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§ 1. Introduction.

Let £ be a (finite) algebraic number field, and let @ be its ring of integers. Suppose
n>g, and write G=SL,, with the convention that G, =SL,(A) for any commutative
ring A. Set I'=G,cG,, and write, for any ideal q in 0,

[, =ker(Gy - Gg).

(*) Sloan Fellow. Research partially supported by the National Science Foundation under Grant N.S.F.,
GP-5303.
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60 H. BASS, J. MILNOR AND J.-P. SERRE

The subgroups of I" containing some I'\(q<0) are called congruence subgroups. Since O/q
is finite they are of finite index in I'. One can pose, conversely, the

Congruence Subgroup Problem : Is every subgroup of finite index in T' a congruence subgroup ?

We shall present here a complete solution of this problem. While the response is,
in general, negative, we can describe precisely what occurs. The results apply to
function fields over finite fields as well as to number fields, and to any subring O of
¢ arithmetic type Moreover the analogous problem is solved for the symplectic
groups, G=3Sp,, (n>2). It appears likely that similar phenomena should occur for
more general algebraic groups, G, e.g. for simply connected simple Chevalley groups
of rank >1, and we formulate some conjectures to this effect in Chapter IV. Related
conjectures have been treated independently, and from a somewhat different point of
view, by Calvin Moore, and he has informed us of a number of interesting theorems he
has proved in support of them. Chapter IV contains also some applications of our
results (and conjectures) to vanishing theorems for the cohomology of arithmetic subgroups
of G;, and, in particular, to their  rigidity > (cf. Weil [24]).

Here, in outline, is how the problem above is solved for G=SL, (r>3). There
is a normal subgroup E,cT,, generated by certain ‘“ elementary ” unipotent matrices,

3

and it can be proved by fairly elementary arguments that: (i) Every subgroup of finite
index contains some E, (q#0), and E, itself has finite index in I'; (ii) E, is a congruence
subgroup if and only if E,=TIy; and (iii) I, is generated by E, together with the
0 . a b
I”_z) in I';, where a=(c d)eSL2(0).

From (i) and (ii) we see that an affirmative response to the congruence subgroup
problem is equivalent to the vanishing of

C‘q= q/Eq

. o
matrices

for all ideals q#o. If k:TI,—GC, is the natural projection, then every element of G,

(6]
In—2

is of the form (g ), as in (iii), and, modulo elementary matrices, this element

depends only on the first row, (g, b), of «. Denoting this image by [z] eC,, we have
a surjective function
[]:W,—~G,

where W, ={(a, b)|(a, b)=(1, 0)mod q; a0@ + b0 =0}, is the set of first rows of
matrices « as above.

It was discovered by Mennicke [16] that this function has the following very
pleasant properties:

o] . [b+ta] [0 . b 1 _[b
MS1. [I]—-I, [ . ]_[a] for all teq; and [a—}—tb]—[a] for all ted.

s I (o), o bWy ten [*04] < [2][%],

a a
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SOLUTION OF THE CONGRUENCE SUBGROUP PROBLEM 61

Accordingly, we call a function from W, to a group satisfying MS1 and MS2 a
Mennicke symbol. 'There is evidently a universal one, all others being obtained uniquely
by following the universal one with a homomorphism.

The main theorem of Chapter II asserts that the Mennicke symbol, [ ]: W,—GC,,
above is universal. A more pedestrian way of saying this is that C, has a presentation
with generators W,; and with relations MS1 and MS2. The principal content of this
theorem is that G, depends only on @ and q, and not on z; recall that G=SL,.

At this point we are faced with the problem of calculating, somehow directly, the
universal Mennicke symbol on W,. The multiplicativity (MS2) naturally suggests the
power residue symbols. Specifically, suppose £ contains ,,, the m-th roots of unity.
Then for a, b0, with a prime to bm, there is a symbol

(@)
a m (J‘m‘

It is defined to be multiplicative in @, or rather in the principal ideal a0, and for a prime
ideal p prime to m, with ¢ elements in the residue class field, it is the unique m-th root
of unity congruent, mod p, to 42", This is evidently multiplicative in 4 and depends
on b only modulo a.

Let q be an ideal and suppose (a, b))eW,. Ifm divides q then, since a=1 mod q,

a is prime to m, so we can define (—b~) , provided b+o0. If b=o0 then a must be a unit,

and we agree that (—3) =1 in this case. Then it is readily checked that

m

(‘—)m : Wq_)[“!‘m

satisfies all of the axioms for a Mennicke symbol except, possibly, the fact that (%) depends

m
on a only modulo 4. For this we can try to use the ¢ m-th power reciprocity law

3

. b . . e
This says that (~) =m,T,, T, Where w,is a product over primes p dividing b, but not m,
" :

a\ vl ) .
of (—) , and where =, and =, are products over primes p dividing m and oo,

m
. . a, b . - .
respectively, of certain “ local symbols ”, ( ’p ) , which are bilinear functions on the
m

multiplicative group of the local field %,, with values in w,,.

It is easily seen that m, depends on @ only modulo b, so we will have manufactured
a non trivial Mennicke symbol, and thus shown that G, +{1}, provided we can
guarantee that =,,=mn,=1. The factor =, is easy to dispose of. For if we take q highly
divisible by m (e.g. by m®) then since a=1 mod q, a will be very close to 1 in the topo-
logical group £, if p divides m. Therefore a will be an m-th power in £, thus rendering

a, b
2) =1 fo b.
( v )m r any

If p divides co then £, =R or C, and everything is an m-th power in C". If £, =R,
however, we must have m=2, and the local symbol at p will be non trivial for any
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62 H. BASS, J. MILNOR AND ]J.-P. SERRE

choice of q. This, in broad outline, explains how we are led to the main theorem of
Chapter I (Theorem 3.6):

If k has a real embedding then for all ideals q+o0 in 0, all Mennicke symbols on W, are
trivial. Hence C,={1} for all q.

If, on the other hand, k is totally imaginary, then for each ideal q=o0 in O, there is an
integer r=r(q) such that u, (the r-th roots of unity) belong to k, and such that

(_)r : Wq_>y‘r

is a universal Mennicke symbol on W,. Hence G =y,. If m is the number of roots of unity
in k, and if m® divides q then r(q)=m. (We give an explicit formula for 7.)

To facilitate matters for the reader (and ourselves) we have included an “ Appendix
on Number Theory » at the end of Chapter I which contains statements of the results
from class field theory which we require, together with either references or proofs in
each case. The exposition in Chapter I is otherwise self contained.

Chapter III proves, for the symplectic groups, a result analogous to that of
Chapter II on SL,. Together with the results of Chapters I and II it gives a solution
of the congruence subgroup problem for these groups.

Our results on SL, give, in principle, a method for calculating the ¢ Whitehead
group ”’, Wh(x), of a finite abelian group=. We include some simple applications of this
type in § 4, though there remain some serious technical problems in completing this task.

It is worth mentioning also that the theorem of Chapter II is finally formulated,
and proved, as a * stability theorem ** for SL, over an arbitrary commutative noetherian
ring. An example of an application of this added generality is the following:

If t,, ..., t, are indeterminates, and if n>m-+ 4, then SL,(Z[t,, ..., ¢,]) is a finitely
generated group.

Next we shall explain, briefly, how the congruence subgroup problem is related
to the work of Calvin Moore, mentioned above.

The congruence subgroups of I', and the subgroups of finite index, respectively,
constitute bases for neighborhoods of the identity for two topologies on G,. The latter
refines the former so there is a continuous homomorphism,

r: GG,
between the corresponding completions, and it is easy to see that = is surjective. The

congruence topology is the one induced by embedding G, cG, A, where Al is the ring

of finite adéles of £, i.e. the adéle ring modulo the archimedean components. It is well
known (cf. Bourbaki, Alg. Comm., Chap. VII, § 2, n° 4, Prop. 4), that G, is dense in G, ahys

o we can identify G,=G; YR In this way we obtain a topological group extension,
E(Gy):1—>C(G) > G > Gy > 1,

and, since the right hand terms are both completions of G,, the extension splits over
G, cG, af- The congruence subgroup problem asks whether the two topologies coincide,
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SOLUTION OF THE CONGRUENCE SUBGROUP PROBLEM 63

i.e. whether = is an isomorphism, i.e. whether C(G;)={1}. The discussion above
shows easily that
G(Gy) =1<_iEFq/Eq =l<in an
so we conclude that
{1} if k£ has a real embedding,

C(Gy) =
(G W, the roots of unity in £, if £ is totally imaginary.

We conjecture that this evaluation of CG(G,) holds if G is any simply connected, simple,
split group of rank >1 over £&. The discrepancy between the real case and the imaginary
one is nicely accounted for by the work of Calvin Moore, which suggests that one should
expect an extension

~
1>, —>G>Gy —1,

over the full adéle group, which splits over G,cG,,, and which has order exactly
[w, : 1] in H¥G,,, w,). We cannot get at this when there are real primes because Gy, is
not generally simply connected, and the two sheeted covering sought by Moore in this
case appears to depend essentially on the real primes. In contrast, G is simply connected,
so it follows easily that the alleged Ek must be of the form G, x G, if £ is totally imagi-
nary. ’Gk generalizes, in a natural way, the “ metaplectic groups ’ of Weil [25].
Suppose that G is any semi-simple, simply connected, algebraic group defined
over Q ,and let I be an arithmetic subgroup of G in the sense of Borel-Harish-Chandra [8].
If T is the * profinite completion > of T' then there is a natural continuous homomorphism

W:P»GAQ‘,

(cf. discussion above). In § 16 of Chapter IV we prove:
Assume :
a) im(w) is open in GA{) ; and
b) ker(w) is finite.

Then if f:T'—>GL,(Q) s any group homomorphism there is there is a homomorphism
F:G—-GL,

of algebraic groups, defined over Q , such that ¥ agrees with f on a subgroup of finite index of I'.

This conclusion easily implies that H'(I', V)=o0 for any finite dimensional vector
space V over Q on which I' operates. Taking for V the adjoint representation of G,
this implies the triviality of all deformations of I' in Gy (cf. Weil [24]). Vanishing and
rigidity theorems of this type have already been proved in many cases by Borel, Garland,
Kajdan and Raghunathan.

The hypothesis a) above corresponds to a form of the strong approximation theorem,
and it has been proved for a wide class of groups by M. Kneser [13]. Hypothesis )
is a kind of ““ congruence subgroup theorem . In the notation introduced above, and
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64 H. BASS, J. MILNOR AND J.-P. SERRE

applied to these more general groups G, it says that G(Gq) is finite. Therefore it is
established here for certain G, and conjectured for others. For example, the case
I'=SL,(Z)cGq=SL,(Q) (> 3), to which the theorem applies, is already rather amusing.

We shall close this introduction now with some historical remarks. The congruence
subgroup problem for SL, (r>3) and Sp,, (n>2) over Q was solved independently
by Mennicke ([16] and [17]) and by Bass-Lazard-Serre [4]. Mennicke and Newman
have, independently of us, solved the problem for SL, over any real number field. Both
Mennicke [16, p. 37] and Bass [18, p. 360 and p. 416] have announced incorrect solutions
for arbitrary number fields.

Mennicke (unpublished) announced, and Matsumoto [15] outlined, a procedure
for deducing an affirmative solution of the congruence subgroup problem for simply
connected simple Chevalley groups of rank >1 from the two special cases, SL; and Sp,.
Their methods should probably suffice to prove at least the finiteness of C(G,), starting
from the results proved here.

The research presented here was initiated by the first two named authors in [5].
A more definitive solution of the problem treated there was obtained using results of
the third named author, and this appeared, again as a set of notes, in [6]. The content
of [6] is embedded here in Chapter I and a small part of Chapters II and III.

We are grateful to T.-Y. Lam for a critical reading of the manuscript, and for
the proofs of Lemma 2.11 and of Proposition 4.13, to M. Kervaire for Lemma 2. 10,
and to Mennicke and Newman for giving us access to some of their unpublished work.
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CHAPTER 1
DETERMINATION OF ARITHMETIC MENNICKE SYMBOLS

§ 2. Definition and Basic Properties of Mennicke Symbols.

Throughout this chapter, without explicit mention to the contrary, A denoles a
Dedekind ring and q denotes a non zero ideal of A. Nevertheless the definition of W,,
g-equivalence, and Mennicke symbols below make sense for any commutative ring and
ideal, and they will sometimes be referred to in this generality. In particular lemmas 2.2
and 2.10 are valid without any hypothesis on A.

We write

W, ={(a, b)eA®|(a, b)=(1, 0)mod q, and aA 4 bA=A}.
We call two pairs, (a;, b,) and (a,, b,) in A2 q-equivalent, denoted
(a, b)) ~q (ay5 by)
if one is obtained from the other by a finite sequence of transformations of the types

(a, b) > (a, b+ ta) (teq)
and

(a, B) > (a + tb, b) (teA)
‘;) by left multi-

plication, then the g-equivalence classes are the orbits of the group generated by

all (; ‘I’) (teq) and all ((‘) ‘) (teA).

(Note the asymmetry.) If we let GL,(A) operate on column vectors (

I
Lemma 2.1. — Suppose A'=S"'A is a ring of fractions of A, and that q' is a non zero
ideal of A'. Then any (a', b')eW, is q'-equivalent to some (a, b)eW,, where q=q’'nA.
Proof. — Since A is a Dedekind ring it follows that, for any ideal a’#o0 in A’,
the composite A—A’—A’/a’ is surjective.

Now, for our problem we can first arrange that ¢’ and 4’ are non zero. Then
we can find beA with b=25' mod a’'q’, by the remark above. Write bA =0b,b, where
b,=0A'nA. It follows from standard properties of rings of fractions, and the fact
that A is Dedekind, that b, and b, are relatively prime, and that b;A’=»6A’. Choose
a,€A such that a,=a mod bA’, using the remark above again. Then solve

a=a, mod b,
a=1 mod b,
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66 H. BASS, J. MILNOR AND J.-P. SERRE

in A. The first congruence implies a=a,=a’ mod bA’, since bA’=Db,A’. Hence
(@', b))~y (a', b) ~y(a, b), so (a, b)=(1,0) modulo q'nA=q. The fact that
aA+bA=A, and hence that (a, b)eW,, follows casily from the conditions aA’+bA'=A’
and c=1 mod b,.

The following elementary remarks will be used repeatedly, without explicit
reference: Suppose aA+4bA=A. If A is semi-local then we can find a t€A such
that a-+tb is a unit. For this is trivial if A is a field, so we can do this modulo each
of the (finite number of) maximal ideals of A. Then we can use the “ Chinese Remainder
Theorem *’ to find a single ¢ that works simultaneously for all of them.

Next suppose that A is a Dedekind ring, and that a is a non zero ideal. Then,
applying the preceding remark to the semi-local ring A/a, we conclude that we can
find a teA so that a1t is prime to a.

Lemma 2.2. — Suppose (a, b)eW,.

a) (a, b)~,(a, bg), where q=1—acq.

b) If a is congruent to a umit mod b, or if b is congruent to a unit mod a, then
(@, b) ~4(1,0).

Proof. — a) (a, b)~,(a, b—ba) =(a, bq).

b) If a=u—th with # a unit, t€A, then

(@, b)~q (a+tb, b) = (u, b)~, (u, b+u(w (1—b—u)))=(u, 1—u)~, (1, 1—u)~, (1, 0).
Next suppose b=u-+ta, u a unit, teA. With ¢=1—a we have
(as b) ~a (aa bQ) ~q (a’ bq-—a(M)):(a’ uq) ~a (a"f_u_l(uQ): uq):(I’ uq) Nq(I> 0)'

Lemma 2.3. — Suppose q'Cq are non zero ideals in A. Then any (a, b)eW, is
q-equivalent to some (a’, b")eW,.

Progf. — Passing to B=A/q’ and b=q/a’, we would like to show that an
(a, 6))eW,, is b-equivalent to (1, 0), where now B is a semilocal ring. We can find ¢teB
so that a4 tb is a unit, and then (a, b)~,(a+1h, b))~ (1, 0), the last b-equivalence
following as in Lemma 2.2 5).

Lemma 2.4 (Mennicke-Newman). — Given (ay, by), ..., (a,, b,)eW,, we can find
(a,¢1), -+, (a,¢,) €W, such that (a, c)~,(a;, b;), 1 <i<n.

Proof. — Choose ¢+o0 in q, and use Lemma 2.3 to find (g;, ¢;¢)eW, such that
(4, b q) ~4(a;, b;), 1 <i<n. We propose to find (a,c;q)~,(a, b;q), 1 <i<n, and this
will clearly prove the lemma.

By induction on 7 (the case n=1 being trivial) we can assume n>1 and that
(@, ,q9) ~,(a, b;q), 1 <i<n, have been found, and with all ¢;+0. Choose ¢, =5, mod 4,
so that ¢, is prime to ¢;...q,_; (Lemma 2.2). Then (a,, b,9)~,(a,, ¢,q), clearly.

Write 4'—a,=dq and solve d=r¢,—s¢...c,_,. Then d&'—a,=r¢,q—s¢,...c,_,
s0 a,+1¢,q=a"+s¢...c,_1q; call this element a. Clearly (d', ¢;q)~,(a, ;9), 1 <i<n,
and (a, ¢,9) ~,(a,, ¢,9), so the lemma is proved.

We now come to the principal object of study in this chapter.
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SOLUTION OF THE CONGRUENCE SUBGROUP PROBLEM 67

Definition 2.5. — A Mennicke symbol on W, is a function

[1:W,~C; (a,b)ra[fl],

where C is a group, which satisfies:

) b by] .
MS 1. [I]zl, and [ai]:[a:] if (ay, by) ~q(ay, by).

MS2. If (a,b), (a, b)eW, then [blabg]z[hjl[bz].

a a

This definition makes it clear that there is a universal Mennicke symbol,
[1: WG,

such that all others are obtained, in a unique way, by composing [ ], with a homo-
morphism C,—C. We can take for G, for example, the free group with basis W, modulo
the relations dictated by MS 1 and MS 2.

If 9’cq then W,cW,, and clearly a Mennicke symbol on W, induces one
on W,,. In particular, therefore, there is a canonical homomorphism

(2.6) G, —~C,

Using Lemma 2.3, it follows just from MS 1 that this homomorphism is surjective.
We will now record some simple corollaries of the definition.

Lemma 2.7. — Suppose [ ]: W,—C satisfies MS 1. Then :
a) [Z] =1 if a is congruent to a unit mod b, or if b is congruent to a unit mod a.
b) If q'Cq then, given (a, b)eW,, we can find (a’,b’)eW, such that [Z]:[Z:]
c) If geq and if a=1mod gq, then the map bi> [baq] Sor beA, b prime to a, induces
a map
(2.8) U(A/eA)—~>C
whose composite with the homomorphism U(A)—U(A/aA) is the constant map 1.
d) Any finite set of symbols [Z:] belong to the image of (2.8) for a suitable choice of ¢

and a, and a can be chosen arbitrarily from a ¢ progression > a—+tcq (¢€A) for some ¢ prime to a.
Proof. — a) follows from Lemma 2.2 b).
b) follows from Lemma 2.3.
c) Clearly the g-equivalence class of (a, bg) depends on & only mod a, so (2.8)
bq
]:1 by part a).

is well defined. If & is a unit then a=1 mod b¢, so [a

d) follows from 6) and Lemma 2.4.

Lemma 2.9. — Suppose [ ]: W,—C s a Mennicke symbol. Then :
a) The maps (2.8) are homomorphisms.

b) The image of W, is an abelian subgroup of C.
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68 H. BASS, J. MILNOR AND ]J-P. SERRE

Proof. — a) For a=1mod ¢ we have [Z]= 1 by Lemma 2.7 a). Therefore
for b4, b,cA and prime to a we have

[b1b2q] _ [blbzq] [9] _ [blqbzq] _ [blq] [1729]
a a a a a a ]’
so (2.8) is a homomorphism.

b) now follows from Lemma 2.7 d) and the fact that U(A/zA) is an abelian
group.

We have now established all the lemmas required for the theorems of Chapter I.
The balance of this section contains material to be applied in Chapter II.

Lemma 2.10 (Kervaire ““ reciprocity ). — Suppose a=1=d mod ¢ for some qeq,
and suppose aA+dA=A. Then if []:W,—~C is a Mennicke symbol we have

HH

. . dq] _[dg—aq) [x¢°] _[xq] [ x¢ | _[xg
Proof. — Write d—a=gqx. Then [a]—[ ; ]—[ a]_[a]—[a+xq]_[d]'

aq] _[ag—dq] [—¢x] [xq
On the other hand, [d]—[ p ]_[ b ]_.[d],
Lemma 2.11 (Lam, Mennicke-Newman). — If []: W,—C is a Mennicke symbol,
and if (ay, b), (ay, b)eW,, then

(219 PARHIH

Remark. — This property was discovered and proved by Mennicke and Newman
for the particular symbols constructed in Chapter II. Lam supplied the following
axiomatic proof. Lam also has shown that MS 1 and (2.12) imply MS 2.

Proof. — Case 1. — There is a ¢geq such that ¢,=a,=1 mod gq.
Then [ 7 ]=1= [q]’ i=1, 2, so it suffices to show that [ be ]= [bq] [bq]. For
a,a, a; a4y a1 §La

this, neither side is altered if we vary 4 mod a,4,, so we can arrange that 4 is prime to q.
Then we can find 4’ solving

by=05"b=1 mod ¢

b'=1 mod a,a,.

Using Lemmas 2.7 and 2.9 we obtain
o)Ll loe )=o)
0, a, 10,114,y 0, a,
big| _[b'q] [ba]_[be
& a; a; a;

and, for 1=1, 2,

430



SOLUTION OF THE CONGRUENCE SUBGROUP PROBLEM 69

Finally, we have from Lemma 2.10 and Lemma 2.9 a),

[blq]z [alazq] _ [alq] [agq] _ [blq] [M]
a,a, by b 1L b, a, I 4

General case. — Write a,=1—g¢q. Neither side of (2.12) is altered if we replace 5
by b,=0b+ta,a, for some teq. We can choose ¢ so that ¢ and 4, generate q. For
since a, a, is prime to b we can do this locally, clearly, and then use the Chinese Remainder
Theorem to obtain a ¢ that works at each prime dividing ¢. (If ¢=o0 our problem is
trivial, so we can assume ¢=0).) Next write a,=1-4¢’, ¢'eq. Then ¢'=1b,+sq for
some 7, seA. Neither side of the alleged equation,

by 1 _[o4][0
aa,] la]la)
is altered if we replace a, by a;=a,—rb;=1+35q. Therefore we have reduced the general

case to case I. ;
We close this section by showing how to extend a Mennicke symbol, [a] on W,,

to a symbol [2], where b is an ideal. This result will not be needed in what follows,

but it is perhaps worth pointing out.
Let
V—Vq={(a, b)la=1 mod q; b+o0 is an ideal in q; cA+b=A}.

Proposition 2.13. — If (a, b) [Z] is a Mennicke symbol on W,, then there is a unique
JSunction, (a, b) i~ [Z], on Wq satisfying :

MO. — If (a,b)eW,, b+o, then [T]:[”].

a

M1 — If (a,8)eW, then [?]ZI and [aib]:m for all beb.
M2. — If (a, b)), (a, b))eW, then

FEEHIA
M3. — If (a,5), (a, B)eW, then [af’az]:[:l] [:2]

Proof. — Since an ideal in g has q as a factor we can write the elements of Wq in the
form (a, bq), where a=1modq and sA+Db=A.

Uniqueness. — Choose ¢ prime to bq so that ¢bq=dA is principal, and choose a’
solving

(*)

a’=a mod bq

a’'=1mod ¢

431



70 H. BASS, J. MILNOR AND J.-P. SERRE

Since a=1mod q we have a'=1mod ¢q so M 1 implies [;C,'] =1= [:,]. Therefore

BEHE
=[] o
{2 o
1 oo s

Existence. — Define [IZq] = [:,] as above. We must check that this is inde’pendent
of the choices: ¢, then 4, then a’. The congruences (x) determine a’ mod dA =cbq
$O [:,] does not depend on the choice of a’. Neither does it depend on d, which is

determined by ¢ up to a unit factor.

Finally, suppose ¢; and ¢, are prime to b (hence to bq) and that ¢,bq=dA,i=1, 2.
Choose b’ prime to bq so that ¢,b’'q=¢A, i=1, 2; just take b’ in the ideal class of b.
Then

e dy A =¢,b'qc,bg =,b'q¢,bg =e,d, A.
Choose an 4’ solving a’'=a mod bq

a’' =1 mod ¢cb'.

Then

<)

a'=1mod ¢c,b'g=¢c=¢0¢, so0 [Zﬂ]:l, t=1,2. We must show that
["e] But
A dil[e] _[de
a allal | &
=d231:d2 e1=d2
a’ alla a’
Now that [2] is well defined M o is clear. If a=1 we can choose a’ above equal to 1,
BEH
sO =|_ |=1.
I I
Replacing a by a-+b, bebq, we can make the same choices of ¢, 4, a’ above,
so M 1 follows.

Suppose (g, b,q), (a, b,q) qu. Choose ¢; prime to b;b, such that ¢b,q=dA,
i=1,2. Then choose a’ so that

a’=a mod b;b,q

a'=1mod ¢,
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Since (¢,¢,)(b,qbyq) =d,d,A we have

[b1qbzq _ dyd, _ di [ — b,|[b,
a a’ ajla alla]l
Finally, to prove M g, suppose (a4, bq), (4a,, bq)eW,. Choose ¢, 4, and a; as
above, i=1,2. Then ¢, d,and a'=aja, clearly serve to define the symbol for (a,a,, bq).

Hence
[bq],:[,d,]z[d,][d,} (Lemma 2.11)
a,a, a;a, a;| | a,
. [ bQ] [bq
el a
Remark. — The symbol [b] is trivial whenever @ is a unit. 'We shall exhibit examples

in § 4 for which [a +1 even when 4 is a unit. In this way we can get a non trivial

pairing of the units of A with the ideal class group of A.

§ 3. Determination of arithmetic Mennicke symbols.

Throughout this section A denotes a Dedekind ring of arithmetic type defined by
a finite set, S, of primes in a global field £. This terminology as well as that to follow,
is taken from the appendix on number theory, to which frequent reference will be made
here.

We shall call A totally imaginary if S, consists of complex primes. This means
that £ is a totally imaginary number field, and that A is its ring of algebraic integers.

For an integer m>1 we shall write y,, for the group of all m-th roots of unity (in some
algebraic closure of £). It will be understood, when we write p,, that m is prime to
char(k), so that p,, is a cyclic group of order m.

Here is the first example of a non trivial Mennicke symbol.

Proposition 3.1. — Suppose that A is totally imaginary and that p.,Ck. Let q be an
tdeal such that, for all primes p dividing m, if p is the rational prime over which p lies, we have

ord,(q) I
ord, (p) ~p_—120rdp(m) .

Then (a, b) — (—Z—) (=1 if b=0) is a Mennicke symbol

m

(_)m : Wq_>“'m'

Remarks. — 1. For the definition of the power residue symbol (é) , see formula A. 20

m

of the Appendix. Note that the hypothesis makes & prime to m, so that (;i) is defined

if b+0; when b=o0 we have made the convention that (Z) =1.
m
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2. The main result of this chapter, Theorem 8.6 below, says that Proposition 3.1
accounts for all non trivial Mennicke symbols of arithmetic type.

Proof. — It follows immediately from the definition (A.20) that (ﬁ) 1s bimultipli-

cative and depends on 4 only modulo a. (Note that 4 can be zero only when a is a unit,

in which case (é) =1 foralld’s.) Theseremarks establish all the axioms for a Mennicke

m

symbol except the fact that (g) depends on @ only modulo 4. This is trivial if d=o0

so suppose otherwise, and apply the reciprocity formula, (A.21):

(.-5(5)
am phlpm

a, b

If ptabm then either p is finite and ( » ) =1 by (A.16), or p is complex (by hypo-

m

thesis). Therefore, using (A.16) again,

(Lot ),
al plb, ptm \P m plm\ P m

The first factors clearly depend on a only modulo 4. Finally, suppose p|m and set
h=ord,(q) and e=ord,(p), where p is the rational prime p divides. We have assumed
that A .

-— ——>n=ord,(m).

e p—1—
b
With this we conclude from (A.18) that (f’—) depends on a only modulo & for
pn
(a, b)eW,. Writing m=p"m’ with m’ prime to p we have
)AL
P/ P/ P/

a b a Ol‘dp(b)
for suitable integers r and s (independent of a and b), and ( b ) =(~) depends
on a only modulo 4. This completes the proof. Pl W

Let p be a rational prime and let w,» be the group of all p-th power roots of unity
in k. (If char(k)=p then n=o0.) This notation will be fixed in the next two theorems.

Theorem 3.2. — Given (a, b)eW,, we can find an (ay, b;)~,(a, b) such that a,A=1p,p,,
a product of distinct primes, which satisfy Np,=1 mod p"*', i=1, 2. In case k is a number
field we can choose the p; prime to p; moreover, if qCp"t'A and b+o0 then we can find
a,=amod b with this property.

Progf. — Number field case: Suppose first that A is the ring of algebraic integers in £.
Let P={p¢S,|Np=1modp"*'}. Our hypothesis, together with (A.8), implies
that P is infinite.
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Using Lemma 2.3 we see that it suffices to prove the theorem for ideals divisible
by p" A, so assume qCp""'A. We may also arrange that b+o0. Then the theorem
will be proved if we find @, = a mod bA satisfying the conditions of the theorem, for then
clearly (a,, b)~,(a, b).

Since b#o0 and P is infinite we can choose a p,€P prime to 4. Then we can
apply the Dirichlet Theorem (A.11) to find @,=a mod é such that a, is positive at the
real primes, and such that ¢, A=p,p, for some prime p,. It remains only to be shown
that p,eP, i.e. that Np,=1 modp"*'

Np,;Np, =card(A/a;A)=|N,qea|, since A is the ring of integers of £. Since a,
is positive at the real primes, and since a;=1 mod q with qcp"t'A, we have

Since Np,%1 mod p""'Z the desired conclusion now follows.

Next suppose A’ is some other Dedekind ring of arithmetic type in k. Then
A’=A[s"'] for some seA, where A is as above. The theorem for A’ follows by using
Lemma 2.1 to replace (¢, ) by a g-equivalent pair in W ,,, and then applying the
argument above, making sure that p, and p, do not divide s. This is possible since we
have infinitely many choices for each of them.

Function field case. — First suppose p+char(k). Let F, be the constant field of £,
and let m be the least positive integer such that p"*'|¢™—1. The hypothesis of the
theorem implies that m>1. Let P={p¢S,|deg(p) is prime to m}. Then (A.9)
says P is infinite. Moreover, if peP, then Np=1modp"*’. To see this write
Np=¢’, where d=deg(p) is prime to m. If I=(¢"—1)Z+(¢"—1)Zc(¢—1)Z then,
modulo I, ¢"=1=¢%, so g¢=1; ie. gcd.(¢"—1,¢—1)=¢g—1. Therefore if
p" 1 divides ¢'—1 it also divides ¢—1, contradicting our hypothesis.

Given (a,b)eW, (we can assume b+o0) choose a p,eP prime to 4. This is
possible because P is infinite. Now use the Dirichlet Theorem (A.12) to find
a;=amod b such that ord,(e;)=omodm at all peS, and such that aA=pp,
for some prime p,+p,. The product formula (A.3) yields

0= ordp(dl) deg(p)
P

= deg(p,) +deg(p,) + X ord,(a,)deg(p)
= deg(p,) +deg(p,) mod mZ

Since p,eP this implies p,eP also, and since (4, b) ~,(a, b), the theorem now follows
from the fact, proved above, that Np#1 mod p"*' for peP.

Finally, if char(k)=p we can take any 4, =a mod b which is a product of two
distinct primes, and the conclusion of the theorem is automatic. This concludes the
proof of Theorem 3.2.

Before stating the next result we must introduce some further notation. Recall
that w,, is the group of all p-th power roots of unity in £.
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Suppose that A is totally imaginary and let q be a non zero ideal in A. We define

con . [ordy(a) I
(3-3) Jp(9)=roin L_rd,,‘(m ”17—7] 1]

For xeR, [x]y,, denotes the nearest integer in the interval [o, n] to the largest integer
<xz. lLe. [x]p,=inf(sup(o, [x]), n).
Lemma 3.4. — a) With j=j,(q), there is a prime p, dividing p, a u=1mod q, and a

u, v
veU,,, such that (——’—) generates ;.
pﬂ

0

b) (—)pi : Wy, is a Mennicke symbol.

Proof. — a) j =[ordpn(q) —_ for some p, dividing p, and (A.17) tells

1
us that ord, (p)  p— I} [0,

__ (Upl (h)’ UP.)
ppn—j = | 2
pO pn

where h=ord, (q), hence the result.
b) follows from Proposition 3.1 if j>o0, and it is obvious if j=o.

Theorem 3.5. — Suppose (a, b)eW,. Let p be a prime number, and let n be the largest
integer such that k contains p,.. Then there exist geq, ay=1mod g, and ceA, such that

(a, b) ~, (ay, *'q), except in the following case: A is tolally imaginary and (g) *1, where
j =jp(q)' b »
(Lemma 3.4 guarantees that (Z) _above is defined.)
pl

Progf. — We shall call two non zero elements “ close at p > if they are multipli-
catively congruent modulo p"-th powers. Note that this is a congruence relation modulo
an open subgroup of finite index.

Case 1. — A 1is not totally imaginary.

Then there is a non-complex (i.e. either real or finite) p,€eS,, and the non degene-

Pw

racy of the Hilbert symbol shows that we can find u, vek,  such that (u, v)
generates (yn. "
Choose a principal ideal gA cgq, and, with the aid of Lemma 2.3, an (a’, b'g)eW,
which is g-equivalent to (a, 5)). We can take 4'+o0, and, altering a4’ mod 4’q, arrange
that ¢’ is prime to p in the number field case.
Now the Dirichlet theorem (A.10) gives us a prime b;A, where b, satisfies
b;=b'mod a’
b, is close to v at p,

b, is close to 1 at all peS,—{p,}, and at all p¢S, which divide p, in the
number field case.

The last condition makes 5,A prime to p in the number field case.
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) u,v a'y b u, v\" .
Since |——| generates p,, we can solve .\—] =1 for some i>o.
©/ pn blA pn pco pn

Use Dirichlet now to find a prime 4, A, prime to p in the number field case, so that
a;=a’' mod b,q

a, is close to u* at p,

Now we apply the reciprocity formula (A.21):

o)),
&), Pta\ P/,

On the right our conditions on &, exclude any contribution from S, except at p,,
as well as any from the primes dividing p in the number field case. Using (A.16) to
eliminate most of the finite primes, therefore, we have

(bl) _ (a1> bl) (al’ bl)
al pn blA pn- pd} pn.

Since 4, A is not p-adic the first factor depends on ¢, only modulo b,, so our approxima-
tions, and choice of 7, leave us with

o) =52 5]~
@) g b A pn. Poo /g ‘

Thus b, is a p"-th power modulo 4,, say b,=¢"" mod ¢;. Then

(a, by~ (a', b'q) ~,(a’, byq) ~,(ay, bg) ~,(as, c'q),

and the proof is complete.

Case 2. — A is totally imaginary, but q is not divisible by every prime dividing p.

Let 9’cq be the largest ideal in q which is so divisible. Then ord,(q)=1 for at
least one p dividing p, so it follows that j,(q")=j,(q)=0 (see (3.3)). Use Lemma 2.3
to find an (', 5')eW, which is g-equivalent to (a, b). Then, since j,(q’)=o0, this case
follows now from:

Case 3. — A is totally imaginary, g is divisible by every prime dividing p, and (b) =1

al,;
We recall from Lemma 3.4 that (—),; is a Mennicke symbol on W,.
Choose geq such that ord,(g)=ord,(q) for all p|p. Clearly then j,(q)=j,(q),
and we can find an (a’, 4'¢g)eW, which is g-equivalent to (g, ). Then

=) -5 ~6). 18-,

because (—),; is a Mennicke symbol on W,, and because a'=1 mod ¢.

Choose a py, 4, and v as in Lemma 3.4 ¢). If hA=ord,(q) then u=1 mod p},

u, v
veU,, and (—) generates L,._;.
Po / pn
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We now use the Dirichlet theorem (A.10) to find a b,eA such that

by=5b'" mod a’
b, is close to v at p,
by is close to 1 at all other p dividing p,

and such that 4, A is a prime, prime to ¢g. Since a'=1 mod ¢, 4’ is prime to p, so these
congruences are compatible.

Since (—),; is a Mennicke symbol on W,, we obtain, with the reciprocity

formula (A.21):
e (—b—) - (é;) B (él;) a H' <a,, bl) .
8 i \¥pi \Wpi PP,

Since A is totally imaginary, and since b, is close to 1 at all p-adic p other than p,, we are

left with
(a’, bl) (a’, bi)
1= .
by pi\ Po /i

’ ', b
Since (d . bl) E(U%(h)’ Up") =pm; (see (A.17)) we have (a 1) =
Po / Po - P i

-

, hence
’

’s b ) b .
also (a ; 1) =1. Therefore (d ; 1) €Wm-j, 50 we can find i>0 such that
»J "

1 1

(u, v)i (a’, bl) .
Po /pn by o '

Now choose a prime g, such that

a,=a' mod b,q
a, is close to u' at p,.

Since #=1 mod pl;, h=ord, (g), the same is true of «', so these congruences are compa-
tible since 4, is prime to ¢. Moreover,

(ala blq)"’q (a” blq)"’q(a’: le)Nq (a: b)

We conclude the proof now by showing that b, is a p"-th power modulo q;.
From reciprocity,

ERTY
a4y pn pla p p bl p p() pn

using the fact that A is totally imaginary, and eliminating most finite primes

, b a
with the aid of (A.16). The latter shows also that (alb 1) :(b—l) depends
1 pn 1 pn

1> bl ,3 bl . . .

on g, only modulo &, so 5 | =\ At p, our approximations imply
1 n 1/ pn
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a,, b ; b b ) ..
( ! 1) = (u v) . Hence (J) = (a 1) (u v) =1, so b,is indeed a p"-th power
Po /o Po /) pn 4/ by o\ Po/

modulo ¢;. Q.E.D.

We are now prepared to prove the main theorem of this chapter.

Theorem 3.6. — If A is not totally imaginary then, for all ideals q=+o, all Mennicke
symbols on W, are trivial; i.e. C,={1}.

Suppose A is totally imaginary, and let m denote the number of roots of unity in k. If qisa
non zero ideal define the divisor r=r(q) of m by ord,(r)=j,(q), for each prime p, where

Co ord,(q) I
0= Eira [ordp(p) S p—

] [0, ord p(m)]
as i (3.8). Then (=) s Wy—p,

is a universal Mennicke symbol in Wy, so C,=u,. If qCq’ andif r'=r(q"), then the natural
homomorphism C,—GC, corresponds to the (r|r')-th power map, w,—>u, .

Remark. — In the totally imaginary case it follows already from Proposition .1
that (—), is a Mennicke symbol on W,. The point now being made is its universality.
The last assertion follows simply from the formula,

(=) ={=))""

Proof. — Let []:W,—C be a universal Mennicke symbol. We shall use the
notation and assertions of Lemmas 2.7 and 2.3. In the homomorphism (2.8) we can
use (2.7) d) and the Dirichlet Theorem to make aA prime. Then U(A/aA) is cyclic,
so we conclude from (2.7) d) that:

(i) Every finite subset of C lies in a finite cyclic subgroup.

Suppose m=p"m’ with p a rational prime and m’ prime to p. Given (a, b)eW,
we can find (a,, b;)~,(a, b) as in Theorem 3.2. This implies that U(A/a;A) has no
elements of order p"*'. If g=1—aeq then (ay,b)~,(ay, by—bya,)=(as, b,q) so

[Z]:[bzilq] lies in a homomorphic image of U(A/a,A). Consequently G has no
elements of order p"*!. Letting p range now over all rational primes we conclude from
this and (i) that C has exponent m, i.e. x™=1 for all xeC. It follows easily from this
and (i) that:

(i1) C is a cyclic group of order dividing m.

Again write m=p"m’ as above. Suppose (a, b)~,(a, ¢""g) for some geq with
a;=1mod ¢ and ceA. Then [b] =[cp q] z[cq]” , so it follows from (ii) that [b]

a a a a

has order prime to p. If A is not totally imaginary then we can invoke Theorem 3.5
and apply this remark, for every p, and conclude:

(iii) G= {1} if A is not totally imaginary.
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Now suppose that A is totally imaginary. Since [ ] was chosen universal, and
since (—), is a Mennicke symbol on W, (Remark 2 above) there is a homomorphism
f: G—p, rendering

y T
W, f
NN

ey

commutative. Clearly f is surjective, so if we show that [C :1]<r the theorem will

be proved.. It suffices to do this on the p-primary components C, for each prime .

Writing m=p"m’ and r=p’s’, with m’ and r’ prime to p, and j=j,(q), the passage

to p-primary components can be achieved by replacing m by p", r by #’, and C by C,.

Then if [Z]eCpnker f we have (g) =1, so it follows from Theorem 3.5 that
pJ

(a, b) ~,(a,, ¢™g). As above, we see that [Z] =1 since itis a p"-th power in the group C,

which has exponent p", according to (ii). Q.E.D.

The next theorem is required to handle some technical problems that arise in
connection with the symplectic groups where we obtain a symbol { } for which we cannot
directly verify all the axioms for a Mennicke symbol.

Theorem 3.7. — Suppose we have a commutative diagram

C{} D
Wq/lf
[b\cq

where
a) f is a homomorphism of abelian groups,
b) [ 1, is a universal Mennicke symbol on W,, and
c) {} is a surjective map.

2
Let [Z] be {i }, and make the following assumptions:
Q) (a5) H{Z } and (a, b) > [Z] satisgfy MS 1, and

(11) ?f (a> bl)) (d, bz) ewq: then
HIHE
aflal \a |
Then f is an isomorphism, so { } is a universal Mennicke symbol on W,.
Proof. — Evidently ¢) (i) and ¢) (ii) imply that [ ] satisfies MS 1 and MS 2,

so [ ] is a Mennicke symbol on W,. Therefore its image is a cyclic subgroup, D’, of D,
whose order divides m (the same m as in Theorem 3.6).
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If A is not totally imaginary, and if char(k)=#2, then we can apply Theorem 3.5
to any (a, b))eW, to find an (a,, ¢®q) ~,(a, ) with geq, a,=1 mod g, and ceA. (We
take p=2 in Theorem 3.5). Since (a,, g)~,(1, 0) we conclude, using ¢) (i) and ¢) (ii),

that
e A R e H I E
a a, a, Jla a, a)La a,

If char(k)=2 we find (a,, b,9)~,(a, b) with geq,a,=1mod ¢, and ¢, A prime, using the
Dirichlet Theorem. A/a,A is then a finite field of characteristic 2 so b;=¢? mod a, for
some ¢, and we can argue again as above. Thus, if A is not totally imaginary then we
have D=D’, and, by Theorem 3.6, D’'={1}.

Now assume that A is totally imaginary. Then we can realize [ ], by
(—)s : Wy—>,, as in Theorem 3.6. We want to show that the (surjective) homo-
morphism f:D->p, is an isomorphism, and we shall do this by showing that
[D:1]1<r. We know [D’:1]|r.

Write m=2"m’ with m’ odd. If r is odd, i.e. if j,(q)=o0, then we always have
the hypotheses of Theorem 3.5, and we can argue as above to prove that D=D".

Henceforth, therefore, we can assume r is even. We claim that [D’:1] |£

To see this we first note that, since []:W,—D’ is a Mennicke symbol, there is a
necessarily surjective homomorphism g : w,—D’ such that

(o) =[] =(2),

2
We want to show that g(—i1)=1. If —Iz(g) then (%) =1, so we have

2
(b—) =1, j=J,(q). Hence we can apply Theorem 3.5 and find an (a,, "q) ~, (a, b?)

a4 [oi
with g¢eq, ¢,=1 mod ¢, cecA. Then we have

g(—I)Z{i}z{czq}[i]

") } (using ¢) (ii))

.
2
|

I

g
aq} (using ¢) (ii))

1

2

gn-

cq non-1
41] DY
If j<n this implies g(—1)=1. Now suppose j=mn, i.. that 2"|r. We can
use Theorem 3.2 to find an a=1mod q such that sA=p,p, where the p,
are distinct odd primes such that N;=Np,=1mod 2"*' i=1,2. Choose a beq
such that b=—1modp, and b=1modp,. Then I=1moda, and we have
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b _

(—) :(?1) (;)I—) =(—1)™=Y " Since 2"|r and since 2"*t'tN,—1, it follows
a r 1/ \V2/ :

that (N;—1)/r is odd, so (2) =-—1. Setting ¢g=1—a we have

(a, bz) ~a (a, bz_bza) = (a: bzq) ~a (a, q) ~a (1,0),

b

2 2
so : l; }= 1. Therefore g(—1) =g(a) =< [; :: 1, asclaimed. Thiscompletes the proof

that [D’: 1] |£— when 7 is even.

The proof of the theorem will be concluded now by showing that [D :D’]<e.
(Note that, at this point, we have not even shown that D is finite). For since we have

just shown that [D’: 1] |£ it will follow that [D :1]<r, as we were required to show.

Given any (a,, by),..., (a,, b,)eW, we can use Lemmas 2.3 and 2.4 to choose
qeq and (a, ;q)eW,, such that (g, b;) ~,(a, ¢;9), 1 <¢<n. We can further arrange that
the ¢; are non-zero, and then, by varying a mod ¢,. . .¢, ¢, arrange that A is a prime ideal.
Let U be the finite cyclic group U(A/aA). Then we have the map defined in (2.8),

kh:U-D,
defined by & |—>{ baq} for beA and prime to a, and the image of % contains each of the
given elements {Zl }, ce {Z" } From ¢) (ii) we have the functional equation,
1 n
h(u?v) = h(u®)h(2) for u,veU.

Let H=#/(U?cD’, and let b generate U. Then U=U?ubU? so
h(U)=HuUh(b)H c D' uh(b)D".

In conclusion, this discussion shows that any finite set of symbols :Z‘ }, ey {b”}lie in
1 n

the union of D’ and of one of its cosets in D. Finally, since {}: W,—D is surjective,
by hypothesis, it follows immediately that [D:D’]<2. Q.E.D.

We shall conclude this chapter now by describing the functoriality of the
isomorphism in Theorem g.6.

Let A be the ring of integers in a totally imaginary number field £. Then
Theorem 3.6 supplies an isomorphism
(3.8) lim G, =,

q
where y, denotes the group of roots of unity in £, and where the limit is taken over all
non zero ideals q of A. In fact, if m=[uw, : 1], the limit is already reached by any q
divisible by m. II’I "=V, and a fortiori by any q divisible by m®. (k contains a primi-
plm

tive p-th root of unity, w,, and 1—w, generates the ideal whose (p—1)-st power is (p).
The symbol p"'~? above denotes this ideal.)
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Let £, be an extension of £ of degree d=[k, : %], and with integers A,. If q is
an ideal of A then the inclusion W,cW,, induces a homomorphism C,—C,, . The
ideals qA; are cofinal in A,, so, passing to the limit, (3.8) induces a homomorphism

VRS A %

The nature of the identification (3.8) shows that ¢ is characterized by the fact that,
for q highly divisible by m;=[w, : 1], and for any (g, b)eW,,

o, (a).)=. ..

The left subscripts here designate the fields to which the symbols apply.
This ¢ has been determined in (A.23); it is defined by the formula:
ﬁ)dll

2 ml'

(3-9) e(Q)=¢, where e=(1+rg+

APPENDIX ON NUMBER THEORY

This appendix presents, in a form convenient for our applications in § 3, the
statements of several fundamental theorems from algebraic number theory. Most of
the statements are simply given with a reference to the literature from which they are
drawn. In other cases we have deduced certain * well known
latter. The following references will be used:

[AT] E. Artin and J. Tate, Class Field Theory, Harvard notes (1961).

[H] H. Hasse, Bericht iiber neuere Untersuchungen und Probleme aus der Theorie
der algebraischen Zahlkérper, II Teil, Fahr. Deut. Math. Ver., Erg. VI Band,
Teubner, 1930.

[L] S. Lang, Algebraic Numbers, Addison Wesley (1964).

[O’M] O. T. O’Meara, Introduction to Quadratic Forms, Springer (1963).

[S] J.-P. Serre, Corps Locaux, Hermann (1962).

corollaries from the

Let £ be a global field, i.e. a finite number field or a function field in one variable
over a finite field. If p is a prime (or place) of £ then there is a normalized absolute
value, | |,, on the local field &, at p. (See [L, p. 24] where it is denoted || ||,.) Ifp
is finite then the residue class field £(p) is finite with Np elements, and | x|, =Np~ %",
If k is a function field with constant field F, then Np = ¢"¢®), where deg(p)=[k(p) : F,].

For finite p write U, for the group of local units at p, and

U, (n)={ueU,|ord,(1—u) >n}

Thus U,(0)=U, and U,(n)=1+p" for n>0. The group U,(n) is an open subgroup
of finite index in U,. If p is infinite we canset U,=#;, the multiplicative group of ,.
Let J be the idéle group of £ (see [L, Ch. VI] or [O’M, Ch. III]). J has a topo-
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82 H. BASS, J. MILNOR AND J.-P. SERRE

logy making it a locally compact group and inducing the product topology on the open
subgroup IJUP. The group k" is embedded diagonally as a discrete subgroup of J.

If x=(x,) is an idele then [x,[,=1 for almost all p. Let HxH:fp[]xpip.

The map || || : J—>R" is a continuous homomorphism whose kernel we denote by J°
It is clear from the definitions that

(A T~ R if k is a number field.
1 ~
: Z if kis a function field.

(A.2) Product Formula (See [L, Ch. V] or [O’M, § 33 B]).
<
Le. |x|,=1 for xek'.
P

In function fields this is usually written additively:
(A.3) If k is a function field and if xek  then

Zord,(x) deg(p)=o.
P

Write C=]J/k", the group of idéle classes, and C'°=]°/k".
(A.4) Class Number-Unit Theorem (See [L, Ch. VI, Theorem 4]).

C° is compact.

Let p, be a finite prime. An idéle ¢=(¢,) is called prime at p,if t,=1 for p+*p,,
and if ¢, is a local parameter (i.e. generates the maximal ideal) at p,.

(A.5) Artin Reciprocity and Existence Theorem. (See [AT, Ch. 8, § 1]). Let K/k
be a finite abelian extension. Then there is a continuous epimorphism r: C—Gal(K/k) such
that, if p s a finite prime of k, unramified in K, and if t is a prime idéle at P, then
r(¢. k)= (p, KJk), the Artin symbol. Every open subgroup of finite index in C is the kernel
of r for a suitable (and uniquely determined) K.

For the Artin symbol see, e.g., [S, Ch. I, § 8].

(A.6)  Cebotarev Theorem for abelian extensions . (See [H], § 24). Let K/k be
a finite abelian extension; given occGal(K[k) there are infinitely many primes p of k, unramified
in K, such that (p, Kjk)=0. (See also A. Weil, Basic number theory, p. 289.)

In view of (A.5) we see that this Cebotarev Theorem is equivalent to the:

(A.7) Density Theorem.

If U is an open subgroup of finite index in G then every coset of C[U contains infinitely many
prime idéle classes.

(A.8) Corollary. — Let T be a primitive m-th root of unity and suppose that Cék. Then
there exist infinitely many primes C such that Np=1 mod m. If k(%) /k is cyclic we can even
arrange that k(p) contains no more m-th roots of unity than k does.

Proof. — Choose o+1 in Gal(k({)/k), a generator in the cyclic case. By the
(Cebotarev Theorem there are infinitely many primes p, prime to m in the number field
case, and hence unramified in £({), such that (p, £({)/k)=o. Thus the Frobenius
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automorphism in the extension £(p)(%)/k(p) is not trivial, so Cé¢k(p). (We identify ¢
with its image modulo p.)

In the cyclic case we even have [£(p)(Y) : k(p)]=order of o. Suppose CUek(p).
Then, by Hensel’s lemma, (ek,, so [£,(%) : kp] is dominated by [£(¥) : £(¥)]. The
inequalities

[K(€) : kl=[k(p) (Q) : KT <[hy(%) ¢ kp] <[R(T) : K(T)]

now imply that {ek.

(A.9g) Corollary. — If k is a function field then, given n>>1, there are infinitely many
primes p of degree prime fo n.

For if F, is the constant field of £ we can take m=¢"—1 in the corollary above.
The extension k(¥) /£ is certainly cyclic, and it is easy to see that a finite extension of F,
having only ¢—1 m-th roots of unity must have degree prime to x.

Let S, be a finite, non empty, set of primes of £, containing all archimedean
primes when £ is a number field, and let

A ={xek|ord,(x) >0 for all p¢S,}.

A is called the Dedekind ring of arithmetic type defined by the set S of primesin k. (Aisa
“ Hasse domain ” in the terminology of O’Meara.) A is, indeed, a Dedekind domain,
and we can canonically identify the maximal ideals of A with the primes outside S .
With this convention we have k(p)=A/p for p¢S,. IfA’isdefined by S, 5S, then
it follows easily from the finiteness of class number that A’ is a ring of fractions of A;
in fact A’=A[a"'] for a suitable aecA.

(A.10) Durichlet Theorem. — Suppose we are given: non zero a,beA such that
aA +bA =A; a finite set S, of primes outside S and prime to b; for each peS,US, an open
subgroup V,Ck, and an x,ek, such that, for peS,, e,=ord,(x,) >o0. Suppoxe also that,
Sor at least one peS,, V_ has finite index in k.

Then there exist infinitely many primes po¢S,U S, such that there is a ceA satisfying

c=a mod bA
cex,V, for all peSyus§,

and cA=p,a
where = p];[Snp v,

Proof. — For peS, we can, by making the V smaller, if necessary, assume V,cU,.

For p¢S,uS, define
V,=U,(ord, (b)) ={ueU,|ord,(1—u) >ord,(b)}.

Then V,=U, for almost all p, so szprp is an open subgroup of J. Therefore

W =VEK'[k" is an open subgroup of C=]J/k", so C/W is discrete. To show that it is
finite we need only observe that it is compact. Since C° is compact (see (A.4)) it suffices
to show that G/C’.W=||C||/||W]|| is finite. Since ||C||*R or Z (see (A.1))
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and since ||W|| is an open subgroup, it suffices to observe that ||[W||+{1}. But this
follows immediately from the fact that V, has finite index in £, for some peS,.

Now it follows from the Density Theorem that each coset of J/V . £’ contains infinitely
many prime idéles. To apply this we first construct some ideéles from the data of the
theorem. Write S, for the set of primes dividing 4, and define idéles @ and % by:

o L 1.f pes,

Pl 1 if pgS,
—. = | xif peS,us,
¥ { 1 otherwise

Now the Density Theorem gives us infinitely many primes p,¢S,uUS, such that there
is a prime idéle 7 at p, satisfying r=ax~ ' mod VA". Thus we can find dekt” and veV
such that

(%) rxv=ad

We claim that p, and ¢=ad satisfy the conclusions of the theorem. To verify this
we study the equation (x) at each p.

pé{p}uS,uS,US,: v,=ad, so ord,(c)=o0
P=",: TooUp,=0ad, so ord, (c)=1
peS,: x,0,=ad, so cxy'eV,cU,

and, in particular, ord,(c)=ord,(x,)=e¢,.

peS,: v,=d so deV,=1U,(ord,(b))

and therefore ¢=ad=a mod p°%®,
These conclusions already show that ceA, that ¢=a mod bA, and that cA=p,a,
as well as that cx;'eV, for peS;. There remains only the condition at .

peS,: X, 0, = ad, so cxy'eV Q.E.D.

e
The following special cases of this theorem suffice for most applications.
(A.11) Suppose k is a number field. Given non zero a, be A and a non zero ideal a such

that aA+bA=A=a-+bA, then there are infinitely many primes p,¢S. such that pya=cA

Sor some ¢=a mod bA, and we can prescribe the signs of ¢ at the real primes.

We take V,=the positive reals, at real p, to obtain the last condition.
(A.12) Suppose k is a function field, and that we are given a, b and a as in (A.11) above.

Suppose also given, for each peS. , integers n,>0 and m,. Then we have the same conclusion
as above, where the condition at real primes is replaced by:

ord, (¢) =m,mod n,Z
Jor all peS,.
Here we take for V,, peS,, the set of xek” such that ord,(x) =0 mod n,.
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We shall now give a description of the power reciprocity laws, following [AT, Ch. 12]
and [S, Ch. XIV].

We fix an integer m>1 and we shall be discussing fields £ which contain the
group, w,, of all m-th roots of unity. This will always be understood to imply that
char(k)tm, so that u, is cyclic of order m.

First suppose k is a local field, i.e. a local completion of some global field, and
assume w, Ck. Ifk, is the maximal abelian extension of £, then there is a reciprocity map,
which is a continuous homomorphism

k' —>Gal(k, k)
a —(a, k,Jk),

(See [S, Ch. XI, § 3]). For example, in the non-archimedean case, the restriction
of (a, k,/k) to the unramified part is the Artin symbol, i.e. the ord(a) power of the lifting
of the Frobenius automorphism. If a, bek™ then, since ., Ck, k(a™) [k, is an abelian
extension on which o¢=(b, k,/k) operates, so we can define

(a, b) oa™
im —vm
k) —a
and it is easy to see that this is independent of the choice of ™. (In case our field is £,

, b\ . .
where £ now denotes some global field, then we shall write (L) instead.) This

definition agrees with those of [H] and [S], and is reciprocal to that of [A-T].

(A‘I?)) ( ’k ) Zk*Xk*—>p.m
Sactors through (k' [K™) X (K'[K'™), on which it defines a non-degenerate, antisymmetric, bilinear
form.  Moreover,

k

o il (AR

This result and (A.16) below summarize the results of [S, Ch. XIV, § 1-3] and
of [AT, Ch. 12, § 1].

We shall now discuss the evaluation of these symbols. In the archimedean case
the symbol is uniquely characterized by (A.13):

(A.14) If k=G then K'=k™ so (a;]b

a, 1—a .
(’ ) =1 whenever a, 1—ack
m

) =1 for all a and b.

m
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(A.15) If k=R then m<2 and we have
a, b |1 if a,b<o
R/, |1 otherwise
Suppose next that £ is non archimedean, with prime p and suppose Np=g¢ is

!
prime to m. Since u,Ck we have ¢=1modm. Therefore, if acU,, a m becomes

. . . a
an m-th root of unity mod p, so there is a unique element (—) €w, such that
m

g—1
am = (f) mod p.
P/m

This is called the m-th power residue symbol at p.
(A.16) (See [S, p. 217]). Suppose k is non archimedean with prime p and residue
characteristic prime to m. Then for acU, and bek,

a, b a\ "
)=
a, b

Thus (——) =1 if b is also a unit. Note that when char £>0 we are automati-
m

cally in the case covered by (A.16). It remains to discuss the much more complicated
case when the residue characteristic divides m. The information we require in these
cases is contained in the following two propositions.

k now denotes a finite extension of Q ,, with prime p, and we suppose m=p". We

shall write e=ord,(p),

the absolute ramification index.

For xeR write [«] for the largest integer <x, and for a€Z write g, for the
nearest integer to a in the interval [o, n].

(A.17) Let h be a non negative integer. Then

(G (G E)
p " p 20 "

h
where j= [_ _ ] .
e p—I1I (0.1

b
(A.18) If acU,(k) and if ord,(b) >h, then (a, ) depends on a only modulo b,
i

where j has the same meaning as in (A.17); it equals 1 if ord,(b)=h.

. , b
Remark. — When aeU,(h), bek,, the value of (%)
»

may be given explicitly,
as follows: o

J
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When j=o, this symbol is of course equal to 1.

When j>1, let w be a primitive p-th root of unity, and let a=(a—1)/p(w—1).
Since aeU,(k), « is p-integral; let « be its image in £(p), and let S(«) be the image
of a by the trace Tr:k(p)—F,. With these notations, one has:

(a, b) — o S@ordp)
P/,

(If j=1 this is [S, Prop. 6, p. 237]. The general case is proved by induction on j,
writing a as a p-th power.)
Proof of (A.17). — Write

ulh =PI
P ),
and o (h, 1) = (M)
p pn

I

h
We shall reason by induction on n. Setting j'—_—_[4 —

. [)—I]’ J' is defined by the

inequalities
I I
R P ., R
e(J +p~1)”‘h<e(1 +1 +p—1) ,

and j is the nearest integer to j’ in the interval [o, n].

The case n=1. — Since the groups p. and .’ decrease as 4 increases it suffices to

show that, for hze(l +[) ! I) :peﬁl (which is an integer because p"~'(p—1) divides e),
V’(h>l)={1}, w (h—1, I)‘_"“‘pﬂ
w'(h, 1)={1}, wh—1,1)=mp,.

If xeU,(k) and yek, the evaluation of (ﬂ) is made in [S, p. 237, Prop. 6]. From
this one deduces the first three formulas

(LR gy (BT g (LK)

p P

p

The last formula, =, follows from the evaluation of the symbol

(Up(lz— 1), Up)

p

given in [S, p. 237, Exercise 3]. Rather than appeal to an exercise we can argue directly,
s Up) :

as follows. Take xeUy(h—1), x¢Uy(h). If (Lf) ={1}, the reciprocity map

k' —>Gal(k(x"") [k) is trivial on U,, and hence the extension k(x'?)/k is unra-
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mified [S, p. 205, Cor. to Prop. 13]. Then ord, on % agrees with ord on k(x'?).
Writing x#=1+43 we have

x=1 +py(x + 0 .)+y”
s

so h—1=1:—1=e+lﬁ—r=ord(x—1)
= min(e +ord(y), p ord(y)),
with equality when these two numbers differ. Since 2—1 is not a multiple of p, therefore,

we cannot have p ord(y)<e+-ord(y), so ord(_y)ZL, and iz——IZe—}—ord(y)Ze—{——L;
contradiction. p—1 p—1

The case n>2. — Let 7: yu—>p,n-1 be the p-th power map. Since

n)\ (B} _ (0
(*) ( p )pﬁ—l ( p )pﬂ ( p )pﬂ

we see that w(h, n—1)=m=(u(k, n)), and similarly for p’.

h
(1) Suppose first that j= [———p;] <n—2. Then, by induction we have
e p—1 -
[0, ]
w(k, n—1)=pm_1_j%{1}, and the only subgroup of y, having this image under =
is wyn-j. Therefore this case follows from the remark above.

h
(if) Suppose that [——p—ll—] >n—1. The argument above shows now that
e —

m(w(h, n))={1}, so w(k, n)cy,, and similarly for w’. Asin the case n=1, it suffices

to show that, if h,,:e(n —{—p—l—), then
—1

(b, m)={1},  u(t—1,n)=p,
@ (hyy n)={1}, W (hy—1, n) = p,.
Since n>2 and since ¢ is divisible by (p—1)p"~'>2 it follows that k,— 1>e(1 —}—p—I—I)

Now it follows from [S, p. 219, Prop. 9] that, for m>e(1 —{—;L) , the p-th power map
—1

sends U,(m—e) isomorphically onto U,(m). Taking m=h,—1,m=h,, and m=h,+1,
and using the formula (%) above, we obtain
@ (g 1) =t (by_y, n—1)
w (ks m) =1 (hy_y, n—1)
w (h,—1, n)=p (k, _,—1,n—1)
f",(hn—‘ I, ﬂ,) = p"(hn—i—— I, n— I)
The proof is now completed by the induction hypothesis.
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b LB\
Proof of (A.18). — Since (ﬁp—) =(<“p ) ) it follows from part (i) that
p/ on

(Up(h), Up) o (Up(h—l—l), k;)
p pi p p.f.

b
This shows first that (a, ) depends only on the class of 2 mod U,y(k+1), i.e. mod p"*+™.
i

! b
Case ord,(b)>h-+1. — It is then clear that (a,_) depends only on a mod b.
pi
, b
Case ord(b)=h. — If aeU,(h+1) we have (%) =1 by one of the formulae
I
above. If a¢U,(h+1), ord,(1—a)=+h, and we have b=(1—a)v with veU,. Hence:

(a, b) B (a, I—a) (a, v)
P /i p pi\ P /i

a,

p

<

But (a, I_a) =1 by (A.13), and (
P/,

) =1 by one of the formulae above. Hence
J pj

(ﬂf) —1. Q.ED.
P/,

Now let £ be a global field containing w,,. o b
(A.19) m-th power reciprocity law: If a, bek™ then ( ’p ) =1 jor almost all p, and

) m
II{— =1
»\ P/,

The first assertion follows from (A.16), since @ and b are both units at almost all
finite p. The product formula is [AT, Ch. 12, Theorem 13].

Suppose that A is the ring of algebraic integers in a number field £. Let b be a
non zero element of A, and let a be an ideal of A prime to bm. The m-th power residue

b
symbol, (E) , is defined by

ordp()
(A.20) (é) =TI (é) .
a/,, »le\p/

b
When a=aA we write simply (—) . This is evidently a bimultiplicative function on the
m ordp(a) b

pairs (a, b) for which itis defined. According to (A.16) we can write (B) = (_,?a)
m /'m
so the reciprocity law, and the antisymmetry of the local symbols, gives us

. e
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. , b .
If ptmaboo then (A.16) implies (aﬂ_) =1. Therefore we can rewrite (A.21),
using (A.16), as: P

ordp(b)
) o= Gl )
o, "0, )R,

Note that the third factor disappears if £ is totally imaginary; if (b, m)=1 the first

factor is just (g) .

The following fact from Artin-Tate [AT, Ch. 12, Theorem 8] is used
in the proof of Proposition 4.15. It can also be deduced from the remark
following (A.18).

(A.22) Let p be an odd prime, let k=Q () with { a primitive p-th root of unity,

and let \=1—Y. Then (I_)\p’ )\) +1.
o ),

We shall now discuss a functorial property of the power residue symbols. Changing
notation slightly we shall write yu, for the group of all roots of unity in a number
field £.

(A.28) Let kcCk, be an extension of number fields of degree d=[k,:k], and

write: - m=[w, : 1] and my=[w, : 1] for the orders of their groups of roots of
unity.

a) There is a unique homomorphism @ = : w,—w, making the triangle

My

m,/m \\Nk Ik
VN

W > P

@

commutative, and, if ki, Cky, @ p= Pppr,° Pucyice

m my

b) <P(C) =, where e =( I+ 2 + ?)dm/ml.
This makes sense because dm[m, has denominator prime to m.

c) Let b be an algebraic integer of k, and let a be an ideal of k which is prime to m,b; iden-
tfy a with the corresponding ideal of k,. Then

Lo =)L)

where the left subscript denotes the field in which the symbol is defined.

Proof. — a) The existence and uniqueness of ¢ follows because il W, 1S an
epimorphism of cyclic groups, and because N, ,(w,)Cw. The functoriality follows
from uniqueness and the commutativity of the diagram
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B,

'"*/'y Nty by

Pka/ky

e,
md:y Q‘kl/k Nijk

By -

e
Pk, Jk Phyky | 2k

(The parallelogram commutes because ¢, is the multiplication by some integer.)

Suppose we know 6) for ¢, and @, , , and write d,=[k,:k]. Then

(I+i’f+%)@(l —}-@_4_.”12)@:(1 +z}+%) (I+%+m2)w

2 2] m 2 my

so the formula for ¢, =¢ 0@, will follow if we show that
(1 —f—’{t—{—@) (1 —}—mf—{—ﬁ?) = (1 —}—T—i—ln—z) mod m.
2 2 2 2 2 2

Write m;=mn; and m,=mn,. Then the difference of the left and right side is

m®n,

ml+i(mm1+mm2+mf—f—m1m2) = *Z‘ (1 + ny+ 1, + nyny)mod m

m ~——=.(1 4+ n,) =0 mod m.

m ny(1+n)
o 2

Similarly ¢) follows if we know it for each layer of kck,ck,. Using this we can
prove b) and ¢) in the layers of £cCk(w,)Ck,, and we can further break up the bottom
into layers such that the order of y, increases by a prime factor in each one. Therefore
it suffices to treat the following three cases.

Case 1. — m;=m. Then u, Ck so clearly o({)=Y’ which is ). For ¢) it

b b\"
suffices to show that if p is a prime of £, prime to m,, and if b¢p, then (-) = (5) .
ky m k m

If p=IIP: where P, has degree f; over p, and if Np =g, then NP,=¢". Therefore

i — R fi
(i) Ebg{m‘l =b(_1171;)(1+q+.“+q[1_1) = (‘b_) e ! ):: (_b_) mod 5Bi. Thus
ky sBL k p m k m

b b e; b Xeifi b d
.= 5).~ 6. =6,
k, p m ! k, EB’ k p m k p mn

Case 2. — ky=k(w,) and m;=mp where p is a prime not dividing m. Then p

must be odd so %z—}-%l =m}»:;‘? =o mod m, so b) becomes ¢({)="". Thus we must
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show N, ,(0)=(")% for {ew,. This is clear for {ew, and if { has order p, and
hence for a set of generators of w, .

For ¢) we note that (é) €y, because it is fixed under the galois group.
k \¥ /mp

MOI €OV el)

by the same calculation as in case 1. Hence

(o= 6L =)

Case 3. — As in Case 2, but now assume p divides m. Then d=[k,: k]=p,
and

o if p*2
+_mk1=m1—l—[) m mod m.
2 2 ;

IS

if p=2

We are in a Kummer extension of degree p, so the norm of a root of unity not
in w, is its p-th power times the product of all p-th roots of unity. Therefore,
for Cey,

< if p#2

Nl =]

ee(©) lon i pea.

These remarks prove 5).

It remains to prove ¢). Let b an element of A, and let p be a prime ideal of A
which divides neither 4 nor m;. Then p is unramified in the galois extension £, /&, so
p=1k, : k]=/fg, where fis the degree of a prime P over p, and g is the number of primes
over p. Write ¢=Np, so ¢ =N%P.

The case f—1. — Set c=kl(%)mp. Then
oo gl (e
and Nu(€)= oeGl::lI(kl/k) kl(o-_bs‘ﬁ)mp - kl(%)mp.
Hence of (1) )=o) =0l =Nou0= (1) by part o).

The case f=p. — Then g=1modm but g1 mod mp. Write g=1-+am; then
@’ '=1mod p. We can write ¢’— 1= pam(1-amb)-+ a’m? for some integer b. Setting
(¢°—1)/mp ="h(qg—1) |m, we have
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p—1 p—1 p—1,.p—1
hzr—f—q—i—.[;.-l—q =p(qq_1)=1+amb+a mP
p—1
=1+ mod m.
I if p*2
= 1+ i e mod m
b b
N (—) = (——) = pe? =M mod
ow ky p mp ky ‘B mp SB
=bh(q—-1)/m
h
- (ﬁ) mod P
k m

_ cp(k(i’;)m). Q.E.D.
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CuaPTER II
MENNICKE SYMBOLS ASSOCIATED WITH SL,

§ 4. Statement of the main theorem. Examples and Applications.

Let A be a commutative ring and let g be anideal of A. E, (A) denotes the subgroup
of SL,(A) generated by all “ elementary ” matrices, I4-tg;(t€A, i%j), and E,(A, q)
denotes the normal subgroup of E,(A) generated by those with ¢teq. This is a subgroup of

SL, (A, q) =ker(SL,(A) — SL,(A/q)).

We shall consider SL,(A)cSL

a b
If ocz(c d v o

defines a surjective map SL,(A, q) — W,,

(A) by identifying xeSL,(A) with (z ;)

m

n+m

)eSL?_(A, q), then it is easy to see (Lemma 5.3 below) that « - (a, b)

where W, is defined in § 2.
The aim of this chapter is to prove:
Theorem 4.1. — Let A be a Dedekind ring, let g be an ideal of A, and suppose n>3.
a) E,(A, q)=[SL,(A), SL,(A, q)].
b) Write C,(n)=SL,(A, q)/E,(A, q), and let

k: SL, (A, q)—>C,(n)

be the natural epimorphism. Then there is a unique map [ ] : Wy—GC,(n) such that

inel.

|
!
|

15¢ row K

is commutative, and [ ] is a Mennicke symbol.

c) This Mennicke symbol is universal.

Part a) is a slight improvement of well known results (cf. part d) of Theorem 7.5
and part a) of Theorem 11.1 below). Parts ) and ¢) can be stated equally well as
follows:
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Let C be any group. Then the commutative squares

| !

|

15t row x

|
i
|
v )
W T '—[1—9 C

q

define a bijection between Mennicke symbols, [ ], and homomorphisms k satisfying
k(tot™)=x(c) for ceSL,(A, q) and 7eSL,(A).

Part b) says that, given « : SL,(A, q)—>C as above, its restriction to SL,(A, q)
factors through a unique map []:W,—C, and [] is a Mennicke symbol. The
theorem of Mennicke in § 5 contains this fact.

Part ¢) says that, given a Mennicke symbol []:W,—~C, we can construct a
unique k as above. This implies, first of all, that the composite

15t row [] fe

SLy(A, q) W,
is a homomorphism. This not at all obvious fact is the Theorem of Kubota in § 6.
After this there remains the problem of extending a homomorphism «, : SL,(A, q) —C,
satisfying certain conditions, to a homomorphism «, ., :SL, (A, q)—C, satisfying
analogous conditions. The (rather complicated) solution of this problem occupies
§§ 8-10, and it is done in a setting more general than that of Theorem 4.1.
Before embarking on the proofs of these results we shall now record some of the
principal corollaries of Theorem 4.1. Further results and applications are stated in § 11.
Corollary 4.2. — For n>g the natural maps

Cqy(n) — Gy(n+1)

are isomorphisms.

The next corollary solves the “ congruence subgroup problem ** (see Chapter IV)
for SL,(A).

Corollary 4.3. — Suppose that A s of arithmetic type and that n>3g.

a) SL,(A) is equal to E,(A) and it is a _finitely generated group, equal to its own commutator
subgroup.

b) If A is not totally imaginary then C,={1} for all q.

c) If A is totally imaginary, and if m is the number of roots of unity in A, then there is a
canonical isomorphism

C, =, (the r-th roots of umity)

where r=r(q), s defined by

d, (r) = min
ord, (1) vla

[ordp(Q) I]
ordy(p) P10, oray(m)

Sor each prime p (cf. (3.3)).
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If qcq’, and if v'=r(q’), then the homomorphism C,—C, corresponds to the (r|r')-th
power map w,—>wu,.

d)

. {1} if A is not totally imaginary,
lim, G = . . o
<« U O A is totally imaginary.

Parts 4) and ¢) follow from Theorem 4.1 combined with Theorem 3.6. These
imply C,={1} in all cases, and this, together with remarks (5.2) below, is part a).
Part d) is an immediate consequence of parts ) and ¢).

When A is a ring of algebraic integers the finite generation of SL,(A) was proved
by Hurwitz [12] in 1895, and the finite generation of all * arithmetic groups > was
finally proved by Borel-Harish-Chandra [8] in 1962. In the function field case, however,
finite generation of SL,(A) (n>3) was only recently proved by O’Meara [20], and he
points out that SL,(A) may fail to be finitely generated. The statements about generation
by elementary matrices, and about the commutator subgroups, can fail for SL,(A) even
in the number field case. For example, if A=Z[\/ ——_5], then Swan (unpublished)
has determined a presentation of SL,(A) from which it follows that SL,(A) /H=Z X (Z/2Z)
where H is the subgroup generated by all commutators and all elementary matrices.
Thus H doesn’t even have finite index in SL,(A).

In § 11 we show that SL,(A) is finitely generated for certain finitely generated
Z-algebras A, provided = is sufficiently large relative to the Krull dimension of A.

In the balance of this section we shall use Theorem 4.1 to produce some further
examples of non trivial Mennicke symbols, and finally apply Corollary 4.3 to the calcula-
tion of some ¢ Whitehead groups > of finite abelian groups.

Example 4.4. — (Cf. [18, § 1, Ex. 1.7, and p. 422].) Let A=R[x, y] where x
and y are subject to the single relation, #*+)*=1. Viewing A as a ring of functions
on the circle, S', with x and y the coordinate functions, an element of SL,(A) defines
a map S'->SL,(R). Taking homotopy classes we obtain a homomori)hism

SL,(A) — my(SL,(R)) {1} (n>3).
Since (_x Y ) represents a generator of this homotopy group we obtain a Mennicke

symbol (for the ideal q=A) such that [i ] =—1. Let p; be the ideal generated by »

and x—1t,t==+1. Then x=¢mod p; and p,p_;=yA. Hence, using Proposition 2.13,

we have N H] ) [plz_l] _ [;ﬂ [P;l] — [‘:‘] [p_“f ] = [p__xl ]

The orthogonal group in the plane operates as automorphisms of A. Applying them
to the above equation we find that

2]

—1
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for any prime p corresponding to a point of S'. This should be contrasted with the fact

b . .
that [u =1 whenever « is a unit.

It can be shown that the symbol above is universal, i.e. that SL,(A)/E,(A)={+1}
for n>g.

Example 4.5 (Stallings). — Let A=R[¢] be a polynomial ring in one variable .
Then A is euclidean, so SL,(A)=E,(A) for all n>2. Let q=(*—f)A; q consists of
polynomials vanishing at o and 1. Therefore, if [0, 1] denotes the unit interval, an
element of SL,(A, q) defines a function [o, 1]—SL,(R) sending o and 1 to the identity
matrix. It is easy to see that this induces, for n>3, a homomorphism

(%) SL,(A, ) [E,(A, q) - m(SL,(R)y ={&1}.

o-( 96 D6 O-(as k)

o
I

Let o(t) be the rotation by n¢/2. One has ¢(0)=7(0) and o(1)=7(1). Moreover
the paths ¢ and t are homotopic; to see this it suffices to verify that the paths o(¢)(e,)
and =(¢)(¢,) in R®’—{o} are homotopic, which is clear. It follows that ¢* and *
are homotopic loops in SL,(R). Since ¢* is evidently a generator of =;(SL,(R)) it
follows that t* is likewise. Consequently the map (%) above is surjective, and we obtain
a non trivial Mennicke symbol

For t=r, 'r(t)z( _(I)) is a 9o° rotation.

[1:W,—>{£1}.
If (a,b)eW, then (a, b) defines a function from [o, 1] to R’--{o} sending o and 1
to the point (1, 0)eR2% Viewed as a function from the circle to the punctured plane,
[Z] e{1} is just the parity of the degree of this function.

We close this section now with some calculations of Whitehead groups. For an
ideal g in a commutative ring A we shall write

SK,(A, q)= lim SL,(A, q)/E,(A, a),
and SK;A=S8K;(A, A).
It is clear that we have an exact sequence (cf. [1, Ch. III}),

(4.6) SK, (A, q) - SK,;A — SK,(A/q).

Moreover, it follows from [1, Corollary 5.2] that:
(4-7) If qcq’ are ideals such that A|q is semi-local then SK,(A, q) — SK, (A, q') is

surjective.

Let = be a finite abelian group, and let A=Z=. We are interested in determining
SK,Zn. Let A denote the integral closure of A in Qx. The ring A is a direct product
of rings A, indexed by the subgroups y of = for which =/y is cyclic. A, is generated

459
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over Z by the projection of =, which is, say, the m -th roots of unity. The kernel of this
projection is y, and we write k,=[y:1]; thus [n:1]=4km,.

Let ¢={acA|aAcA} be the conductor from A to A; it is the largest ideal
of Alying in'A. Since c is an ideal of A it is the direct sum of its components, ¢, in the
various factors A,. The ¢ s have been determined in [7, Prop. 8.6]:

(4‘ . 8) . cxzkx . plmx,l;lprime (p)l/(p -0

Here (p)*®=1 is the ideal whose (p—1)-st power is (p), and it is generated by 1—w
for any primitive p-th root of unity w. If p|p in A, then ord,((p)"® V)= p"md~",
It follows from Corollaries 4.2 and 4.3 that

SKI(A)(: Cx) = (‘Lra

the 7-th roots of unity, where r=r(c,) is 1if A, is not totally imaginary, i.e. if m, <o,
and otherwise we have, for a prime p,

. |ord,(c,) 1
(4-9) ord,(r) = min [or a(?) p_I] ooy
We use the notation of Corollary 4.3 here, and m, denotes the number of roots of unity
in A,. Thus m'xzmx if m, is even, and m;(= 2m,, otherwise.
Proposition 4.10. — For a prime p the p-primary part of SK,(A,, ¢,) is cyclic of order p,
where:
If p=2 and if m, is odd and >2 then

. Jroif 4][m:1]
A P

= {min(ordp(kx), ord,(m,)) if m,>2

Otherwise .
’ o if m,<o

Proof. — If m,<2 then A  is not totally imaginary so j=o. If m >2 then
Jj=ord,(r) as in (4.9).
Suppose p|m,. Then if p|p, we have ord,(m,)=ord,(m,), and,

ordy () = (™ sm) =(p— 1)t~

Further it follows from (4.8) that ord,(c,)=ord,(k,)+p**»"#~". Consequently

ordy(c,) 1 ordy(k,) 1
ordp(p) p—1 Ordp([)) p—1 p—1
—ord, (k) >o,
ordy(6) 1 o |
SO [ordp( ) F—T] o, oty =min(ord,(k,), ord,(m,)).
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If ptm there are no p-th roots of unity in A, so j=o. Thus the formulas are
verified except in the case m, is odd and >2 and p=2. In this case, if p|2, ord,(2)=1
and ord,(c,)=ord,(k,) so

ord, (£ I
J= [__EQ - 2____—1] o =(ord,(k,) — 1), 1)
1 if ord,(k,)>2
2{0 if ord,(£,)<e.

This completes the proof of Proposition 4. 10.
Corollary 4.11. — We have SK,(A,, ¢,)=uy.,, where:
r)=1 if m<2; ,
r(x)=2g.cd. (m, k) if 4|k, and m, is odd and >3;
r(x)=g.cd. (m,, k,) otherwise.
Since A/c¢ is a finite ring it follows from (4.7) that

SK,(A, ¢) - SK,A s surjective.
Moreover, it follows from [7, Lemma 10.5] that if a is an A-ideal contained in A then
(4.12) SK,(A, a) —=> SK,(A, a).

These two facts combine to show that SK,A is a quotient of

SK,(A, ¢)= ];(ISKl(AX, ¢,)-

Corollary 4.13. — SK, (Zw)=o0 if = ts an elementary 2-group.

For in this case all m.’s are <a2.

Proposition 4.14. — If the p-primary part of = is cyclic then SK,(Zx) has no
p-torsion.

Proof. — We argue by induction on n=ord,[n:1]. The case n=o0 is trivial,
so assume 7n>0. Let m, be the subgroup of = of order p, and write =n'=m/n,. Let
b=ker(A—A’), where A’'=Zn’. Then from (4.6) we have an exact sequence
SK,(A, b) - SK,(A) — SK,(A’), and, by induction, SK,(A’) has no p-torsion. We shall
finish the proof by showing that SK,(A, b) has no p-torsion.

Write A=A’xA"” where A’ is the integral closure of A’, and where A" is the
product of all A, for which y does not contain w,. If A" is the projection of A into A"
then ACA’xA’ and b is the kernel of the projection of A in the first factor. In parti-
cular, b is an (A’XxA’’)-ideal, and is identical with its projection into A”. It follows
therefore from [7, Lemma 10.5] that SK;(A, b)=SK,(A’XA",b), and the latter is
clearly equal to SK,(A”, b). ‘

Let a denote the projection of ¢ into A”. Then we can identify a with an ideal
of A", which has finite index in A", and which is contained in b. Now (4.7) implies
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that SK,(A”, a) - SK,(A”, b) is surjective, and from [7, Lemma 10.5] again, we
deduce that SK (A", a) ¥ SK,(A”, a). The latter is just the direct sum of all SK,(A,, ¢,)
for which y does not contain =,. Hence the Proposition will be proved if we show that
each of these has no p-torsion.

But if m ¢y then £,=[y : 1] is prime to p. Proposition 4.10 says the p-torsion
in SK(A,, ¢,) is cyclic of order p’, where j=min(ord,(k,), ord,(m,)), so j=o as
claimed.

Proposition 4.15( T.-Y. Lam). — Let ©=(x, y/x* =)’ =[x, y]=1) be a direct product
of two cyclic groups of order p. Then SK,Zn=o.

Proof. — We can assume p>2 thanks to Corollary 4.13. We shall write f, for

the projection Zrn—A,, and f,=f, , where y, is the subgroup generated by x. Let
p—1

CZiHO(xi——y), a=1—¢, and b=(1—yp)c. Then if y=*y, we have f ()=f(y) for
some 7, so f,(a)=1. Moreover, if A=1—f(y) then fi(a)=1—A" and f(§)=N*"1
This shows that 4 and ¢ belong to the conductor ¢.

Let [ ]. be the Mennicke symbol associated with ¢ in Zx orin A. It exists thanks
to Theorem 5.4 below, and (4. 12) implies that it is insensitive to the difference between Zn
and A. In the decomposition

SK,(&, ) =1ISK,(A,, ),

b . . . .
[a] has zero coordinate at each y=%y,, and at ¥, it has a coordinate which corresponds,
[

via Corollary 4.3, to the power residue symbol
wt A 1—N, A
— ) =—] =—=> A.
(), (2 () =
p p »

*1. (A.22)
The map SK,(A, ¢)—>SK,(A) is an epimorphism of modules over
G = Aut(rn) 2 GL,(Z/pZ),

- .. b
and G operates transitively on the non trivial characters y. Consequently [ ] gene-
c

rates SK,(A, ¢) as a G-module, and if we show that [Z] has trivial image in SK;A

the proposition will be proved. If [] is the Mennicke symbol for SK A, i.e. for the
unit ideal in A, then the image of [Z] is just [Z] Write d=1—y. Then b=dc
c

p—1
and a-—:I—il;IO(x*—_y):I—de, )

S HEHIMEE

because a=1modd and a=1 mod¢. Q.E.D.
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§ 5. The theorem of Mennicke.

Let A be a commutative ring and let g and g’ be ideals. The commutator formula
[+ te;;, I+ sey] =1+ tsey,, for i, j, and k distinct, shows that

E.(A, 0'q) C[E.(A, ), B (A, q)]
for n>3. For q'=A this yields
(5-1) E.(A, )=[E,(A), E,(A, q)] Jjor n=3.

The commutator formula also easily implies (see [1, Corollary 1.5]) that:

(5.2) If A is a finitely generated Z-algebra then E,(A) is a finitely generated group,
for n>3.

The subgroup generated by E, (A, q) together with the diagonal matrices in

GL,(A, q) will be denoted
GE,(A, q).

Lemma 5.3. — Let N denote the group of all matrices ( ; Z) in GLy(A, q), and let SN

b) b>(a, b) defines bijections N\GLy(A, q) >W,

denote those with u=1. The map oc:(f d

and SN\SL,(A, q)~W,.

Proof. — Since u=ad—bc is a unit it is clear that (a, b)eW,. Suppose
a' = a’ b, . Then M'a_1=(a, b,).( d —b)u”:(u O)u_leN. We conclude
¢ d ¢ d)\—¢c a * %

the proof by showing that every (a, 5)eW, is the first row of an aeSL,(A, q). Write
1 =ax-+by (x, yeA) and then set ¢=—0b’eq and d=x+bxy. Then

ad—bc=a(x+ bxy)+ >y =ax+ by(ax + by)=1.

Hence d=1mod q since a=1mod q, and so (j Z)eSLz(A, q).

Theorem 5.4 (Mennicke). — Let A be a commutative ring, and let q be an ideal of A.
Suppose, for some n>g, that we are given a homomorphism « :SL,(A, q)—>C such that
k(tot™ ') =x(c) whenever t€E,(A) and oeSL,(A,q). Then there is a unique map
[1:W,—C rendering

SLy(A, q) —> SL,(A, q)

15t row ¥

W, ——— C

commutative, and [ ] is a Mennicke symbol.
Remarks. — 1) When A is a Dedekind ring this establishes part 4) of Theorem 4. 1.
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2) The proof of Theorem 5.4 is developed directly from Mennicke’s arguments
in [16].

3) In view of the results of Chapter I this theorem is already sufficient to obtain
the portion of Corollary 4.3 applying to A of arithmetic type, but not totally imaginary.
In case A is the ring of algebraic integers in a real number field this application was
obtained independently by Mennicke and Newman in unpublished work. They follow
closely Mennicke’s original argument [16] for the case A=Z.

Proof. — Since n>9g it follows from the hypotheses of the theorem and (5.1) that
ker(K) ) [En(A)’ SLn(A> q)] 2 En(A9 q)'

Therefore, if «,: SL,(A, q) —C is the restriction of x to SL,(A, q), the existence of [ ]

satisfying MS 1 follows from the next lemma, which will be used again in Chapter III
for the symplectic group.

Lemma §5.5. — Let «,: SLy(A, q) >C be a homomorphism whose kernel contains Ey(A, q)

and [E,(A), SL,(A, q)]. Then x, factors, via SL,(A, q) o W,, through a unique map
[1:W,—C, and [] satisfies MS 1.

Proof. — The group SN in Lemma 5.3 clearly lies in E,(A, q), so [ ] exists, thanks

to Lemma 5. 3, and, moreover, [?] =1 because k, kills SN. If teq then ((I) i)eEz(A, q)

a b
so, for oc=(€ a,)eSL2(A, 2),

s W s (O H B R VA S R

1

If teA then (t (I))eEz(A), so

b _[(a b\ _ I 1 ab)(l 0))_(a+tb b)_[b]
o) =\ )T\t o) \e )\t ))TF . ) |lat+th)]
We have thus shown the existence of [ ] satisfying MS 1.
Proof of MS 2. — If (a, b,), (a, b,)eW, we have to show that [blaih]:[bl] [bz].

alla
By restricting k to SLg(A,q) we may as well assume that n=3. Choose

ai:(:z Z‘:)GSLZ(A, q), =1, 2, which we view, as usual, as elements of SL,(A, q).

T ]

—1 o
Setting slz(o 0 -——I)EE3(A), we have:
I o o

o A S

a o
otlsloc281_1= ¢ 0
o 1

dy, o —q ad, b, —ac,
)( o 1 o)=(cld2 d, —e6
—b, o a —b, © a

464




SOLUTION OF THE CONGRUENCE SUBGROUP PROBLEM 103

I 0 6 1 b o
Left multiplication by s,=[0 1 0) gives (cla’2 d; —6102)-

0 0 1 —b, O a

I 0 o\ 1 b 0
Left multiplication by rssz(——claf2 I 0) gives (o d’ —clcz>,

b, 0o 1 o bb, a
where d'=d,—b,c,d,.

I —b, o I O 0
Right multiplication by s4=(0 I o) gives oc’=(o d —-clcz).

o o0 1 o byb, a
0 0 I
With s5=( 0 1 o)eEs(A) we have
—1 0 O

a bby, o
e5ac’s;1=<-—clc2 d 0). Now since ¢,eE;(A) for i=1,5 and ¢eE (A, q) for
o o 1

i=2, 3,4, we have

[blabz] — k(o er ) = (o) = (es ety (€1 ey V)eg) =K () (0t5) [’Z] [’;2] Q.ED

§ 6. Kubota’s Theorem.

Theorem 6.1 (Kubota, cf. [14]). — Let A be a Dedeking ring, let q be an ideal of A,
and let [ ]:W,—C be a Mennicke symbol. Let x be the composite map,
St row
GLy(A, q) —3 W, -- G,
so that K(: Z,):[Z] Then x is a homomorphism, and its kernel contains GE,(A, q) and

[GE,(A), GL,y(A, q)]. If q' is a non zero ideal contained in q, then x and «|SLy(A, q') have
the same image. Hence, if [ ]| is not trivial, then ker(x) contains no congruence subgroup
SLy(A, q), 9" *o.

Kubota proved this in the following case: A is of arithmetic type and
totally imaginary, A contains C=uy,,, q is highly divisible by m, and [ ]=(—),,
which, according to Proposition 3.1, is a Mennicke symbol under these circums-
tances. The proof we give for the above generalization is inspired directly by
Kubota’s.

Proof. — We shall give the proof in several steps. a=(: Z\) always denotes an

element of GL,(A, q). We assume q=+0; otherwise the theorem is trivial. Lemma 2.11
will be used without explicit reference.

-1
1) k()= [2,] = [Z] . In particular, x(Ta)=x(x)"", where a denotes the transpose of «.
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For since ad— bc is a unit, ad is congruent to a unit mod b, and b¢ is congruent
to a unit mod 4, so using Lemma 2.7 a),

=[] =Ll d) =[] =[d) [d]-L2)
2) If €eGE,(A), then x(eae™)=x().

It suffices to check this for a set of generators of GE,(A), so we can take ¢ either ele-

. (1 o 1 [(a—th b n_ | & 1_[¢
mentary or diagonal. If s_(t 1) then cae _( . *), s0 K(eae™") = a—th 1" lal’

_(r ¢ S (m by . o[ e T _Tel
If s—(o 1) then eae —(c a’——tc)’ so, using (1), k(cae )—[d—tc]_[d]—l((m)'

-1
If s=(u 0) then socs“1=( @ b) SO
o v e d

s I ) o MR

where ¢=1—a, and we have used Lemma 2.2.

3) If €eGE,(A, q) then x(ae)=rx(a).

If ¢ is elementary or diagonal this follows from simple direct calculations
very similar to those just above. Clearly

H={ceGL,(A, q)|x(ae)=x(x) for all acGL,(A, q)}

is a group. Therefore, since H contains elementary and diagonal matrices, it will
contain GE,(A, q) provided it is normalized by GE,(A). So suppose teGE,(A)
and e€H. Then

k(ater ) =x(1 'ate) (by 2))
=x(t" ar) (eeH)
=K() (by 2)).

4) Suppose o :(? Z,) and a’:(f, Z,,) in GL,(A, q) are such that d=1=a" mod ¢

Jor some qeq, and such that dA+a'A=A. Then

k(o o) =x(a')k(et).

We shall use the following remark: If xeA and yeq are prime to &’ then

[x_%’]=|ix?] [}’,], and similarly ford. For [q,]=1, SO [x):]:[x),)][ql]:[@y’q]:[x?][y’].
a alla a a alla a alla

Now a,az(a a+bc a'b+b d)’ %

* *
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, [a’'b+b'd
x@a)=| &0yt
= (a‘flab—;—l_bb"c()ld] [a bt d] (d is prime to a’)
T ab}b'd a'b]? .
o au—l—cab—i—bd][a’] (u=ad—bc)
-1
_[@ b:—ub d [ a’] [Z’] (remark above)
"b/d r 11
RS (by 1))
7’ Mr ’ —1
= bud] [2] f’l] [a dq] k(o) (remark above)
=1x(a') k(o) (Lemma 2.10; % is a unit).

5) K is a homomorphism.

Given «, a'eGLy(A, q) we must show that k(«'a)=1x(a")k(a). If a=oa, with
a0, GE,(A, q) then, using 3), we have k(a'a)=xk(a'a;), and k(a)=x(x;), so it suffices
to deal with ;. In this way we can first arrange that aeSLy(A, q).

Write a'=1+4¢. If ¢g=o0 then our assertion follows from 4). If g+o0 then A/¢A
is semi-local, so it follows from [1, Corollary 5.2] that SL,(A, q)=SL,(A, ¢gA).E,(A, q).

Hence we can find an ¢€E,(A,q) such that “513(2 Zi)eSL2(A, gA). Since
dA+c A=A=dA+3A we can find a d,=d, + 2 (teA) which is prime to a’ (see
remark before (2.2)). Setting 82——-(:) G;t) €eE,(A, ¢gA), we have now achieved the
hypotheses of 4) for ae e, and a’. Applying 3) and 4) therefore, we have

k(o' o) = k(o gy 5y) = k(o' )k (ate; ) = k(o) ic(x).

6) ker kD GE,(A, q) and [GE,(A), GLy(A, q)].

This follows respectively from g) and 2).

The last assertion of Kubota’s Theorem follows from Lemma 2.3, so its proof is
now complete.

§ 7. Review of the stable structure of GL,(A).

Let A be a commutative ring, and let q be an ideal in A. We call an element
(a, ..., a,)eA™ g-unimodular if (e, a,, ..., a,)=(1,0, ...,0)mod q, and if
ZAa,~=A.
When g=A we just say unimodular. When m=2 the g-unimodular elements are

just the elements of W;. Thus, it follows immediately from Lemma 5.3, that:
(7.1) SLy(A, q) operates transitively on the q-unimodular elements in AZ.

467
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Throughout the balance of this chapter we shall deal extensively with the following
condition, some of whose implications we shall record in this section.

(7.2), If m=>n, if q is an ideal in A, and if (ay, ..., a,) is q-unimodular in A", then
there exist a,= a; -+ ta,,, with teq, 1 <i<m, suchthat(a, ..., a,_,) is q-unimodular in A™~*.

Clearly this condition is reasonable only for n>2. If we require (7.2), only for
the unit ideal, q=A, then (7.2), becomes the condition that  n—1 defines a stable
range for GL(A) ” in the sense of [1, § 4].

Lemma 7.3. — If we require (77.2), only for q=A then it follows for all ideals q.

Proof. — If (a,, ...,a,) is g-unimodular then clearly (a, ..., a,_,, a’) is still
unimodular. By hypothesis, therefore, we can find a=gq;+ >, 1 <i<m, such that
(@, ..., a,_,) isunimodular. Itis automatically g-unimodular, so we solve our problem
with the s;=ta,€eq, 1 <i<m.

By virtue of this lemma it now follows from [1, Theorem 11.1] that:

Theorem 7.4. — If the maximal ideal space of A is a noetherian space of dimension <d
(e.g. if A is a noetherian ring of Krull dimension <d) then A satisfies (7.2), for all n>d+ 2.

The force of (7.2), derives largely from the following theorem [1, Theorem 4.2],
which we will strengthen in § 11.

Theorem 7.5. — Assume (7.2),. For all ideals g, and for all m>n:

a) E, (A, q) operates transitively on each congruence class modulo q of unimodular elements
in A™.

b) GL,(A, q)=GL,_,(A, q).E,(A, q).

c) E,(A,q) is a normal subgroup of GL, (A).

d) [GE,(A), GL, (A, q)]cE, (A, q). In case m>3 we have

E,(A, q) =[E.(A), E, (A, q)],
50 the above inclusion becomes equality. If moreover, m>2(n—1), then
{GLm(A)3 GLm(A3 Cl)] = Em(A’ Q)'

Suppose m>n and m>3:

e) If HcGL,,(A) is a subgroup normalized by E, (A) then there is a unique ideal q
such that E, (A, q)cH and such that H maps into the center of GL,,(A/q).

This differs in formulation from [1, Theorem 4.2] only in part d). The proof
of [1, Theorem 4.2] proves d) as stated provided we replace GE,,(A) above by E, (A).
The fact that we can put GE,,(A) there follows immediately from part 5) plus the fact
that GE,,(A) is generated by E, (A) and the matrices diag(1, ..., 1, %), ¥ a unit, because
the latter commute with GL,_ (A, q).

§ 8. The conmstruction of x, ;.

To prove part ¢) of Theorem 4.1 we want to extend the homomorphism
K, : GL,(A, q) >C given by Kubota’s Theorem, to a homomorphism «, : GL, (A, q) —C.
Once this is accomplished part @) of Theorem 4.1 will follow easily from the results
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quoted in § 7. We shall extend k, in two steps. First we shall show that it extends to
a homomorphism x4 : GLy(A, q) >C which satisfies several conditions. Then we shall
show, in a rather general setting, that a homomorphism «, : GL,(A, q) >C, satisfying
such conditions, extends to a homomorphism «, ., : GL, (A, q)>GC which satisfies
analogous conditions. Before stating our results we must enumerate the conditions in
question.

Two of the conditions will be imposed on A and n. The first is condition (7.2),
of the last section, and the second is:

(8.1), For every ideal q, GL,(A, q) operates transitively on the q-unimodular elements
of A"

By virtue of Theorem 7.5 a) we have (7.2),=(8.1), for m>n, but we shall
require (7.2), together with (8.1),_,.

Next we shall consider conditions on a homomorphism «x, : GL,(A, q)—>C. Itis
assumed throughout that n>2.

(8.2), x,(e)=1 if € lies in [GE,(A), GL, (A, q)] or in E, (A, q).

If n>g then (5.1) permits us to delete E, (A, q) in this condition. Conversely,
assuming (7.2),, Theorem 7.5 d) permits us to delete [GE, (A), GE, (A, q)].

(8.3), If x,(6)=1 then x,(*o)=1.

Here "6 denotes the transpose of o.

To state the last condition we make a definition. Let «, «’'eGL, (A, q) and let
teq. We shall say that o’ is (q, ¢)-related to « if o' can be written in the form

’ ’ ’ ’ ’
1+tay, aj, ... a, I-+tay, tay, ... tay,
’ ’
o= m:zi oz -+ G and N s Ay
o : : ; : :
Qpy Apa o Gy a1 Apy oo Gy,

with a{,€q. Note that this is not a symmetric relation.

Our last condition is:

(8.4), If teq and if «' is (q, ¢t)-related to « in GL, (A, q) then «x,(«')=x, ().

Proposition 8.5. — Suppose we have the assumptions of Kubota’s theorem (Theorem 6.1).
Then A satisfies (7.2), for n>g and (8.1), for n>2. Moreover the homomorphism
Ky : GLy(A, q) >C  constructed in Kubota’s theorem extends uniquely to a homomorphism
Ky : GLy(A, q) >C satisfying (8.2),, and x, also satisfies (8.3); and (8.4),.

Proposition 8.6. — Let A be a commutative ring satisfying (7.2), and (8.1),_,, and
let q be an ideal of A. Then given a homomorphism «x, : GL, (A, q) >C satisfying (8.2),,
(8.3),, and (8.4),, it has a unique extension «, .,:GL, (A, q)—C satisfying (8.2), 4,
and x, ., also satisfies (8.3), ., and (8.4), 4.

Proposition 8.6 does not apply to x, in Kubota’s Theorem because A need not
satisfy (7.2),. However it does apply to the k, supplied by Proposition 8.5, and to
all the x, thereafter. Hence the proof of part ¢) of Theorem 4.1 will be achieved with
the proof of these two propositions. This proof occupies §§ 8-10. The two propositions
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will be proved simultaneously, except for the very last stage of the argument. This is
made possible because of:

Lemma 8.7. — Let A be a Dedekind ring.

a) A satisfies (7.2), for n>3 and (8.1), for n>2.

b) The homomorphism «x, constructed in Kubota’s theorem satisfies (8.2),, (8.3),,
and (8.4),.

Proof. — a) A Dedekind ring is a noetherian ring of Krull dimension <1, so
Theorem 7.4 implies A satisfies (7.2), for n>3, and hence, by Theorem 7.5 a), it
satisfies (8.1), for n>3. Condition (8.1), follows from (7.1).

b) The statement of Kubota’s Theorem contains (8.2),, and step (1) of its proof

1t B ) is (q, t)-related

implies (8.3),. For (8.4),, suppose teq and suppose a’:( p d

to az(‘j;f" Z) in GL,(A, q). Then

Ky(a') = [I _tﬁlm,] = [I -}fta'] [1 —{[i’ta’] = [I —ib—’ta’] =kKy(a). Q.E.D.

Henceforth until the end of § 10 A may be any commutative ring, and q any ideal
in A. The following lemma will help us verify (8.4),,, for x, ;.

Lemma 8.8. — Suppose teq and suppose o’ and B’ are (q, t)-related to o, resp. B. Then

a) o' B’ is (q, t)-related to ap.

b) a=ta’e[E,  (A), GL,  ,(A, q)]. In particular, deta’=det a.

Proof. — a) Write oc=( 11 “12) and o :(“11 toc12) in block form, with

oty Oy Koy Kag

Qyg - - - Gy
oy =14 lay,, ap,=| : . ], etc. Similarly write
Qs -+« Gy
_(Bu 512) d /=(F311 tﬁlz)
o= o) wmdE=(5r 52)
by B %1 Bio+ 15 Bos
Then :( oy Byg 4 toryp Boy 11 P12 T %12 )
¢ “P (01 Br1 + 0oy Bog) g Byt otop Boo
Y toty5 oy E(otyy Bro %15 Boo)
d z(“u@n"}’ 12 P2t 11 P12 12 .
an P 01 By + o By botg; Bro + %aa Bas

I .
11 .
b) The first column of « is ° +ty, where y:( ) Set Ez(é ?), and

’

a
o I 0 nl
e:( o I,_, o)eE" +1(A). A direct calculation shows that
—1I o ¢
_ - o o
oc5=s—1ocs=oc’=< ),
p I
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where p=(ay,, ..., ay,). Hence a 'a'=[a, c]e[E,  (A), GL,,,(A, q)]. Evidently if
we write a=ag, and a’'=a’s, then ¢, g,€E, (A, g), and since n412>3, (5.1) implies
E, 1(A q)c[E, ;(A), GL,, (A, q)]. Therefore

« ol =T T e [E, 4 (A), GL, 4 (A, q)].
The construction of «,,, will be based upon the next lemma. We shall say an

element ¢ of GL, , (A) is of type L if its last row is (o, ..., 0, 1), and of type R if its first
I

column is | O |. One of type L thus looks like

(2 )

with «eGL,(A), y an n-column; etc. Similarly a type R has the form

o I P
(5 4)
with BeGL,(A), p an n-row, etc.
Lemma 8.9. — Assume (7.2),,, and (8.1),.
a) Any 6eGL, (A, q) can be factored in GL, (A, q) as

6 =ach

where o« is of type L, e=1I+te, ,, for some teq, and B is of type R.  We shall call such
a representation a “ standard form > for o.

b) Suppose teq and suppose that o' is (q,t)-related to o in GL, (A, q). Then
s 'c’eE, (A, q).

Remark. — The ¢ in part a) is unique because ¢ is the coefficient a, , ;; of o.
ay
Proof. — a) Say ¢ has first column 0'12(5 ) Using (7.2),,,; we can find
@y 41
I a.l a;_
Y =( 0" ?)eEn +1(A, q) such that yo,= 7 with  o;=| : g-unimodular.
n al
an+1 I "

Then (8.1), gives us an «,eGL, (A, q) such that a,o;=|  |. Set El=(z1 ?) and

1) o

I
0
1= — —1f - o - = = I P .
e=I+4a, ,6,,4,- Then ¢ "o, yo;=¢7"| ! =l .) s0 pP=c""u;yo= o B is of
o :
0
Q41

_ -1
type R. Finally, oc=wef, where a=7vy 1o ! (ocl r) is of type L and in
GL1L+1(A> q)'
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b) We are given a o' that is (g, t)-related to 6. Thus, in the argument above,
o, is actually (¢g)-unimodular, so we can choose ¥ and «, in GL, (A, ¢q). The result
will be a standard form, o¢=waef, in which « and e=I+a, ¢,,.,, have

) and

’

oy

(tq)-unimodular first columns. This permits us to define E’:(O .

¢’=I+a, se,,,, which are (q,¢)-related to «, resp. . . Similarly, E:__:((I) t;) is

(q, t)-related to &, so Lemma 8.8 a) implies that we’s’ is (g, t)-related to o= xep.

Our hypothesis (7.2),,,, and Theorem 7.5, imply that E, (A, q) is a normal
subgroup of GL,, (A) containing [GE,  ,(A), GL, (A, q)]. It is clear that &' =e¢
and B’'=8 modulo E,. (A, q), and it follows from Lemma 8.8 5) that a'=a'=«
modulo E, . (A, q). Therefore %'l =wef =0 modulo E, (A q).

Now o and @’e’’ are both (g, t)-related to o, so they differ at most in the first row.
(They may differ if ¢ is a zero divisor.) Hence &'S'E'(c')-l differs from 7, ., at most
in the first row. Since, by Lemma 8.8 5), deto’=det c:det(&'a'a’), it follows that
a's'8'(c’) ek, , (A, q), so o'=¢ modulo E, (A, q).

Corollary 8.10 (Uniqueness). — Assume (7.2),,, and (8.1)

Kﬂ : GL”(A3 q) %C

and let

n’

be a homomorphism satisfying (8.3),. Then there is at most one homomorphism
L GLn+1(A> Q) _>C

extending x,, and satisfying (8.2), ... Moreover x, . must also satisfy (8.3), ., and (8.4), .
Proof. — (7.2), ., and Theorem 7.5 &) imply that

GLn+1(A> q) = GLn(A’ C‘) * En+1(A: q)'

The map «, ., agrees with k, on GL,(A, q), and, by (8.2), ., annihilates E, (A, q);
hence it is unique. To verify (8.3),,,, i.e. that «,,,(*e)=x,,,(c), it is enough to
do so for generators of GL, (A, q). On GL,(A, q) this follows from (8.3),, and if
o€E, . (A, q) then likewise for 's. Finally, (8.4), . follows immediately from (8.2),,,
and Lemma 8.9 5), which our hypotheses permit us to invoke.

Henceforth we shall assume we are given A, q, and «, : GL,(A, q) >C satisfying
(7-2), 41, (8.1),,(8.2),,(8.3),,and (8.4),. (Recall that (7.2),,,and (8.1), are both
consequences of (7.2),.) We seek to construct a homomorphism «, ., : GL, (A, q)—C
which extends «, and satisfies (8.2), ;. Once this is done it will follow from
Corollary 8.10 that we have proved both Proposition 8.5 and 8.6.

Lemma 8.11 (Defimtion of x,,,). — Suppose c€GL, (A, q) has a standard form

c=uacP with
"o{:( ’) and B:(I P).
o I o P
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T}ZETI Kn+1(6>:Kn(a>Kn(B)
depends only on o, and «x, . ,|GL,(A, q)=x,.
Progf. — Suppose o,g,3, =06 =a,c,B3, are two standard forms. We claim that
K, (0) K, (By) = K (), (Bo), e that  x,(x)=%x,(B), where a=o05'0,=(a;) and

B=B.B '=(by). Setting

Ez_{l@:(z ?) and B:—_@_{‘:(I Z) we have

0]
4
agy=¢g,B. Say e =I+1te, ;, s=I+5,,,,, Y= , and po=(r, ..., 7,).
6‘"
ayy +ot Ay ..ay, 6
. (“JT_Y(t: 0, ..., 0) Y)_ . . . .
= =
t o . . . o0 1 Ay t+C,0 Ao ... a,, €,
t (0] O 1
I 0
0 I 41 n

Therefore s=¢ and ¢, =r7,,

we have
oL =
and
Qs
B an2
—Ir
o)
1 O-
With == 1’
o)
nfn!

\s s

(o] —

0 + : .0 (0] . .
g © s byt ... b, + s,

and if we set @, =—¢ (1<i<n) and aj;=r1; (1<7<n)

’ ’ ’
I—c¢yd 1y Th_1 I+tay, a, ... ay,
’
—Cyl Ay Qo lay, Qgy - - - Ay,
: |
—C, b Gy Qpn ta,y Qpsy - A
@, Co Ao Qo —asy
= ’
@y Cn Ay Apn —ay
tr,_, I1—tr, —ta}, -ta}, 14ty
o —1I
(0]
eGE, (A) we have
0o 1 0
’ ’ ’
1+tayy  lay, tayy,
’
a Q. . a L
2 2 2n ) which is (q, ¢)-related to a.
: :
anl an2 cet arm

Therefore «,(B)=x, (npr"") by (8.2),, and «,(nBrn"')=x,(a) by (8.4),.

Finally, the fact

that «, ; extends x, is clear.
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We close this section with a corollary of the definition of k, ;.
Lemma 8.12. — If «, 0, B8,eGL,. (A, q) with o, of type L and B, of type R, then

Kp 41 (510'51) =Ky 41 (%) Ky 41 (G)Kn+1(E1)'

Proof. — If c=ueP in standard form then, with an obvious choice of notation,
—— (o:loc *)
oy o=
0 1

is of type L, and BE:(; F;E'} )
1
is of type R. Hence w68, =(x,«)c(BB,) is a standard form for w6, so

Ky +1 (El GEI) =K, (ala)Kn (ﬁﬁl) =K, (“l)Kn (a)Kn (B)Kn(pl) = Kn+ 1 (al)Kn+1 (G)Kn+ 1 (El)‘

§ 9. The normalizer of «, ;.

Given A, g, and a homomorphism «,:GL, (A, q)—C, satisfying (7.2),,1,
(8.1),, (8.2),, (8.3), and (8.4),, we have constructed (Lemma 8.11) a map,
K41 : GL, (A, q)—>C, extending x,. We seek to show, under the hypotheses of
either Proposition 8.5 or Proposition 8.6, that the map x,,; is a homomorphism
satisfying (8.2),,,. The remarks after Corollary 8.10 show that this will suffice to
prove Propositions 8.5 and 8.6.

Write

H={ceGL, (A, q)|%,1(06") =K, 11(0)K, 41 (c") for all o’eGL, (A, q)}
and N={reGL, ,(A) |k, ,(tov™!)=x, () for all 6eGL, (A, q)}.

The condition that «, ,; be a homomorphism is that H=GL, (A, q). Since n+1>3,
condition (8.2),,, just means that GE,  ,(A)cN.
Lemma 9.1. — a) H is a group, and it contains all matrices of type L in GL, ., (A, q).
b) N is a group, and it normalizes H.
Proof. — a) If ocH then

I=Kn+1(°-°-—1):Kn+l(G)Kn+1(0—m1) S0 Kn+1(6_1):Kn+1(G)_1

Hence, if ¢'eGL, (A, q), then x, ,(c")=%,, (607 c¢")=x, ,(0)k, (67 a"), so
Kn11(67'0") =%, 1 1(6) 'Kk, 11(6") =K, 4 1(67 )k, +,(c"); i.e. 6 'eH. Suppose s,€H also.
Then  «,4(0,06") =X, ;1(01)K, +.1(06") =K, 1 1(61)K, +1(0)K, 1+ 1(6") =K, 4 1(610)K, 41(c"), sO
o;6eH. This shows that H is a group. Lemma 8.12 implies that H contains all
ceGL, ., (A, q) of type L.

It is clear that N is a group.

If =eN, ocH, and ¢'eGL,_ (A, q), then

Ky +1((77107)0") =K, 41 (070" T ) =K, 11 (0)K, 4y (76777

=K, 11(0)%, 41(6") =%, 14 (T_IGT)Kn-Q-l (6");
hence <t loteH.
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Lemma 9.2. — A subgroup KcGL, (A, q) which contains all matrices of type L,
and which is normalized by E, (A), s all of GL, (A, q).

Proof. — The matrices of type L contain GL, (A, q) and, therefore, all matrices
I+-te,, (teq). The smallest group containing the latter and normalized by E, ,,(A)
is E, (A, q). Therefore K contains GL, (A, q).E, (A, q), whichis all of GL, (A, q)
thanks to Theorem 7.5 &) and our hypothesis (7.2),,,; above.

Corollary 9.3. — If GE, (A)CN then x, ., is a homomorphism satisfying (8.2), . .

This follows immediately from Lemmas 9.1, 9.2, and the remarks preceding
Lemma g9.1. The rest of our arguments will be concerned with showing that
GE, ., (A)cN.

Lemma 9.4. — N contains all matrices of the form

u * %
T={0 v *
O 0 v

where u and v are umits and veGE, _ (A).
Proof. — These matrices form a group, of which those of the types

132

o o
v o], and =141
0 1

© O ~

v =diag(u;, ..., 4, ), 12:(

where the #; are units, veGE, _,(A), teq, and (i,j)=(1,2) or (n,n-+1), form a set
of generators. It therefore suffices to show that, for v one of these types, and for
GEGL”+1(A, Q)a that Kn+1(TGT-l):Kn+1(G)'
If 6=aeB in standard form, then, for t=1, or 1,, 1ot '= (tar ™ !)(rer™!) (xB7 ")
8.2

is still in standard form, and it follows easily from hypothesis (8.2), that

Kn+1('r°""'“l)=‘<n+1(°')-

Suppose next, say, that t=17-te,, tcA. Then o’ 2151-“1:(0(; YI ) is still of type L,
with «' =tat”'. Moreover B’ =1fr"! =(:) %) is still of type R. Finally, if
e=I+se, ., , then rsr“=1+sen+1’1—sten+hz:s(]—stenﬂ,g):sgl. Here §1=(; o)

By
is of type R with B,eE, (A, q). Therefore tor™'=a'c(f,B’) is in standard form,
50 K, (v077 ) =x, ("), (B, B) =K, (2)x, (B)K,(B) =X, 4 ,(c), by virtue of (8.2),.

In case t=I+te,,,, the argument is similar, except that this time we have
et '=1u,e, where a, is a factor of type L that can be absorbed with tat™'.

At this point we shall use condition (8.3),, for the first time. This says that ker(x,)
is invariant under transposition. Consequently the map oi>%6 on GL, (A, q) induces
an antiautomorphism, x"x, on im(x,)cC. It is defined by the formuia

%, (6)=x, (").
475
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o o 1
Let cp:(o 1, _, O)EGEnH(A). Note that ¢=¢ '="¢. For 6eGL,  ,(A)
write I o o
o

al

="(pop™ ) =¢('o)9

It is easy to see that ¢~ isan antiautomorphism of GL, , ;(A), preserving GL, . (A, q),
and that &=o.

Suppose ?i:(z \I{ ) is of type L. Then a direct calculation shows that
0 1...0
o

E:(I ;{1) is of type R. Here o«;=man~!, where n=|: ~. : |eGE,(A).
o T, 0 S

I 0...0

— ~ T
Similarly, if 8 :((I) ‘;) if of type R then £ =( f‘ il) is of type L, where B;=n="'8nx.

Finally, if e=I+te, , , then
Suppose ¢eGL, (A, q) has a standard form o=uaef. The discussion above

=Ec.

shows that = Be« is a standard form fors, so «, () =x,(*8;)%, ("), in the notation
above. Thus

K +1(0) = i, (B1) T (o)
=", (man™ ), (=7 B7))
="(kp(a),(B))
="%, +1(0).
Now suppose that teN; we claim that TeN also. For
K, +1(767 ) =%, 41((7 7))
=", 1 1(77Vo7)
=TKn+1(,EJ)
=Kn+1<c)
We have thus proved:
Lemma 9.5. — If teN then TeN.
Lemma 9.6. — A subgroup of GL, , (A) containing all the matrices in Lemma 9.4,
invariant under t\>=<, and containing

contains GE,, _,(A).

Proof. — GE, | ,(A) is generated by diagonal matrices and by elementary matrices.
Lemma g.4 gives us all diagonal matrices and all elementary matrices I-4-fe; except
those with i1=n+41 or j=1.

But w(/+te, , ) '=I+te, ,,, and [I+te, ., ,, [+e,]=1+te, ,; for
J#*n,n41. Hence we have all I+te; with j+1. Next note that (I+te, 4 )~ =141
for j+1,n+41, sowelackonly /4-te, ,,. Weobtain the latteras [I+te, ;,, +e, ]
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§ 10. Proof that ncN.

We want to show that GE,,,(A)cN, and Lemmas g.4, 9.5 and 9.6 make it
sufficient to show that weN, where

This amounts to showing that
(10.1) Ky 4 1(mom ™) =K, 44(0)

for 6eGL, (A, q).
Lemma 10.2. — a) The matrices o for which (10.1) holds are stable under right multi-
plication by matrices B, of type R, and under left multiplication by matrices

— (o1
(10.3) ocl_—(o 12).

b) 1t suffices to prove (10.1) for o of the form o= ae, where e=1-te, ,,, and where

o =(:’)C T) is of type L. If we further assume (7.2), and (8.1),_, then we can even restrict o
to have the form

Iy - Qyp

(0] ay, oy
(10.4) =l :

o] Ay 19 +++ Qy_1n

n1  Qys [

Proof. — a) If B is of type R then so is =B,=!, clearly, and (8.2), implies
K, .1 (7B ) =x,,(B;). Similarly, if «, is as in (10.3) then ma,n~! is of the same
type, and x, . (ma;n" 1) =x, (o), clearly. Nowif «,  (mor™')=x, (o) then, using
Lemma 8.12,

Ky 4 1('"&15517"'—1) =K, 41(moy 7" Nk, +1(7‘7°'7'5—1)Kn +1(TCBITE_1)

=Ky, +1(%1) K, 4 1(0)K, 4 1(31) =%, +1(% 061)-

b) Using a), in order to verify (10.1) for a given o, we are free to first modify o
on the right by factors of type R, and on the left by factors of type (10.3). The former
permits us to render o of the form ¢ =ue, asindicated in thelemma. Ifwe assume (7.2),
and (8.1), _, then it follows from Lemma 8.9 a) that we can write «=ua,¢,f8;, astandard

’

form in GL,(A, q). Since a,:(z' T‘) it follows that Elz((o;‘ (1)) is a matrix of

type (10.3). Replacing ¢ by «; 'o, therefore, which we can do thanks to part ¢), we can
assume above that a«=¢,B,, a standard form in GL,(A, q). This implies that « has
the form (10.4) above. Q.E.D.
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Proof of Proposition 8.6 (concluded):

Since (7.2), and (8.1), _, are part of the hypotheses of Proposition 8.6, we can now
finish the proof of that proposition by verifying (10.1) for 6 =ac where e=I+1t, ., 4,

teq, and where E:(Z ;{) with « as in (10.4).
Note first that if ¢, =/I—a,,¢,,€E (A, q) then eloc=((l) :,), where

A

Gy _15 - - + Gu_y,
Qpo—0p1813 - - -

App—0p101y
Hence, if x,_,=x,|GL,_,(A, q) then

Kn+1(c) = Kn(m) = Kn—l(a')a

clearly. Thus we must show that «,_,(mon™!)=x,_,(a).

¢y
Writing y=(: | we have
Cn
/I+t61 Qs Q1n ¢ \
te (2T Ay, Co ‘
_ (a—}-y(t, 0,...,0) v) : : |
6c=o0c= = :
¢ o . . o I tcn—l an—l,’z n—1,n n—l‘
anl + tCn a’nl ann Cn /
t o 1/
Writing t=mnon~' we have
T+l @y o o 8y €y @y
i, Qgy « + v Ay g €y Qo
T=
tc, 4 Ap—1,0 -+ Op_1n—1 Cn—1 Qn_1n
t o. . . O I
anl+tcn an2 L an,n—l cn ann

We now proceed to put 7 in standard form, so that we can evaluate k, , (7).
n—1

Set Elz(zl (1))’ where o« =1—(3 ¢e,). Then
i=1

I Qg o o al,n—l o ay,

0 Aoy « « & az,n—1 0 a,,
Esz N . . . .

Y Ay _q0 v+ Cy_1n—1 O Gy _q,

¢ o 1 0

(%1 + tcn dn‘l R an, n—1 Cn Gun
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_ - % O
Set ay=me" ' 1=(02 ), where oy =/I—te,;, and set ¢ =1I-+se, ,,, where
s=a,, +1t,. Then
= == I
B=c'apuyt= e
o B
is of type R, where
Qyp - -« Gy , 0 @y,
b= —tay, . . . —lay, 1 —lay,
Apo—38Ays - . . an,n—l—‘yal n—1 On App—SGyy,

Therefore ©=(aya;)"'e,8 is a standard form, so x, () =x, (%) ")k, (B)=x,(B),
since clearly «,, 0,eE,(A, q). - ’
In GL,(A,q) set 8=I+(X ta;, €, 4 ;) +ta,6,_1,. Then since
j=1

Gpj— 5;; + taijcn =a,;— (an1 + tcn)a,-j + ta,;jo" =Gy 0,18,

we have
/aZ‘l . . . a2,n——1 0 a!n
[ e . . .
BS:i Ay —1,2 Ay 1, n—1 o a, 4,
| o o I O
\anz_am“m s an. nwl—anlai,n—l Cp  Qup—0y10y,

Now (3 is conjugate, by a permutation matrix, to

Therefore, since 3€E,(A, q), it follows from (8.2), that
K,(B) =x,(B8) =1x,(B") =%, _s(«),
and so «x,,(7)=x,(B)=x,_,(«'), as was to be shown. This concludes the proof of
Proposition 8.6.
Proof of Proposition 8.5 (concluded):
Now it remains to prove (10.1) in the setting of Proposition 8.5. Thus n=2
and %, is given by a Mennicke symbol, KZ(Z Z’):[Z] Again it is enough, by

Lemma 10.2 b), to treat ¢ of the form o=Tue.

Writing E:(z T) with oc=(a” a12) and y:(zl), we can modify ¢ on the

Qg1 a9/ 2
left by a factor of type (10.3) to arrange that a;;#o0. (This is automatic if gq#A.)
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' we have

With t=non™
aytie, ¢ apy
T=|t 1 O

G+, € dyy
— @ O . I —c¢
Set cxlz( ! ) with alz( 1), as above, so that
0 1 0 I
B a1 0 a4y
aT=|1? I O
Ay 1oy G Gy
Since a,,%0, Afa;A is semi-local, so we can find an seq such that ¢+ s(ay, + tc,)

is prime to a;; (see remark above Lemma 2.2). We can further arrange that
t=1+sc,+0, and write ¢4 s(ay; + ;) =sa,, +tc. Then with 3=1+se,; we have
B ayy 0 4y,
oy t=|say,+1i ¢ Sayl-
Gy 1o, € gy

Since (a,,, sa,, +tc) is gq-unimodular we can use (7.1) to find an

o=(l e)esiya, g

Wy Wy

such that

a, 0 I X
1I0. ® =
(r0-5) (5421+t0 C) (0 J

. — (o o

for some x, y. Setting m:(o I) we have

I X Wiy SWyipdyy

wdoyt=|o0 D Woy gt SWysls, |-
Ayt Ay

Therefore if e =1+ uey,, u=a, +tc,, then

E=a;1aa?.zlf=((‘) ;)

B"_('y Way Gy + SWsy oy )

is of type R, where =
Co—UX  Qoy—U(Wy1 8,5 + 510y 0y)

Finally ©=(08%) ', is a standard form for =, because
o [O) °
— [O)
oda, = ! $
o o I

is of type L. Since «,=I—ce;,cEy(A, q) we have

Ky () = o (0) )y (B)
— ()~ (B
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To evaluate this we solve for » from (10.5):

(wuau + w, 5(say, + tc) w126)_(1 x)

Woy @y 1 + Wyy(Say; +f6)  Wyyc oy

Since det w =1, (10.5) shows that y=a,,¢, and hence a,;c=uw,,c. But ¢+o0 by our
choice of s above, so a,; =w,,. Therefore o=uw,, a,;+ a,;(sa,; + %), and since a,,+0

(by construction) we have w,, = —(sa,; +#). The other coordinates give x=uw,;,c and
I = Wy a1y + Wys(Sy + ).
. w w
Now we can write ) =( 1 12)
—(say, +tc) ay,
and 6= ay ¢ —(Say +t0)ayy + 58,1855\ _(@y¢  sd—lcay,
* * * *

where d=det a.
Using step (1) of the proof of Kubota’s Theorem we have
Ky(w) L= [ — (say; + tc)]_lz [(mm +t")a12]-1[a12]
: B a4 a4 a4

_ [5(ay1855—d)+ twm] _11(2(0()

L a1y

r - -1
__[tears sa’] (@),

L 4

[sd— tcam] . [sd— tcalz] [sd— tcam]

anc | ¢ a1
[sd] [sa’— tcam:l . [sd—— tcam]

¢ ayy ayy
because 4 is a unit and c¢=1+sc. Finally, we have

K3(7) = Ky(@) "' iy(B)
—_— - 1 —_—

— (o) [tca12 sd] [sd tcam]

ayq a1

I

Next Ks(B)

— Ky(0) = K4(c). Q.ED.

This concludes the proof of Proposition 8.5, and hence of part ¢) of Theorem 4.1.
Part 4) of Theorem 4.1 was proved in § 5 (Theorem 5.1). Part a) will be deduced
in the following section.

§ 11. Further conclusions.

Theorem 11.1. — Let A be a commutative ring, let q be an ideal of A, and assume they
satisfy (7.2), and (8.1),_, for some n>g. Then for all m>n:
a) E, (A, 0)=[GL,(A), GL,(A, )]; and

481




120 H. BASS, J. MILNOR AND ]J.-P. SERRE

b) The natural homomorphism

GL, (A, 9)/E, (A, a) > GL, (A, q)/E, (A, q)

is an isomorphism.

Proof. — (7.2), and Theorem 7.5 ¢) imply that E, (A, q) is normal in GL,, (A).
In particular we can define C,=GL, (A, q)/E, (A, q). Theorem 7.5 4) implies that
C,—C, is surjective. Let x,:GL,(A,q)—C, be the natural projection. This
satisfies (8.2), because of Theorem 7.5 d), and it satisfies (8.3), because E, (A, q) is
clearly stable under transposition. Finally the hypotheses (7.2), and (8.1),_, make
Lemma 8.9 &) available, and the latter confirms (8.4),. We now have all the hypo-
theses of Proposition 8.6, so we obtain an extension of k, to a homomorphism
K, +1: GL, (A, q)—>C, whose kernel contains E, (A, q). The map «x,,, therefore
induces C,, ,—C, such that the composite C,—~C,  ,—C, is the identity. Since, as
already remarked, C,—C,, is surjective, it follows that C,—C, ,; is an isomorphism.

Since (7.2),= (7.2),, and (8.1), for all m>n, by virture of Theorem 7.5 a),
we can repeat the above argument, and prove part ) of the theorem by induction.

According to Theorem 7.5 d) we have [GL,(A), GL, (A, q)]cE,(A,q) for
sufficiently large m. Hence

[GL,(A), GL, (A, a)]cE, (A, q) nGL, (A, q)=E, (A, ),
the last equality expressing the fact that C,—C,, is a monomorphism. Since 7n>3
it follows now from (5.1) that
E, (A, q)=[E,(A), E, (A, q)]=[GL,(A), GL, (A, q)].

Since our hypotheses carry over for all m_>n, this proves ¢), and completes the proof
of the theorem.

Theorem 11.2. — Suppose the maximal ideal space of A is a noetherian space of
dimension <d. Then A satisfies (7.2), and (8.1), for all ideals q and all n>d+ 2.

Progf. — This follows directly from Theorem 7.4 and Theorem 7.5 a).

Write

GL(A,q)= UGL,(A,q) and  E(A, q)= UE, (A q)=[GL(A), GL(A, q)]
(see [1, Ch. I]). Then there are canonical maps
GL, (A, q) [E, (A, a) = Ky (A, )= GL(A, q) /E(A, q).

The next corollary affirms, for commutative A, the conjecture of [1, § 11], except for
the probably unnecessary requirement of (8.1),_,.
Corollary 11.3. — Under the hypotheses of Theorem 11.2, the map

GL, (A, q)/E,(A, q) >~ K (A, q)
is an isomorphism of groups for all n>d-+g (and for all n>3 if d=1). Moreover
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Proof. — The first assertion, as well as the equality E, (A, q)=[GL,(A), GL, (A, q)],
follows from Theorem 11.1 and Theorem 11.2 if d>1. The case d=1 and n=3g
works because condition (8.1), is supplied by (7.1).

The equality E, (A, q)=[E,(A), E,(A,q)] is (5.1) and the insertion of SL,
follows from this and the equation above.

The last assertion of Corollary 11.3 contains part a) of Theorem 4.1. Thus,
the proof of Theorem 4.1 is now concluded.

According to (5.2), E,(A) is a finitely generated group if A is a finitely generated
Z-algebra, and n>g. Hence:

Corollary 11.4. — Let A be a finitely generated commutative Z-algebra of Krull dimension <d.
If K, A is a finitely generated abelian group, then GL,, (A) and SL, (A) are finitely generated groups
Sor all n>d+9g (and all n>g if d=1).

Examples. — Let A be a Dedekind ring of arithmetic type, and let T be a free
abelian group or monoid. Then it follows from the results of [3] that K, A[T] is finitely
generated. Therefore, for example, if ¢, ..., ¢; are indeterminates, then

SLn(z[tl, ] td])
is a finitely generated group if n>d -4, and, if k is a finite field,
SLn (k[tla LS ] td])

is a finitely generated group if n>d-+3.

One cannot generalize these results too hastily, as the following example shows.
Let A={a+2ib|a, beZ}, a subring of the Gaussian integers, or, say, k[t?, $*]Ck[t]
with £ a finite field and ¢ an indeterminate. Then if T is a free abelian group of
rank >2, SL,(A[T]) is not a finitely generated group for any »>6. This can be
deduced from results of [g] and [7].
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Cuaprter 111
MENNICKE SYMBOLS ASSOCIATED WITH Sp,,

§ 12. Statement of the main theorem.

—I o

Then Te=—¢, where the superscript denotes transpose. The symplectic group is

defined by

. . o [
Let A be a commutative ring and let ¢ denote the 2nX2n matrix, s:( ").

Span (A)={aeGL,, (A) |acTa =¢}.

This is the group of automorphisms of A?" leaving invariant the standard alternating
form in 2n variables.

Writing a 2nX2r matrix in nXn blocks, we can express membership in Sp,, (A)

by the condition:
o« B\( TS =B\ _ I
Y S _"TY T“ — “2n-

From this we deduce three immediate consequences. First
Sp, (A)=SL,(A).

Second, Sp,, contains all matrices

I (o} ] 0o . T
(12.1) (o 1) and (G 1) with  o="0.
The subgroup generated by these will be denoted
Ep,, (A).
Finally, there is a homomorphism,
(12.2) GL,(A) — Sp,, (A), oc}—>(z )
where o= (Ta)"!'=T(a"1). It is also known that Sp,,(A)cSL,,(A).
3 o B o
. . « B . o I, o o
We shall agree to identify (Y 8)eSpgn(A) with v 0 5 o €SPy 4 n(A)
o o o I

This gives us the vertical map in the diagram of monomorphisms,
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SL,(A)=Sp,(A)
(12.3) lh

(12.2) incl.

GL,(A) —> Sp,,(A) —> SLy,(A).

It is clear that the embedding SL,(A)—SL,,(A) induced by f; differs from the inclusion
defined in Chapter II, § 4, only by conjugation by a permutation matrix.
Let q be an ideal of A. Then we write

Sps. (A, q) =ker(Spy, (A) >Sp,, (A/9)),
and denote by Ep,,(A, q)

the normal subgroup of Ep,, (A) generated by all those matrices (12.1) for which ¢ has
coordinates in gq.

We can now state an analogue, for Sp,,, of Theorem 4.1 on SL,.

Theorem 12.4. — Let A be a Dedekind ring of arithmetic type, let q be a nonzero ideal
of A, and suppose n>2. Then Ep,, (A, q) is a normal subgroup of Sp,, (A), so we can define
Cp,=Sp,, (A, q)/Ep,, (A, q), and the natural projection, x :Sp,, (A, q)—>Cp,. There is a
unique map {}: W,—~Cp, rendering '

SLy(A, 6)=Sp, (A, q) —> Spyu (A, )

15t row

\ v

Wo 7 Cpy

commutative, and { } is a universal Mennicke symbol.

Invoking Theorem 3.6, where the universal Mennicke symbols are calculated
arithmetically, we obtain the following corollary:

Corollary 12.5. — Sp,, (A) is generated by the matrices (12.1). Cp, is independent of n,
and the natural map Cp,—~Cp,, is an epimorphism of finite groups whenever o+qcCq’.
Moreover,

. \ the roots of unity in A, if A is totally imaginary;
lim Cp, = | .
“q {1} otherwise.

Remark. — Using the fact that Sp,,(A) is generated by the matrices (12.1) it is
not difficult to show that Sp,, (A) is finitely generated (cf. [22]). (This is even trivial
in the number field case.) Moreover the commutator factor group of Sp,, (A) is trivial
for n>3, and is a finite group of exponent 2 for n=2.

485




124 H. BASS, J. MILNOR AND ]J.-P. SERRE

§ 13. Proof of Theorem 12.4.

Lemma 13.1. — The diagram (12.3) induces diagrams

SL, (A, q)
I

(12.2)

SLn(A3 Q) - spZn(A, q) - SL‘.’n(Aa Q)

and E,(A, q)
J»

(12.2)

En (A3 q) - Ep2n (A> Q) - E2n(A3 Cf)‘

Proof. — The only assertion here that does not follow immediately from the defini-
tions is that (Z ,;)eEpM (A, q) if a€E, (A, q). From the way these groups are defined
it is easily seen that it suffices to prove this when « is an elementary matrix. « is then

. 1 0
an element of some SL,, so we can carry out the calculation in Sp,. Say oc:(q I).

Set G:(O q) and 1:(1 0). Then cr:(o O), TG:(O q),o"w:(o 02), and
q 0 0 o q o 0o o o ¢

t6t=0. Hence

I [ R A )
i (3 2)=(3 7 3)

Proposition 13.2. — Let A be a Dedekind ring, let q be an ideal of A, and suppose n>2.

a) Spy, (A, q)=Spy(A, q).Ep,, (A, q).

B) Epou(A, )3 [SPan(A), Spss (A, @)1 Epoy(A, 07 q), where q'=A if n>3, and o
is generated by all t*—t, teA, if n=2.

c) Every subgroup of finite index in Sp,,(A) contains Ep,, (A, q) for some q=*o.

This is a special case of results proved in [2, Ch. II].

It follows from part ) that Ep,, (A, q) is normal in Sp,,(A) so we can introduce
the canonical projection,

K 2 Spy, (A, q) = Cpg =Sp,, (A, ) [Epy, (4, ).
We have Ji: SLy(A, q) =Spx (A, ) = Spy, (A, ),
and we further introduce fo: SLy(A, q) = Spa. (A, q)

which is the composite of the inclusion, SL,(A, q)cGL,(A), with the homomor-
phism (12.2): GL,(A)—>Sp,,(A). From Lemma 13.1 we see that E,(A, q) cker(xf))
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for both i=1 and 2. Moreover (13.2) &) implies that [E(A), SL,(A, q)] cker(kf;)

as well, for =1 and 2.
Now it follows from Lemma 5.5 that there exist unique maps {}, [ ]: W,—Cp,
rendering
f
SL,(A, a) —> Sp,,(A, q)
1 !

i
|

15t row ’ \ K
1

Y
Wo =5 O
and SL, (A, q) LN Sp2a(A, q)

15t row "

! !

Wq -‘—[—]a-) Cpq

K

commutative, and they both satisfy axiom MS1 for a Mennicke symbol.
Lemma 13.3. — If (a, by), (a, b,)eW, then

13-
ajla) |\ alf
Before proving this we shall use it to conclude the proof of Theorem 12.4; this
will be accomplished by supplying the hypotheses of Theorem 3.7 for { }.

If (a, b)eW, then
b {/}2}
a al’

For if ¢g=1—aeq we have (a, g)~, (1, 0) so MS1 implies {Z}: 1. Using Lemma 13.3,

therefore,
Sl
al lajla) |a) a “af
bz
In particular, (a, ) j—){a} satisfies MS1.
Next let f:Gp,—~GC,

be the homomorphism induced by the inclusion Sp,,(A, q) - SL,,(A, g). The composite
So{ }=I[ 1,: Wy—>C, is just the map denoted [ ] in Theorem 4.1. This is because,
as remarked above, the composite

’l
SL'&(A: Q) - SpZn(Aa q) - SLZn(As q)

differs from the embedding used in Chapter II only by conjugation by a permutation
matrix, whereas C,cCcenter(SLy,(A)/E,, (A, q)).
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Thanks to Theorem 4.1, we have now shown that the maps in the commutative
diagram '

, » Cp
{} q
W, / X

[ E\ Cq

satisfy all the hypotheses of Theorem 3.7, so the latter implies f is an isomorphism
and that { } is a universal Mennicke symbol on W,. This proves Theorem 12.4,
modulo the:

a b

Proof of Lemma 13.3. — If “:(c d)eSLz(A, q) then

Sia= and ﬁaz(a ;,)

(o)

o © O 8§
© O ~ O
O /O ™
- O O O

-1
where 7:'1'“—1:(_‘1 ——c):( © I)a( © (I)) . The symbols {b} and [Z] are

b a —1 o) \—1 a
the classes modulo Ep,,(A, q) of fia and f,«, respectively. Hence it suffices to prove
the lemma in Sp,. Moreover since [Sp,,(A), Sp,,.(A, q)] CEp,,(A, q) we can replace «

a b

by @ without changing the symbols.
df)eSLz(A, q), t=1,2, apd set

Given (a, b,), (a, b,)eW, choose ociz( .
Bi=/,, Bo=/fi%. Then [[;1] {%} is the image modulo Ep,,(A, q) of

d —¢ o0 o a o b, o
8,8, — —b, a o o 0O I 0 O
2o o a b |\e, o dy o
s o ¢ d/ \o o o 1
dia —¢ dib, o
—ba a —bb, o
I 0 ady, b, |
€165 0 ¢ dy dy
I 0 O )
by 1 o 0
Right multiplication by e =| !
8 p Y 8Tl o o 1 —b,
o o o I

I —q dib, —bibyd;
a —bb, b3b,
ac, 0 ad,  —bbye,
€16y 0 ¢ dy di—bcid,

gives
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I 0 0o o
C e . 0 I o o
Left multiplication by e,=
—ac, —¢6 1 O
—¢¢, O 0 I
1 —¢ diby —bbyd,
. o a —bb b3b
gives 172 1721 where
o o I 0
2
o (i, ¢ dy

e=c,dy—c,cod, b, and dy=1d;—bic,dy+ c,63b,b,d,.

1 ¢ O O
0o 1 0o o
Right multiplication by e =
g p Y & o o I o
- 0 0 —¢ I
1 0 adib,  —b.b,d,
2
gives o a —adbb, b3b,
o o 1 o
o e, e—cyd, A
1 0 —adib, b,b,d,
.. o 1 bbyd )
Right multiplication by ¢,= 172
g p Y &4 o o . o
0 o 0 I
1 0 o0 o
wves v—|©® @ © b%b,
& T™ o o 1 o
o ey o dy

2 ' 2
If %:(czac b;,bz) then v is evidently conjugate in Sp,(A, q) to fi«s, so :blabz} is the
12 3

image mod Ep,, (A, q) of y=¢,B,Bse5¢,. Since each ¢eEp,,(A,q) (‘thanks to

2
Lemma 13.1 for i=1,3) it follows that {blab2} is the image of B,B, mod Ep,,(A, q),
and this proves the lemma.
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CHAPTER IV
THE CONGRUENCE SUBGROUP CONJECTURE. APPLICATIONS

§ 14. First variations of the problem.

The results of the preceding chapters solve, for SL, (n>3) and Sp,, (n>2), what
we describe below as the  congruence subgroup problem . There is strong evidence
that similar phenomena should be witnessed for more general semi-simple algebraic
groups, so we shall formulate the question in this more general setting.

In this section we fix a global field £ and a finite non empty set S of primes of £
containing all archimedean primes. We shall call S fotally imaginary if all peS are
complex. This means £ is a totally imaginary number field and S is just its set of archi-
medean primes. Departing slightly from our earlier notation we shall write

0=0%={xek|ord, (x) >0 for all p¢S}

A, denotes the adéle ring of £, and A} the ring of S-adéles of £, i.e. the restricted product
of the completions £, at all p¢S. For any field F, u; denotes the group of roots of
unity in F.

Let G be a linear algebraic group over £, and let I'=G,nGL, (0), with respect
to some faithful representation G—GL, defined over £. The questions we shall pose
turn out to be independent of the choice of this representation. We write
I,=I'nGL,(0, q) for q an ideal of 0, and call a subgroup of I' which contains T,
for some q+o0, an S-congruence subgroup of I'. These are evidently of finite index in T,
and one can ask, conversely:

Congruence Subgroup Problem: Is every subgroup of finite index in T' an S-congruence
subgroup?

Two subgroups of G, are called commensurable if their intersection has finite
index in each of them. The subgroups commensurable with I will be called S-arithmetic
subgroups. In case k is a number field and S is the set of archimedean primes then these
are just the arithmetic subgroups of G, in the sense of Borel-Harish-Chandra [8]. We
obtain two Hausdorff topologies on G, the S-congruence topology, and the S-arithmetic
topolog y, by taking as a base for neighborhoods of 1 the S-congruence subgroups of T,
and the S-arithmetic subgroups respectively. Since the latter topology refines the
former there is a canonical continuous homomorphism

G, > G,
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between the corresponding completions of G,. Write I' and T for the closure of T
in G,, respectively, G,. Clearly I is just the profinite completion of T, so it is a compact
and open subgroup of G,. It follows that =(I")=T, an open subgroup of G;. There-
fore =(G,) is an open and dense subgroup of G, so  is surjective. Writing

C8(G,) =ker(n) =ker (x| T')
we see that C¥(G,) is a profinite group, and we have a topological group extension,
E3G) :1—>C¥G) -G 5 G, »1.

Since both the right hand terms are constructed as completions of G, the inclusion G,cG,
can be viewed as a splitting of E5(G,) when restricted to the subgroup G,cG,.

The congruence subgroup problem asks whether the two topologies above coincide,
or, equivalently, whether = is an isomorphism. Thus we can restate it:

Congruence Subgroup Problem: Is C3(G,)={1}

The S-congruence topology on G is clearly just the topology induced by the
embedding Gk——>G(A,sC), which comes from the diagonal embedding of £ in its ring
of S-adéles. Therefore we can identify G, with the closure of G, in G A9 In this connection
we have the:

Strong Approximation Theorem (M. Kneser [13]). — Suppose k is a number field and
let G be simply connected and (almost) simple, but not of type Eq. Then, if ka is not compact
Sor some peS, G, is dense in G aye Le Gk=G(A2).

Here “ simply connected * is taken in the algebraic sense. It is equivalent to
the condition that for some (and therefore for every) embedding k-G, the corres-
ponding Lie group Gg is a simply connected topological group.

Congruence Subgroup Conjecture. — Let G be a simply connected, simple, Chevalley group
of rank >1, and let

ESG,) :1 > C%G,) -G, —~G, »1
be the extension constructed above. Then this extension is central, and

C3(G,) = e if S is totally imaginary
M1} otherwise.

Recall that G is a Chevalley group if it has a split k-torus of dimension equal to
the rank of G.

Theorem 14.1. — The congruence subgroup conjecture is true for G=SL, (n>3) and
Jor G =8p,, (n=>2).

Proof. — First consider G=SL, (n>3), and write E,=E, (0, q)cI',=SL,(0, q),
in the notation of Chapter II. It follows from Corollary 4.3 that E, has finite index
in I' (for q+0), and it follows from Theorem 7.5 ¢) that every subgroup of finite index
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in T' contains an E, for some gq=o0. Therefore the E, are a cofinal family of subgroups
of finite index so ['=lim I /E,. Since [ =lim I/ I, we have
<— <—

C==C5(SL, (k) =ker (x| ") = lim I,/E, =lim G,

where C,=TI/E, is the group occuring in Theorem 4.1. Now the conjectured evalua-
tion of C follows from Corollary 4.3. Since G is simply connected, it is known that G,
is generated by its unipotent subgroups, and hence has no finite quotients ={1}.
Therefore it must centralize the finite group C.

By density, therefore, C ccenter G,.

The proof for G=3Sp,, (n>2) is similar. For E, we take Ep,,(0, q), and use
Corollary 12.5 and Proposition 13.2 ¢) to verify that the E; are a cofinal family of
subgroups of finite index. Then the theorem follows as above, this time with the aid
of Corollary 12.5.

Remarks. — 1) Matsumoto [15] outlined a method for proving that C%(G,)={1},
starting from the assumption that this is so for SL; and Sp,. Mennicke (unpublished)
has also announced such a procedure. It seems likely that these methods might be used,
in conjunction with Theorem 14.1, to prove at least the finiteness of C5(G,), and perhaps
even that it is a quotient of w,.

2) To prove the opposite ““ inequality ” in the totally imaginary case the following
observation is useful: If p:G—G’ is a homomorphism of algebraic groups defined
over k there is an induced homomorphism C5(p,) : C¥(G,) — C5(G;), since p, is auto-
matically continuous in both topologies. Now if we use the k, in Chapter II to identify
C5(SL,(k))=,, then every representation p : G->SL, defined over £ gives us a homo-
morphism p : C¥(G,) »>y,. If we write the group Hom(C%(G,), w,) additively then
p—>p defines an additive map

Ry(G) - Hom(C%(Gy), w),
where Ry (G) is the k-representation ring of G. The behavior under multiplication
is given by

p®c =(dim p)c 4 p(dim o).

We thus obtain a pairing R, (G)x C%(G,) —y,; using subgroups of G isomorphic to SL,
this can be used to give lower bounds for C5(G,).

§ 15. Relationship to the work of C. Moore. The ¢ Metaplectic Conjecture *.

Let L be a locally compact group (we shall understand this to mean separable
also) and let M be a locally compact L-module, i.e. a locally compact abelian group
with a continuous action LXM—M. IfNis another such module we write Hom;, (M, N)
for the continuous L-homomorphisms from M to N. C. Moore [19] has defined coho-
mology groups H"(L, M), n>0, which have the usual formal properties, and the usual
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interpretations in low dimensions if one suitably accounts for the topological restrictions.
In particular H*(L, M) classifies group extensions

@ p
1>M->E->L-—1,

inducing the given action of L on M, and where p and ¢ are continuous homomorphisms
which induce topological isomorphisms M—>iM and E/iM—L.
Examples of these are the extensions

ESGy) 11 > CYG,) -G, > G, > 1

constructed in the last section, provided we assume C%(G,) is in the center of G,. If we
put C=C%(G,), and write ¢=(E®(G,))eH*G,, C), then the fact that E5(G,) splits

over G,cG can be written
restr

eeker(H2((—}k, C) — H*(G,, Q)),

where we view G;—>G, as a homomorphism of locally compact groups, giving G, the
discrete topology. Now if f: C—M is a continuous homomorphism of locally compact

G,-modules then

= restr

fle)eker(H*(G,, M) — H*(G,, M)).
Theorem 15.1. — Let M be a profinite G,-module. Then

Homg (C, M) —> ker(H¥G,, M) ~“% HX(G,, M)),
by fi>fle), is surjective. If G, acts trivially on C and on M, and if G, has no non-trivial finite
abelian quotients, then it is bijective.
Proof. — If xeker(H*G,, M) —>H?*G,, M)) let

1—>M—>E—p>_G-k—>I

be an extension representing x. By assumption there is a section s: G,—E such that
ps(y)=xy for veG;. B B
Write I for the closure of I' in G, and set F=p"!(T'), so that we have an induced
extension B
1>M->F—>I->1.

This shows that F is compact and totally disconnected, since M and T are, so F is a
profinite group. Consequently s|T' extends to a continuous homomorphism § : I'>F.
Therefore s : G,—E is continuous for the S-arithmetic topology, since it is continuous
in a neighborhood of 1. The completeness of E now allows us to extend s to a continuous
homomorphism 5 : G,—~E. Now the square

D —> =

2> G,
I
il
G

k]
k k
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commutes on G, cG,, so it commutes because G, is dense in G, and the arrows are
continuous. Thus we have constructed a morphism

1———>M———>E——>Gk———>l

Nl

1 — C — G, — G, —> 1

of group extensions, and fis therefore the required G,-homomorphism for which f(e) = x.
Now suppose given f:C — M. Factor f into C 58 Clker f % M. Then gle)
corresponds to the extension

1 - C/ker f — Gk/kerf—> G, —~1.

If it splits and if CcCcenter Gk then C/ker f is an abelian quotient of Gk/ker f I G,
has no non trivial finite abelian quotients then, by density, neither does Gk, so C/ker f=o.
This shows, under the hypotheses of the theorem, that f=o0=-g(¢)+0. Now if, further,
G, acts trivially on M then H'(G,, coker £) =Hom(G,, coker )=o0, so the cohomology
sequence of o — G/ker f L M > cokerh >0 yields

o=HY(G,, coker k) - H¥G,, C) > H¥G,, M).

Hence f(e)=~h(g(e))*o. Q.E.D.

We can now restate the congruence subgroup conjecture cohomologically. We
can even generalize it in a natural way by no longer requiring that the set S contain the
archimedean primes, and even allowing S to be empty, in which case A}=A,. For
reasons to be explained below we shall call this generalization the:

Metaplectic Conjecture. — Let k be a global field and let S be any finite set of primes of k
(possibly empty). Let G be a simply connected, simple, Chevalley group of rank >1. Then
Jor any profinite abelian group M on which G Ay acts trivially, there is a natural isomorphism

restr Hom(y,, M) if all peS are complex
ker(H2(G(Ai)’ M) — HY(G,, M)) = {1} e M (JJ;herwi;. ’

More concretely, this means that there exists a central extension
(15.2) 1>p >G> G, -1,
which splits over G,cG,,, and that any other such, say

I —_>M—>E—>GAk—>I,

with profinite kernel M, is induced by a unique homomorphism p,—M. Moreover,
for any non complex prime p, the restriction of (15.2) to the factor ka cG,, has order
exactly [w,:1] in Hg(ka, AR

The last assertion is deduced as follows: Let xeH*(Gy,, 1) be the class of the
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extension (15.2). For any p, GAszkpr(Af), and HI(G,‘», w,) =0 because G, is
generated by unipotents. Therefore if the restriction of x to Hz(G,,p, we) 1s killed by n
then it follows from the Kiinneth formula that nx is the inflation of an element of
H*(G, AP w,) which splits on G,. But, according to the conjecture, the group of such
elements is zero if p is not complex, and hence nx=o.

The existence of (15.2) has been suggested by C. Moore as a natural generaliza-
tion of Weil’s ¢ metaplectic  groups [25]. The latter are certain two sheeted coverings
in the case G=Sp,,. We might thus call the alleged G the « metaplectic group of G
over k. Moore, in unpublished work, has proved a number of interesting theorems in
support of the metaplectic conjecture, and he suggests that we allow an arbitrary locally
compact M in its formulation. His procedure, contrary to ours, is local to global.
This seems to be the most natural approach since we obtain no direct construction of the
local extensions (over the G,,p’s) and because our method gives us no access to G when
there are real primes or when £ is a function field. On the other hand:

Theorem 15.3. — If k s a totally imaginary number field then the congruence subgroup
conjecture for G, is equivalent to the metaplectic conjecture for G,, plus the conjecture that C5(G)
lies always in the center of Gk. In particular all these conjectures are true in this case for
G=SL, (n>3) and G =Sp,, (n>2).

Progf. — In view of Theorem 15.1 we see that the congruence subgroup conjecture
is obtained from the metaplectic conjecture simply by requiring the sets S to contain all
archimedean primes. We must therefore show that this restriction costs us nothing
when £ is totally imaginary.

Given any finite set S let T be the union of S and the set of archimedean primes.

Then AT~ ASxCr

for some r>o, since £ is totally imaginary. Therefore

G(A’p T—.’ G(ALS) X G’cr.

Now Gg is a complex semi-simple Lie group which, by hypothesis, is simply connected.
It follows that
HY(Gy, M)=H*Gy, M)=0

for any profinite abelian group M on which G acts trivially. From this it follows that
the projection

G(Ap e G(A;)
induces an isomorphism H*(G, ays M) L H*(G, an»> M).  The projection is compatible
with the embeddings of G, so we have now a natural isomorphism

ker(HX(Gyy, M) =5 H¥(G,, M))
restr

Zker(H2(Gyp, M) —> H(Gy, M)).

495




134 H. BASS, J. MILNOR AND J.-P. SERRE

Thus the metaplectic conjecture for S is equivalent to the same for T, and T contains
the archimedean primes, so the theorem is proved.

In case there are real primes the argument above decidedly fails, since, e.g.,
7, (Gg) =Z/2Z if G is not of type C,. However, by a slight artifice, we can still deduce
a partial local result at the finite primes of any number field.

Theorem 15.4. — Let k be a number field and let q be a finite prime of k. Suppose G is
a simply connected, simple, Chevalley group for which the congruence subgroup conjecture holds over
all number fields (for instance SL,, n>3, or Sp,,,n>2). Then Hz(qu, y.kq) contains an
element of order [;qu: 1].

Progf. — Choose a totally imaginary number field L which contains Wi, and which
has a finite prime p such that L,=k;; this is quite easy to do. Clearly then p = gy
Let S be the set of archimedean primes of L. Then, by the congruence subgroup
conjecture, we obtain a central extension

I~—>p,L—>GL—>GAIs‘—>I

whose restriction to GLp has order [p;: 1], as we have seen above. Q.E.D.

§ 16. Recovery of G-representations from those of an arithmetic subgroup.

Let G be a semi-simple, simply connected, algebraic group defined over Q, and
let T be an arithmetic subgroup of Gg. In the notation of § 14 this is an S-arithmetic
subgroup where S={o0}. We will write A for the ring of finite adeles of Q. (This
is A)®) in our previous notation.) The closure of I' in G,/ is a profinite group, so
there is a canonical continuous homomorphism

TC:F—-)GAf,

where T' is the profinite completion of I'. The main theorem of this section will
invoke the following hypothesis:

a) n:(f‘) is open in G,s.

(16.1)
b) ker(m) 1is finite.

It is easy to see that these conditions depend only on G over Q, and not on the choice
of I Moreover a) follows from Kneser’s strong approximation theorem whenever the
latter applies. This requires, essentially, that all factors of G be not of type E; and non
compact over R. Part b) is a qualitative form of the conclusions of the congruence
subgroup conjecture. It says, in the notation of § 14, that CG{®/(Gy) is a finite group.
In particular it has been proved above for certain G.

Conjecture. — (16.1) s true of G is simple relative to Q, and of Q-rank (in the sense of
Borel-Tits [g]) >a.

496




SOLUTION OF THE CONGRUENCE SUBGROUP PROBLEM 135

Theorem 16.2. — With the hypothesis (16.1), suppose given a group homomorphism
f:T—=>GL,(Q). Then there is a homomorphism of algebraic groups

F:G->GL,,

defined cver Q, which coincides with f on a subgroup of finite index of T.

Corollary 16.3. — If 'V is a finite Q-dimensional Q [T']-module there is a lattice in V stable
under T'.

Proof. — Say F : G—GL(V) agrees with fon I'VcTI', a subgroup of finite index.
Then one knows that F(I'") is an arithmetic subgroup of F(G)q, so F(I'") leaves some

lattice, say L’, invariant. Then L= Zr sL’ is stable under I
seI/T

Corollary 16.4. — Every exact sequence

0>V->V sV’">5o0

of finite Q-dimensional Q [I']-modules splits. In particular HY(T, V)=o.
Progf. — Passing to a subgroup I' of finite index in I, this becomes a sequence
of I'"-modules induced by an exact sequence of ¢ algebraic >’ G-modules over Q. Since G

is semi-simple this sequence splits, and therefore it splits over I'V. If ¢’ : V">V’ is
a I-splitting then g(x):~——[F I F,JSE%F,sg’(J“Ix) defines a I'-splitting.

The vanishing of H'(I', V) corresponds to the case V'’=Q with trivial action.

Corollary 16.5. — If T' operates on a finitely generated Z-module M then HY(T', M)
s finite.

Proof. — Since T is finitely generated H' (I, M) is a finitely generated Z-module.
Now tensor with Q and apply the last corollary.

Remark. — The vanishing of H'(I', ad), where ad is the adjoint representation of G,
implies the “ rigidity ” of I', i.e. the triviality of deformations of I' in Gy (see Weil [24]).
Garland has proved that H'(I', ad)=o0 for Chevalley groups, and Borel proved rigidity
when G is semi-simple of Q-rank >2 and such that every simple factor has Q-rank >1.
Finally, Raghunathan [21] proved the vanishing of H(I', V) for these G and for any
Sfaithful, irreducible rational G-module V. On the other hand D. Kajdan has obtained
vanishing of H' for the trivial representation in some cases.

Corollary 16.6. — Assume (16.1) and that Gq is generated by unipotents. Then every
group homomorphism f : Gq—GL, (Q) is algebraic.

Proof. — It follows from Theorem 16.2 that there is an algebraic homomorphism
F:G—GL,, defined over Q, such that F and f agree on an arithmetic subgroup, T,
of Gq. To show that F and f agree on all of Gy it suffices, by hypothesis, to show that
they agree on each abelian unipotent algebraic subgroup U of Gg. Since F is
-algebraic, F(U) is unipotent in GL,(Q). The group U is isomorphic to a vector space
over Q, and I'nU is a lattice of maximal rank in U. Hence, if we show that f(U)
is unipotent then it will follow from Lemma 16.% below, that f and F agree on U, since
they agree on the lattice I'nU.
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Suppose xeGL,(Q) is such that some power of x is unipotent. Then the eigen-
values of x are roots of unity as well as roots of a polynomial of degree n over Q. It
follows that they are N-th roots of unity for some N depending only on 7, and hence " is
unipotent.

Now suppose xeU. Then x=)" for some yeU. Some power of y liesin T'n U,
so some power of f(y) lies in f(I'nU)=F(I'nU), which is unipotent. Therefore
S(®)=f(»)Y is unipotent, as was to be shown.

Lemma 16.7. — Let k be a field of characteristic zero, and suppose x, yeGL, (k) are
unipotent and that x™=)y™ for some m>o. Then x=}.

Proof. — We can write a unipotent x uniquely as x=exp(X) with X(=log(x))
nilpotent, the  series ”” exp and log here being in fact polynomials. Hence if " ="
then mX=mY, so X=Y and therefore x=jy.

Proof of Theorem 16.2. — Since T is finitely generated there exists a prime p such
that all elements of f(I') are p-integral. (For each generator v; of I' choose a common
denominator for f(y;) and f(y; '), and take p prime to all these denominators.) Then f
extends continuously to

£ :I'>GL,(Z,).

Replacing T' by a subgroup of finite index, if necessary, we can identify I with
an open subgroup of G, of the form [IU , where U, is a compact open subgroup of GQq,
q

equal to qu for almost all g. Then if g=p itis easy to see that the image of the ¢g-adic
group U, in the p-adic group GL,(Z,) must be finite.

Since GL,(Z,) has “ no small finite subgroups ”, i.e. since it has a neighborhood
of the identity containing no non trivial finite subgroups, it follows by continuity of f,
that f,(U)={1} for almost all g.

Passing again to a subgroup of finite index in I, therefore, we can arrange that

fp(U,)=1 for all g+p. Thus f factors as the composite
I' > U, GL,(Z,),

where ¢ is a continuous homomorphism. Now by the theory of p-adic Lie groups
(see [23, III (3.2.3.1)]) ¢ is analytic, and its tangent map at the identity is a
homomorphism

L(CP) : g®QQp —-> gIn (Q-p)

of the associated Lie algebras over Q. Since G is semi-simple and simply connected
there is a unique homomorphism of algebraic groups, F:G —->GL,, defined over Q ,
with tangent map L(p). Therefore F agrees locally over Q , with f,, so F coincides
with fon a subgroup, I, of finite index in I'. It remains only to be seen that F is defined
over Q. This follows from the fact that F(I')=f(I"")cGL,(Q), and the fact that I"'
is Zariski-dense in G.
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