groups by means of
Koszul complexes. Then we will give a theorem valid on quite general
preschemes, which interprets the local cohomology groups and sheaves
in terms of the "Ext'' functors. These results are very closely
related to theorems of Serre [10, § 69] relating cohomology of sheaves

on projective space to N"Ext'" groups.

Proposition 2.1. Let X be a prescheme, with structure

sheaf ﬂ'x, andlet Y=V - U bea locally closed subset, where
U and V are open. Assume that the natural injection maps of U
and V into X are quasi-compact immersions. (This will always
be true if X is locally Noetherian.) If F isa quasi-coherent
sheaf of ﬁx-mudulﬁs, then the sheaves H;{F'} are quasi-coherent

—_—

sheaves of ﬂx-mudules. for all n =2 0.

Proof. By Propositionl.lwe have an exact sequence of sheaves

n
e BT (F) ~ H - n+l e
; HU{ ) Y{F} ﬁ (F) = ...
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on any prescheme
Sincepthe kernel and cokernel of a homomorphism of quasi-coherent

sheaves are quasi-coherent, and since an extension of one quasi-
coherent sheaf by another is quasi-coherent} it will be sufficient to
show that the sheaves HE{F] and Hi{F} are quasi-cocherent. We
have already seen {Cur;ry 1.9) tha.:' U isopenin X, and
j:U—=X is the natural injection, then the sheaf I—IE(F] is just
an#iF!U]'- Since F|U is a quasi-coherent sheaf c;n_ U, and since

an immersion is separated, our proposition will result from the

following theorem, which we suppose known.

Theorem B. Let f: X —Y bea quasi-compact separated

morphism of preschemes, and let F be a quasi-coherent sheaf on
n

X. Then the higher direct images R f (F) of F areall quasi-

coherent sheaves on Y.

Proof. See [5,1.1.6.3 and IIT 1.4.10 ]

L] o &1

|

Proposition 2.2. Let X = Spec A be'an affine scheme, and let

Y be a closed subset of X. Then for any quasi-ccherent sheaf F
on X, andforany i2>0, H;.{F} is the sheaf associated to the

A-module H:E{X’F}' Moreover, there is an exact sequence

0 = 1% (x, F) ~ HO(X,F) =~ HO(X-Y, F) = H (X, F) =0,

*Since the question is local, it is sufficient to consider an
affine scheme. Then the first statement follows from [5, I.
1.3.9] and [5, I.1.4.1], and the second statement is [5, III.

L.4.17).
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and there are isomorphisms

- ik :
H (X-Y,F) =~ I-I:I, Lx, F) i>0
Proof. For the first statement, we apply the spectral sequence

{Proposition 1.4)

n Pad P q
= = =
I—IY[X. F) E2 H" {X, HYI:F]]

By the previous proposition, we know that the sheaves H?I,IF} are
quasi-coherent. Therefore, since X is affine, qu =0 f{or

p>0. 5o our spectral sequence degenerates and we have

n ).
Hy (X, F) ¥ H (X, HO(F)

or, in other words, H;{F} ;s the sheaf associated to the A-module
H (X, F).

The second statement follows directly from the exact sequence
of Corollary 1.9, since for ¥ affine, the groups Hi{X,F} =0
for 1> 0.

We now proceed to a detailed study of the local cnhc}molc—agy of
an affine scheme. Since the cohomology sheaves H;.[F] are well

expressed in terms of the groups H:} (X, F) by the above proposition,

we will restrict our attention to the latter.
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We first recall the definition of the Koszul complex (see
[11, Ch. IV] or [5, Ch. III, §1.1]). Let A be a commutative ring,
and let f be an element of A. Then we denote by K(f) the
(homological) complex of A-modules defined as follows: The modules
are

Klfﬂ = K ()= A ¢ Ki{f} =0 for M s

0

and the map

d: K, () — KD{ﬂ

is multiplication by {.
If f= {1’1, o R fn] ig a finite family of elements of A,

and if M is an A-module, then we denote by K#{E;M) the

homological complex

K(f,) ®ﬁ... @Axun] ®AM :

where M is considered as a complex concentrated in degree zero.

E
We denote by K (f;M) the cohomological complex
Hnmﬁ[K*l:j_; A), M)

The homology and cohomology of these complexes will be denoted
s
by H#{ f; M) and H (f; M), respectively.
If m and m' are two positive integers such that m' > m,

then there is a natural map of the Koszul complexes
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BIEP ) e )

defined as follows: In degree zero it is the identity map of A, and
l=m

in degree one it is multiplication by £ . One extends this

definition in the obvious way to give maps of the Koszul complexes of

n elements of A with respect toa module M, and therefore

also maps of the homology and cohomology of these complexes, as

follows (letting _f_m = {izin, R f::’}} :
K#{im';M) - K (M)

H (7 M) = H (€M)

and

K*{_fml;M}-'—K#Em;M}

HY ™ M) — H (M)

Thus in the first case we have inverse systems of complexes and
homology groups; in the second case we have direct systems of

complexes and cohomology groups.

Theorem 2.3. Let A be a commutative ring with prime

spectrum X; let f = {il, R fn] be a finite family of elements of
A, and let the variety of the ideal they generate be Y C X; let M
be an A-module. Then there is an isomorphism of cohomological

functors (i > 0)



im H(£75M) = H_(X, M)

m

The complete proof of this theorem is beyond the scope of these
notes, and besides, is fairly well known. We will content ourselves
with outlining the proof, and refer to the literature for details.
[5, Ch. III]

The first step is to interpret the direct limit of Koszul
cohomology in terms of Cech cohomology. For simplicity of notation,

let us define H, (M) to be lim (™M), 1 W isa collection

= m
of open sets of X, andif F isa sheafon X, we will denote
by Irlil: 1L ,F) the ith Cech cohomology group of X with respect
to the family of open sets w , and with coefficients in the sheaf F.
Finally, if X = Spec A, andif f = {fl, s fn'} is a finite family
of elements of A, then we will denote by ’U'.I the family of open

sets [Ui], 12l covsfls Where Ui is the complement in X of

the variety of the ideal generated by fi'

Proposition C. [5, Ch. III, 1.2.3] With the hypotheses of Theorem 23

and with the notations above, there is an exact sequence

¥ -
0o ~HIM) —~MER(W,, M) —H M0 =0
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where @ is the natural restriction map and there are isomorphisms

Hi{'\..Lf, M) = Hif“{M} for i>0

Moreover, the exact sequence and isomorphisms are functorial in M.
The proof of this proposition is elementary. One shows explicitly
that the complex f_q‘[ 'UT , M) of Cech cochains of uf with
coefficients in M  is canonically isomorphic to the direc: limit
?{ : (M) of the cohomological Koszul complexes K’::{im;ML but
wiﬂ: the dimensions shifted by one. That is to say, there isa
commutative diagram
o~ Ko~ K - Kin—...
b = | =

1] ~ 1 5
g UM == it P oM

I

Now since taking direct limits is an exact functor, one can compute
H;(M] as the cohomology of the complex }(;[M], and one finds
the exact sequence and isomorphisms of the proposition. The entire

proof is functorial in M, so the resulting exact sequence and

isomorphisms are also.

Theorem D. Let X be a scheme, let 1L be a cover of X
by open affine subschemes, and let F be a quasi-coherent sheaf

on X. Then there is an isomorphism of cohomological functors (i > 0)
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WP e HXF)

where Hi{}{. F ) denotes the ith right derived functor of the
I’ -functor from the category of all abelian sheaves on X.
For the proof see [5, Ch. III, Prop. 1.4.1].
This theorem allows us to replace Hi[ ']_[_[ , M) by Hi[X-Y. M)

in the previous proposition, since w isacoverof X-Y by

&

open affines. Now with the aid of Proposition 2.2, we can complete
II. A i
the proof of Theorem 2.3. For the functors H,(X,M) and H;{M]

have both been characterized in the same way, namely,as the kernel
and cokernel of the map e: M— I'(X - Y, I:i:l fori=0, 1, and as
Hi'lljx -Y, M) for i > 2. Hence they are isomorphic functors for
each i. That the isomorphism commutes with connecting homomorphisms
can be seen by going back to the isomorphism of cochain complexes
described in the proof of Proposition C.

Our next goal will be to show if A is a Noetherian ring,

then the functors 1-1; (M) for i>0 are the right derived functors

o
of the functor Hf (M) in the category of A-modules. It is the same

thing to say if M is an injective A-module, then H} (M)=0 for i>0.

Definition. Let(M ) be an inverse system of abelian
—— m mzﬂ

groups. We say it is essentially zero if for each m > 0, there exists

an m' > m such that the map

is the zero map.
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Remark. 1) If the inverse system [Mm] is essentially
zero, then it follows that its inverse limit lim Mm is zero. The
converse is false.

2) If we have an exact sequence of inverse systems

0 — (M)~ (M )~ (MI)—=0
then the middle one is essentially zero if and only if the two outside
ones are essentially zero. We leave the proof as an easy exercise

for the reader.

Lemma 2.4. Let A be a commutative ring, let
f= {il, Ry fn'_l be a finite family of elements of A, and let

i >0 beaninteger. Then the following statements are equivalent:

(i) H; (M) = 0 {for all injective A-modules M.

(ii) {Hi{im;A]}m}lis an essentially zero inverse system.
Proof. By definition,
i TR o
H, (M) = LimH (£ ;M)
= m
If M is injective, then Hom( , M) is exact. Hence it commutes
with passage to homology, and we have

H (™M) & Hom , (H (£ 5A), M)

If {Hi{im;ﬂﬂm}l is essentially zero, then for each m there is
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an m' >m such that

3 1 1
Hltim;M] "~ HIEIT.'L M)

i
is zero, and hence the direct limit Hf{M} of these modules is zero.

Conversely, suppose (i) is true. Given an integer m > 0,

we can imbed H,{fm;ﬁ} in an injective module M. Let
§ =
@ & Hom , (H (£7;A), M) = H (£75M)

be the imbedding map. If the direct limit H;. (M) is zero, then

H 1
there must be an m' > m such that the image of o in Hl[_i;m ;M)

is zero; in other words, such that the composed map

m' m o
Hi{i (A) Hi{_{ JA) M

is zero. Since & is a monomorphism, it follows that the first

ArTrOow is zero.

Lemma 2.5. Let A be a Noetherian ring, let f = (f e

) A n

be a finite family of elements of A, andlet N be an A-module of

finite type. Then the inverse system of A-modules

(H, (£ N)) m>1

is essentially zero for 12> 0.
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Proof. We procéed by induction on n. First suppose n = 1.
Then the only value of i to consider is i=1. One sees immediately
that Hll:fm;N] is the submodule Nm of N consisting of those
elements annihilated by £, The map L N_ for m'Zzm,

l-m
is multiplication by . Now the submodules Nm of N form
an increasing sequence, which must be stationary, since A is
Noetherian and N of finite type. In other words, there is an m,
e
such that f annihilates all of the modules Nm. Therefore, if
m -is given, and m'=m +m ., the map from N_, =N is
i 0 m m

multiplication by { ~, i.e., the zero map. Hence the inductive

system [le is essentially zero.

Now let n be an integer > 2, and suppose the lemma
proved for all sequences of < n elements of A, and for all
modules N of finite type. Given f = {fl. S fn} £ A, and a module
of finite type N, let g= {:El, IS, fn-l}' Then for each 12> 0 there

is an exact sequence [11, Ch. IV],
m m m
0 — Hy (€ H (£75N) — H(ET5N) = H (£5H, (g 5N) = 0

To show that the middle inverse system is essentially zero, it will be
sufficient, by the remark 2 above, to show that the two outside inverse

systems are essentially zero.
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On the left, we factor the inverse system map as follows

(where m' > m):
1 ml
Hﬂ{f:-‘ ;Hi_{_g ;N))

\.
: m
Hﬂun .Hi{g ;N))

B

w

m
H (€ H (g 5N)

By the induction hypothesis, the inverse system IHi{gm;N}}m is
essentially zero for i> 0. Therefore, when m' is enough greater
than m, themap & will be zero, and hence also B © @. Therefore,
the left-hand inverse system is essentially zero.

We perform a similar factorization on the right-hand inverse
system.

! m
Hl{f;n H, (g 5N

Ty

For given i,m,N, the A-module Hi_l{ﬁm:N] is of finite type.

Therefore, applying the induction hypothesis to this module, and to
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the single element fns A, we find that for m' enough larger than
the map S is zero. Hence, B o a iszero, and the inverse

system on the right is also essentially zero. Q.E.D.

Proposition 2.6. Let A bea Moetherian ring, let

f= {il, e fn] be a finite family of elements of A, and let M

be an injective A-module. Then I—Ili_l:M} =0 for i>0.

Proof. By Lemmas 2.4 and 2.5,

Corollary 2.7. Let A bea Noetherian ring with prime

spectrum X, and let M be an injective A-module. Then the
sheaf M on X is a flasque sheaf.

Proof. To show that ™M is flasque, we must show that for

any closed Y C X, the map

M%E (X - Y, M)

is surjective. Let Il' SRt fn generate the ideal of Y. Then

¥ - Y is the union of the open sets of the family ‘u"'f defined
above, and from the definition of Cech cohomology it follows that

= v o -
r'X-Y,M) is isomorphic to H ( 'U.f,M]. So by Proposition C

quoted above, there is an exact sequence
o - 1
M—=T(X-Y,M —~H£{M] —-0

1 3 . i iy
But Hf (M) =0 for M injective by the previous proposition, so

a is surjective.
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Remarks. Conversely, the corollary implies the proposition
as we see by Proposition C above. Using results on the structure
of injective modules over Noetherian rings [3], [9]¥ one can give a
direct proof of the corollary as follows. An injective over a Noetherian
ring A is a direct sum of injective hulls Ip of residue class fields
kip) n::f_ prime ideals P of A. Since a direct sum of flasque
sheaves is flasque, it suffices to show that I-F‘ is flasque for each
p. But IP is a direct limit of Artin modules over the local ring
AP. Hence fp is a constant sheaf IP on the closed subset V(p)
of Spec A, and zero outside. Since a constant sheaf on an irreducible
MNoetherian space is flasque, the contention follows.
Now we come to the main theorem of this section, relating
the local cohomology groups on a prescheme to a direct limit of Exts.
Let X be a prescheme, let Y be a closed subspace of X,
and let F be a quasi-coherent sheaf of ﬂx-mﬂdules. Let 3
be a quasi-coherent sheaf of ideals defining Y, and for each n21,

n .
let O'n- ﬂ';:,/ S Then ﬂln is a sheaf concentrated on Y, and

for each n  there is a natural injection

Homcrxt ﬂ‘n. F) = I' (X, F)

For a homomorphism of 0’ into F 1is determined by the image
n
of the unit section of ﬁ’n. which must be a section of F with support

in. ¥-

*See also [17, II § 7] for a complete description of the structure
of injective - modules on a locally noetherian prescheme X.

Using these results allows one to avoid the painful (2.3) - (2.6).
It also gives a more direct proof of Proposition 2.1 for X locally
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Letting F range over the category of UX‘MGdules, we
consider on the one hand the derived functors Extiﬁ (ﬁ"n. F) of
Homﬂ, { O’n’ F), and on the other hand the cohomuln:ical functor
H;[X,};‘}, which is a priori not a derived functor in this category'¥®

Having a map of these functors for i=0, we deduce one for i>0

by the univer sal property of derived functors.
i i
’ g7 X
Exta.xl:ﬂ"n F) = Hy (X, F)

As n varies, these Ext's form a direct system mapping

into I—IIY{}{,F}, so there are homomorphisms
lim Exta (0 F) — H (X, F) . (*)
—> v § n p's
n x
Performing these hcmomorphisms locally, and passing to associated
sheaves, we have homomorphisms of sheaves

i 1
lim Ext (@, F) = H_(F) : ()
n 6}{ " :

Theorem 2.8. If X is local ly Noetherian, and F quasi-
coherent, then the homomorphisms (*) are isomorphisms. If furthermore
« is Noetherian, then the homomorphisms (#) are also isomorphisms.

The proof will be deferred until after some auxialiary propositions

and lemmas.

#In fact, it is a derived functor, because by lemma 2.9 below,
any injective @y-module is flasque, and by Proposition 1.10,
flasque sheaves are TY-:-_myclic. so may be used to calculate
the cohomology groups HY (X, F) .

[ ————
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[4,II,7.3.2]
Lemma 2.9.A Let X bea prescheme, let ¥ and G be
sheaves of gx-modules. and suppose that G is injective in the

category of (Jo-modules. Then Hom, (F,G) isa flasque sheaf.

Proof. We must show, if U is openin X, then the natural
restriction

¥ T F ]
I-Iomo,,x{l-" G) Homo,.U[ |u,G|u)

is surjective. Let FU denote the unique sheaf whose restriction

to U is F|U, and which is zero outside of U. Then a
homomorphism of F|U into G|U is the same as a homomorphism
of FLl into G. Since FU C F, and since G 1is injective, any

such homomorphism extends to a homomorphism of F into G.

(4, 1Y 7.3.3]
Proposition 2.10. , Let X be a prescheme, and let F and

G be sheaves of Ux-mudule s. Then there is a spectral sequence

n Pq P i
t F,G) <= E, " =H (X, Ext P, G

Proof. One can represent Hnrna. (F,G) as a composite
X

functor

Homg (F,G) = I'(Hom , (F,G))
oy Homg
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By Lemma 2. 9 Hnmg (F,G), considered as a functor in G, takes
x

injectives into I'-acyclic objects (Lemnma 1. 7). Therefore, we may

apply Theorem A quoted above to deduce the existence of the spectral

sequence of derived functors.

[4, ch.II,§ 4.12]
Proposition 2.11. pLet ¥ be a Noetherian topological space,

and let I:F,l} be a direct system of abelian sheaves on ¥. Then for

each p=>0,
HP(X, lim F,) = lim H'(X, F))

Proof. Let F =lim Fi' To calculate the cohomology of the
Fi and of F, take injective resolutions C[Fi} of the Fi, in
such a way that they form a direct system, and let GC(F) = lim C[Fi'}.
Then C(F) is a resolution of F by sheaves which are direct
limits of injectives. Using the qua si-compacity of a Noetherian

space, one finds that the I' functor commutes with direct limits.

Now since the direct limit functor is exact, we have

lim HP(X, F,) = H (T (C(F)))

It will therefore be sufficient to show that any direct limit of injective
sheaves is flasque, since then we may Uuse the complex C(F) to
calculate the cohomology of F. But by Lemma 1.5, any injective

sheaf is flasque, and an easy argument using quasi- compacity shows
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that a direct limit of flasque sheaves on a Noetherian space is flasque.

Example. The previous proposition is false without the

Noetherian hypothesis. For example, let X be the space

of positive integers with the discrete topology. Let Fi be the
sheaf whose stalkis Z for n>i, and 0 for n<i. Map Fi

into Fi+1 by killing the ith stalk, and leaving everything else

alone. Then li_n._a Fi = 0, but

lim r'{Fi1=T|' Z/@ Z #£0

neXx neX

Lemma 2.12. Let A be a Noetherian ring with prime

spectrum X. Let M,N be two A-modules and let M be of finite

type. Then there are canonical functorial isomorphisms

A 0’}{

where a tilde denotes taking the quasi-coherent sheaf on X associated

to the given A-module.

Proof. For i=0, the isomorphism follows from the fact
that Hom(M,N) comrmutes with localization when M 1is of finite
presentation [5, I, 1.3.12 (ii)]. As M varies in the category
ﬁi of modules of finite type over A, Ext’ {M,N}N is the ith

(with respect to the firs'@ variable)
right derived functor,of HomA[M. N) . Hence, there are canonical

homomorphisms (of functors in M, from f_,: to the category

of sheaves of ﬂ'x_modules}
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i ~ i Y (1)
ExtA{M,H} _Eg-;i_:.ﬂr (M, N)

X
Since A is Noetherian, every Me ti has a projective
resolution by finitely generated free A-modules. Hence to
show (1) is an isomorphism, we need only show the right-hand
side is zero when M = ﬁr, for then they will be derived functors.
Since g;;}a Commutes with finite direct sums, it is sufficient

X = e @
to show that Extlﬁ (A, N) =0 for i » 0. In fact, for any
X

ﬂk—module F, Ext?r (A, F) = 0, since A = ﬁx and
x r
Ikm‘U'{ Ux F) = F is an exact functor in F. (Recall that
X ’
the Extﬁf are defined as derived functors in the category

b 4
of Uk-mﬂdulEE, with respect to the second variable.)

Proof of Theorem 2.8 In the first assertion, the
question is lbcal, so we may assume that X is the spectrum
nf a Noetherian ring A. Let Jd =1 and F =N. Then we must
show that the homomorphisms

. — - PR
lim Ext'y (A/1", M)~ Hy(N)
n x
are isomorphisms. By proposition 2.2, the right-hand side
i T~ .
is equal to HY{X,N] . Moreover, using Lemma 2.12 and

noting that direct limits commute with the operation ~ [3,

T, 1.3.9 (iii)}, we reduce to showing that the homomorphisms

lim Exty (A/I7,N) = Hy (X,N)

n
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are isomorphisms. This is a homomorphism of cohomological functors
from the category of A-modules into itself. For i=0 the functors
are isomorphic, their common value being the set of elements of N
annihilated by some power of I. For i>0 and N injective, both
vanish: The one on the left since the Ext's are derived functors; the
one on the right by Corollary 2.7 and Proposition 1.10. This charac-
terizes both functors as derived functors, so they are isomorphic.

For the second assertion, we express Ext;b: [O’H, F} and
H; (¥,F) as the abutments of spectral sequences, ﬁsing propositions
1.4 and 2.10. Now one observes that a direct limit of spectral se-
quences is a spectral sequence, and that we have functorial homo-
morphisms of spectral sequences, which give the following commutative

diagram:

Pa _ .. p q . q _ P4
E;" = 11;:31 H {K.ygx{ql.F}} HY (X, Hy (F)) = E,

2 4

1%:31 Extia.x{ﬂ':_l, F) — H;{X,F} . (*)

To show that the homomorphism of the abutments is an isomorphism,
it will be sufficient to show that the homomorphisms of the qu
terms are isomorphisms. But this follows from the isomorphism

(*) established above, and from Proposition 2.11, since X is

assumed MNoetherian.



§3. Relation to Depth

In this section, we recall the notion of depth or homological
codimension introduced by Auslander and Buchsbaum [1]. Then we
give a theorem (Theorem 3. 8) relating the notion of depth to the local
cohomology groups.

First let us recall some notations and definitions. If A is
a commutative ring, and I is an ideal of A, we denote by V(I)

the variety of I, which is the set of all prime ideals of A containing

1. V(I) is a closed subset of Spec A.

If N is an A-module, we denote by Supp N the support of N,

which is the set of prime ideals T of A such that N-: £0. We

denote by Ass N the set of associated primes of N: They are those

prime ideals ? of A suchthat N contains a submodule Nl
isomorphic to A;’r :
If A isa commutative ring, and M an A-module, then

a sequence of elements { f of A is said to be M-regular

| T
if for each i=1, ..., n, fi is not a zero-divisor in the module

M;"{fl, - . fi_l}M. (In particular, this means f, isnota zero-

divisor in M.)

Lemma 3.1. Let A be a Noetherian ring, let I be an
ideal, and let M be an A-module of finite type. Then the following

conditions are equivalent:
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(i) Hom(N,M) = 0 for all A-modules of finite type M whose
support is contained in V(I).

(ibis) Hom(N,M) = 0 for some A-module of finite type N
whose support is equal to  V(I).

(ii) No associated prime of M contains I.

(iii) Ff £ I such that f is M-regular.

Sublemma 3.2. Let N,M be modules of finite type over a

Noetherian ring A. Then
Ass (Hom(N, M)) = Supp N ™ Ass M
Proof. Using well-known facts about associated primes of

modules of finite type over Noetherian rings, we have

Ass( Hom(N, M)) € Supp (Hom(N, M)) € Supp N
Moreover, if we express N as a quotient of a free module

AT =N =0

then we have

0 — Hom(N, M) — Hom(A®, M) = M*

from which follows

Ass(Hom(N,M)) C Ass M' = Ass M

Thus we have an inclusion

Ass (Hom(N,M)) C Supp N m Ass M :



38

Conversely, let 'P be a prime ideal of A such that

'g £ Supp N m Ass M. Then since 'r g Ass M, M hasa submodule

M Afj! . Since 7¢ Supp N, the support of N/ ?N must be
all of Spec A,f’r . In particular (since N is of finite type), N/ T N
has positive rank over the integral domain Af‘g . Hence it has a

quotient module N' which is torsion-free and of rank one over Afy )
and therefore isomorphic to an ideal of A,“? . Thus there is an

injection N' — M and we can define pe Hom (N, M) to be the

ll
composition of the following homomorphisms
— — I == - Wi
N N,r‘g N—N M,
By our construction, the submodule of Hom(N, M) generated by ¢

is isomorphic to A_f‘r s BO ? £ Ass (Hom (N,M)). Q.E.D,

Proof of Lemmma 3. 1.

{i) => (ibig). Trivial.

(ibis) => (ii). If Hom(N, M) = 0, and Supp N = V(I), then by
the sublemma, V{I) ™ Ass M = Ass (Hom (N, M)) = @, sono
associated prime of M contains [I.

(ii) => (i). If Supp N C V(I), then again by the sublemma,

Ass(Hom(N,M)) C V(I) " Ass M = @ by hypothesis, so Hom (N, M) = 0.
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(ii) <=> (iii). Let ‘E pr e '3 . be the associated primes
of M (which are finite in number since M is of finite type). Then
to say none of the ? ; contains I is the same as to say their union
-

;—_fl ‘g ; does not contain I, which is the same as to say that there is
an element f &£ I which is in none of the 'r i But to say that an
element f e A is M-regular is the same as to say that it is in none

of the ‘j’ ;» 80 weare done.

Proposition 3.3. Let A be a Noetherian ring, let I be an

ideal of A, let M be an A-module of finite type, and let n be

an integer. Then the following conditions are equivalent:

(i) Ext;L{N,M} =0 for all A-modules N of finite type
such that Supp N = V(I}, and for all integers i< n.

(i bis) Ext;{N,M} =0 for some A-module N of finite type
such that Supp N = V(I), and for all integers 1< n.

(ii) 3 elements f o fn ¢ I forming an M-regular

R

sequence.

Proof. (i) => (ibis). Trivial.

(ibis)=> (ii). We proceed by inductionon n. If n< 0,
there is nothing to prove. 5o suppose n > 0. Then in particulr
Hom (N,M) = 0, so by the lemma there existsan f £ I which is

M-regular. This { gives rise to an exact sequence as follows:
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U—-ML M— M/ftM—0 ,

where the first map is multiplication by {. Now from our hypothesis
and from the exact sequence of Ext's, it follows that Ext;{N. M/EM) = 0
for i< n- 1. Therefore, by the induction hypothesis, there are

elements f,, ..., £ €1 which form an M/fM-regular sequence.

5
Then clearly {, fZ' S in is an M-regular sequence of n elements
of I.

(ii) => (i). We proceed by induction on n. If n< 0, there
is nothing to prove. So suppose n > 0. Then in particular i.'1 is

M-regular, so there is an exact sequence.

i
T T M*M{’IIM—-{I

Now f .., £ isan M;"IlM*regula.r sequence of n - 1 elements

ZI
of I, so by the induction hypothesis it follows that Extlm, M/£, M) = 0
for all A-modules of finite type N with support in V(I), and for all

integers i< n- 1. By the exact sequence of Ext's, this implies

that the natural map

. f :
i 1 1
ExtAI:N, M) ExtA{N, M)

is injective for all i< n. But since fl E I, fl kills N, so this

map is also the zero map. Hence ExtL{N,M} =0 forall i< n.
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Remark. Note that the lemma (with its Noetherian hypotheses)
is used only in the implication (ibis) => (ii) of the proof. The
implication (ii) => (i) is valid without assuming A Noetherian nor
N, M of finite type. Moreover, one may replace the hypothesis

"Supp N C V(I)" by ”fl, ot fn are nilpotent in N'".

Definition. Let A be a Noetherian ring, let I be an ideal

of A, andlet M be an A-module of finite type. Then the I-depth of M,

deEthIE. is the largest integer n such that there exist elements

f .» £ &1 which form an M-regular sequence. (Note that

L n
n < dim M, and is therefore finite.) If A 1is a local ring, and I is
the maximal ideal, we say simply depth M. (The I-depth of M is what

Auslander and Buchsbaum [1} call the I-codimension of M.)

Corollary 3.4, Let A,I,M ©be as above. Then all maximal

M-regular sequences of elements of I have the same number of

elemnents, namely, depthIM.

Corollary 3.5. Let A,I,M bheasabove. If fEelI is

M-regular, then

depth M = depth, M/IM + 1



42

Corollary 3.6. Let A,I,M beas above. Then

depth M = ini (depth )
; eV =
where Mr is considered as a module over the local ring Ar o

and its depth is the (usual) depth with respect to the maximal ideal

|2

Proof. If f e In £1 form an M-regular sequence,

1!
then the canonical images ?1, —— ?n of the fi in AJ are
in -SAI , and form an Mr -regular sequence for any ‘I e V(I).
Therefore

depth M < depth Mj

I

for each ‘g e V(I).
For the converse, we will prove the following statement: "If

n' is an integer such that for each ‘? g V(I), n' < depth M? , then

n' < depthIM”. We proceed by induction on n', the case n'<0

being trivial. So suppose n'> 0. Then for each x e V(I), depth

M3 >1, so T A’ is not associated to Mf - e.,

‘g is not associated to M. Then by Lemma 3.1, there exists
an f &1 which is M-regular. Now using Corollary 3.5 and the
induction hypothesis, we find

n' - 1 < depth (M/fM)
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for each '3 £ V(I). Hence
n' - 1 < depth M/IM

which implies that n'< depthIM.

Definition. Let X be a locally Noetherian prescheme,

Y a closed subset of X, and F a coherent sheaf on X.

Then the Y-depth of F, or de@,{f , is the in; (depth F_ }-
XE

Remark. If X is an affine scheme, say X = Spec A,
Y=V(I) and F= M, then depthyF = df:pthIM, by Corollary 3.6.
We observe thus that the notion of I-depth depends only on the radical

of the ideal I.

Restating the above theory in the language of preschemes,

we have

Proposition 3.7. Let X be a locally Noetherian prescheme,

let Y be a closed subset: let F be a coherent sheaf on X
and let n be an integer. Then the following conditions are equivalent:
(i) Extlo, {[G,F) =0 for all coherent sheaves G with

x
Supp G € Y, and for all integers i< n.

(ibis) Extlﬁ (G,F)=0 for some coherent sheaf G with
X

Supp G =Y, and for all integers i< n.
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(ii) depth_F > n.

4

(iibis) depth F > n forall x e Y.
X

Now we have a theorem which relates the notion of depth to

the local cohomology sheaves:

Theorem 3.8. Let X be a locally Noetherian prescheme,

let ¥ bea closed subset, let F be a coherent sheaf on X,

and let n be an integer. Then the following conditions are equivalent:
(i) _H_;{F',l =0 foralli<n;
(ii) depthYFz n .

Proof. (i) => (ii). We proceed by inductionon n. If n< 0,
there is nothing to prove. So suppose n > 0. Then, in particular,
condition (i) is satisfied for n - 1, so by the induction hypothesis,
dep‘thYFf n - 1. Therefore, by proposition 3.7, Eiffx{ﬁ' F)=20
for all G in the category t"‘f' of coherent sheaves on X with

support in Y, andforall i< n- l. In other words, the functor

1
Ana—ly "
2 EO' (G, F)

X
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from E"Y to sheaves on X is left-exact. Let 3,{, be the sheaf
of ideals of Y, and for each positive integer m, let g = v f"ﬂm :
; m . ¥

Then the sheaves ﬁm are in the category CY’ so the surjections

T .,— O —o

m m

for m'>m give rise to injections

n-1 n-1
e (0. F) —mﬂ,xtd’m..ﬁ

In other words, all the homomorphisms in the direct system

{Extno-,l {ﬂ'm,F}]m are injections. By Theorem 2.8, the direct limit

X
of this system is ilr;l[F}, which is zero by our hypothesis. Hence
each of the terms of our direct system is zero, in particular,
Extna-llj 0'_!’3 ,F)=0. We have already seen that Ext, | J/ § o Ey=0
St Ve e  §

X
for i< n-1, sofrom Proposition 3.7 we conclude that depthYFz .

(ii) => (i). Suppose that depthYFl_b n. Using the above

notation, by Theorem 2.8 we have for any i,
i i
H_ (F) = lim Extp, (O ,F)
X m ﬂx rn

By Proposition 3.7, these Ext's are 0 for i < n, since the sheaves

O'm have support in Y, hence E;,{F] =0 for i< n. QE.D.
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Corollary 3.9. Let X be a connected locally Noetherian

prescheme, and Y a closed subprescheme such that depthYﬂ'}cz 2=

Then X - Y is connected.

Proof. By the theorem, our hypothesis implies that
E:{{ﬂ'x} =0 for i=0,1. By Proposition 1.11, this implies that
the map

0 0
H [x.ﬂ'}{l—-H (X - Y, @’x}

is bijective. To complete the proof of the corollary, we need only
observe that a prescheme X is connected if and only if Hﬂ{}{. ﬁxl.
considered as a module over itself, is indecomposable. For then X
connected => HG{X, ﬂ’x} = HG{X = s O’X} is indecomposable => X - ¥
is connected.

If X 1is disconnected, Hﬂ{}{, ﬂ’x'j is the direct sum of
HD[Ui,gx}, where Ui are the components, so H':I (X, ﬂ'x)
is decomposable. Conversely, suppose HG{X,ax] is decomposable.

Then there are nontrivial idempotents e._, e, € Hﬂ{]{,a'x}, that is,

1
elements el, e, different from zero, and such that 1 = El + eé;
2 2 :
€8, = 0; e, =€, &, =e,. For each x & X, the local ring @;

is indecomposable, hence one of the e is zero at X. Neither
can be zero at every point of X, hence X is the disjoint sum of the
closed sets where €y is zero and where e, is zero. Thus X 1s

disconnected.
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Remark. The Corollary applies in particular if Y is of
codimension at least two and ﬂ'}{ has the property 52. of Serre,
as it does for example if X is normal, or if X isa complete
intersection in a non-singular ambient prescheme. For details, see
Hartshorne [8], who proves the corollary directly from the definition
of depth, and applies it to the study of complete intersections.

In the particular case of a local Noetherian ring, the above

results give the following

Corollary 3.10. Let A be a local Noetherian ring with

maximal ideal m and residue field k. Let X = Spec A, U= X-{ m} :
Let M be a module of finite type, and let n >0 be an integer.
Then the following conditions are equivalent
(i) depth M > n.
(ii) Exti{k,M} =0 for i< n.
(i) H'(X, M) — H (U, §) is bijective for i< n and
injective for 1i=0.

(iv) Him}{ﬂ}ﬂ} for i< n.



§4. Functors on A-modules

In this section, A will denote a commutative Noetherian
ring. We will discuss various left-exact functors from the category
of A-modules to the category of abelian groups. In particular, we
will discuss dualizing functors which will be used later in the section
on duality.

As a matter of notation, let

{(Ab) = the category of abelian groups .
5 = the category of A-modules ;
f s
e = the category of A-modules of finite type

If M is an ideal of A, let

Con

tf

AN

the category of A-modules with supportin V(Am )

the category of A-modules of finite type with
support in V(m )

0
1f (. isany category, we will denote by (L the opposed

category.

Ilemma 4.1, Let T be a contravariant additive functor

from € to (Ab). Then there is a natural functorial morphism

¢ : T —Hom, (-, T(A))
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Proof. Forany me M, let Bt A —-M be the morphism
which sends 1 inte m. Then T{Em} is a morphism of
T(M) — T(A). For a fixed element of T(M), as m & M wvaries,
we have an element of HamA{M, T{A))., Thus we have defined a

morphism.

¢ (M) : T(M) — Hﬂmﬁ(M.T{A}}

One checks that it is functorial in M. In fact, if one gives T(M)
and Hamh{M,T{A}} the natural A-module structures, it isa

morphism of A-modules.

Proposition 4.2. Let T be a contravariant additive functor

from c,f to (Ab). Then the morphism

qﬁ:T—*HnrnA{' , T(A))

is an isomorphism if and only if T is left exact.

Proof. If ¢ is an isomorphism, then T is left-exact
since the functor Hom is. On the other hand, suppose T is left-

exact. Then in the first place

T(AY) — HomAmI,T{A}:- = T(a)

is an isomorphism for any positive integer r, since T is
additive. Now if M is any A-module of finite type, there is an

exact sequence
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AT =A% ~M—0
Letting T' stand for the functor Hgmh‘ -, T(A)), we have an
exact commutative diagram

0 — TM — T®B - T@&%

} | = |

0 — TM) - TYA®) - TA)

whence by the 5-lemma, T(M)—= T'(M) is an isomorphism.

Definition. 1f @A, B are two abelian categories, we

denote by Sex( | B ) the category of left-exact (covariant)

functors from A to B . (This notation is due to Gabriel, and is

explained thus: s = sinister, ex = exact.)

Corollary 4.3 The categories Sex( cf’, Ab) and & are

made equivalent by the functors

T w—> T(A) for T £ Sex( C_I g , Ab) -
and

IWu—hHurnA{-.I] for Iet
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Remark. Note that in the equivalence of Corollary 4.3, the
exact functors correspond to the injective modules. Indeed, if I is
injective, Humgf -,I) is exact. On the other hand, if T is exact, then
T(A) is injective, since over a Noetherian ring, a module I is
injective if and only if the functor M s> HamA{M,I} is exact

for all A-modules M of finite type.

Lemma 4.4. Let .M be an idealin A, andlet T be
f
an additive contravariant functor from em to (Ab). Then there

is a natural functorial morphism

qﬁﬁ :T“Homﬂf'.I] i

where I=1lim T(A/ m ).

n

¥ : s
Proof. Let M g ﬁm . Then M is annihilated by

some power of M , say -ﬂqn. In other words, M is a module

of finite type over A/ am " Se by Lemma 4.1 there is a morphism

T(M) = Hom (M, T(A/m™) = Hom . (M, T(A/ s "))
n A
A m

Furthermore, there is a natural morphism

HomA{M,T[Afdﬂn}}—- hlleumAfM.T{AfmnH ’
n
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and this limit is equal to Hmnﬁ{M,I), since M is of finite type,

and therefore H-::mA{M. ") commutes with direct limits. Composing

these morphisms, one obtains a morphism

T(M) — Hom , (M, 1) ;

which is easily seen to be independent of the n chosen above,

and functorial in M.

Proposition 4.5. The morphism ¢H of Lemma 4.4 is

an isomorphism if and only if T is left exact.

Proof. If 1;6““ is an isomorphism, then T is left exact,
since the functor Hom is. On the other hand, suppose T is left
n
exact, and let M £ ﬁi be a module annihilated by 4 . Then

for each n'>n, the morphism

r

T (M) — HomA[M,T{ﬁf m )

is an isomorphism, by Proposition 4.2. Taking the limit as n'

goes to infinity, we find that qu is also an isomorphism.

Corollary 4. 6. The categories Sex( ti. , Ab) and C,M

are made equivalent by the functors

]
T > lim T(A/ M)  for T eSex( €. . AD)
AdA

n
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and
I MHamh{-.I] for I e C.M
Proof. We need only check that lim Ht}mA{AIM n.l] =
I
Now Hom(A/ Wi I} is isomorphic to the submodule of 1 consisting

of those elements annihilated by M o 1 is the union of these sub-

modules since it was assumed to have support in V(wmm ).

Proposition 4.7. In the equivalence of Corollary 4.6, the

exact functors correspond to the injective modules.

Proof. If 1 is injective, then H-:r-rnA{ -, I} is exact.
Conversely, suppose T isexact, and let I=1lim T(A/S m"). We
wish to show I injective. It will be sufficient t: prove that if 0L
isanidealin A, and f: O —I a morphism, then £
extends to a morphism, f:A—1

So suppose O isan ideal of A, and f: 0 —I a
morphism. Since 0L is of finite type (A being Noetherian), and
Ie f.“ , f annihilates Mﬂn L for some n. By Krull's
theorem, the smitopology of OL is induced by the @ -topology
of A, i.e., there is an integer T such that AMr ~ 0 C -M'.n 18

Thus { also annihilates Mﬂrﬁﬂ- ,  and therefore { factors

as follows:
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|

m O

But now we have an injection
r r
0o— O/ m i — A/ m
of modules in Cf ; we have a morphism
m ¥

{ L/ AL —~1

1 '

and T is exact. Therefore, fl extends to a morphism

?I:Afaw\r-l

If -E A —Af m ¥ is the canonical projection morphism, then
f =?1 ¢« p is the desired extension of f. Hence 1 is

injective.

Corollary 4.8. Let I be an injective A-module, let M
]
be an ideal of A, andlet I, = Hm (I) be the largest submodule

of I with supportin V( am ). Then I, is injective.

f
Proof. Let T & Sex ( C,m ! Ab) be the exact functor

HomA{ ., I). Then by Proposition 4.7, I, = lim T(A/ M n}

is infjective.
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We now come to the study of dualizing functors.

Proposition 4. 9. Let M be an ideal of finite colength in

A [i.e., such that A/ is an Artin ring), and let
T £ Sex( ﬂ,i' , Ab). Then the following conditions are equivalent:

(iy Forall Me ﬂi . T(M) isan A-module of finite
type, and the natural morphism

M — TT(M)

(defined via the isomorphism of Lemma 4.4) is an isomorphism.

(ii) T is exact, and for each field k of the form A/ ama "
where M . is a maximal ideal containing M , there is some

isomorphism T(k) = k.

Proof. (i) => (ii). Let k be a field of the form Afmi as
above. Then T(k) is of finite type by hypothesis; moreover, it 1s

, : n
annihilated by M .’ hence must be isomorphic to k for some
Z

n > 0. Since T is additive, TT(k) = kn , whence n=1. Thus
Tk) 2 k.

It remains to show T is exact. We first show that T is

i

faithful, i.e., if Q#0, then TQ) #0. Let Qe €, be

non-zero, then there is a surjection

g—=k =0 ;




56
where k 1is a field of the form A/Aw .. Since T is exact,
1

0 — T(k) — T(Q).

But T(k) 2 k # 0, hence also T(Q) £ 0.
Now T is left exact by hypothesis, so we need only show

that it is right exact. Let
0—M —M

be an injection of modules in ci Apply T, andlet Q

be the cokernel:
T(M) =—T(M')—-0Q —0

Since T 1is left exact, we have an exact sequence
0 - T(Q) = TT(M') = TT(M)

But TT is isomorphic to the identity functor by hypothesis.
Therefore, T(Q)=0, and since T is faithful, Q=0, i.e., T
is exact.

(ii) == {i). If Me E,i‘ , then M has a finite composition
series whose quotients are all fields k of the form Afﬁﬁi , as
above. Therefore, since T is exact, T(M) will have a {finite
composition series whose quotients are of the form T(k) £ k.

Hence T(M) is of finite length (in fact, its length is equal to the

length of M].
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For the second assertion of (i), we first consider the case
where M isa field k of the form A;’Mqi . Then TT(k)= k
in some way, and the natural map k — TT(k) is easily seen not to
be zero, hence it is an isomorphism.

Now if M is any module in CL , and

0 =M —M=—=M"'—0

is an exact sequence, then we deduce an exact sequence
0 —=TT(M') — TT(M) = TT(M") — 0,

together with a canonical morphism of the first exact sequence into
the second. If the two outside arrows are isomorphism, then by

the 5-lemma, so is the middle one. Thus by induction on the length
of M (sinceany M & c.iu has finite length), we see that the

natural morphism
M — TT(M)

is an isomorphism for all M ¢ {;L : Q.E.D,

Definition. Let A be a commutative Noetherian ring, and
a
MA  a maximal ideal. Then a functor T &£ Sex( C.i , Ab), satisfying
the equivalent conditions of Proposition 4.9, is called a dualizing

functor for A at m . An injective module I with support in
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V( m ) is called a dualizing module for A at ~m , if the functor

T = Hom( -, I) is a dualizing functor for A at a . (By
Proposition 4. 7, there is a natural one-to-one correspondence between
these dualizing functors and dualizing modules.) If A isa local
ring with maximal ideal “m , we say simply ''dualizing functor"

or ‘'dualizing module," with s understood.

Remarks. 1) Let A be a Noetherian ring, and m a
maximal ideal. Then a dualizing functor for A at s is the same
thing as a dualizing functor for the local ring A, atits maximal
ideal MA . Indeed, the categories cin involved are
isomorphic.

2) Similarly, let A be a local ring, and I¢ C,, an
A-module. Then I has a natural structure of E-madule, and 1
is dualizing for A ifand only if it is dualizing for ~ A. Again the
categories E,fm involved are isomorphic.

3) Let A be a Noetherian ring, i 2 maximal ideal,
and I and A-module. Foreach n=1, 2, ..., let In be the
A/#a"-module Hom, (A/ ", 1). Then I is dualizingfor A at

A if and only if for all large enough n (and hence for all n),

n
I is dualizing for A/ama  at the maximal ideal m/ m". Indeed,

—
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i
observe that if M e f,m is annihilated by .w,n, then

HnmA{M.ﬂ = Hom o (M, In]. Thus Homﬁt .,1) is exact for

A S
all Mt €&, ifand only if for all large enough n,
Hom = (M, In] is exact for Al m N_modules of finite type.
A/ A
Moreover, Hom, (k,I) = Hom (k,1 ) forany n, where
A n n
A
k= A/m . Thus the result follows from criterion (ii) of Proposition 4. 9.

We now recall, for the sake of convenience, the definition of

an injective hull.

Definition. An injection M — P of A-modules is an

_issential extension if whenever N ig a submodule of P such that

M~ N=0, then N=0.

Definition. If M isan A-module, an injective hull of M

is an essential extension M —1 where 1 is injective. By abuse of

language, we also eall I an injective hull of M.

Theorem. (Eckmann-Schopf [2]; see also [3, Ch.II, p.20 . 1
Let A be a ring with identity. Then every A-module has an

injective hull, unique to within (non-unique) isomorphism.

Proposition 4. 10. Let A be a Noetherian local ring. Then

an A-module I is dualizing for A if and only if it is an injective

hull of the residue field k.
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Proof. First suppose that 1 is dualizing. Then
Hom(k,I} = k, and so in particular, we can embed k in I. To
show that k =1 1is an essential extension, let Q be a submodu
of I suchthat k mQ=0. Then since Hom(k,I) = k, we must
have Hom(k,Q)=0. But I, hencealso 0, has supportin
V(anw ), s50Q=0. Now]l dualizing implies that I 1is injective
so I is an injective hull of k.

On the other hand, suppose I is an injective hull of k.

Then any homomorphism of k into I must have its image in

le

k,

because k — I is an essential extension, and k is a field. Thus

Hom(k,I) 2 k, and I isa dualizing module.

Corollary 4.11. Let A be a Noetherian ring, and

a maximal ideal. Then A has a dualizing module at A , unique

to within (non-unique) isomorphism

Example. Let A=Z, andlet M =pZ, where p
a prime. Then a dualizing module for A at #m is the group

Z _ » whose automorphisms are the units in the ring of p-adic
P

integers.

Let A be a Noetherian local ring, and D a dualizing

functor. We list without proof various properties of D, most of

is
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which follow from the above discussion. For more details, see
Matlis [9].*

1. D gives an isomorphism of the category &; with
its dual category ci'. D is exact and preserves length. It
gives a 1-1 correspondence between submodules of M, and
quotient modules of D(M), and vice versa, forany M & CL .
Finally, D2 is isomorphic to the identity.

2. D transforms direct systems of QL into inverse
systems, and vice versa. Thus, passing to limits, D givesa
correspondence between direct limits and inverse limits of modules
of finite length over A.

3. In particular, the functor D= Hom( -, I), where I
is a dualizing module, gives an anti-isomorphism of the categories

(ACC) = the category of A-modules of finite type, and

(DCC) = the category of A-modules M satisfying the following
three equivalent conditions:

(i) M has the descending chain condition,

(i) M is of co-finite type, i.e., Hom(k, M) is a

finite-dimensional vector space over k,and M has support in  Vim).
(iii) M is a2 submodule of In, for some n.
In this correspondence, D{ﬁ} =1: D(I) = Hom(l,I) = A, The ideals

oL of A correspond to submodules of 1 by the map

*See also Macdonald [21], who extends the range of the dual-
izing functor to "linearly compact” modules.
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U ~— DEA/0L )

and the ideals of definition correspond to the submodules of 1 of

finite length.

Proposition 4.12. Let B — A be a surjective morphism

of local Noetherian rings, and let #A be the maximal ideal of
B. Then

1) If D is a dualizing functor for B, then D restricted
to A-modules is a dualizing functor for A.

2) If I isa dualizing module for B, then I'= HcmB{ﬂ,I}
is a dualizing module for A.

Proof. The first statement follows immediately from the
definition of a dualizing functor (see Proposition 4.9 (ii) ). Hence
the functor HomB{ -, I} is a dualizing functor for A, and its

associated dualizing module is lim HcmBl:Af[ l'MA:ln, =1,
n

since any morphism of A inte I annihilates some power

of A A

—_— e
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We now give three specific examples of dualizing functors.

Example 1. Let A bea Noetherian local ring containing

a field kg’ and suppose that the residue field k is a finite

extension of k.. Then any module M £ ﬂ,f is a finite-
0 Ao

dimensional vector space over Kk and we can define a dualizing

ul
functor D by

D(M) = Hnmkﬂ{M, kﬂ]

The corresponding dualizing module is

T o limn Hom. - (AL WA, K

D} '

which can be thought of as the module of continuous homomorphisms
of A with the M -adic topology into kg‘

Example 2. The case of a Gorenstein ring. *

Definition. A Noetherian local ring A of dimension n, with

residue field k, is called a Gorenstein ring if

; 0 for i#n
Extﬂ{k,A] =
k for i=n

*See also the paper of Bass [13], and [17, ch. V § 9] for
more information about Gorenstein rings.
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Examples. Any regular local ring is Gorenstein. Any
Gorenstein ring is Cohen-Macaulay. (We recall that a Noetherian

local ring A is called a Cohen-Macaulay ring if its depth equals

its dimension: See Cor. 3.10.)

Proposition 4. 13, Let A be a Gorenstein ring of dimension

n. Then the functor

M mw—>  Ext (M,A)

is dualizing, and its associated dualizing module is H:L“ (A) = Hi{}(.

where X =Spec A, and Y= {m | is the closed point.
; i
Proof. First we show that forany Me € , andfor
any i#n, Ext'(M,A) = 0. Indeed, if
0 — M — M—M'—=0

f

is an exact sequence in tm , then there is an exact sequence

Ext'(M",A) — Ext (M, A) — Ext (M',A)

for any i. If the two outside groups are zero, soO is the middle one.

Thus by induction on the length of M, one shows that
Ext (M,A) = 0

forall M e gi , and all i#n, since by hypothesis it is true

for M=k,

),
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1t follows now that the functor
M  we—> Ext (M,A)

) £
is exact for M & ﬁm . On the other hand, Extn[k,ﬁ} = k by
hypothesis, so we have a dualizing functor. Its dualizing module,

by Theorem 2.8, is

I = lim Ext (A/ am k,M = HI:“ (A)
k

In particular, we have shown that Hnm (A) is an injective hull of

Proposition 4.14. Let A bea Noetherian local ring of

dimension n. Then the following conditions are equivalent:
(i) A is Gorenstein.

{ii) A is Cohen-Macaulay, and Hn (A) is dualizing.
s

Proof. (i) == (ii) by the previous proposition.

(ii) => (i). Since A is Cohen-Macaulay, Ext’ (k,A) =0

for i< n, by Corollary 3.10. Therefore, we can show as in the

Exti{M,A] =0 forall MEeg

proof of the previous proposition that

and all i< n. Therefore, the functor

T : M w—> Ext (M,A)

is left exact, and SO by Proposition 4.5 and Theorem 2.8,

k.

€
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Ext”(M,A) & Hom (M, Hp, (A))

But Hnm (A) was assumed to be dualizing. Therefore, T 1is

an exact functor, and Ti(k) = k.

It remains to show that Extl{k, A)=0 for i>n. Since

T 1is exact, the functor
My Et T e

f
is left exact for M & ﬁ,m , and so, as above,

Ext® (M, A) = Hom (M, H.L'(A))

But HI::I (A) = 0 by Proposition 1.12, since n = dim (Spec A).
Thus Ex‘th{M,A} =0 forall Mg f_,i » and therefore the

functor

NE o, k™ O )

is left exact. Proceeding thus by induction on i > n, one shows
; . £
that Ext (M,A)=0 forall i>n andall Me ¢ . Thus

A is Gorenstein. Q.E. D,

Exercises. 1) Let A be a Cohen-Macaulay local ring of

dimension n, and let % be an ideal genem ted by a maximal
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A-sequence. Show that HE“ (A) is an essential extension of A,'";[, 5
and therefore that the dimension e of the vector space H-:}rnl[k.A;’ag }
is independent of o . Show also that e = 1 for a Gorenstein ring.

2) Let A be as in the previous exercise. Show that
I—I:A (A) is an indecomposable module, and deduce that in Proposition 4. 14(ii),
it is sufficient to assume Hnm (A) injective.

3) Show thatif A isa complete intersection (i.e., a

quotient of a regular local ring B by an ideal ‘G' which can be

generated by a B-sequence), then A isa Gorenstein ring.

Example 3. Let A= k[[xl, oy :-cn]] be the ring of formal
power series in n variables. This falls under the situation of both
of the above examples, so we have at hand two dualizing modules,
namely Hom cantk{ﬁ,k} and Hn,,‘,.,,.,l (A). So by the uniqueness of the
injective hull, we know there is some non-canonical isomorphism
connecting them.

This fact can be interpreted in terms of the theory of differentials.
Let ﬂl be the module of continuous differentials of A/k, whichin

this case will be the free A-module generated by d_;.:l. T dxn.
n | 3 1 o
Let 0 = A™() bythe nth exterior power of 2, which is

called the module of (continuous) n-differentials. Then Q" is the
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free A-module generated by dxln s dxn. So H,. (7)) is

a dualizing module. Now the residue map*is a continuous homomorphism
n n
Res: H,, () =k i
canonically defined, which gives rise to a canonical isomorphism

n n o
HM{R ) = Hom cuntk[ﬁ.k}

between the two dualizing modules.

*The definition of the residue map is rather subtle. In
the terminology of [17, ch. VI, § 4], it is the trace map,
applied to the last term of a residual complex, which can
be identified with Hy, (Q").



§5. Some Applications

In this section we give some applications of the theory
developed so far, In particular, we study "the first non=-vanishing
Ext group'’; various properties of base change; and the coherence
of direct image sheaves. Some of this material, especially the

part on base changes, will be used in Section 6.

Proposition 5.1. Let X be a locally Noetherian prescheme,

let ¥ bea closed subset, let F be a coherent sheaf on X such
that depthYFz n, and let CfY be the category of coherent sheaves

on X with supportin Y. Then there is a functorial i somorphism,

forall G e ti,,

n n
Ext (G,F) = Hom , (G, H,(F))
—_— ﬂ’x — FX =Y

Proof. First note that since 1:lv|=,-1:~thY F > n, the sheaves
i 13
Extg (G,F) =0 forall i<n, andforall G & Cy, by
X
Proposition 3.7. Thus n is the first integer for which Extnr (G, F)
X

may not vanish. To establish the sheaf isomorphism of the
proposition, we make a definition for the corresponding modules in
case X is affine, and show that this definition commutes with

localization to a smaller affine. We then invoke proposition L.&
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and Lemma 2,12 to pass from modules to sheaves, and glue together
the isomorphisms we have defined over the affine pieces of X.

So suppose that X is the prime spectrum of a Noetherian
ring A, andlet Y=V(J), F= ﬁ, where J 1is an ideal in
A, and N an A-module whose J-depthis > n. Then we have
seen tha t Ext;[M.N] =0 for i<n andfor M & Ci Thus

the functor

Ik
M #a—s Extﬁ[M.N]

is left exact, and so by Proposition 4.5 there is a canonical

functorial isomorphism

n L)
Ext.ﬁ (M, N) HamA[M,III ’

where
k
I= lim Exti{AfJ ,N) = HHN)
= J
k
Now if S is a multiplicative system in A, and if
B= AS , then the isomorphism obtained as above for B-modules

is the localization of thisg one, since localization commutes with

Ext's and direct limits.

Proposition 5.2. Let X be a locally Noetherian prescheme,

let n>0 be an integer, and let G,F be coherent sheaves on
X such that Extla, (G,F)=0 {for i< n. Let Z be the set of
X

points z & Supp G such that depth Fz =n. Assume that 2Z
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has no embedded points. Then

n

(G, F) =2
ﬂ}{

Ass Ext

Lemma 5.3. Let X, Y, F be as in Proposition 5.1, and
let Z be the set of points y & Y such that depth FY = n.

Then
n
AssH (F) C Z ,
= =
and moreover, if z is any point of Z, then some specialization

of z isin Ass _}-[.;I:F}. In particular, if Z has no embedded

points, then

Ass H(F) = Z
-y

Proof. Let z beanypointof Y, andlet Y'C Y

be the closure of z. Then by Proposition 5.1,

n . n
Ext UK[ ﬁ"Y,,F} = Hom Ux{ v, Hy (F)

Therefore, using the expression for the set of associated primes

of a Hom given in sublemma 3.2, we have

Ass Exts (0 ,, F)=Y' nAss H. (F) .
=W X o
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n
Now if z & Ass HnEF}, then Ext, (0. ,: F)#0, so

=y =l -
depth F_=n, and z & Z. (Use Corollary 3.6 and Proposition 3.7,

and observe that depth Fz can only increase when one specializes

z.)
Suppose on the other hand that z & Z. Then

Extna, ( ﬂ"Y s F) #0, soits setof associated primes must be
X |

non-empty. If z' is one of its associated primes, then z' & Ass tI:l:F]. |

and also ' e Y', i.e., & isa specialization of =z.

Proof of Proposition 5.2. Let Y = Supp G. Then by ;

Proposition 3.7, depth F 2 n, and, as in the proof of the lemma,

we find that

Ass Extno, (G,F) = Y ~ Ass H (F) = Ass H(F).
== Y Sy

But since we assumed that Z hasno embedded points, the lemma

applies to show Ass EI‘}EF} - 7, which completes the proof.

Corollary 5.4. Under the hypotheses of Proposition 5.2,

Extnﬂ. (G,F) has no embedded associated primes.
X

Next we study the behavior of the local cohomology groups,

Ext's, and dualizing functors under base change. These results

will be useful in Section 6 on duality.
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Proposition 5.5. Let f:X'—X be a continuous map of

topological spaces; let Y be a closed subspace of X, and let
-1
Y'={f (Y); and let F' be an abelian sheaf on X'. Then there

is a spectral sequence

n

Pq _ ;P He s
E H(X, RIL(F") => H,

5 (X', F')

Proof. We interpret the functor T

yi 28 the composite

4

functor 1".f @ i, where f* is the direct image functor.

Now £, takes injectives into injectives, since it is adjoint to the
exact functor £ [5, Ch. 0, 3.7.2]. Thus we can apply the
theorem A, stated in Section 1, which gives the existence of

the spectral sequence of derived functors of a composite functor.

Corollary 5. 6. If in the proposition qu#{F’} =0 for

q > 0, then the spectral sequence degenerates, and
H (X, £,F') = H.,(X',F)
Y o Y"

for all 1.

Example. Let X' be a closed subprescheme of X.
Then Y'=Y mX', andfor any abelian sheaf F on X with

support in X', }f{{x,F} = Hff,{}ch F|X')
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Corollary 5.7. Let B—A Dbea morphism of rings, let

J be anidealin B, andlet M bean A-module. Then for

all i we have isomorphisms

i B

S
H, (M) = H., (MY,

where a superscript B applied to an A-module denotes that module

considered as a B-module "by restriction of scalars. i

Proof. We apply the previous corollary to the case where
X' = Spec A and X = Spec B. The direct image functor f, 1is

exact in this case since f: X' — X is an affine morphism

[5, Ch. III., Corollary 1.3.2].

Remark. The result of Corollary 5.7 becomes more
remarkable in the presence of Noetherian assumptions when we can
use Theorem 2.8 to express the groups involved as direct limits
of Ext's. For then it states that there is an isomorphism

lim Ext;(B/J", M°) = Lm Ext, (A/(A)°, M)
n n

which is surprising because the Ext groups are in general not
i somorphic before taking the lmit. For example, if A =M= B/,
the natural map

i

i
ExtB[BfJ, B/I) —~ ExtBN{B;J. B/I)
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is in general not an isomorphism for i> 0, since the right-hand
term is 0, and the left-hand one not. However, the following

proposition shows that the first non-vanishing Ext's will be isomorphic.

Proposition 5.8. Let B — A be a morphism of Noetherian

rings, let N bea B-meodule, M an A-module, both of finite

type, and let n be an integer. Then the following conditions are

equivalent:
(i) Ext:lﬁ{N, MB} =0 forall i<n ,
(i)  Ext,(N,,M)=0 forall i<na ,

where NA = N @E A .

Furthermore, if the conditions are satisfied, then there is

an isomorphism
Ext™ (N, M") = Ext’) (N, , M)
B = Ugie

Proof. Let J beanideal of B such that Supp N = V(J).

Then it follows that Supp N, = V(JA). Now by Proposition 3.7 and

A
Theorem 3.8, the condition (i) is equivalent to saying H}[ME} =0
for all i< n, and the condition lii) is equivalent to saying

H}A{M] =0 forall i< n. PButthese latter two conditions are

equivalent by Corollary 5.7.
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From Corollary 5.7 and Theorem 3.8 ome also deduces that

B ; : s N
depthJM = depthJﬁM. If the conditions (i) and (ii) are satisfied,
then this common depth is 2 n. Therefore by Proposition 5.1

there are isomorphisms
n B, ~ B
Extp(N,M ") = Hom p(N, HY (M)
and
Ext® (N.,M) — Hom, (N HT (M)
Pk S Ve e :

B
But by Corollary 5.7, again, the modules H';{M ) and H?.A{M:I
are isomorphic, hence our Ext''s are isomorphic. (In general,
if B —A isa morphism of rings; if N isa B-module of finite

presentation; and if M is an A-module, then there is an isomorphism

B, ~ B
HomE{N.M }—'-H-::-mA{NAM} . )

Proposition 5.9. Let A be a Noetherian ring, let

J O J' be two ideals of A, andlet M bean A-module of

A

finite type. Denote by a hat the operation of completion with

respect to the J'-adic topology. Then for all i thereisan

isomorphism

.

i ~ A
HI{M} —= (M)

gy B
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Proof. Using Theorem 2.8 to represent the local cohomology
groaps as direct limits of Ext's, we need only show that the natural

maps
i n 1 oy
Ext. (A/7", M) — Ext (A /J ", M)
= A

are isomorphisms. DBut since A is flat over A, and since M

is of finite type, we have

Extt (A/F" ™M)= Ext;{ﬁfln,h{] ® 4 A

-~

A

On the other hand, the Ext group on the right is annihilated by
Jn, so to tensor it with A is the same as to tensor it with

-~ n - Ll 1 Lo g Z .
AJI"A. But A/T A = A/1", since J 2 J', sotensoring with

-~

A  is an isomorphism. This proves the proposition.

Now we study the problem of when the direct image of a

coherent sheaf, under a morphism of preschemes, is coherent.

Proposition 5.10. Let X be a prescheme, let U be

an open subset, let Y =X - U, andlet F;} be a coherent sheaf

on U. Let F be any coherent sheaf on X whose restriction

to U is F and let n be an integer. Then the following

ul

conditions are equivalent:
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(i) R}#{Fﬂ] is coherent for all i< n, where j:U—X
is the inclusion map.

{ii) E;[F} is coherent for all i< n.
Proof. By Corollary 1.9 there is an exact sequence

D—ﬂ?‘,(F]—-F-*j*{Fﬂ]—PHL(F]—-ﬂ :

and there are isomorphi sms

q+l

q. i
Ry (F) = HL(F)

for q > 0. Now the statement of the proposition follows since the
kernel and cokernel of a map of coherent sheaves are coherent, and
an extension of a coherent sheaf by a coherent sheaf is coherent.
[5, Ch. 0, 5.3]

Moreover, there is also the following result, which we will

not prove.
[16, Corollary VIII-II-3]

Theorem. p If X is locally embeddable in a non-singular
prescheme, then conditions (i) and (ii) of proposition are also
equivalent to the following condition:

(iii) for all ze IO ,
depth {F(}}z +codim (Y N2, Z)>n ,

where Z is the closureof 2z in X.
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Examples. 1) A necessary condition that j#{FD} be
coherent is that for all =z E Ass FU’ ¥ m~ Z be of codimension

= 0.

> 2 in Z, since for z & Ass Fﬂ. depth {Fﬂjz

2) Suppose the conditions of proposition 5. 12 satisfied, let
f: ¥ =Y bea proper morphism, where Y is locally Noetherian,
and let fg . U = Y be the restriction of fto U. Then the
sheaves Rq£0$(Fﬂ} are coherent on Y for all i< n.

Indeed, we can interpret fﬂ* as the compesite functor

L jx; and j,:: carries injectives into injectives, sO there is

=

a spectral sequence

P9 _ P, .n3: el
EDY = RPE(RY (F o)) = RE (F)

Now the sheaves qu#{FD] are coherent for q< n, by the
proposition. Thus the qu terms are coherent sheaves for g<n
snd forall p, eines f s a proper map [5, Ch. III, Theorem 3.2 1]
It follows that the abutment terms Rifl]#{FG] are coherent for
i< n'
Problem.” Let X bea prescheme, and let Y bea
closed subset. If n is an integer, find conditions under which
l-l_;{F} =p forall i>n, and for all quasi-coherent sheaves F.
It is sufficient that Y be locally describable by n

equations, but not necessaty. For example, if X is the cone

*This problem is studied in [19].
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over a non-singular plane cubic curve, and if Y 1is a generator of
the cone, then the condition is satisfied for n=1, but Y cannot

necessarily be described by one equation at the vertex of the cone.



§6. Local Duality

In this section we prove a central theorem of the local

cohomology theory, the duality theorem. It is simplest to state
over a regular local ring (Theorem 6£.3): however, we also give
forms of the duality theorem valid over more general local rings.
These theorems should be thought of as local analogues of Serre's
projective duality theorem [10, n°72, Theorem 1], which says that
if F isa coherent sheaf on projective Tr-space X= P, then

for i>0, thereisa perfect pairing

r-i

B,){{F,ﬂ]—'-k

Hl (X;F) X Ext

of finite-dimensional vector Spaces over k, where & 1is the

T
sheaf of r-differential forms on P, isomorphic to ﬂ'}{{-r =:1).
Even the proof, which uses the axiomatic characterization of derived

functors, is similar.

We will apply the duality theorem to determine the structure

of the local cohomology Broups H:m (M) over a local ring, and we

end by giving an application of duality to a theorem on algebraic

varieties.

We begin by recalling briefly Yoneda's interpretation of

the Ext groups (for details and proofs, see [7, exposé 3]).
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Let € be anabelian category with enough injectives.

A complex in € isa collection {Kn]n e Z of objects of SR

+1
together with coboundary maps a . Kn =% Kn such that for

all n, dn+1 o d" =0. We denote the cohomology of a complex

K by HYK).
If K, L are two complexes in C » a morphism of K

into L of degree s isa collection [fn}n of morphisms

e Z

. K” - L™*  which commute with the coboundary maps in the

two complexes. We denote by I—InmE{K, L) the group of

morphisms of K into L of degree s. Two such morphisms
f, g are said to be homotopic if there exists a collection

+s-1
{Pn}nzz of morphisms pn KE -~ 1" such that for all n,

i_1'1. " gn " d::s-l A Pn 4 I:_”spnﬂ 4 d;

We denote by 1'I..-'lmsl:K,. L) the group of homotopy classes of
elements f & HﬂmS{K, L}.

If A is an object of Lo o resolutionof A isa
complex K, such that K' =0 for n< 0, together with a

1]
map € : A —K ', such that the sequence

0k % g egc?

is exact. A resolution (K, €) of A is said to be exact if
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Hq{K} -0 for q>0. The resdution is said to be injective if each
Ki is injective.

Now let A be an object of €. , let (K, €) be a resolution
of A, andlet L beany complex. We denote by Hom (A, L)

the complex (Hom (A, Lnﬂn ez Givenan f E HomS{K, L),

s

we define an element of Hom(A, L) by composing € with f
One shows that this element is a cocycle in Hom (A,L), and
hence determines an element of HE{Horn (A, L)), which depends

only on the homotopy class of f. Thus we have defined a natural

map for each s,
$°: H(K, L) —~ H®(Hom (A, L))

Theorem E. If (K, €) is an exact resolution of A,
and if the complex L. consists entirely of injectives, then the
natural maps dls defined above are isomorphisms.

Corollary. If in particular B is another object of E. .
and L is an exact injective resolution of B, then there are

canonical isomorphisms

E‘S{K, 1) =~ Ext°(A, B)

Now we apply this theory to the situation we will meet

below.
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Proposition 6.1. Let L, ¢' be abelian categories,

€. having enough injectives, and let T : i €' be
an additive covariant left-exact functor. If A and B are objects

of € , then there are pairings

RIT(A) X Ext®(A, B) — R °T(B)

for all i;s .

Proof. Pick exact injective resolutions {K,e ) and
(L, n} of A and B, respectively. Then we can calculate
RiT{.&] and RiT{B] as the cohomology of the complexes T(K)
and T(L). If f isa morphismof K inte L of degree s,
then T(f) is a morphism of T(K) into T(L) of degree s,

which on passing to cohomology gives a morphism
i its
f,: RT(A)—R "T(B)

for any s. One sees easily that £, depends only on the homotopy

class of f. Thus using the isomorphism of the corollary above,

we have defined a pairing

R'T(A) X Ext° (A, B) — RS ()

for all i, s.
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Corollary 6.2. Let A bea ring, let M  be an

ideal, and let M,N be A-modules. Then there are pairings
i j i+]
H,, (M) X Ext), (M, N) = H,,” (N)

for all 1i,]).

0
Proof. Let T be the functor M - B (M) from
the category of A-modules into itself, and apply the previous

proposition. The H- (M) for i>0 are rightderived functors

o |

of T by Corollary 2.7.

Theorem 6.3. (Duality) Let A be a Gorenstein ring

of dimension n (See proposition 4.13), let #m Dbe the maximal
ideal, let 1= H:u. (A) be a dualizing module, and let D be the
functor Hom ( -, I). Let M bea module of finite type. Then

the pairing
(%) B, (M) X Extly (M, A) —1
gives rise to isomorphisms

b, : H., (M) — D{Ext;‘im,gn

and

R Exti-il:M,A] et D{H;[M]]
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In particular, if A is complete, then (%) is a perfect pairing.
(A pairing L X M — N is said to be perfect if the maps
L - Hom(M,N) and M — Hom(L,N) it induces are both

isomorphisms. )

Proof. We first consider the case i =n, and show that
the map

lﬁn : Hnﬁ (M) — D(Hom(M, A))

is an isomorphism. Indeed, qﬁn is an isomorphism for M = A,
since JI-I_,I.I:I,‘I (A) = 1= D(A). Considered as functors in M, both
H]:‘ (M) and D(Hom(M,A)) are right-exact and covariant:
Hence by a now familiar argument, n,’:n is an isomorphism for
all M of finite type.

To show that the remaining ¢-i are isomorphisms, we
use the axiomatic characterization of derived functors. Since D

et
o

7 ; A)) for i< n are left-

is exact, the functors D(Ex

derived functors of D(Hom( -, A)). The functors H:“{ )

form a connected sequence of functors, and qbn is an isomorphism.

Hence, to show that the other ¢ are isomorphisms, we need only
1

show that the functors H:II{ -} for i< n are left-derived functors

of I—I:‘{M:I, i.e., that H:“{P}=ﬂ for P projective and i< n.

In fact, since A is Noetherian and since we are interested only
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in M of finite type, we may assume P is of finite type; since
Hi“{ .} is additive, we need only show that Hiu (Ay=0 for i< m.
This follows from the fact that A is Cohen-Macaulay. Thus

¢i is an isomorphism for all 1.

Applying the dualizing functor D to the isomorphisms dni,

we obtain the isomorphisms

D($) : DD(Ext,  (M,A) = D(Hay, (M)

-

But DD(M) =M for any module M of finite type. (Indeed,
the functors M =~ DD(M) and M »> 1:'1 are both right
exact covariant; they are isomorphic for M = A, hence they are
isomorphic for all M of finite type.) Hence we have also the

isomorphisms ¥ ..
1

We now consider an arbitrary Noetherian local ring A
(subject however to the weak restriction that it be a quotient of a
regular local ring) and prove two propositions which describe the
structure of the modules H;{M}, where M is a module of
finite type, and M is the maximal ideal. Most of these properties
are easier to express in terms of the duals, so for each i we

define T (M) = D(H,, (M)}, where D is some fixed dualizin
e g
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functor. Then the T1 are contravariant additive functors in M;
0 s
T is right exact, and the T' for i>0 are the left derived

0
functors of T .*

Proposition 6.4. Let A be a Noetherian local ring

(quotient of a regular local ring) of arbitrary dimension, and let

M be an A-module of finite type and of dimension n > 0. Then

i =
1) H,,(M)=0 and T (M)=0 for i>n

Ead

2) The modules TEEM} are of finite type over A.

3) For each i, dim, TI{M]E i
A

4) dim _ T(M) = n. (In particular, H:“ (M) #0.)
A

Proof. 1) M is also a module over the local ring
A/Ann M, which is of dimension n. Thus by Corollary 5.7
we may assume that A is of dimension n. Then we see that
HL{MZI =0 for i>n either by using Proposition 1.12, or by
expressing H:h (M) in terms of a limit of Koszul complexes of
n elements, by Theorem 2.3.

For the remaining statements, fix a regular local ring B
of some dimension r of which A is a quotient. Then B —A

is a surjective map of Noetherian local rings, and using Corollary 5.7

*Tn fact, the functors T!, which really have nothing to
do with local cohomology, can be interpreted as Ext?(-,R-)
for a suitable dualizing complex R- on A. See [17, ch V

§ 2].
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and Proposition 4. 12 we see that TliM} is the same whether
calculated over A or over B. Thus we may apply the duality

theorem 6.3, and {ind

T (M) = Ext;-lfh{, B) = Ext’ (M, B)
B

To prove 2) observe that since M is of finite type over

- -

A, itisalsoover B, andhence M is of finie type over B .
But an Ext of modules of finite type is again of finite type, so

-~

Ti{M] is of finite type over B for all 1i. Butitisalsoa
module over A ., hence it is of finite type over R

To prove 3), we note that B is also a regular local
ring, and that the dimension of Ti[M] is the same, whether
calculated over 31 or ]% . Thus we have reduced the problem
to the following:

Lemma 6.5. Let A be a regular local ring of dimension

r; let M and N be modules of finite type over A. Then

for all i,
. r-i .
dim Extﬁ (M,N)<i.
Proof. To say that an A-module 1 is of dimension < i

is to say that for any prime ? C A of coheight > i, the module

L? is zero. If ‘g is such a prime, then A.? is a regular
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local ring of dimension < r - i. By Serre's theorem its gobal

homological dimension is < r - i, so0

r-i r-i ”
ExtA {M,N].‘, =ExtA] {Mﬂ " N] }=0

Thus dim Ext;-l{M. N) < i.

To prove assertion 4) of the proposition, we have

i Y -~

(M) = Ex{_(M, B) .
B

By assertion 1) which we have already proved, this is a first
non-vanishing Ext group. Applying Proposition 5.2, we find

that Z is just the set of points y & Supp M whose dimension

o

is n: since B is regular, depth ﬁ‘f = dim ﬁy = dim y
for any vy & Spec B . In particular, Z has no embedded points,
S0

Ass Tn{M] = ;
A

which shows that dim _ Tn{M] =n. But furthermore, since
A
dim M =n, every pointof Z isassociated to M, so Z
A
is the set of points of ASEA M of dimension n. This proves

assertion 5) of the next proposition.
Motation. If WL is an ideal of dimension n ina

Noetherian ring A, we will denote by ﬂLn the intersection of
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those primary ideals in a Noetherian decomposition of . which
are of dimension n. (These primary ideals all belong to minimal
primes of 0L , hence are uniquely determined.) If Z isa set
of prime ideals of A, we will denote by Zn those primes in

Z which are of dimension n.

Proposition 6.6, Let A be a complete local Noetherian

ring (quotient of a regular local ring) of arbitrary dimension,
and let M be an A-module of finite type of dimension n > 0.

Then
5) Ass Tn{M} = (Ass M}n
6) If “3 € Ass Tnl:M]. then
Ly (T, = 29 30,
where for any A-module N, E? (N) denotes the length of
N: over the local ring Az
7) Ann T (M) = (Ann M) _ .
8) There is a natural map
a M — TnTn[M]

whose kernel is the set of elements of M whose support has

dimension < n.
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Proofs. 5) was already proved above. To prove 6),
let ‘jl E Ass Tn{M}. Then, letting B be a complete regular

local ring of dimension r of which A isa quotient,

T (M) = Ext;-n{M. B)

and so
Tn{M}T o Extgrn {MI . By )
But by 5), T is of dimension n, so BT is a regular

local ring of dimension r - n. Hence by Proposition 4.13, the

functor

r-n

is dualizing, and so preserves lengths and annihilators. This
proves 6) andalso 7), since the primes in Ass T'(M) are
the only ones which could be associated to Ann T (M).

a) TnIM} is a left exact contravariant functor in M, so

by Proposition 4.2 there is a canonical isomorphism
il (o
T (M) == HnmA[M,ﬂ'.l :

where § = T (A). By means of this isomorphism we can define
the natural map @. If x isan elementof M whose support has
dimension < n, then any morphism f: M — £ annihilates x,

since by 5) above, Ass @ is of pure dimension n. Hence

x & ker o.
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Conversely, let x bean element of M whose support
is of dimension n. To show that a(x) # 0, it will be sufficient
to show that there is a morphism f: M —Q such that flx) # 0.
Or, equivalently, letting N be the submodule of M generated

by x, it will be sufficient to show that the natural map

™) TM) — TN

where j:N—M is the canonical injection, is not zero. For
then there will be an £ & T"(M) = Hom , (M, 1) such that f
restricted to N is not zero. i.e., flx) 35 0.

From the exact sequence,

0—~N>M—MN=—0 .,

we deduce an exact sequence
n il j)} 1 n-1
op TY TP - T M/

-1
But by 3) above, dim ™ M/N) < n-1, and by 4)
dim T (N)=n, since N is of dimension n. Therefore,
. . B n-1
T"(j) must be non-zero, since if it were zero, T (M/N) would
contain an isomorphic copy of Tn{N} which is impossible because
of their dimensions. Hence ker & is just those elements of M
whose support has dimension < n.
Example. If A is a complete local domain of dimension n,

then ﬂ=Tn{A] is torsion-free of rank I. Indeed, by 5), 1its

only associated prime is the zero ideal, hence it is torsion-free.
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Moreover, taking }I to be the zero ideal in A, (N) is

‘1
just the rank of N, for any A-module N . Hence rank
2= rank A=1.
complete
Definition. Let A be a local ring of dimension n,

let D be a dualizing functor, and let § = T (A) = D(H,, (A)).

Then §! is called a module of dualizing differentials for A.

It is determined up to isomorphism.

Exercise. If M is a Cohen-Macaulay module, show that

the map a of 8) above is an isomorphism. In particular,

AZ 1A = Hom, (R,8) is an isomorphism.

Problem. © Let A be a Noetherian ring, J an ideal
in A, and M a module of finite type. Consider the local
cohomology modules

i . i n
H (M) = 11:?: ExtA[AfJ , M)

Find finiteness statements of an Artin-Rees type, to generalize
assertion 2) of Proposition 6.4. But they should be stated
without using duality. One should also have commutativity with
projective limits (cf. the invariance theorem of Zariski, and the

Lefschetz relations of completions along a subvariety).

#This problem is studied in [18]. See also [16, exposé
XIII) for a more precise statement of the problem.
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Now we come to duality theorems for non- regular local rings. |

For a complete Cohen-Macaulay local ring, it will be sufficient to
replace Ext (M,A) in the statement of Theorem 6.3 by

==
Ext l[M,ﬂ}, where £ is a module of dualizing differentials.

If our local ring is not Cohen-Macaulay, however, there will be a

0 1
finite number of modules o T o EE 7 (S ﬂn determined up

to isomorphism by the local ring, and we replace Extn-ll:M,A:l

gPd

in Theorem 6.3 by the abutment of a spectral sequence whose 2

terms are ExtP{M, ﬂq}.

Let A be a complete Noetherian local ring of dimension
n (quotient of a regular local ring). Fixa dualizing module I and
the associated dualizing functor D, andlet £ = D(H:: (A)) bea
module of dualizing differentials for A. Then § is of finite
type over A by 2) of Proposition 6.4, and is torsion-firee
of rank 1 if A is a domain. Since the functor Hn“{ *) is
right exact on the category of A-modules, there is a canonical

isomorphism
o (A) B, M =~ H, (M)
N & o
for all M of finite type (the usual argument . .. ). Therefore,

i (@) = H (A) @, Hom, (€, (4), D
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and we see that there is a natural map

n
Hy () =1 .

Composing this map with the pairings of Corollary 6.2, we can

define pairings for all i

() HL, (M) X Exti'i{M. Q)—1 .

Theorem 6.7. The following conditions are equivalent

(where k>0 is an integer):

(i) the pairings (%) are perfect for all

(ii) H':H{A] =0 forall n-k<i<n.
In particular, the pairings (%) are perfect for all i if and only

if A 1is Cohen-Macaulay.

First Proof. We mimic the proof of Theorem 6.3. We

first consider the case i =n, and the morphism
Il
¢n : H, (M) — D(Hom (M, f)) .

This is an isomorphism for M= A, since D(Q) = DD(H,, (A)) = H:‘ (A).
Moreover, both sides are right exact covariant functors in M,

80 qﬁn is an isomorphism for all M of finite type.

To show that

(M, )

i n
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is an isomorphism for n- k< i< n, we need only show that the

functors H_:,ﬁ{ .} are left derived functors of e T R

M

that H;‘ (A)=0 for n-k<i< n. Thisis precisely our condition
(ii). That the pairing is perfect for n- k< i< n followsasin

the proof of Theorem 6. 3.

Conversely, assume condition (i). Then I-I]L (A), for

"
n-k<i<mn, isdualto Ext;-llfﬂ. $2)=0 for i< n. Therefore,
H;A{ﬁ}zﬂ for n-k<i< n.

The last statement follows from Theorem 3.8, since A

is Cohen-Macaulay if and only if its depth is n.

Second Proof. Instead of proving the theorem directly,

we deduce it from Theorem 6.3. Let B be a complete regular
local ring of dimension r of which A isa quotient. Let J

be a dualizing module for B (we may assume, by Proposition 4. 12,
that I= HmE{A,J} C J). Then by Theorem 6.3 and Corollary BT

there is a perfect pairing

(1) H:“{M] % Ext;‘im. B) =~ J

for all i, and for all M of finite type over A (or B).
If M isan A-module, then both partners to this pairing are
A-modules, so the image of the pairing will be in I. (In fact,

1 is the largest sub-B-module of J which is also an A-module. )
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Thus to obtain a duality statement intrinsic over A, we need only
express the modules Extgl{m. B) in terms of things defined

intrinsically over A.

There is a spectral sequence associated with a change of

rings [12, Ch. XVI, §5]:
Pg p q i
= E : == E 2
E2 Extﬁ{M. xtB[A B)) xtB{M B)

This reduces the problem to calculating the groups Ext%{A,B},
which (except for their numbering) do not depend on the choice
of B, since they are dual to H;q[A]! In our situation we

have
0 for g<r-n

© for gq=r-n
EKt%[A,B] =

0 for gq=>r1r ;

Assuming condition (ii) of the theorem, Ext%[A,E] =0 for
r-n< gq<r-n+k. Therefore, the spectral sequence degenerates

partially, and we find
r-i n-=i
ExtB (M,B) = ExtA (M, Q)

for i>n - k. Substituting in (1) gives condition (i} of the

theorem.
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The converse (i) => (ii) is proved as in the first proof.

Now we come to the most general duality theorem, whose

proof will generalize the second proof of the last theorem.

Theorem 6.8. Let A be a complete local ring of

dimension n (quotient of a regular local ring). Let
0= D{H:;l{ﬁ.}} for i=0,1, ..., n. Then there is a spectral

sequence

Pq _ p 2 PR - n-i
E," = ExtAI:M, Q7) => E = D(H,, (M)

Proof. As in the second proof of Theorem 6.7 above,
let B be a complete regular local ring of dimension r, of

which A is a quotient. Then by Theorem 6.3,
r-1 3 i
Exty, (M, B) & D(Hy (M)
for all i. Furthermore, there is a spectral sequence (see above),
P4 _ ot P qa > Poctl
EZ Extﬁl[M, E:lctB{ » B)) ExtE{M.B}

Since Ext%{A,B} is dual to Hr-q{.&], we have

0 for i< r-n

ExtlB{A.B}: 2% for i=r-n+gq

D for i>r
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Now by substituting and juggling the indices one obtains the statement
of the theorem.

Remark. One can give another interpretation of the groups
Ext;{M, B), intrinsic over A, as follows. Let K(B) be an
exact injective resolution of B in the category of B-modules.

Let K be the complex HomB[A,K{B}} , shifted r - n places

A

to the left. Then KA is an injective complex over A, uniquely

%
determined to within homotopy, and

HIK, 6 )=

(In particular, K.A is an injective resolution of £ = ﬂﬂ

if and only if A is Cohen-Macaulay.) Now

r-i n-i
ExtB (M,B) =H {HﬂmA[M’KA” ;

n-i
t

which is, by definition, the hyperext group E_xA {M,KA}.

As an application of the theory of duality, we prove the

following theorem, conjectured by Lichtenbaum.

Theorem 6.9. Let X be a quasi-projective scheme

over a field ¥ of dimension n. Then for any coherent sheaf
F on X, HH{X,F} is a finite-dimensional vector space over

k. Furthermore, the following conditions are equivalent:

*Kp is a dualizing complex for A, in the sense of
[17,ch.¥V & 2].
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(i) All irreducible components of X of dimension n

are non-proper.
(ii) Hn{K,F] - 0 for all quasi-coherent sheaves F on X.
i) H(X, O (m)=0 forall m>> 0, where O (1)

is a very ample sheaf induced by some projective embedding.

Eggn_f.* Since X is quasi-projective, we can embed it
as a locally closed subscheme of some projective space P .
Let X' be its closure in °°. Then any coherent sheaf F on
X is the restriction of a coherent sheaf F' on X', and thereis

an exact sequence

n R . n+l 2 .
H (X', F') H (¥X,F) Hx‘_}{{x W g

The last termis zero, by Proposition 1.12, and the first is a finite-
dimensional vector space over Kk [10, n°66, Theorem 1], so
s aiddle term  HO(X,F) daalec. The proves: the hiat
assertion.

(i) => (ii). Again let X' be a projective completion
of X. Let Y be a finite set of closed points, one from each
irreducible component of X', and such that X C X' - Y C i g
Then X' - Y also satisfies condition (i), and one sees

immediately that it is sufficient to treat the case X=X'- Y.

*another proof, not using local cochomology, has since
been given by Kleiman [20], and a third proof, using
purely local methods, is given in [19].



102

Since H' commutes with direct limits (Proposition 2. 11)
it is sufficient to prove (ii) for coherent sheaves F. There is

an exact sequence
u;‘t:-:',F} SH'(X',F)—H (X, F) -0 ,

where F is any coherent sheafon X'. To show Hn{}{,F} =0,
is the same as showing o surjective, or equivalently, that the
map
ES

Hamk{Hr:;{(X' Fl.k) & Hom, (H"(X} F), k)
of the dual vector spaces is injective. We interpret these vector
spaces by means of local and global duality theorems. Let X'
be embedded in projective space V = ", andlet £ be the
sheaf of r-differential forms on V. Then by Serre's global

duality theorem,

Humk(H“{x',F},kJ = Ext' O (F,Q)

i

v
For the local cochomeology group, cbserve that by the excision

formula (Proposition 1. 3),

I e = n
H_ (X', F) = H_( JT]_ Spec o’? < F) -_1i_j_ H-m,‘F,, )

i i

1
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where Y = {Yi} , and where ﬁY is the local ring of Y, in
i
Vi -'lu';"l,1 its maximal ideal, and Fyr the stalk of F at y..
i

Now by the local duality theorem 6.3, and the fact that H-::mkl: “» k)
is a dualizing functor for modules with support in V( .wi}

(See Example 3 of §4)

1 r=n = =
Hom, (H_(X', F), k) = Ext . F , &
(HU (X' F) k) JL <R y, il

Y; i

*
Moreover (and the justification of this statement requires the
examination of the residue map, and of the relation between local

and global duality), the transported map

e
1L Ext"™ F .8 ) & Ext’ "(F,Q)
i g i oY ﬁv

Y3

is the one induced on the derived functors by the natural map

(for any two sheaves F, G on V)

Hame, (F,G) =Hom_ (F , G_)-—Hom,_ {E't , B
v %i i % .

s %
To show that o is injective, observe that 1‘-.‘.:-\:tro,nl (F,)

Y
is the ending of a spectral sequence (see Proposition 2.10) whose

E§q~ term is

pa _ .P q
B5% = BV, Exty (F,Q)

*The compatibility of local and global duality is proved
in [17, ch VIII, Prop. 3.5].
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But since the support of F is contained in X' of dimension n,

E:»:i;{1 (F,{)=0 {for gq< r-n, so
afV

Ext’ " (F, Q)2 =V, Ext'L (R, Q) .
ﬂ’-,, —'ﬂ'v

Now EEEHIF. f2) 1is either zero, in which case there is nothing

to prove, r.:l:ra. first non-vanishing Ext. In the latter case, any
global section has support of pure dimension n by Proposition 5.2:
thus if it vanishes at all the points Y; under the map cr#, it

s
must be zero. Thus @ is injective.

(ii) <=> (iii). One implication is obvious. The other
follows from the fact that for F coherent and for all m large

enough, one can find surjections

J -mP —-F—-o0
X
(iii) => (i). One sees easily that it is sufficient to show
that if X is projective and irreducible of dimension n over k,
n g
then H (X, E?’x{-m ) #0 forall m >>0. Embedding X

in V= IP°, this H" is dual to

r-n (U] r-n
Exty | Uy l-m), Q) =H (v, Ext gy | 0y @) m)). But

this sheaf Ext is non-zero by Proposition 5.2, hence for all

m large enough its global sections are non-zero.
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