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INTRODUCTION 

Se-St-1 

In his Annals paper on modular forms of half integral weight [8], 

Shimura mentions several open questions. One of them is the following : 

is every form of weight 1/2 a linear combination of theta series in one 

variable ? 

We show that the answer is positive. The precise statements are gi- 

ven in §2, Theorems A and B; they give an explicit basis of modular 

forms (and cusp forms) of weight 1/2 and given level. The proof uses 

the fact that, for weight 1/2, the formula defining the Hecke operator 

T(p 2) introduces unbounded powers of p in the denominators of the coef- 

ficients -unless some remarkable cancellations take place (§5). But it 

is a familiar fact that coefficients of modular forms (on congruence 

subgroups) have bounded denominators. Hence the above cancellations do 

hold, and they give us the information we need, when combined with basic 

properties of "newforms" ~ la Atkin-Lehner-Li (§§ 3,4). The details are 

carried out in §§ 6,7. As an Appendix, we have included a letter from 

Deligne sketching an alternative method, using the "group-representation" 

point of view. 

In the above proofs, arithmetic arguments play an essential role. It 

would be interesting to have a more analytic proof; a natural line of 

attack would be to adapt Shimura's Main Theorem ([8]2 §3) to weight 1/2, 

but we have not investigated this. 

We mention a possible application of Theorems A and B : since the 

weights 1/2 and 3/2 occur together in dimension formulae and trace 
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formulae ([9], §5)~ the explicit knowledge of forms of weight 1/2 gives 

a way of computing these dimensions_and traces for weight 3/2. 

§ I .  SOME NOTATION 

1.1. Upper half-plane and modular ~Oups. 

We use standard notations, cf. [3], [7]. The letter H denotes the 

upper half-plane {zIlm(z) > 0}. If z • H, we put q = e 2~iz Let 

GL2(R) + be the subgroup of GL2(R) consisting of matrices A = (~ 5) with 

det(A) > 0; we make GL2(R) + act on H by 

z ~ Az = (az+b)/(cz+d). 

Let N be a positive integer divisible by 4. 

FI(N) the subgroups of SL2(Z) defined by : 

b) • r'o(N) 

We denote by F0(N) and 

c ~ 0 (mod N) 

a ~ d ~ 1 (mod N) and c ~ 0 (mod N). 

The g r o u p  F I ( N )  i s  a n o r m a l  s u b g r o u p  o f  Fo(N) , and  t h e  map [~ ~] ~ d i n -  

d u c e s  an isomorphism of F0(N)/FI(N) onto (Z/NZ) ~ 

1.2. Characters. 

If t • Z, we denote by Xt the primitive character of order ~ 2 corres- 

ponding to the field extension Q(tl/2)/Q. If t is a square, we have 

X t = 1. It t is not a square, and the discriminant of Q(tl/2)/Q is D, 

then Xt is a quadratic character of conductor IDI , and we have 

xt(m) = (~) (Kronecker symbol). 
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In particular, xt(m) : O if and only if (m,D) ~ 1. (Recall that, if 

t = u2~, with u e Z, and d is square-free, we have D = d if d ~ 1 

(mod 4), and D : 4d otherwise.) 

1.3. Theta multiplie r . 

Let 0(z) : ~ (1-q2n)(1+q2n-1) 2 +~ n2 
: ~ q 

n=l _~ 

be the standard theta function. If 

have 

= 1 + 2q + 2q 4 + ... 

A = lac ~) belongs to F0(4), we 

0(Az) = j(A,z)e(z), 

where j(A,z) is the "e-multiplier" of A. Recall (cf. for instance [8]) 

that, if c ~ 0, we have 

j(A,z) = Sd I Xc(d)(cz+d)l/2~ 

where Sd = I 1 if d ~ 1 (mod 4) 

k i if d ~ -1 (mod 4), 

and (cz+d) 1/2 is the "principal" determination of the square root of 

cz + d, i.e. the one whose real part is > @ (more generally, all frac- 

tional powers in this paper have to be understood as principal values). 

If c = 0, we have A = ±1, and j(A,z) is obviously equal to 1. 

1.4. Modular forms of half integral weight. 

Let X : (Z/NZ) ~ ~ C ~ be a character (mod N), and let < be a positive 

odd integer. A function f on H is called a modular form of type 

(K/2,X) o_nn F0(N) if : 

a) f(Az) = x(d) j(A,z)Kf(z) for every A = [~ ~] in F0(N) ~ this 

makes sense since41N ; 

b) f is holomorphic, both on H and at the cusps (see [8]). 
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One then calls K/2 the weight of f, and X its character. The space 

of such functions will be denoted by M0(N,K/2,X) ; it is clear that 

M0(N,K/2,X) consists only of 0 unless X is even, i.e. X(-1) = 1. We put 

MI(N,~/2) : @ M0(N,K/2,X), 
X 

where the sum is taken over all (even) characters of (Z/NZ)~; this space 

is the space of modular forms of weight ~/2 on FI(N). 

A modular form which vanishes at all cusps is called a ~us2 form. 

The subspace of M0(N,K/2,X) (resp. MI(N,K/2)) made up by cusp forms 

will be denoted by SO(N,~/2,X) (resp. SI(N,K/2)). 

EXAMPLE : theta series with characters. 

Let @ be an even primitive character of conductor r = r(4). 

2 
4(n)qn e 4 ( z )  = 

We put 

When 9 : 1, 99 is equal to 0. When 9 # 1, 89 is equal to : 

2 
2 Z 4(n)q n = 2(q +4(2)q 4 + ...) 
n~l 

(n,r):l 

e 4 • M0(4r2,1/2,4), cf. [8], p.457. This implies that, if We have 

t is an integer ~ 1, the series 94, t defined by 

4(n)q tn2 
9?,t(z) = 0?(tz) = 

belongs to M0(4r2t,1/2,Xt4)~ see for instance Lemma 2 below. 

2 
Warning .  One s h o u l d  n o t  c o n f u s e  04 w i t h  t h e  s e r i e s  Z 4 ( n ) 2 q  n o b t a i n e d  

by t wistin~ @ with the character 4, ef. ~7. 

1.5. Petersson scalar product. 

If z e H, we put x : Re(z), y : Im(z). The measure dxdy/y 2 is 
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+ 
invariant by GL2(R) If f,g belong to MI(N,~/2) , the function 

(z) = f(z)g(z)y </2 Ff,g 

is invariant by FI(N). Hence Ff~g(Z)y-2dxdy is invariant by FI(N) and 

defines a measure ~f,g on H/FI(N). One checks immediately that ~f,g is 

a bounded measure in each of the following two eases : 

i) one of the forms f,g is a cusp form~ 

ii) K = 1 (this was first noticed by Deligne). 

In each case, the Petersson scalar product < f,g> of f and g is de- 

fined as the (absolutely convergent) integral : 

<f,g>= 1 I 1[ 
c~ ~f,g - c(N) 

H/FI(N) 

where c(N) is the index of FI(N) in SL2(Z). 

f(z)g(z) yK/2-2dxdy, 

This is a hermitian scalar product. One has < f,f> > 0 if < f~f> is 

defined and f ~ 0. 

§2. STATEMENT OF RESULTS 

2.1. Basis of modular forms of weight 1/2. 

Our main result (Theorem A below) states that every modular form of 

weight 1/2 is a linear combination of theta series with characters. 

More precisely, let X be an even character (mod N); let ~(N,x) be the 

set of pairs (~,t), where t is an integer ~ 1, and ~ is an even primi- 

tive character with conductor r(~)~such that : 

(i) 4r(~)2t divides N, 

(ii) x(n) : ~(n)xt(n) for all n prime to N. 

Condition (~i) is equivalent to saying that ~ is the primitive character 

associated with XXt; hence @ is determined by t and X. Conversely, t 
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and ~ determine X- 

THEOREM A. The theta series 8@, t 

make up a basis of M0(N,1/2,X). 

This will be proved in §6. 

= I @(n)q tn2, with (@,t) e ~(N,x) , 

Call ~(N) the set of pairs (@,t) satisfying condition (i) above~ this 

set is the union of the ~(N~x) , for all even characters X (mod N){ hence 

Theorem A implies : 

COROLLARY 1. The series e~,t, with (@,t) e ~(N), make up a basis of the 

space M1(N,1/2) of modular forms of weigh[ 1/2 on FI(N). 

In particular : 

COROLLARY 2. If f : Z a(n)q n is a modular form of weight 1/2 o__nn FI(N) , 
n:0 

then a(n) = 0 if n is not of the form tm 2, where t is a divisor of N/4, 

and mE Z. 

COROLLARY 3. Let f = ~ a(n)q n be a formal power series with complex 
n=0 

coefficients. The following properties are equivalent : 

1) f is a modular form of weight 1/2 on some FI(N). 

2) f is a linear combination of theta series 

0n ~p~t = 
0 n ~ n O (mod r) 

n E Z 

2 
tn 

q 

3) For each square-free integer t ~ 1~ ~here is a periodic function 

~t on Z such that : 

3.1) a(tn 2) = ~t(n) for every n ~ 1~ 

3.2) each s t is even (i.e. st(n) = st(-n) for all n e Z)~ 

3.3) ~t is 0 for all but finitely many t; 
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1 
3.4) a(0) : 7 [et (°)" 

t 

PROOF. The equivalence of 2) and 3) is elementary, The fact that a the- 

ta series is a modular form is well known (cf. for instance [8], 62); 

hence 2) implies 1). Corollary 2 above shows that 1) implies 3). 

4. Let f = [ a(n)q n be a non-zero modular form of weight COROLLARY 1/2 
n:0 

on some F (N). Then : 
1 

a) la(n)l : 0(1)~ 

b) for every p ~ 0, there is a constant c > 0 such that 
P 

la(n)I p = c x 1/2 + 0(1) for x ~ ~. 
n ~ x P 

(If p = 0 and a(n) = 0, we put la(n)I p = 0.) 

PROOF. This follows from Corollary 3. 

REMARK. If f and g are modular forms of weight 1/2 on FI(N) , their 

product F = f.g is a modular form of weight 1. By Theorem A, F is a 

linear combination of series 

an2+bm 2 
~(n)B(m) q 

n,m 

where ~ and 6 are characters. This shows that F is a linear combination 

of Eisenstein series and cusp forms of dihedral type associated with 

~maginary quadratic fields (cf. [3], §4). Hence, one cannot use pro- 

ducts of forms of weight 1/2 to construct "exotic" modular forms of 

weight 1. 

2.2. Cusp forms of weight 1/2. 

If ~ is a character with conductor r, one may write ~ in a unique 

way as ~ = ~ ~p, where the conductor of ~p is the highest power of p 

plr th 
dividing r; we call @p the p -component of ~ (in the Galois interpre- 

tation of characters, ~p is just the restriction of ~ to the inertia 
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group at p). We say that ~ is totally even if all the @p'S are even, 

i.e. if ~p(-1) : 1 for all plr~ this is equivalent to saying that ~ is 

the _square of a character (which can be chosen of conductor r, if r is 

odd, and of conductor 2r, if r is even). 

Denote by ~e(N,x) the subset of ~(N~x) (see above) made up of the 

(~,t) such that @ is totally even, and put 

~c(N~x) : ~(N~x) - 2e(N,x). 

Define similarly 

~e(N) : U ~e(N,x) , ~e(N) : U ~c(N,x). 
X X 

THEOREM B. The series 0~,t, with (~,t) E ~c(N,x), make u E a basis of the 

space S0(N,1/2,X) of cusp forms of M0(N,1/2,X). The series 8~,t, with 

(@,t) e ~e(N,x)~ make up abasis of the orthogonal complement of S0(N,1/2,X) 

in M0(N,1/2,X) for the Petersson scalar product. 

This theorem will be proved in §7, It implies : 

COROLLARY 1. The series 8~,t, with (~,t) • ~c(N), make up a basis of 

the space $1(N,1/2) of cusp forms of weight 1/2 o_~n FI(N). 

COROLLARY 2. We have $I(N,1/2) ~ 0 if and only if N is divisible by ei- 

ther 64p 2 where p is an odd prime, or 4p2p '2, where p and p' are dis- 

ti___nct odd primes. 

Indeed, Cor. I shows that $1(N~1/2) is non-zero if and only if there 

exists an even character ~ with conductor r(~), which is not totally 

even, and which is such that r(@) 2 divides N/4. Since ~ is even, at 

least two pth-components of ~ are odd; this shows that r(@) is divisi- 

ble by either 4p, where p is an odd prime, or by pp', where p and p' 

are distinct odd primes; hence N is divisible by either 4.(4p) 2 = 64p 2 

or 4(pp') 2 = 4p2p '2. Conversely, if N is divisible by 64p 2 (resp. by 

4p2p'2), one takes for ~ the product of an odd character of conductor 
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p by an odd character of conductor 4 (resp. p'){ it is clear that 

has the required properties. 

EXAMPLES. The above results allow an easy determination of the spaces 

of modular form of weight 1/2 on F0(N) and FI(N) : all one has to do is 

to make a list of the divisors t of N/4, and, for each such t, deter- 

mine the even characters ~ with conductor r(~) such that r(@) 2 divides 

N/4t. The pairs (~,t) thus obtained make up the set ~(N). We give two 

examples : 

i) N = 4Pl...ph , where the Pi'S are distinct primes. In this case t 

is a product of some of the Pi'S, and r(~) must be equal to 1, hence 

= 1. Applying Cor. 1 to Th. A, we see that the series 

8(tz) ~ q in2 = (where t divides pl...ph ) 

make up a basis of M1(N,1/2). Moreover, we have 9(tz) • M0(N,1/2,Xt) ; 

since the Xt'S are pairwise distinct, each M0(N,1/2,X t) is one-dimen- 

sional, and we have M0(N,1/2,X) : 0 if X is not equal to one of the 

Xt'S (in particular if X is not real). 

ii) Let us determine $1(N,1/2) for N < 900. If this space is ~ 0, 

Cor. 2 to Th. B shows that N is divisible by either 64p 2 or 4p2p '2 

where p,p' are distinct odd primes; the first case is possible only if 

N = 576 = 64.32; the second one is impossible (since it implies 

N ~ 4.3252 = 900, which contradicts the assumption made on N). Hence 

we have N = 576, and it is easy to see that the only element of 9c(N) 

is the pair (@,t) with t = 1 and ~ = X3 (which has conductor 12). The 

corresponding theta series is 

2 2 
8 : [ qn _ [ qn 

X3 nm±l (mod 12) nm±5 (mod 12) 

121 169 = 2(q-q25 -q49 +q + q +...). 
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It follows from a classical result of Euler (cf. for instance [4], 

1 
p. 931 or [8], p. 457) that 7 0X3 is equal to 

n(24z) : q H (1-q24n). 
n=l 

Up to a scalar factor, this series is thus the only cusn form of weight 

1/2 and level N < 900. 

§3. OPERATORS 

3.1. Conventions o n  characters. 

From now on, all characters are assumed to be primitive~ this is ne- 

cessary when dealing with different levels. We say that such a charac- 

ter X is definable (mod m) when its conductor r(X) divides m. The pro- 

duct XX' of two characters X and X' is the primitive character associa- 

ted with n ~ x(n)x'(n) ; hence, we have 

(XX')(n) = x(n)x'(n) 

if n is prime to r(x)r(x') but maybe not otherwise. 

3.2. The group G . 

Following Shimura [8], we introduce the group extension ! of GL2(R) + 

r s] belongs to whose elements consist of pairs {M,~(z)}, where M = (t u 

GL2(R) + and #(z) 2 : e det(M)-i/2(tz+u), with lel = 1. The multiplica- 

tion law in G is given by 

{ M , % ( z ) } { N , @ ( z ) }  = { H N , % ( N z ) @ ( z ) } .  

When dealing with forms of weight </2 it is convenient to define the 

"slash operator" fl<~ : fl~ by : 
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(fI~)(z) : ¢(z)-<f(Hz) where 6 : {H,@} e ~, 

and, for ~i e _G and c i • C : 

fl([ ei~ i )  = [ c±(flei). 

If A • F0(4) , we define A ~ • G by A ~ = {A,j(A,z)}, where j(A,z) is the 

8-multiplier of A, ef. §1. Thus, if f • M0(N,</2, X) and 

i = (ca ~) E F0 (N) , we have fIA ~ : x(d)f. 

It follows from the definition of j that 

(1) A~B ~ = (AB) { if A,B • F@(4). 

Computations in G are greatly aided by making use of (I) whenever poss- 

ible. 

3.3. Hecke operators. 

For a prime p, with p ~N, we define T(p 2) on M0(N,</2,X) as in 

Shimura [8] by : 

p2-1 
T(p2) : pK/2-2[ 

j=0 

- 1  

+ x(p2){ Iop 2 o ,p -1 /~  

where ~p = 1 or i according as p ~ 1 or 3 (mod 4), cf. §1. 

prime p with p I N (for instance p = 2), we define T(p 2) by 

2_ 1 
,pl/2 

j=o 

and, if 4p I N, we define T(p) by 

For a 

T(p) = pK/4-1 Pi I {( 01 plJ ~pl/4}. 

j=0 

LEMMA 1. Let f = Z a(n)q n be an element of M0(N,K/2~X) , and let 
n=0 

f JT(p  2) = ~ b (n )q  n. Then f JT(p  2) be longs  to  M0(N,~/2,X) a l s o ,  and 
n=0 
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we have 

a(np2) i_!f p I N, 
b(n) d 

a(np2) + p(K-3)/2 ( ) + ) (<-i)/2 (~)a(n) 
X P X_4(P 

+ pK-2X(p2)a(n/p2) if p ~ N, 

where (~) is the Legendre symbol. 

M0(N,K/2,XX p) and i s  equal  to  ~ 
n=0 

commute. 

If 4p I N, then fiT(p) belongs to 

a(np)qn. Any two such operators 

PROOF. The statements about T(p 2) are proved in Shimura, loc. cit. 

Those about T(p), when 4p J N, are proved by a simple computation. 

3.4. Other operators. 

3),m-1/4} which acts by We need the shift V(m) = m-K/4 {(~ 1 

[flV(m)](z) = f(mz). 

We need also the symmetry W(N) : {[~ %1),N1/4(-iz)1/2}, which acts 

[flW(N)](z) : N-~/4(-iz)-K/2f(-1/Nz), 

so that [flW(N)]IW(N) = f for all f. 

The conjugation operator H is defined by : 

(flH)(z) : f(-~) = a~n)q n if f : [ a(n)q n. 
n:0 n:O 

by 

LEMMA 2. The operators V(m), W(N) and H take M0(N,K/2,X) t~o 

M0(Nm,K/2,XX m) , M0(N,K/2,XXN) and M0(N,K/2,X) respectively. 

if f belongs to M0(N,K/2,X) , we have : 

[fjV(m)][T(p 2) : [fJT(p2)]IV(m) when p ~m, 

[ f [H] IT(p  2) : [ f I T ( p 2 ) ] l H ,  

[ f lW(N)]JT(p 2) : X(p2) [ f lT(p2) ]JW(N)  when p ~N. 

Further, 



Se-St-13 
41 

PROOF. Again, the proof involves simple computations in ~ and is left 

to the reader. Care should be exercised in the commutativity results 

since the definition of T(p 2) depends on the character appearing in the 

space containing the function to which T(p 2) is applied. 

The following operators will be used in 54 only. To define the 

first one, suppose the prime P0 divides N/4, and write F0(N/P0) as a 

disjoint union of cosets modulo F@(N) : 

F 0 ( N / P 0 )  = ~ F 0 ( N ) A  j ,  w i t h  A. = , a n d  ~ = ( F 0 ( N / p 0 )  : F 0 ( N ) ) .  
j = 2  ] c d j  

We define the trace operator S'(X) = S'(x,N,p 0) on M0(N,K/2,X) by 

S' X) = x(aj A ~ : [ ~(dj)A~ 
j=l ) j j:l ]" 

It is easily seen that this operator does not depend on the choice of 

the AD.'s. Moreover, if X is definable (mod N/P0), S'(X) takes 

M0(N,K/2, X) to MO(N/Po,K/2,X) and commutes with T(p 2) for p ~N; if f 

belongs to Mo(N/Po,K/2,X) , we have 

flS'(×) = ~f. 

For our purposes, it is more important to find an operator which 

goes from level N to level N/P0 and which undoes the action of the 

shift operator V(P0). To do this, we define S(X) = S(x,N,p 0) on 

M0(N,K/2, X) by : 

1 K/4 S' 
S(X) : ~ P0 W(N) (XxN)W(N/P0). 

LEMMA 3. Let p@ b__e a prime such tha!t 4P0[N , and XXp0 is definable 

(mod N/P0). Then : 

a) The operator S(x~N,p 0) maps M0(N,~/2,X) into Mo(N/Po,K/2,XXpo). 
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If m is prime to P0' and f belongs to M0(N,</2,X), then 

flS(x,N,p 0) = flS(x,Nm,P0). 

S(X) commutes with all T(p2), for p ~N. 

__If g • Mo(N/Ro,~/2~XXp 0), then gIV(P0) • M0(N,KI2~x) and 

[gIV(Po)]IS(x,N,Po) : g. 

Let p be a prime such that 4p[N~ p ~ p0 ~ and XXp is definable 

(mod N/p). If g • Mo(N/p,~/2,X×p) , we have 

[g]V(p)] lS(x,N,p O) : [glS(XXp,N/P,pO)]lV(p). 

PROOF. Assertion a) follows from Lemma 2 and from the fact that 

X×N : X--Xpo×N/Po 
is definable (mod N/P0). 

If <~ ~] belongs to F0(Nm/P0) , with (m~p 0) = 1, then 

W(Nm)[~ ~]~W(Nm/p 0) {m~l} W(N)[e~m b~] ~ : W(N/Po), 

and b) follows, since fI{m,1} = f. 

Assertion c) follows from the commutativity of the T(p2), p ~ N, with 

W(N),S'(~X N) and W(N/P0). 

As for d), we have 

{(~0 ~),p81/4}W(N ) : {P0,1}W(N/po), 

hence 

-~/4 
[glV(P0)llW(N) : P0 glW(NIp0)" 

1 _ 
by sent to g by W(N/P0), whie This is invariant [ S'(XXN) , and is p0 K/4 

proves d). 

As for e), we have 4P0PlN , and XXp@Xp is definable (mod N/pp0). Fur- 

ther : 
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 )'P-lj4}w(N  : 

W(N/Po) = W(N/pp@){ (~ ~] ,p-1/4} ,  

and XX N = X-XpXN/p. The formula 

[glV(p)]Is(×,N,p0) : [glS(×Xp,N/p,p0)]IV(p) 

follows from this, after a simple computation. 

Let p be any prime. We shall need the operator 

K(p) = 1 - T(p,Np)V(p), 

where T(p,Np) is the Hecke operator T(p) relative to the level Np (see 

above). 

LEMMA 4. If f = [ a(n)q n belongs to M0(N~K/2,X), then flK(p) belongs 
n:0 

t__oo M0(Np2,K/2,X) and is equal to ~ a(n)q n. Further, if p' ~ Np, 
2 (n,p):l 

then T(p' ) and K(p) commute. 

PROOF. This is immediate. 

REMARK. All the above operators take cusp forms to cusp forms. 

§4. NEWFORMS 

4.1. Definitions. 

Let f e M0(N,K/2,X ) be an eigenform of all but finitely many T(p2). 

We say that f is an oldform (compare [1], [5]) if there exists a prime 

p dividing N/4 such that : 

either X is definable (mod N/p) and f belongs to M0(N/p,K/2,×), 

or XXp is definable (mod N/p) and f = glV(p), with g • Mo(N/p,~/2,XXp). 
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We denote by~id(N,~/2,X ) the subspace of M@(N,</2,X) spanned by old 

forms. If f e Mo(N,K/2,X ) is an eigenform of all but finitely many 

(p2 ~°id(N,~/2,X) , we say that f is a T ), and f does not belong to ~0 

newform of level N. 

LEMHA 5. The szmmetry o_perator W(N) : MO(N,~/2,X) ~ M0(N,~/2,XXN) and 

!he cgnjugation operator H : M0(N,K/2,X) ~ M0(N,K/2,~) take oldforms 

to oldforms and newforms to newforms. 

PROOF. By Lemma 2, W(N) and H take eigenforms to eigenforms. If f is 

an oldform of the first type above, i.e. f e Mo(N/p,K/2,X), then 

ffw(H) : S / 4 [ f f w ( N / p ) ] f V ( p )  

i s  an  o l d f o r m  o f  t h e  s e c o n d  t y p e .  C o n v e r s e l y ,  i f  f = g l V ( p )  i s  an  o l d -  

f o r m  o f  t h e  s e c o n d  t y p e ,  t h e n  f l W ( N )  = p - K / 4  g l W ( N / p  ) i s  an  o l d f o r m  o f  

t h e  f i r s t  t y p e .  H e n c e  W(N) t a k e s  o l d f o r m s  t o  o l d f o r m s ~  t h e  same i s  o b -  

v i o u s l y  t r u e  f o r  t h e  c o n j u g a t i o n  o p e r a t o r  H. T h a t  W(N) a n d  H t a k e  n e w -  

f o r m s  t o  n e w f o r m s  f o l l o w s  f r o m  t h i s ~  a n d  f r o m  t h e  f a c t  t h a t  t h e i r  s q u a r e  

i s  t h e  i d e n t i t y .  

old 
LEHHA 6. Let h e M 0 (N,K/2,X) be a non-zero eigenform of all but fini- 

tely many T(p2). Then there is a divisor N 1 of N, with N 1 < N, a cha- 

racter @ definable (mod N 1) and a newform g i_nn M0(N1,K/2,@) such that 

h and g have the same e!$envalues for all but finitelK many T(p2). 

PROOF. We use induction on N. By construction, M~Id(N,K/2,X) has a ba- 

sis (fi) consisting of forms of the type g, or gIV(p), where g is an 

eigenform of all but finitely many T(p2), and is of lower level. Hence 

h is a linear combination with non-zero coefficients of some of the 

fi's' and each fl" occurring in h has the same eigenvalue for T(p 2) as 

h does. The Lemma then follows from the induction assumption. 
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LEMMA 7. Let p be a prime, and let f : ~ a(n)q n be a non-zero ele- 
n:0 

ment of M0(N,K/2,X) such that a(n) = 0 for all n not divisible by p. 

Thei p divides NI4,XXp is definable (mod N/p) and f = glV(p) with 

g • M0(N/p,K/2,XXp). 

PROOF. Put 

: fczJp  : Z a pn qn = p / flf( 
n = O  

L e t  N'  = N / p  i f  4pIN a n d  N'  = N o t h e r w i s e .  L e t  P o ( N ' , p )  be  t h e  s u b -  

o f  F o ( N ' )  c o n s i s t i n g  o f  m a t r i c e s  (~ _ _ ~} w i t h  b ~ O (mod p )~  i f  group 

A = (~ ~) is such a matrix, put A 1 = (~c b/~). We have A~ • F0(N) , 

and 

hence 

o p114} i • A[{  1 0 14}, {(~ p}, : {1,Xp(d)} (o p}'Pl 

glA ~ = Xp(d)x(d)g. 

Since d is relatively prime to both p and N, this can be rewritten 

as 

(~) gIA ~ = (XXp)(d)g. 

By hypothesis, g has a q-expansion in integral powers of q, hence (~) 

holds for A = I~ ~I" Since F0(N') is generated by F0(N~, p) and 

(~ ~I, this shows that (~) holds for any A E F0(N'). Since g is 

non-zero, this implies that XXp is definable (mod N')~ this is easily 

seen to be possible only if p divides NI4, in which case N ~ = N/p and 

(~) shows that g belongs to M0(N/p,~/2,XXp). 

REMARKS. (1) If f is a cusp form, it is clear that g is also a cusp 

form. 

(2) The above Lemma gives a characterization of oldforms of the second 

type. 
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THEOREM 1. Let m be an inte@er ~ 1, and let f = [ a(n)q n be an ele- 
n:O 

ment of M0(N,K/2,X) such that a(n) = 0 for all n with (n,m) = 1. Then 

f can be written as 

: fpl , • Mo(N/p,K/2,XXp), f [ V(p) with fp 

P 

where p runs through the primes such that p[m, 4piN , and XXp is defin= 

able (mod N/p). 

If f is a cusp form, the f can be chosen to be cusp forms. If f is an -- p -- 

eigenform of all but finitely many T(p'2), then the f may be further 
P 

chosen so that they, too, are eigenforms of all but finitely many T(p'2), 

and have the same eigenvalues as f. 

(Compare with the integral weight case, in [1] or [5].) 

PROOF. Clearly, we may assume that m is square-free. We proceed by 

induction on the number r of prime factors of m. If r = @, then m = 1 

and all a(n) are zero by hypothesis~ there is nothing to prove. How 

suppose r ~ 1 and that Theorem 1 has been proved for all m's which are 

products of strictly less than r primes (and all levels). Let P0 be a 

prime divisor of m. Put m = P@m0, and 

h : ~ a(n)q n : fl ~ K(p), cf. §3. 

(n,m0)=l Plm 0 

If h = 0, we may replace m by m@, and Theorem 1 follows from the in- 

duction hypothesis. Hence, we may assume that h ~ @. By Lemma 4, we 

have h • M0(Nm~,K/2,X). If (n,m 0) = 1 and a(n) ~ 0, by hypothesis we 

have (n,P0) ~ 1 and Lemma 7 shows that 4P01Nm~, XXp0 is definable 

2 
(mod Nm0/P@) and h : gPoIV(Po) with gPo • M@(Nm~/P0,~/2,XXp0). This 

implies that 4PolN and that XXp0 is definable (mod N/p@). 

Zoreover~ we have 

f-h = f- gp IV(P0) = [ b(n)q n, 
0 n=0 
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with b(n) = 0 if (n,m 0) : 1. By the induction hypothesis (applied to 

2 
m 0 and to the level Nm0) , this shows that f- gP01V(P0) can be written 

as 

f- gPoIV(Po) : p [ gpIV(P)' 

where p runs through the primes such that plm 0 and XXp is definable 

(mod Nm~/p), with gp e Mo(Nm~/p,K/2,××p). We now apply the operator 

S(×) = S(x,N,Po) of §3 to f. Using Lemma 3, the above formula gives 

2 
flS(x) - gp : [ [gpIS(XXp,Nmo/P,Po)]IV(P). 

0 p 

be flS(x). We have fp0 e Mo(N/Po,K/2,XXpo). Moreover the Let now fPo 

above formula shows that the n th coefficient of fo = f - fpoIV(Po ) is 0 

if (n,m O) = i; this allows us to apply the induction hypothesis to fo 

and mo, and we get the required decomposition of f. As for the other 

assertions of Theorem 1, they follow from the inductive eonstruction of 

the f 's and from Lepta 3. 
P 

COROLLARY. If the form f of Theorem 1 is an eigenform of all but finite- 

ly many T(p'2), then f belongs to M~Id(N,~/2,X). 

§5. THE "BOUNDED DENOMINATORS" ARGUMENT 

5.1. Coefficients of modular forms of half integral weight. 

LEMMA 8. (a) There is a basis of M0(N,K/2,X) consisti~ of forms whose 

coefficients belong to a number field. 

(b) l_~f f : [ a(n)q n belongs to M0(N,~/2,X) and the a(n) are algebraic 

numbers, then the a(n) have bounded denominators (i.e. there exists a 

non-zero integer D such that D.a(n) is an algebraic integer for all n). 
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PROOF. The analogous statement for modular forms of integral weight is 

well known (cf. for instance [7], Th. 3.5.2 or [3], Prop. 2.7). We 

shall reduce to that case by the familiar device of multiplying by a 

fixed form f0" We choose for f0 the form 

e 3K = (1 + 2q + 2q 4 + ...)3~ = 1 + 6Kq + ... 

The map ~ : f ~ 83~f sends M0(N,K/2~X) into the space M0(N,2K,X) of mod- 

ular forms of type (2K,X) on F0(N). By the results quoted above, it 

follows that, if the coefficients of f are algebraic, those of e3Kf 

have bounded denominators; dividing by 83K does not increase denomina- 

tors, hence b) follows. As for a), one has to check that the image 

Im(%) of % can be defined by linear equations with algebraic coeffi- 

cients. This is so because e does not vanish on the upper half-plane 

(as its expansion shows), nor at any cusp except those congruent mod 

F0(4) to 1/2; hence a modular form F in M0(N,2~,X) belongs to Im(~) if 

and only if it vanishes (with prescribed multiplicities) at these cusps, 

i.e. if some of the coefficients of its expansions at these cusps are 

zero; since it is known that these coefficients are algebraic linear 

combinations of the coefficients of F at the cusp ~, the result follows. 

REMARKS. (1) A similar argument shows that MI(N,K/2) has a basis made up 

of forms with coefficients in Z, and that the action of (Z/NZ) { is Z- 

linear with respect to that basis. This implies that, if f = ~ a(n)q n 

belongs to M@(N,~/2,X) and a is any automorphism of C, the series 

f~ = ~ ~(a(n))q n 

belongs to Mo(N,K/2,Xa), just as in the integral weight case ([3], 2.7.4). 

We will not need these facts. 

(2) On noncongruence subgroups, part (a) of Lemma 8 remains true, but 

part (b) does not, as was first noticed by Atkin and Swinnerton-Dyer [2]. 

A simple example is 
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_ 1 2 3 q3 11 4 
f(z) : 0(z) 1/2 8(3z) 1/2 = 1 +q 7 q +7 +-8- q "'" ' 

which is a modular form of weight 1/2 on a subgroup of index 2 of F1(12) , 

and whose coefficients have unbounded powers of 2 in denominator (if n 

is a power of 2, the 2-adic valuation of the n th coefficient of f is 

l-n). Similar examples exist in higher weights, integral as well as 

half integral : take for instance 

fm(Z) : 0(z) 1/2 e(3z) m/2, with m odd ~ 1, 

which is of weight (m+1)/4. 

5.2. Eigenvectors of the Hecke operators for weight 1/2. 

From now on, we restrict ourselves to weight 1/2, i.e. we take ~ = 1. 

LEMMA 9. Let f = Z a(n)q n be a non-zero element of M0(N,1/2, X) and 
n:0 

T(p 2 ) • C. let p be a prime, with p ~N. Assume that fl : Cpf, with Cp 

Let m ~ 1 be such that p2 ~ m. Then : 

a(mp2n ) ~ n (a) we have : a(m)x(p)n( ) for every n ~ 0. 

(b) l_ff a(m) ~ 0, then p ~ m and Cp = X(p)(~)(l+p-1). 

PROOF. Since T(p 2) maps forms with algebraic coefficients into them- 

selves (ef. L~mm 1), it follows from Lemma 8 that the eigenvalue c is 
P 

algebraic, and that the corresponding eigenspace is generated by forms 

with algebraic coefficients. Hence we may assume that the coefficients 

a(n) of f are algebraic numbers. Consider the power series 

A(T) : Z a(mp 2n)Tn, 
n=0 

where T is an indeterminate. By [8], p. 452, we have 

A(T) : a(m) 1 - sT 

(1-BT)(1-yT) 
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with ~ = X(p)p-l(~) and 6 + Y = Cp, BY = X(p2)p -1 (note the negative 

exponent of p, which comes from the fact that K = 1). This already 

shows that a(m) = 0 implies A(T) = 0, i.e. a(mp 2n) : 0 for all n ~ 0. 

Hence we may assume that a(m) ~ 0~ in which case A(T) is a non-zero ra- 

tional function of T. If we view A(T) as a p-adic function of T (over 

a suitable finite extension of the p-adic field Qp), Lemma 8 (b) shows 

that A(T) converges in the p-adic unit disk U defined by ITlp < 1; hence 

A(T) cannot h~ve a pole in U. However, since 6y = X(p2)p -1~ either 

8 -1 or y-1 belongs to U~ assume it is 6 -1 . In order that A(T) be holo- 

morphic at 6 -1, it is necessary that the factors 1 - 8T and 1 - sT cancel 

each other. We then have ~ : 6 and 

A(T) : a(m)/(1-yT), so that a(mp 2n) : yna(m). 

Since BY ~ 0 we have e ~ 0, hence p ~ m. Moreover, 

This shows that a(mp 2n) = yn a(m) = a(m)x(p)n(~) n which proves (a). p ' 

As for the last assertion of (b), it follows from c = B + y = ~ + y. 
P 

THEOREM 2. Let f = ~ a(n)q n be a non-zero element of M0(N,1/2,X) 
n=0 

and let N' be a multiple of N. Assume that, for all p ~ N', we have 

flT(p 2) = Cpf, with Cp • C. Then there exists a unique square-free 

i__nnteger t ~ 1 such that a(n) = 0 if n/t is not 9 square. Moreover : 

(i) tiN'. 

(ii) Cp = X(p)(~)(l+j -1) if p ~ N'. 

(iii) a(nu 2) = a(n)x(u)(~) if (u,N') = 1, u ~ 1. 

PROOF. Let m and m' be two integers ~ 1 such that a(m) ~ 0 and 

a(m') ~ 0. We show first that m'/m is a square. Let P be the set of 

primes p with p ~ N'mm'. If p E P, Lemma 9 shows that 
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hence 

×(p)(~)(1+p -I) : Cp : ×(p)(~)(i+~-i), 

(p) : (~) for all p e p. 

It is well known that this implies that m'/m is a square. We may write 

m and m' as m = tv 2, m' = tv '2 with v,v' ~ 1 and t square-free ~ 1 

This proves the first part of the Theorem, i.e. the existence of t. 

Write now v as pnu, with p ~ N t and (p,u) : 1, so that m = tp2nu 2. By 

Lemma 9, applied to tu 2 we have a(m) : X(p)n(tu2)na(tu2) hence a(tu 2) ~0 
' p 

and Lemma 9 (b) shows that p ~ tu 2, hence p ~ t, and Cp = X(p)(~)(l+p-1). 

Hence every prime factor of t divides N'~ since t is square-free, this 

shows that tiN' , and (i) and (ii) are proved. As for (iii), it is 

enough to check it when u : p with p ~ N'; in that case, one writes n 

2a p2 
as mop , with ~ mo, and applies Lemma 9 (a). 

COROLLARY. If a(1) ~ 0, then t : 1 and c : X(p)(l+p -1) for p ~ N'. 
-- p 

(Note that, in this case, the Cp'S determine the character X.) 

now ~ a(n)n -s be the Dirichlet series associated with f. Let Let 
n=l 

be the character XXt, so that ~(p) = X(P)(~) if p ~ N'. Assertions 

(i) and (iii) of Theorem 2 can be reformulated as : 

THEOREM 2' Under the assumptionsof Theorem 2, we have 

a(tn2)n -2s) ~ (1 -~(p)p-2S) -1 
n:l ~ a(n)n-S = t-S(n~N'~ p~ N 

(The notation AIB ~ means that A divides some power of B, i.e. that every 

prime factor of A is a factor of B.) 



Se,.-St-24 
52 

§6.  PROOF OF THEOREM A 

6.1. Structure of newforms of weight 1/2. 

Let f : [ a(n)q n be a newform of level N (cf. §4) belonging to 
n:0 

M0(N,1/2,X). By Theorem 2, there is a unique square-free integer t ~1 

such that a(n) = @ if n/t is not a square. 

LEMMA 10. We have t = i and a(1) ~ 0. 

PROOF. The product expansion of Z a(n)n -s given in Theorem 2' shows 
n:l 

that, if a(1) = 0, we have a(n) = 0 for every n such that (n,N') = 1; 

the Corollary to Theorem 1 then shows that f belongs to M~Id(N,1/2,X), 

contrary to the assumption that f is a newform. Hence a(1) ~ 0, and 

this implies t : 1, cf. the Corollary to Theorem 2. 

This Lemma allows us to divide f by a(1); hence we may assume that 

f is normalized~ i.e. that a(1) = 1. 

LEMMA 11. Let g E M0(N,1/2,X ) be an eigenform of all but finitely many 

T(p2), with the same ei~envalues as f. Then g is a scalar multiple of f. 

PROOF. Let c be the coefficient of q in the q-expansion of g, and set 

h = g - cf, 

so that the coefficient of q in the q-expansion of h is 0. Suppose 

h ~ 0. By Lemma 10, h is not a newform~ since it is an eigenform of 

all but finitely many T(p2), it belongs to M~Id(N,1/2,X). Hence, by 

Lemma 6, there are NIIN , with N 1 < N, a character ~ definable (mod N 1) 

and a normalized newform gl in M0(N1,1/2,~) with the same eigenvalues 

(p2 's Cp as f and h, for all but finitely many T ). Since the Cp 
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determine the character (cf. the Corollary to Theorem 2) we have X = 

and so gl belongs to M~Id(N,1/2,X). On the other hand, the coefficient 

of q in the q-expansion of f -gl is 0; the same argument as above then 

shows that f- gl belongs to M~!d(N,1/2,X ) . _  Hence f = gl + (f-g1) belongs 

,old.. 
to ~0 ~'1/2'X)" This contradicts the assumption that f is a newform. 

Hence h = 0, i.e. g = cf. 

LEMMA 12. The form f is an eigenform of every T(p2). If we pu~ 

fIT(p 2 ) = Cpf, we have 

(~) ~ a(n)n -s : ~ (1 -2s) H (1 - X(p)p -2s) 
n:l pIN -epp p~ N 

-1 

Further, if 4piN, then c : 0. 
P 

PROOF. If we apply Lemma 11 to g : fiT(p2), we see that g is a multi- 

ple of f. Hence f is an eigenform of every T(p2), and the Euler pro- 

duct (~) follows from this and Theorem 2' (applied with N' = N, t = 1, 

: X ) .  

If 4pIN, then Lemma 1 shows that 

~ 2 

fiT(p) : [ a(np)q n : [ a(m2p2)q pm : c fIV(m) 
n:0 m:0 P 

0 Lemma 7 applied to fiT(p) and to belongs to M0(N,1/2,XXp). If Cp , 

the character XXp shows that X is definable (mod N/p) and that 

fiT(p) : gIV(p) with g e Mo(N/p,1/2~X ). We have CpflV(p) : glV(p)~ 

hence Cpf = g; this shows that f belongs to Mo(N/p,1/2, X) and contra- 

dicts the assumption that f is a newform. Hence c = 0. 
P 

LEMMA 13. The level N of the newform f is a square, and flW(N) is a 

multiple of flH. 

(Recall that W(N) and H are respectively the symmetry and conjugation 

operators, ef. §3.) 
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PROOF. If p ~N, we have flT(p 2) : c f with c = (l+p-1)X(p), and, by 
P P 

Lemma 2, 

[flW(N)]IT(p 2) = ~(p)2ep flW(N) : ~p fl W(N), 

[flH]IT(p 2) = (c f)IH = [ flH since H is anti-linear. 
P P 

But flW(N) and flH are newforms of level N and characters ~X N and ~ res- 

pectively, ef. Lem~la 5. Since they have the same eigenvalues ~p for all 

T(p2), p ~ N, and these eigenvalues determine the character (cf. the Co- 

rollary to Theorem 2), we have XX N = X and N is a square. The fact that 

fIW(N) and fIH are proportional follows from this and from Lemma 11. 

THEOREM 3. If f is a normalized newform in M0(N,1/2,X) , and r is the 

i 
conductor of X, then N = 4r 2 and f = T %X" 

PROOF. We write f = [ a(n)q n as above, and put 
n:0 

-i X(p)p_2S)-i F(s) : ~ a(n)n -s : ~ (1 -c p-2S) ~ (1 - 
~:i pIN P p ~ N 

~(s) = [ a(n)n -s 
n=l 

The Dirichlet series F and ~ converge for Re(s) large enough. Using 

Mellin transform~ ~ and Lemma 13, we obtain by a standard argument the 

analytic continuation of F and F as entire functions of s (except for 

a simple pole at s = 1/2 if a(@) # 0), and the functional equatio~ 

-(I/2-s) 1 - 1 
(2w) -s F(s)F(s) = C1( ) F(~-s)F(7-s), 

where C 1 (and C2, C3, C 4 below) is a non-zero constant. 

On the other hand, we know that the functions 

p)p_2S) -1 
G(s) = L(2s,x) = ~ x(n)n -2s : ~ (1 -X( 

n=l p ~ r 

G(s) = L ( 2 s , ~ )  
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satisfy the functional equation 

-(1/2-s) 
(2~) -s F(s)G(s) C2 (2~_) 1 -- 1 : F (~-s)G(~-s) 

4r 2 

Dividing these equations, we find 

(~) 
-2s f > ] 

R plm tl-×(P)P -2s) C^(N~) ~̀ 4rL 
~ l-Cp p2s-1 

H 

where m is the product of the prime divisors p of N such that c ~X(P)- 
P 

If, for some plm, we have X(P) ¢ @, then the left side of (~) has an 

infinity of poles on the line Re(s) = 0, only finitely many of which 

can appear on the right side. This shows that plm implies X(P) = 0, 

(i.e. plr) and c ¢ 0 since e ~ X(P). We may now rewrite (~) as : 
P P 

S 

r~ (1-Cpp -2s) = c 4 (Nm2) n (1-c~p-2S)> 
pim 4r 2 plm 

where c' = p/~ . The same argument as above (using zeros instead of 
P P 

poles) shows that, for every plm, we have ep = c~, i.e. lepl 2 = p~ 

the above equation then gives C 4 = 1 and Nm 2 = 4r 2 But by Lemma 12 

we have Cp = 0 when 4piN. This shows that m = 1 or 2, and that m = 2 

can occur only when 8 ~ N and X(2) = 0; in the last case, r is divisible 

by 4 and the equation Nm 2 = 4r 2 shows that N is divisible by 16, 

which contradicts 8 ~ N. Hence only the case m = 1 is possible, and we 

have N = 4r 2, F(s) = G(s). This shows that, for every n ~ 1, the coef- 

½ i 
ficients of qn in f and in 0 X are the same. Hence f-7 8 X is a 

constant, and, since it is a modular form of weight 1/2, it is 0. This 

concludes the proof. 

6.2. Alternative arguments. 

1 agree, we could have (1) To show that the constant term of f and 7 0X 

used the well-known fact that they are equal to - F(0) and - G(0) 
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respectively. 

(2) Another way to rule out ICp] 2 : p is to prove a priori that ICpl (l- 

This may be done as follows. Choose D ~ 1 such that p is inert in 

Q(-~), and consider the modular form of weight 1 : 

g(z) : f(z)e(Dz) : ( [ a(u)qU)( [ q Dv2) : [ a(u2)q u2+Dv2 

U:0 -~ U~V 

The p2n-th coefficient of g is a(p 2n) = (c)n. By [3], Cor. 9.2, 
P 

this coefficient is 0(p 2n~) for every ~ > 0. This obviously implies 

ICpl ~ 1. 

Theorem 3 has a converse : 

1 
THEOREM 4. I_ff X is an even character of conductor r, then ~ %X 

normalized newform in M0(4r2,1/2~X). 

(Recall that all characters are assumed to be primitive.) 

is a 

PROOF. Let N : 4r 2, We know that 0 X belongs to M0(N,1/2,X) and it is 

e a s i l y  c h e c k e d  t h a t  i t  i s  an e i g e n f o r m  o f  a l l  T ( p 2 ) ,  w i t h  e i g e n v a l u e  

c : (l+p-1)X(p) if p ~ N (cf. Lemma 1). 
P 

Thus, if 0 X is not a newform, Lemma 6 shows that there are a divisor N 1 

of N, with N 1 < N, a character 9 definable (mod N 1) and a newform f in 

M0(N1,1/2,@) such that f and 0 X have the same eigenvalues for all but 

finitely many T(p2). We thus have 

(l+p-1)9(p) = c = (l+p-1)X(p) for almost all p, 
P 

and this implies @ = X~ hence N 1 = 4r 2 by Theorem 3. This contradicts 

1 is obviously normalized. N 1 < N. Hence e X is a ncwform~ and 7 eX 

6.3. Proof of Theorem A. 

Let X be an even character definable (mod N). With the notations of 
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§2, we want to prove that the theta series @~,t : 8~ IV(t)' with 

(@,t) • Q(N,x) , make a basis of M0(N,1/2,X). The proof splits into 

two parts : 

a) Linear independence of the @~,t" 

Since t and X determine ~, every t occurs as the second entry of at 

most one (#,t) in ~(N,x). Suppose then that we have 

11 e@l ,t I +...+ im @@ m,t m : 0, 

t I . 
i . ~ 0 for all i, The coefficient of q mn with t I < t 2 --...< t m and l I 

8~l,t I 8@j , , . 
is equal to 2~ in ,tj J > 2 it is equal to 0 This shows 

that 211 = 0, hence ~1 = 0. This contradiction proves the linear inde- 

pendence of the 8~,t" 

b) The @ 
~,t -- 

We need : 

with (~,t) e ~(N,x) , generate M0(N,1/2,×). 

LEMMA 14. There is a basis of M0(N,1/2,X) consisting of eigenforms for 

all the T(p2), p ~ N. 

PROOF. Put on M0(N,1/2,X) the Petersson scalar product < f,g>, cf. §1. 

A standard computation shows that, if p ~ N, we have 

< f[T(p2),g > = ×(p2)< f,~iT(p2) >, 

hence X(p)T(p 2) is hermitian. The Lemma follows from this, and from 

the fact that the T(p 2) commute. 

We can now prove assertion b), using induction on N. By Lemma 14, it 

is enough to show that any eigenform f of all T(p 2), p ~ N, is a line- 

ar combination of the 8~, t with (~t) e ~(N,x). If f is a newform, 

this follows from Theorem 3. If not, we may assume f is an oldform of 

one of the two types of §4 : 

either X is definable (mod N/p) and f belongs to Mo(N/p,1/2,X) , 
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or XXp is definable (mod N/p) and f = gIV(p) with g e Mo(N,N/p,1/2,XXp). 
In the first case, the induction assumption shows that f is a linear 

combination of the 8~, t with (},t) e ~(N/p, X) and afortiori with 

(~,t) e ~(N,x). In the second case, g is a linear combination of the 

8~,t, with (~,t) e ~(N/p,XXp),and hence f is a linear combination of 

the 8~,tp, with (9,tp) e ~(N,x). 

REMARK. It is possible to prove Lemma 14 without using Petersson pro- 

ducts. Indeed, assume that some T(p2), p ~ N, is not diagonalizable. 

Then there exists an eigenvalue c of T(p 2) and a non-zero element g of 
P 

M0(N,1/2,X) such that 

glU ~ 0 and glU 2 : 0, where U = T(p 2) ~ c . 
P 

Using Lemma 8, one may further assume that the coefficients of g are 

algebraic numbers. A computation similar to that of Lemma 9 then shows 

that these coefficients have unbounded pgwers of p in denominators, and 

this contradicts Lemma 8. Hence, each T(p 2) is diagonalizable. Since 

these operators commute, Lemma 14 follows. 

§7.  PROOF OF THEOREM B 

7.1. Twists. 

Let f = [ a(n)q n be a modular form of weight k = </2 on some FI(N). 
n:0 

Let M be an integer ~> 1, and ~ a function on Z with period M (i.e. a 

function on Z/MZ). We put 

oo 

f • c = [ a(n)~:(n)q n. 
n=O 

Let ~ be the Fourier transform of e on Z/MZ, defined by : 
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1 
~(m) : H [ s ( n )  exp(-2sinm/H). 

n e Z/MZ 

We the o have 

hence 

a ( n )  : 
m e Z/MZ 

~(m) exp(2~inm/H), 

(f ~ s)(z) = [ ~(m)f(z+~). 
m E Z/MZ 

From this, one deduces easily that f • s is a modular form of weight k 

on FI(NM2). 

7.2. Characterization of cusp fgi<ms" 

We keep the above notation, and we put 

%f(s) : [ a(n)n -s. 
n:l 

THEOREM 5. The following properties are equivalent : 

i) f vanishes at all cusps m/My with m e Z; 

ii) for every function s on Z, with period M, the function 

~ f  ~ s ( s )  = ~ a ( n ) s ( n ) n  - s  i s  h o l o m o r p h i c  a t  s = k .  
n = [  

(This is also true when k is an integer, instead of a half integer; 

the proof is the same.) 

PROOF. Consider first the case where M = 1. Assertion i) then means 

that f vanishes at the cusp 0, and assertion ii) that @f(s) is holo- 

morphic at s = k. If we put 

g = flW(N) : [ b(n)q n, 
n:O 

then i) is equivalent to : 

i') g vanishes at the cusp ~, i.e. b(0) is 0, 

while the functional equation relating ~f(s) and ~g(k-s) shows that ii) 

is equivalent to : 
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ii') (2~)-SF(s)% (s)~ is holomorphic at s : 0, i.e. %g(0) : 0. 

The equivalence of i') and ii') then follows from the known relation 

b(0) :-~ (0). 
g 

Consider now the general case. By applying the above to f • s (with N 

replaced by NM2), we see that ii) is equivalent to : 

iii) for every function E on Z, with period M, the modular form f • s 

vanishes at the cusp 0. 

Using the above formulae, this is in turn equivalent to : 

iv) for every m E Z/MZ, the modular form f(z+~) vanishes at the cusp @, 

and it is clear that iv) is equivalent to i). 

COROLLARY. The following properties are equivalent : 

a) f is a cusp form; 

b) for every periodic function ~ o_~n Z~ the function %f ~ E(s) is holo- 

morphic at s = k. 

Indeed, Theorem 5 shows that b) is equivalent to the fact that f van- 

ishes at all cusps ~ ~ since ~ is Fl(N)-equivalent to l/N, this means 

that f is a cusp form. 

REMARK. When f belongs to some M0(N,~/2,X) , it is enough to check pro- 

perty b) for functions s with period N. Indeed, by Theorem 5, this 

implies the vanishing of f at all cusps m/N, with m e Z, and it is 

known that every cusp is r0(N)-equivalent to one of these. 

We now go back to the case K = 1, k = 1/2 : 

LEMMA 15. Let ~ be an even character which is not totally even (cf. §2). 

Then 84 is a cusp form. 

PROOF. Let s be a periodic function on Z. By the Corollary to Theorem 
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5, it is enough to prove that the Dirichlet series 

Fs(S) = 2 [ s(n2)?(n)n -2s 
n=l 

is holomorphic at s = 1/2. Let M ~ 1 be a period of ~, which we may 

assume to be a multiple of the conductor r(~) of ~. We have 

F (s) : 2 [ s(m2)@(m)Fm,M(2S) 
c m • Z/MZ 

where 
Fm,M(S) : [ n -s 

n~m (mod M) 
m~l 

It is an elementary fact that Fm,M(S) has a simple pole at s = 1 with 

residue 1/M. Hence Fc(s) has at most a simple pole at s = 1/2, with 

residue R(s,@)/M, where 

R(s ,t~) = )[ s (m2) t~ (m)  , 
m e Z/MZ 

and we have to prove that R(s,~) = 0. By assumption, there is a prime 

1 dividing r($) such that the /th component ~l of @ is odd. Let us 

write M as /aM', with (/,M') = 1, so that the ring Z/MZ splits as 

z//az × Z/M'Z. Let x I be the element of Z/MZ whose first component (in 

the above decomposition) is -1, and the second component is 1. The 

fact that ~l is odd means that $(×/) = -1. Since x I is invertible in 

Z/MZ, we have 

R(c , t~ )  = )[ s ( ( x / m ) 2 ) t ~ ( x g m )  : [ s ( m 2 ) @ ( x / m )  
m •Z/MZ m •Z/MZ 

: - [ s(m2)@(m) : -R(e,@) 
m • Z/MZ 

which shows that R(E,~) = 0, as wanted. 

LEMMA 16. Let ~ be a totally even character, and T a finite set of inte- 

gers ~ 1. If the modular form f = t @~ T ct@~'t (ct • C) 
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is a cusp form, then all c t are 0. 

PROOF. Assume the c t are not all 0, and let t O be the smallest t • T 

such that c t # @. Choose an integer M ~ 1 which is divisible by 2r(?) 

and by all t e T. The first divisibility condition, together with the 

assumption that @ is totally even, implies that there is a character 

definable (mod M) such that 2 = ~. Define now a periodic function c 

on Z by 

We have 

and 

s(n)  = I ~(n/t@o 
if t01n and n/t 0 is prime to M 

otherwise. 

a(t0n2 ) : ~(n) 

L0 
if (n,M) = 1 

if (n,M) ~ 1 

s(tn 2) : 0 if t e T, t > t O (since (tn2,M) ~ t > to). 

Using the minimality of to, this shows that the Dirichlet series 

~f ~ s(s) is equal to 

2Cto ( ton 2 -s  t-So -2s Z ~(n)~(n) ) = 2ct0 Z n 
(n,M):l (n,M):l 

n~l n~l 

The same argument as in the proof of Lemma 15 shows that the residue of 

this function at s = 1/2 is equal to 

CtotO1/2 ~(M)/M = CtotO1/2 ~ (1 -~) 
plM P ' 

which is ~ 0. By Theorem 5, we thus see that f is not a cusp form. 
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7.3. Proof of Theorem B. 

Let N,X,~c(N,x),~e(N,x) be as defined in §2. We have three asser- 

tions to prove : 

a) The ¢~,t' with (~,t) e ~c(N,x)~are cusp forms. 

Indeed, Lemma 15 shows that e~ is a cusp form, and this obviously 

implies the same property for e~, t- 

b) No linear combination (except 0) of the e~,t, with (~,t) e ~e(N,x), 

is a cusp form. 

Let V be the space of the linear combinations of the 8~,t, with 

(~,t) e ~e(N,x), which are cusp forms. It is clear that V is 

stable under the T(p2), p ~ N. Hence, if V is non-zero, it con- 

tains a common eigenform f of the T(p2), p ~ N. Since the eigen- 

-1 
value of e~, t is (l+p )@(p), the form f has to be a linear com- 

bination of the 8~, t for a fixed character 4, and this contradicts 

Lemma 16. 

c) If (~,t) e ~c(N,x) and (~',t') • ~e(N,x), then e@, t and e~,,t , 

are orthogonal for the Petersson scalar product. 

Indeed, since @ ~ 9', there is a p ~ N such that @(p) ~ @'(p). 

Hence, 0@, t and e@,,t , are eigenforms of T(p 2) corresponding to 

different eigenvalues. Since X(p)T(p 2) is hermitian (cf. the 

proof of Lemma 14, §6) this implies that these two functions are 

orthogonal. 

7.4. The space El(N,1/2). 

Let E0(N,1/2,X) be the space of linear combinations of the e~, t with 

(~,t) e ~e(N,x). By Theorem B, we have the orthogonal decomposition 

M0(N,1/2,X) = E0(N,1/2,X) ® S0(N,1/2,X), 

where S0(N,1/2,x) is the space of cusp forms. Similarly, if we put 
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El(N,1/2) : ® E0(N,1/2,X) , we have 

M1(N~1/2) : El(N,1/2) @ $1(N,1/2). 

The elements of El(N,1/2) can be characterized as follows : 

THEOREM 6. Let f be an element of M1(N,1/2). The followin~__properties 

are equivalent : 

i) f belongs to El(N,1/2). 

ii) f is a linear combination of 8(az+b), with a • Z, a ~ 1, and b •Q. 

iii) f is orthogonal to all cusp forms of all levels. 

PROOF. Clearly ii) implies iii) since 8 is in El(M,1/2) for every M, 

and so is orthogonal to all cusp forms; the same is then true of 

8(az+b) for any a and b. We have already shown that iii) implies i). 

Finally, if @ is a totally even character, we may write ~J as 2 where 

the character ~ is ramified at the same primes as ~; we have 8~ : 8 • ~, 

hence 8@ is a linear combination of the e(z+b), with b e Q; this shows 

that 8~ has property ii), hence that i) implies ii). 

REMARK. Maass [6] has shown that 8(z) can be defined as an "Eisenstein 

series", by analytic continuation ~ la Hecke. The same is true for 

all the 8(az+b), hence for all the elements of El(N,1/2). 
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APPENDIX 

Free translation of a letter from Pierre DELIGNE, 

dated March 1, 1976 

... Using the same trick as in my Antwerp's paper (vol. II, p.90, proof 

of 2.5.6)~ one can deduce directly from your Theorem 2 the structure 

of the modular forms of weight 1/2 (on congruence subgroups of SL2(Z)). 

The final result is : 

THEOREM. The q-expansions of the modular forms of weight 1/2 are 

(1) ~ ~ ~t(u)qtU2~ 

t uE Z 

where t runs through a finite subset of Q~+, and, for each t, %t is a 

periodic function on Z (i.e. the restriction of a locally constant func- 

tion on 8). 

PROOF. Let H be the space of modular forms of weight 1/2, and @ the sub- 

space of H consisting of the theta series (1). We put on H the Peters- 

son scalar product (which always converges). The metaplectic 2-covering 

~2(Af) of SL2(A f) acts on H, preserves the scalar product, and leaves 

@ stable. Under this action, H decomposes into a direct sum of irredu- 

cible representations. Let H i be one of them. We want to prove that 

H i is contained in @. 

One checks immediately that, if N and X are suitably chosen, H i has a 

non-zero intersection with M0(N,1/2,X). The Hecke operators T(p 2) asso- 

ciated with all primes p (including those dividing N) come from the ac- 

tion of (the group ring of) ~2(Af), and commute with each other. Hence 

they have a non-zero common eigenvector f in H i n M0(N,1/2,X ). By 
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your Theorem 2, one has 

f= Z 
uCZ 

a(tu2)q tu2 
(t square-free, tiN) ~ 

and 

a(mu 2) : a(m)9(u) 

a(mp 2) = k a(m) 
P 

Consider now 

if (u,N) = 1, @ being some character (mod 2N)5 

if piN (cf. Shimura [8], 1.7). 

2 
g : [ a(tu2)q tu 

(u,N)=l 

It is clear that g is a non-zero element of @. On the other hand, g 

is (up to a scalar factor) the transform of f by H Lp, where L is 
p!N P 

the operator which transforms h(z) into h(z) - Iph(p2z). Since Lp can 

[p 0 ) of the groun ring of SL2(Qp) be defined by the element 1 -Ip 0 p-i ~ ' 

this shows that g belongs to Hi, hence H i n @ e @. Since H i is irre- 

• C @, q.e.d ducible, this implies H l ~ . 

Yours, 

P. Deligne 

PS. These arguments should extend to any totally real number field. 
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