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COHOMOLOGY OF GROUP EXTENSIONS 
BY 

G. HOCHSCHILD AND J-P. SERRE 

Introduction. Let G be a group, K an invariant subgroup of G. The pur- 
pose of this paper is to investigate the relations between the cohomology 
groups of G, K, and G/IK. As in the case of fibre spaces, it turns out that 
such relations can be expressed by a spectral sequence whose term E2 is 
H(G/K, H(K)) and whose term E. is the graduated group associated with 
H(G). This problem was first studied by R. C. Lyndon in his thesis [12]. 
Lyndon's procedure was to replace the full cochain complex of G by an equiva- 
lent bigraduated subcomplex (of "normal" cochains, in his sense). His main 
result (generalized from the case of a direct product to the case of an arbitrary 
group extension, according to his indications) is that the bigraduated group 
associated with H(G) is isomorphic with a factor group of a subgroup of 
H(G/K, H(K)). His methods can also be applied to special situations, like 
those considered in our Chapter III, and can give essentially the same 
results. 

We give here two different approaches to the problem. 
In Chapter I we carry out the method sketched by one of us in [13]. 

This method is based on the Cartan-Leray spectral sequence, [3; 1 ], and can 
be generalized to other algebraic situations, as will be shown in a forthcoming 
paper of Cartan-Eilenberg [2]. Since the details of the Cartan-Leray tech- 
nique have not been published (other than in seminar notes of limited circu- 
lation), we develop them in Chapter I. The auxiliary theorems we need for 
this purpose are useful also in other connections. 

In Chapter II, which is independent of Chapter I, we obtain a spectral 
sequence quite directly by filtering the group of cochains for G. This filtra- 
tion leads to the same group E2=H(G/K, H(K)) (although we do not know 
whether or not the succeeding terms are isomorphic to those of the first spec- 
tral sequence) and lends itself more readily to applications, because one can 
identify the maps which arise from it. This is not always the case with the 
first filtration, and it is for this reason that we have developed the direct 
method in spite of the somewhat lengthy computations which are needed for 
its proofs. 

Chapter III gives some applications of the spectral sequence of Chapter 
II. Most of the results could be obtained in the same manner with the spec- 
tral sequence of Chapter I. A notable exception is the connection with the 
theory of simple algebras which we discuss in ?5. 

Finally, let us remark that the methods and results of this paper can be 
transferred to Lie Algebras. We intend to take up this subject in a later paper. 

Received by the editors March 22, 1952. 
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COHOMOLOGY OF GROUP EXTENSIONS 111 

CHAPTER I. GENERAL METHODS(') 

1. Notation and definitions. Let 11 be an arbitrary group, A an abelian 
group on which 11 operates from the left. A is called a 11-module, and the 
transform of an element aGA by an element a-C11 is denoted a- a. By defini- 
tion, a-0=0, a-f(a+b)=a-*a+a-b, 1.a=a, and a-(<r-a)=(o-ir).a. We shall 
denote by A' the subgroup of A which consists of all aGA for which a-a =a, 
for all o-GH1. A set (ai), iGI, of elements aiCA is called a 11-basis if the 
group A is a free abelian group, with the elements oa-as, o-GH1, iCI, being all 
distinct and constituting a basis. A is called 11-free if it possesses a 11-basis. 

If A and B are two 11-modules, the group C=Hom (A, B) of all homo- 
morphisms of A into B is given the structure of a 11-module by setting 
(a- f) (a) = a- .f(a--' a). The elements of C11 are then the 11-homomorphisms of 
A into B. We shall write C11 = Hom" (A, B). 

Complexes. A chain (cochain) complex is a graduated abelian group C 
- Z,?=o Cn, with an endomorphism d such that d2 =0, d(Co) = (0), and, for 
n>O, d(Cn)CC,C, (d(Cn)CC +,, for all n>O, respectively). This gives rise 
to homology (cohomology) groups of C in the usual way. 

An augmentation of the chain complex C is a homomorphism E of Co into 
the additive group Z of the integers such that E o d = 0. An augmented com- 
plex (C, E) is said to be acyclic if its homology groups Hi(C) are (0) for i> 0, 
and if e induces an isomorphism of Ho(C) onto Z. 

If C is a chain complex and A an abelian group, the group C* 
- Z=o Hom (Cs, A) will be regarded as a cochain complex with regard to 
the endomorphism d* which is defined by setting (d*f)(x) =f(dx). We shall 
usually denote this complex by Hom (C, A), although this conflicts-strictly 
speaking-with the notation introduced previously. 

H-complexes. A chain complex C with the structure of a 11-module such 
that a-(Cn) = Cn, - o d =d o o, and E o a-=E, for all a-C11, is called a 11-com- 
plex. If each Cn is 11-free, the 11-complex C is said to be 11-free. A cochain 
11-complex is defined analogously. 

The homology groups Hi(C) of a 11-complex C are 11-modules in the 
natural fashion. If A is a 11-module, the cochain complex Hom (C, A) is also 
a 11-module, and Hom" (C, A) is a subcomplex of Hom (C, A). 

2. Cohomology groups of a group 11 in a 11-module. 

PROPOSITION 1. Let C be a H-free and acyclic H-complex, A a H-module. 
Then the cohomology groups Hn(Hom" (C, A)) depend only on 11 and A, not 
on C. They are called the nth cohomology groups of 11 in A, and denoted 
Hn (11, A) (2). 

(1) The contents of ??1, 2, 4, 5, 6 are mostly extracted from expositions made by H. Cartan 
and S. Eilenberg in a seminar conducted in Paris during the academic year 1950-1951. We iln- 
clude them here for the convenience of the reader. 

(2) This proposition is valid also for other cohomology thpories, cf. [2]I 
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112 G. HOCHSCHILD AND J-P. SERRE [January 

Actually, one proves more than this. 
(a) If C is 11-free, and C' is acyclic, there exists a 11-homomorphism 

c: C--C', such that O(Cn) CCn', E' o =E, and 4 o d =d' o b. Furthermore, if 
V/ is any other such homomorphism, there exists a 11-homomorphism 
k:C--C' such that k(Cn)CC+ 1, and -4'=d' o k?k o d. 

From this, one deduces at once the following: 
(b) If 4 and V/ are two 11-homomorphisms satisfying the conditions laid 

down in (a), then the corresponding homomorphisms qY* and V/* of 
Hom" (C', A) into Hom" (C, A) induce the same homomorphism of 
Hn(Hom" (C', A)) into Hn(Hom" (C, A)), for each n>0. 

(c) If C and C' are both 11-free and acyclic, the homomorphism 0 of (a) 
induces an isomorphism of Hn(Hom' (C', A)) onto Hn(Hom" (C, A)), and 
this isomorphism does not depend on the particular choice of 0. It is called 
the canonical isomorphism. 

Finally, one proves: 
(d) For any 11, there exists a 11-free acyclic 11-complex. 
All these results are well known (see [4; 10]) and we shall confine our- 

selves to recalling the proof of (d): 
Construction of a 11-free acyclic 11-complex. Let E be a set on which II 

operates without fixed points, i.e., such that, if oc11H and eCE, o- e =e only if 
=1. One may, for instance, take E =11, with the left translations as oper- 

ators. One defines a complex C(E) = Z=-O C(E)n as follows. C(E)n is taken 
to be the free abelian group with the elements (eo, * * *, en) CEn+l constitut- 
ing a basis. The boundary operator d is defined by the formula d(eo, . * , en) 

- Z=0 (-1)i(eo, e * , ei, * * , en), where the symbol denotes that the 
argument below it is to be omitted. The augmentation is defined by E(eo) = 1. 
II operates on C(E) according to: o (eo, * * * , en) = (o. eo, -, en), and one 
verifies immediately that one so obtains a 11-complex. 

We have then d(C(E)o) = (0), while d(C(E)1) coincides with the kernel of 
E, whence it is clear that E induces an isomorphism of Ho(C(E)) onto Z. If 
n>O, and cCC(E)n, let c' denote the element of C(E)n+1 which is obtained 
from c by replacing each (n+1)-tuple (eo, * * *, en) occurring in c with 
(e, eo, , * * X en), where e is a fixed element of E. Then it is immediate that, 
if dc =0, we have dc' =c, and we have shown that C(E) is acyclic. From the 
fact that II operates without fixed points on E, it follows that each C(E)n is 
11-free. Thus, C(E) is a 11-free acyclic 11-complex. 

If A is a 11-module, the elements of Hom" (C(E)n, A) are the functions 
defined on En+l with values in A which satisfy the conditionsf(o. eo * * *, o- en) 
= o.f(eo, . * *, en), - CII. In particular, if E= H, with the left translations as 
operators, one arrives at the usual definition of the groups Hn(11, A) by the 
so-called homogeneous cochains f, where f(aao, * * *, 0-0-n) = f(0-o * *, *, ,n) 

the coboundary operator d* being given by the formula (d*f) (a-o, , o(T+?) 
- +0 (_l)f (ao, * * i, , 0n+1). 
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19531 COHOMOLOGY OF GROUP EXTENSIONS 113 

Finally, let us recall that if one associates with such a cochain the "non- 
homogeneous" cochain f(ol, * * *, o.) =f(l, (o1, (O1(O2, , * * X 1 *i * *xn), one ob- 
tains the usual coboundary operator Af(o1, * * *, OCn+l) =o0-1 (f(O*2, *,n+1) 

+ ZEn (-1) f(ol*, , * , ?i)+(-1)n+lf(Q7,, . . . , 

PROPOSITION 2. Let E and E' be two sets on which II operates without fixed 
points, and let p be a mapping of E into E' which commutes with the 11-operators. 
Then, for each n _ 0, p induces on Hn(Hom" (C(E'), A)) the canonical iso- 
morphism onto Hn(Hom" (C(E), A)). 

In fact, it is evident that p induces a homomorphism q of C(E) into C(E') 
which satisfies the conditions of (a) above; and the result follows at once from 
(c) . 

Let us apply this to the case where E =E'=H, with the left translations 
as operators, and let us put p(e) =eo-, where a- is a fixed element of 11. Then p 
evidently commutes with the left translations and hence induces the canon- 
ical isomorphism of Hn(H1, A) onto itself, which is the identity map. Hence 
we have: 

COROLLARY. Let II be a group, A a 11-module, aE-C1. For each homogeneous 
cochain f let us define the homogeneous cochain Maf by (MJ)(Oao, , X (-n) 
=f(0-0o-, * * * , -nJ). Then the map Ma commutes with the coboundary and in- 
duces the identity map on Hn(ll, A). 

Translated into the nonhomogeneous cohomology theory, this means 
that, if f is a nonhomogeneous n-cocycle, the cocycle whose value for 
J1, , *a*-X (Jn iS a- f(a--a-ia-, **, a--'a) is cohomologous to f(3). 

3. Applications. Let G be a group, K a subgroup of G. Let K operate on 
G by multiplication on the left. We can apply the results of ?2 with E =G 
and H= K, introducing the cochain complex B = HomK (C(G), A), where A 
is an arbitrary K-module. A homogeneous element of degree n of B is a func- 
tion f defined on Gn+l, with values in A, and such that f(a-yo, I a- yn) 

=-f(yo, * yn), for o-EK and yiEG. 
Let C(K, A) be the complex of the homogeneous cochains for K in A. 

The injection p: K-*G gives rise to the dual homomorphism p* of B into 
C(K, A) which is simply the map obtained by restricting the arguments to 
K. Applying Proposition 2 to p, we obtain: 

PROPOSITION 3. Let G be a group, K a subgroup of G, A a K-module, 
B=HomK (C(G), A). Then the homomorphism of B into C(K, A) which maps 
every cochain fC:B into its restriction to K induces an isomorphism of Hn(B) 
onto Hn(K, A), for all n_O. 

- It is easy to define the inverse isomorphism of the above directly. In fact, 
by Proposition 2, it suffices to take the homomorphism which is induced by 

(3) This result is well known, cf. [12, ?10] and Theorem 1.3 of [11] (for dimension 2). 
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114 G. HOCHSCHILD AND J-P. SERRE [January 

any map 4' of G into K for which VI(o-'y) =o4'(y), for all crCK and yCG. 

COROLLARY(4). Let Bo be the group of the maps f of G into the K-module A 
such that f(oay) = of(Qy), for all oECK, y EG. Let G operate on Bo according to 
the definition (Qy' f) (7y) =fQ(y'y). Let 4) be the K-homomorphism of Bo into A 
defined by q5(f) =f(l). Then the restriction of the arguments from G to K, com- 
bined with the homomorphism X, induces an isomorphism of H8(G, Bo) onto 
HI(K, A),for all n>O. 

Let B denote the group of Proposition 3. If f is a homogeneous element of 
degree n of B, let us define a(f) ECn(G, Bo) by setting a (f)(yo, - - *, y.)(7y) 
=f(Eyyo, - - *, 7y,y). Clearly, a commutes with the coboundary oper- 
ator. Furthermore, a is an isomorphism onto: for hECn(G, Bo), 
ae-1(h)(yo, * * *, 'y) =h(yo, * * *, yn)(1). Hence a-' induces an isomorphism 
of Hn(G, Bo) onto H8(B). If this is combined with the isomorphism of Propo- 
sition 3, one obtains an isomorphism of Hn(G, Bo) onto H8(K, A), and one sees 
immediately from the definitions of a-' and 4) that this is the isomorphism 
described in the corollary. 

REMARK. If the K-operators on A can be extended so that A becomes a 
G-module, Bo may be identified with the group F of all maps of the set G/K 
of the left cosets Ky into A, made into a G-module by setting, for g C F, 
yCEG, and x EG/K, (y g) (x) = y .g(xy). In fact, if f EBo, we define f C F by 
setting f(K'y) =.y-lf(Qy), and the map f-*f is a G-isomorphism of Bo onto F. 

4. A preliminary result. Let II be a group, U= J=0o Uj a cochain 11-com- 
plex. Put LP q=Cp(H, Uq), the group of nonhomogeneous p-cochains of 
11 in Uq. Let C(H, U)= Ep,qLP,q. Thus, C(II, U) is a bigraduated group, on 
which we define two coboundary operators, as follows: di,: Lp >Lp+',q is the 
usual nonhomogeneous coboundary operator on p-cochains, as given in ?2, 
just preceding Proposition 2. The other coboundary operator du: LP q 
--+LP,q+1 is defined by setting (duf)(ofi, * * *, -,,) =d(f(oai, * * *, op)), where d 
denotes the coboundary operator in U, and aiClI. 

We have L? = Uq, so that U is a subgroup of C(II, U). From the two 
operators di, and du, we define a third coboundary operator d = dr+ ( - 1) Pdu: 
LP,qLp+l,q+LP +l. With this new operator d, C(ll, U) constitutes a co- 
chain complex, and since d1l =0 on U", the restriction to U" of the co- 
boundary operator d coincides with du. 

PROPOSITION 4. Suppose that Hn(11, Uj) = (0), for all jO and all n >0. 
Then the injection of U" into C(H, U) defines an isomorphism of Hn(U") 
onto Hn(C(rJ, U)),for all n ?0. 

Put Ai= Eq>iEp=0 LP,q, Bi=Air'GU" - q> Ut'. It will suffice to 

(4) This result is due to A. Weil (Sur la th6orie du corps de classes, Jour. Math. Soc. Jap. 
vol. 3 (1951) pp. 1-35, footnote 4). For a direct proof see G. Hochschild and T. Nakayama 
(Cohom.ology in classfield theory, Ann. of Math. vol. 55 (1952) Lemma 1.1). 
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1953] COHOMOLOGY OF GROUP EXTENSIONS 115 

prove that the canonical homomorphism Bi/B i+l+A t/A i+1 induces an 
isomorphism of Hn(Bi/Bi+') onto Hn(Ai/Ai+'), for each n_?O. In fact, if 
this is proved an application of the "five lemma"(5) to the exact sequences 
for the triples (Ai, Ai+P, Ai+P+l) and (Bi, Bi+P, Bi+P+l) shows, by induction 
on p, that the canonical homomorphism Hn(Bi1/B +P))->H(Ai/Ai+P) is an 
isomorphism onto for each p>O. Proposition 4 then follows by taking i=O 
and p=n+2. 

Now A i/A i+l is isomorphic with EPcO = C(Il, Ui), with the ordinary 
coboundary operator for nonhomogeneous p-cochains. The homomorphism 
Bi/Bi+'-+Ai/Ai+l corresponds simply to the injection of Us" into CO(ll, Ui) 
= Ui, and therefore the statement that it induces an isomorphism of the 
cohomology groups is equivalent to our assumption that Hn(ll, Ui) = (0), 
for n>O. 

5. The spectral sequence of Cartan-Leray. Let C(ll, U) be the bigraduated 
complex defined in ?4. We shall define a filtration on this complex and then 
determine the groups E1 and E2 of the corresponding spectral sequence('). 

Definition of the filtration. Let L" = Ep>i LP q, and Li= Z =o L". Evi- 
dently, C(ll, U) =LoDL,D * , d(Li)CL,, and CP(H, Uq)G-Li=(0), if 
i>p. Thus the groups Li define a filtration of C(ll, U). 

Calculation of E1. By definition, E1 2=HP+q(Lp/Lp+1). In our case, 
Lp/Lp+1, with the coboundary operator induced by d, is isomorphic with 
Eq 0 Lp q= Cp(H, U), with the coboundary operator (-1)du. Hence we 
have: 

LEMMA 1. The term Ep,a of the spectral sequence is canonically isomorphic 
with CP(l, Hq(U)). 

Calculation of E2. Let us recall that the differential operator di on E 
_ Ep,q Ep maps Ep," into EP+',, by the coboundary map of the exact 

sequence for the triple (Lp, Lp+1, Lp+2) which sends HP+?(Lp/Lp+1) into 
HP+q+'(Lp+llLp+2). The term Ep," is the (p, q)-cohomology group in the 
bigraduated complex E1 (with respect to the operator d1). We claim that, 
under the isomorphism of Lemma 1, d1 is transformed into the coboundary 
operator for the cochains of 11 in the 11-module Hq(U). 

In order to see this, let feCCP(H, Hq(U)), and let us compute dif. For 
this, we must first choose an element xELp which is a cocycle mod LP+i and 
whose cohomology class isf. If o1, * * , o-p are elements of 11, let x(ol, * * *, ,p) 
be a cocycle in Uq whose cohomology class is f(ol, * * *, op). We have then 

(5) We recall the "five lemma": suppose we have two exact sequences of five terms each 
and five homomorphisms of the groups of the first sequence into the corresponding groups of 
the second, such that the commutativity relations hold in the resulting diagram. Then, if the 
four extreme homomorphisms are isomorphisms onto, so is the middle one. 

(6) For the notation and the definitions relating to spectral sequences we refer the reader 
to [14, Chapter I, no. 5 ] (see also below, Chapter III, ??1, 3). However, we shall omit the signs *, 
since no confusion with homology can arise here. 
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116 G. HOCHSCHILD AND J-P. SERRE [January 

dx=d11x+(-1)Pdux =dn,xLP+1lq. If this is written out according to the co- 
boundary formula for d11, it is evident that dx(oj, - - *, a,1,) is a cocycle in 
U?, for all aiIH. Hence dx defines an element yEzEl'+, and by the defini- 
tion of di we have dif =y. Clearly, y is the coboundary of f, regarded as a co- 
chain for II in Hq(U). Hence we have: 

LEMMA 2. The term Ep a of the spectral sequence derived from the filtration 
(Li) is canonically isomorphic with HP(1l, Hq(U)). 

The term E,o. As in every spectral sequence, the group E, is isomorphic 
with the graduated group associated with H(C(11, U)), filtered by the sub- 
groups arising from the Li. (We recall that if A is any additive group, filtered 
by a nonincreasing sequence of subgroups A i, the associated graduated group 
is defined as the graduated group whose component of degree i is Ai/Ai+,. If 
A is also graduated, compatibly with the filtration, the associated group is 
bigraduated in the natural fashion.) If we combine the above result with 
Proposition 4, we obtain the following result of Cartan-Leray [3], [1]: 

PROPOSITION 5. Let U be a cochain 11-complex, such that the groups Hi(1I, Uj) 
vanish for all j _0 and all i>0, where Uj denotes the subgroup of U consisting 
of the homogeneous elements of degree j. Then, in the spectral sequence (Er) 
which is derived from the filtration (Li), the term E2P is isomorphic with 
HP(11, H (U)), and E,e, is isomorphic with the graduated group associated with 
H( U), filtered by the subgroups arising from the Li. 

6. The vanishing of certain cohomology groups. Let A be a 11-module. 
By a mean on A we shall understand an additive function I which associates 
with each map f: 11--A an element 1(f) CA, such that: 

(a) If f(a) = a CA, for each aCil, then 1(f) = a. 
(b) For all a CII, I(a -f)= o- 1(f), where (o- .f) (r) =0 .f(o'r). 

PROPOSITION 6. If A is a H-module which admits a mean, then Hn(1I, A) 
=(0),for all n>0. 

In fact, letf be a homogeneous n-cocycle for II in A. For fixed a-,, * *, 
in 11, the map o---+f(o-, al, * * *, On) has a mean value (Inf)(0.,, * * *, Gr)CA. 
It is immediate that (1nf) (o-u, * - - , 00) = a (1J) (0 - * , n). Thus, I4 
is a homogeneous (n - 1)-cochain for 11 in A, and it is easy to verify that d (Inf) 
=f. 

COROLLARY(7). Let L be a 11-free 11-module, B an arbitrary 11-module, 
A =Hom (L, B). Then H(jI, A)=(0), for all n > 0. 

Decomposing L into a direct sum, one sees that it suffices to prove the 
corollary in the case where L has a 11-basis consisting of a single element. 

(7) Cf. R. C. Lyndon, Cohomology theory of groups with a single defining relation, Ann. of 
Math. vol. 52 (1950) p. 653, Theorem 2.2. 
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19531 COHOMOLOGY OF GROUP EXTENSIONS 117 

In this case, A is isomorphic with the 11-module of all maps 4: 1-I4B, where 
(o -.)(r) = ob(*(-r), for a-, rCll. A map f: II->A may then be regarded as a 
mapf': HlXH--IA, and one obtains a mean on A by setting I(f)(u) =f'(, 0-). 

(Actually, this corollary could easily be proved directly; it can also be 
obtained as a consequence of the corollary to Proposition 3.) 

REMARKS. 1. Proposition 6 covers a number of the known cases(8) in 
which the cohomology groups vanish; for instance, the case where II is finite 
of order m and every element of A is uniquely divisible by m, or the case 
where II is compact and where one deals with continuous cochains for HI in a 
vector group Rn (cf. K. Iwasawa, On some types of topological groups, Ann. of 
Math. vol. 50 (1949) pp. 507-558). 

2. The corollary to Proposition 6 shows that whenever the complex U, 
dealt with in ?5, is of the form Hom (C, A), where C is a 11-free chain com- 
plex, one can apply Proposition 5 to U. For instance, one could take for C 
the singular complex of a space on which II operates without fixed points; cf. 
[4; 6]. 

7. The spectral sequence for group extensions. Let G be a group, K an 
invariant subgroup of G, A a G-module. Let M denote the complex 
Hom (C(G), A), where the notation is that of ??2, 3. The elements of degree 
n of M are the functions f: Gn+?->A, the coboundary operator, d, being de- 
fined by (df)(-yo, * * *, -y) = Zf=0 (-l)if(yo, * * *, -yi, *,) 

Consider the subcomplex MK of M. Since K is invariant in G, G/K oper- 
ates canonically on MK. Furthermore, MK, regarded as a G/K-module, 
admits a mean, in the sense of ?6. In fact, let f be a function on G/K with 
values in the homogeneous component of degree n of MK. We set, for 
7o, * * * , YnyEG, I(f)(yo, * * * , -yn) =fA(o)o . . . ., Yn), where iyo denotes the 
canonical image of -yo in G/K. Then I(f) is a homogeneous element of degree n 
in MK, and one sees immediately that I is a mean. Hence we can apply Proposi- 
tion 5 with II =G/K,andU=MK. We have then U" = MG=HomG(C(G), A), so 
that Hn(U") =Hn(G, A). On the other hand, Proposition 3 shows that Hn(U) 
=Hn(MK) is canonically isomorphic with Hn(K, A). Hence Proposition 5 
yields the following: 

PROPOSITION 7. Let G be a group, K an invariant subgroup of G, A a 
G-module. Then there exists a spectral sequence (Er) in which the term E22 is 
isomorphic with HP(G/K, Hq(K, A)), and Eoo is isomorphic with the graduated 
group associated with H(G, A), appropriately filtered. 

We can describe the G/K-operators on H(K, A) quite explicitly: If 
f is a q-cochain for K in A, and 'yeG, let ('yf)(oao, . . * , o-,n)= 
'y f('y-lovy, * * * , y-'oy). Then the map f-*y .f induces an automorphism 
M, of H9(K, A). By the corollary to Proposition 2, M. depends only on the 

(8) For instance, if there are defined on A a topology and an operation "X" (in the sense of 
[1], 2d note, no. 4), A has the mean: I(f)= aElE II o X o o-f(o). 
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canonical image y of -y in G/K, and one verifies that it is the automorphism 
which corresponds to 7 in the above. 

In order to keep our exposition within reasonable bounds we have con- 
fined ourselves to cohomology throughout. Actually, the results of this 
chapter can be transcribed into homology without difficulty. One must 
merely replace the operation "Hom" by the operation "0" of taking the 
tensor product of a right module by a left module, and the passage AA' 
by the passage A--A],, where A,, denotes the factor group of A by the sub- 
group generated by the elements of the form a-o-a, with aGA and elH, 
cf. [2]. 

For the reasons we have explained in the introduction, we pursue the 
study of the spectral sequence of Proposition 7 no further. The reader may 
convince himself that one can obtain the results of Chapter III (except for 
the interpretation of the transgression) from Proposition 7. 

CHAPTER II. THE DIRECT METHOD 

1. Filtrations. Let G be a group, M a G-module. Write An =C-(G, M), 
the group of "normalized" n-cochains for G in M, i.e., of the functions 
f: G"-+M, such that f(y, ... *, 'yn) =0 whenever one of the Yj is equal to 1. 
By definition, A?=CO(G, M) =M. Let A = En=_ An. Thus, A is a gradu- 
ated group. We denote by d the nonhomogeneous coboundary operator: 

(df) (7 1 * * Y n+l) = 71 -f(72, * Yn+l) 
n 

+ E (- 1)Afy, . *.*, YiYil, ? Yn+l) 
i=l 

+ (-1)n+lf(Qyl, * Y n) 

It is easily seen that, if f is normalized, so is df, so that d(A") CA,+'. As is 
well known, normalization does not influence cohomology, and we have H"(A) 
-H"(G, M). 

Let K be a subgroup of G. We define a filtration (Aj) of A as follows: 
Aj=A, for j<0. For j>O, we set Ai= E,,=o A(l-)An, where Aj1flA"=(O), 
if j>n, and where, for j<n, A1nA" is the group of all elements fEAn for 
which f(yi, . . ., ey) = 0 whenever n -j+1 of the arguments belong to the 
subgroup K. Evidently, d(Aj) CA1, so that the groups AZ constitute a filtra- 
tion. 

Paired modules. Let M, N, and P be three G-modules. A pairing of M 
and N to P is a map MXN-+P; (m, n)-+mUn, such that (ml-m2)Un 
= mlUkJ - m2Un, mU (nl - n2) = m U nl -n MU n2, and y - (mi n) = ('y . m) 
U(,y n). The cup product of cochains is a pairing of C(G, M) and C(G, N) 
to C(G, P) such that CP(G, M) U Cq(G, N) C CP+ ?(G, P) whose explicit defini- 
tion is: 

(f U g)Qyl, * **, 'Yp+q) = f(Yl, * p *,) U Y * Yp * *gg(Yp+l, ,p+q) 
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One has then d(fUg)=(df)Ug+(-1)PfU(dg), whence it is clear that the 
cup product also induces a pairing of HP(G, M) and Hq(G, N) to HP+q(G, P). 
The above filtration is compatible with pairing by cup products, in the sense 
that if Ai, B1, Cj denote the groups of the filtrations for M, N, P, respectively, 
we have AAUJBsC Cr+, and we then have induced pairings of the groups of 
the spectral sequences, such that El f (A) UEf1' (B) C EJ {+ ( C). 

In the case where K is invariant in G, we can introduce a second filtra- 
tion (A*) of A which has the defect of not being compatible with cup prod- 
ucts but which will be very helpful in the computation of the spectral se- 
quence. We again define A* =A, j?O. For j > 0, we set A = En=? A nAn, 
where, for j_n, A*nAn is defined as the group of all fGAn for which 
fA(-Yr, * Y*n) depends only on yi, *, n-j and the cosets 'n_j+lK* 
'ynK, while A*An -=(0), for j>n. Evidently, we have again d(A* )CA*. 
Furthermore, it is clear that A* CA1, for all j. 

PROPOSITION 1. If Er, Er* denote the groups of the spectral sequences derived 
from the filtrations (Aj), (A*), respectively, then the injections A*--Aj induce 
isomorphisms of E* onto Er, for each r > 1. 

This will follow trivially as soon as we have proved it for the case r = 1. 
Hence it will suffice to prove that the injections A>-?Aj induce isomorphisms 
of H(A* /A* 1) onto H(Aj/A1+1), for all j. If we apply the "five lemma" to the 
exact sequences for the pairs (Aj, Aj+1) and (A*, A*1), we see that this will 
follow if we prove that the induced maps Hn(A*)--Hn(Aj) are isomorphisms 
onto, for all n and j. From the exact sequence for the pair (Aj, A*), it is clear 
that this will be the case provided that the following lemma holds: 

LEMMA 1. HE(Aj/A7) = (0), for all n and j. 

We have to show the following. If fEAjnAn and dfEA*, then there is 
an element gEAj such that f-dgCAf . This holds trivially for j<0 and for 
j>n, so that we may suppose that 0 <j<n. Now consider the case j =n. 
Then f(Qyi, * * *, 'y.) = 0 whenever one of the yi belongs to K, and 
dfQ(yl, .*. *, 'yn+l) depends only on 'y, and the cosets tyiK for i > 1. From these 
facts and the coboundary formula, applied to df(,y1, * , yi, o, 'Yi+i, Y.) , 'Yn) 
=0, it follows at once that, for cECK, f(y1, ***, 'yi, +1, , eyn) 

=f(Y1, * * *, yi, ti+l, * *, Yn), if 1 <i<n, and fQy1, * , 'ync) 
=f(Qy1, . , *y,n), whence fEA*. Hence we may now suppose that 0 <j<n, 
and it will clearly suffice to prove the following. Let 0 <i<j<n, fEz 
A jrA*r)AA8, and dfEA. . Then there is an element gEAj such that f-dg 
CA1jCA*+1. We shall proceed to construct such an element g by successively 
defining gj, gj+?, I gn =g so as to satisfy increasingly stringent conditions. 

If the n-j+l arguments aj_i, ... I O*n-i are in K, we have, since fe 
A nA 1n, f(y, * * *i j-i-1, i * 0ni, Yn-i+1, , * * Yn) = 0. Let gj = 0, and 
suppose then that we have already found an element g,CAj1G\A*n An-1 
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j?p<n, such that (f-dgr)(-yi, * *, Tp-i-1, OJp-i, . . . X 0n-i, Yn-i+1, . Y . X Yn) 
=0, for all Yr in G and all oB, in K. Write fp =f- dgp, choose representatives 
x * in G for the cosets x =x*K, taking K* = 1, and define, for aCK, and yrCG, 

Ip7 * X7p-i-1 *01J X Yp-i+ll .. * *XYn) 

= fp(ry, *, Yrp-i-, X*, a, 'Yp-i+l, , 'Yn). 

Then hpGA jnA*CA8-'. Now consider the value 

dhp(^yl, * *, yp-i-,, x*,p-i, o-p+l-i, *f an-i, ^n-i+l, Y n). 

If it is written out according to the coboundary formula, and if the values 
of hp are written as values of fp, we find that the first nonzero term 
is (- 1)P-ihp(y1, * , Yp-i-i', X *TpriOrp+li, , Gn-i, Yn-i+l, , * Yn) 
- ( 1) Pfp 't('Y, *, TPYi-_, X , dP-iGrp+i-i, O*n-i, Yn-i+l?, Yn). On 
the other hand, if we write out the coboundary 

dfp (71, * * * , yp-i-, x * I ?p-i, ap+l-i, * * * ,f On-i, Tn-i+l, ^ Yn)) 

we find that the first two nonzero terms are: 

(1) P-f P(- Y1, * * * Yp-i-1, X oP-i, Up+l-is * * Un-i, 'Yn-i+ly * *S n) 
+ ( -1) i+lfp (1y., . .Yrpi-1, x, 0-p0rp+1i, * * *, O-n-i, Yn-i+l-*,*, 'Yin). 

Now note that dfp =dfEA>*A 4+1. Hence, since i<j, the above value of dfp 
is zero. Furthermore, it is clear from the definition of hp and the coboundary 
formula that the terms of dhp which we have not yet considered above are the 
same as the remaining terms of dfp, except that they carry opposite signs. 
Hence we have 

dirp(71, * * Yrp-i-1, X*'p-i, 0p+l-i, * n-i, Yn-i+l, , * Yin) 

= (-1)P ifp(-Yl, , 'Yp-i-1, X*-rp-i, * * n-i, 'Yn-i+l , 'Yn). 

Put gp+,=gp+(-l)P-i hp. Then gp+iEzCAjnA*CAn-1, and 

(f- dgp+l) (^Y1, * ,7p-i, (Tp+l-i, * n-i, Tn-i+l, z ** n) = ? 

If p+l <n, we repeat this construction for p+1 instead of p, and so con- 
tinue until we obtain gnEzAjTnA*(An-1 such that 

(f - dgn)(y1, * * '*Y n-i-1, 0n-i, 'Yn-i+l . . . . .Yn) -0. 

Now consider (f-dgn)(71, Y n-i-1 X *an-i Yn-i+l, * n). Since 
d(f-dgn) = df GA*, we have 

d(f - dgn)( 71, 'Yn-i-1, X*, Oin-i, 'Yn-i+l-, * 'In) = 0, 

and if this is written out in full according to the coboundary formula we find, 
using that f-dgnEA* and the above, that 
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(f - dgn)('Yl, Yn-i-1, X*an-i, Yn-i+l . .....Yn) 

= (f - dgn)(y1 . .....Yn-i-l, X*, Yn-il?, * Yn). 

Thus f-dgnEzCA1 A*1, and Proposition 1 is proved. 
2. The group E*. Let feA*C)Ai+i, and denote by 1f=rj(f) the element 

of Ci(G/K, Ci(K, M)) which is obtained by restricting the first i arguments 
to the invariant subgroup K. Thus, if x--?x* is a choice of representatives in 
G for the elements of G/K, with K* = 1, we have 

1f(xi, , xj)(1, , ot) = f 1, , oi, x1, , , 

and it is clear that jf is actually independent of the particular choice of the 
representatives x*. Evidently, rj induces a homomorphism of A; /A* 1 onto 
Ci(G/K, Ci(K, M)). Furthermore, it is seen immediately from the co- 
boundary formula and the definition of A* that, for any f A*, we have 
j(df)(xi, , xj) =d(f(x1, , xj)), i.e., in a more suggestive notation, 
r1 o d =dK o rj, where dK is the coboundary operator for cochains of K in 
M. Hence it is clear that rj induces a homomorphism of E*l= =IIi+i(A71/A*i) 
into Ci(G/K, Hi(K, M)). Actually, we shall prove the following: 

THEOREM 1. The homomorphism of E',' into Ci(G/K, Hi(K, M)) which 
is induced by the restriction homomorphism rj: A*>Ci(G/K, Ci(K, M)) is an 
isomorphism onto. 

We show first that this homomorphism is an isomorphism. Let fC 
A;A i+1+1, and suppose that dfzA * 1 and jf(x1, , xj) =d(u(x1, xj)), 
where uECi(G/K, Ci(K, M)). We have to show that there exists hE 
A7nAt+i such thatf-dhEA*+1. Here we have replaced i by i+l for greater 
convenience in the formulas below. The case i =0 (which is thereby omitted) 
is trivial, since then f = jf. 

Define, for -1, * * *, oi in K and yi, ...... yj in G, g(o-1, * * * , 7, * * 7j) 
=u(xi, * * *, xj) (f, * * o, aj), where xr=yrK. If i=0 (which is now the case 

i=1 of the theorem), we obtain, since df(x*, ay, * .. ., yj) =0, for oCK, 

f(x*o., '1, * , 'Yi) = X*.f(o, 'Y1Y, , 'yj) + f(X*, '1i, * *,) 

= x*%T.g('yl,. * , Fj) - X*. g(yl, *. * yj) 

+ f(X*, , * , . 

The last expression differs from dg(x*o, yi, * * *, yj) only by terms whose 
values are independent of a (EK. Hence the value (f- dg) (x*o, 71, . .. , yj) 
is independent of a, whence it is clear that f-dgCA* 1, so that we may take 
h=g if i=O. 

If i>0, we define a sequence of extensions gi, , gi of g =go as follows: 
the function gk will be defined on the set of (i+j)-tuples in which the first k 
elements and the last j elements are arbitrary elements Pi, * * *, pk and 
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71, * , Yj of G, while the remaining elements 0r belong to K. For the con- 
struction which follows we shall use the abbreviation Y' for the (s - r +1)- 
tuple (Yr, 'Yr+l, , 78), etc. We define the gk's recursively by the for- 
mulas: gi(x* -1, o., yJ) =X .g(o,, yJ) f(x o4, 7J); gk(Pl X*prk, X ( 7k ) 

gA-- (pi2 pklX* (, 'Y) + (-1)kf (pl', x* okX y{), for k > 1. For k > 1, we 
have then gAk(p'-j, o4, yJ) =gA-i(plk-, c4, 7y), i.e., each gk is indeed an extension 
of gk-1. Hence we have also dgk(pV-', (4?1, I) =dgk1(pl', o{1, yb. From the 
first of these relations and from our definition, it follows that, for 1 <I< k, 
gk(Pl , x , 04+ 1 ly) =gI(Al , x ", 41+1 1I) =0. 

Now it follows from these facts and the coboundary formula that 

dgk(P1 x O, y) = (-1)gk(pl , Xk, Ok+l, 71) 

+ (-1) gk(pl Pk-X* k,) 
k-1 

= f(pi X* k, 71), for k > 1. 
Also, dgi(x*, o4, I Y) =X*xg (0` 'yJ) )-g (x*o-, o, yJ) =f(x*, o4', yJ). Thus for 
all k_1, (f-dgk)(pl, x*,t, '{) )=0. We shall show next that the same 
relation holds with x*o- in the place of x*. 

We have (f-dgo)(o-, o4, 0A)=0, from the definition of go=g. As- 
sume that we have already shown that (f- dg_l) (pk-1, o-, -, yJ) = 0. 
Since d(f- dgk) (p-j1, x, o-, lt yJ) =-, we can write the expression 
(f-dgk)(p-', x*o, oS, yJ) as a sum of values of + (f-dgk) for arguments in 
which the kth place is occupied either by x* or by o-. The terms in which x* 
is in the kth place are 0 by what we have just seen. The terms with of in the 
kth place coincide with the terms obtained by replacing gk with gk-1, and are 
O by our inductive assumption. Hence we have (f- dgk) (pl, 04, 'Y) = 0, for all 
k?1. In particular, for k = i, we have (f- dgi) (pt, o, y{) = 0. Hence, proceed- 
ing as just above, if we write (f-dgi)(p', x*, yj) as a sum of values of 
? (f-dgi), with x* and o- separated in the argument, we find that the non- 
zero terms have x* in the (i+l)th place, and are independent of oEK, 
becausef-dgiGA*. Hence (f-dgi)(p', x*o, ay) is independent of o, whence 
f-dgi AEz1. Thus we may take h =gi, and conclude that the homomorphism 
of Theorem 1 is an isomorphism. 

In order to prove that it is onto, we must show that for any 
uGCi(G/K, Zi(K, M)), where Zi(K, M) is the group of the i-cocycles for 
K in M, there is an element hGA*nAi+i such that dhGA*+1 and jh=u. 

Define gGCi(G, Zi(K, M)) by setting g(o1, I, t 'y' . * * yj) 
-U(xi, * * *, xj)(, * * *, o,). If i=O we may evidently take h=g. Hence 
we may suppose that i> 0. Now we apply exactly the same construction of 
extensions gl, * * *, gi of g as in the first part of this proof, where now we take 
f=O. We thus obtain an extension gi of g such that gsGA*nA i+i and dgi 
EA* Clearly, the cochain h =gi satisfies our requirements, and Theorem 1 
is proved. 
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3. A general identity. We wish to prove a certain identity involving 
partial coboundary operators which will serve in our subsequent discussion of 
the differential operator di of the spectral sequence, and of cup products(9). 

Let fGAi+i-1, i>O, j>O. Denote (i+j)-tuples of elements of G by 
(a,, ... I a* , f34, * , 3 j). Define the two partial coboundary operators 
bi and oA by the formulas: 

= .if(2, ai, a, * * I d ) 
i-I 

+ E (-1) f(al, ..., akak+1, . . *, ai, *, j) 
k=1 

+ (-1) if(al, * ,ai-1, #1, *** ) 
and 

oif(al *.*.*, ai, ,1, * * /32 ) 

=1 Mi(: 1ailyl * *1 ai0i, 02, . . .I A j) 
j-l 

+ E (-1)kf(ai, * * , ai, 1 , ?k+1, * * . j) 
k=1 

+ (- 1) if(al, .., ai, #1, * , oj-1) 

Let S=(si, , Sj) be an ordered subset of the set (1, 2, ,+j) 
and denote by S*=(4, = * , sj) its ordered complement. Set bo =1 bk 
=#1 

. . . 1k, for 1 < k <j. For 1 <p <i, write p* =S- p (which is the number 
of indices Sq<S*) and set v(S) = E=L p*. We define, for any gGAi+i, 
gs(al . . .*a, #j, 3.) =g(yi, * yi+j), where ysqf3q and ysp 
=bp-xapbp*. Finally, we set gj= Es (-1)v(S)gs, where S ranges over all the 
ordered subsets of j elements from (1, , i+j) (10). In these terms, we 
shall establish the following identity: 

PROPOSITION 2. For fEA i+>-1, we have 

(df)j = Si(fj) + (-1) ij(fj_1). 

We consider the terms which occur on the left-hand side of the proposed 
identity by writing it out in full according to the definition of (df)j and the 
coboundary formula. Each coboundary (df)s(ai, . . *, ai, Oi, * * *, Oj) gives 

(9) This paragraph, being concerned only with a single group G, is independent of the 
preceding ones. The "shuffling" mechanism which we employ here is closely related to that used 
by Eilenberg-MacLane in a paper forthcoming in the Ann. of Math. Cf. also Proc. Nat. Acad. 
Sci. U.S.A. vol. 36 (1950) pp. 657-663. 

(10) For instance, with i= 1 and j =2, we have: g92(al, 13, 32) =g(al, f1, 32) -g(f3i, 1 3lal, 32) 

+g(i, 02, (0102)-'a(10112)), and it will be convenient for the reader to follow the proof of 
Proposition 2 with this example. 
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rise to two types of terms; the "pure" terms in whose arguments each entry 
has one of the forms b,o'ae,b,2, or b,1aoa,a+?b,*, or /q, or 3fQ?i+; and the "im- 
pure" terms in whose arguments exactly one entry fails to be of this form but 
is either b-'a,be.f,3-+. or #Bpb,--oab,-. Now it is not difficult to see that each 
impure terms occurs exactly twice, and with opposite signs. In fact, an im- 
pure term in which the exceptional entry is of the first form occurs a second 
time, with the exceptional entry of the second form, for the set T which is 
obtained from S by switching s,.+? with sP, and since v(T) =v(S) + 1, these 
two terms cancel out. Hence we may conclude that all the impure terms 
cancel out. 

On the other hand, it is clear that the pure terms of the left-hand side 
of the proposed identity are in one to one correspondence with the terms of 
the right-hand side. There remains only to verify that they carry the same 
signs on the two sides. This is easily seen to be the case for the first and the 
last terms of the coboundaries. 

There remains to consider the middle terms. These can be divided into 
two types, as follows: 

(A): The argument contains i elements b-*'apb,* and one /3/q+l. 
(B): The argument contains i - 1 elements b'aopb * and one bp7*1apap+lb,*. 
A term of type (A) occurs on the left with the sign (- 1)v(s)+)q, and occurs 

on the right with the sign (- 1)v(T)+i+q, where T is the set for which the 
arguments appear in the same order in the relevant term of Q9(fT) as in the 
relevant term of (df)s. It is easily seen that v(S) -v(T) is the contribution to 
v(S) which is due to the precedence of fi before a's, because this occurs twice 
in computing v(S) (a second time as the contribution due to the precedence 
of fl+l before the same a's) but only once in computing v(T). Hence v(S) 
-v(T) is equal to the number of s* which are greater than Sq, i.e., v(S) -v(T) 

=i (Sq-q). Hence the signs for the terms of type (A) are the same on the 
right as on the left. 

Similarly, a term of type (B) occurs on the left with the sign (-_ 1) (s)+Sp 
and occurs on the right with the sign (- 1)v(u)+P, where U is the set for which 
the arguments appear in the same order in the relevant term of bi(fu) as in 
the relevant term of (df)s. Here we find by an argument quite similar to the 
above that v(S) -v(T) =p *=st p, whence we see again that the terms of 
type (B) carry the same signs on the right as on the left. This completes the 
proof of Proposition 2. 

In particular, consider the case j=1. Our identity then becomes (df), 
= bi(f1) + (-1) i1(f). If df =O, this reduces to o1(f) =(-1) i-b,(f1), or (d f)-f 
=d(f#), where fg(al, * * , ai-2) = (- 1)-lfi(a, * , ai-2, f). This shows 
again that G operates trivially on H(G, M). 

4. The operator di of the spectral sequence. Let the map f--fj be defined 
as in the last paragraph. Supposef GA*1GnA i+i-1, and df CA;. Let j3, ** *, 
be elements of G, and write x, 3=qK, where K is the given invariant subgroup 
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of G. Let ri be the restriction homomorphism of A* onto Ci(G/K, C(K, M)), 
as in ?2. It is seen directly from the definitions that if gCA>*Ai+i, the re- 
striction of the first i arguments in g; to K yields the natural image in 
Ci(G, Ci(K, M)) of rj(g). Hence, if, in the identity of Proposition 2 for the 
above f, we restrict a,, * * , ai to K, we obtain: 

rj(df)(xi, , xj) = (oi, * * * , ij)) + (-1)id(rj_l(f))(xi, xj), 

where h(il, * , i3)GCi-1(K, M) is given by 

h(jl, * , 3j)(a,, * * *, ai-1) = fj(ai, *.. , ai-l, *i * , ji). 

This shows immediately that, if e is the element of E*J-"' which corresponds 
to f, and 4 is the isomorphism (Theorem 1) of E* onto C(G/K, H(K, M)) 
which is induced by the maps ri, then 4 (di(e)) = (- 1)id(c(e)). Hence we have 
the following result: 

THEOREM 2. Let 4 be the isomorphism of E* onto C(G/K, H(K, M)) 
which is induced by the restriction homomorphisms rj of A* onto 
Ci(G/K, C(K, Ml)). Then, for every e G EJ c k(di (e)) =(-1) id ((e)). Hence 4 
induces an isomorphism of E2*0' onto Hi(G/K, Hi(K, M)). 

5. The group E1, and cup products. By Proposition 1 of ?1, we know that 
the injections A*-*Aj induce an isomorphism, s1, of E* onto E1, which evi- 
dently commutes with the operator di. Hence we have also isomorphisms 
E1 C(G/K, H(K, M)) and E2 H(G/K, H(K, M)). In order to be in a 
position to deal adequately with cup products, we shall investigate the iso- 
morphism of E1 onto C(G/K, H(K, M)) in greater detail. 

An element eCE{'> is represented by an element fEAjnAi+i such that 
dfCAj+1. In the notation of ?3, we have then also (df)j(Aj+l, and fp_1CAj. 
Hence, if we apply the identity of Proposition 2 to f, and restrict the first 
i+ 1 arguments to K, we find that bi+?(fj) (al, * ,i+i, Y, *, oyj) =0. This 
means that if ff' G Ci(G, Ci(K, M)) is defined by fJ' ('1, * j , ')(, , as) 
=Mal, * * *, I ?i, 71, * , yj), we have, actually,fj' CCi(G, Zi(K, M)), where 
Zi(K, M) denotes the group of i-cocycles for K in M. 

On the other hand, by Proposition 1, there is an element f*CA Ai?i, 

such thatf-f*EAj+1+d(Aj) and df*CAE= 1. The element 4{-(e) is then the 
natural image of f* in E'J. Furthermore, if uCAj+1, then u] =0, and if 
veAj, Proposition 2 shows that (dv)f CCj(G, d(Ci-1(K, M))). Hencef andf* 
determine the same element of C'(G, Hi(K, M)). This means that fJ' is a 
representative cochain for +,6-1(e). We may state this as follows: 

PROPOSITION 3. Let \V denote the canonical isomorphism of E* onto E1. 
Then the homomorphisms f->fJ of Ai into Ci(G, C(K, M)) induce the iso- 
morphism 0i-' of E1 onto C(G/K, H(K, M)). 

Now let us consider a pairing of two G-modules M and N to a third G- 
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module P. Let A, B, C denote the cochain groups for G in M, N, P, respec- 
tively, and let E1, F1, G1 denote the corresponding terms of the spectral se- 
quences. 

Let fEA*CAi+i, dfGA*+1; gGBj,NBi'+i', dgCBj*+1. Then fUg G 
Cj+;' G Ci+i'+i?i', and d(fUg) G Cj+? +,. It is seen at once from the definitions 
of ?3 that (fUg)' j, consists only of a single (-1)(v)s(fUg) 4 ; explicitly: 

(-1)~~9 it( )+j' (0f11 .. I * S i+i' 71, .. * * 7j+A' 

- f(u, I , oY, -y, 1 , yj) U P.g(Q-y-i+ly, * *, Y-l0i+i, ''Y, - ... I, j+j')I 

where 'y =7i * y*j, and p = . * jyi *yj. Hence we have 

(f U g)j?+rj(y., * *,j+j) = (-1)'if;i(el, . . . , j) UJ y *(gj, (,Yj+i, * *, 'Yj+ j)), 

or: (fUg)+j, =(-1)i'{fj' Ugj,. This proves: 

THEOREM 3. Let p =44r-1 denote the canonical isomorphism of El (resp. 
F1, G1) onto C(G/K, H(K, M)) (resp. etc.). Let uCEJ{', vCPjA',, so that 
uUvGG1i+i . Then p(ukv) = (-1) i'ip(u) Up(v). 

We remark, finally, that the definitions of the cup product and di give 
the rule dd(uUv) =dl(u)Uv+ (-1)i+iuUd1(v), and that this provides a 
check on the sign in the above. Furthermore, these results imply that 
Theorem 3 holds also for E2, mutatis mutandis. 

CHAPTER III. APPLICATIONS 

1. The spectral sequence. We begin by recalling a few general facts con- 
cerning the spectral sequence. If Zj denotes the subgroup of Ai consisting 
of all elements aCAj for which daGAj+r, we have EJ2= Z'/(ZJr+ +d(Z?t1jD). 
The differential operator dr is the endomorphism of Er which is induced by 
d. The group Er'> is the canonical image of Zr-A i+i in Er1, and we have 
dr(Er)CE>+r'+lr. Hence dr(E1r') = (0), if r>i+1, and dr(Er)QE = (O), if 
r>j. In particular, if r>max (j, i+1), then Erf'1=EJ f, which is canonically 
isomorphic with Hii(A)j1/Hi+i(A)j+ , where H(A)j denotes the image of 
H(A1) in H(A). Generally, Er+ 1 ',Hi.i(Er). 

In our case, H(A) =H(G, M) . We have canonical maps: Hi(G, M) 
+Eo-?E0'sHi(K, M)G. The first map is onto, and its kernel is Hi(G, M)1. 

The second map is an isomorphism into, and the composite map is the 
natural restriction homomorphism ri: Hi(G, M) -*Hi(K, M)G, 

On the other hand, we have canonical maps: 

H(G/K, M) Ei'? E H(G, M). 

The first map is onto, the second map is an isomorphism into, its image is 
Hi(G, Mj, and the composite map is the natural "lifting homomorphism" 
Ij: Hi(GIK, MK) --Hi (G, M). 
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All these facts are consequences of the general properties of the spectral 
sequence, combined with the results of Chapter II. 

2. A decomposition theorem. 

THEOREM 1. Let G be a finite group, K an invariant subgroup of G, m 
-[G: K], n = [K: (1) ], and suppose that m and n are relatively prime. Then, 
for each j>0, Hi(G, M) can be decomposed uniquely into a direct sum U+ V. 
where V is mapped isomorphically onto Hi(K, M) G by the restriction homo- 
morphism r1, and where U is the isomorphic image of HI(G/K, MK) by li. 
Moreover, this decomposition is multiplicative with respect to cup products (11). 

First, let Q be a finite group of order q, B a Q-module, fGZk(Q, B) 
with k>O. Define f'CCk-l(Q, B) by setting f'(Yl, ... , Yk-1) = GEQ 
f(,y, * *. , y-y,,y). Then we have df' = (-l )kqf. Hence, for any uGHk(Q, B), 
qu = 0 (12). 

Hence, in our present situation, if uCHi(G/K, Hi(K, M)), then nu=O 
if i>0, and mu=O if j>0. By the results of Chapter II, the same holds 
therefore for any uCE,,', and hence also for any uCEr, if r> 2. In particu- 
lar, it follows that Eri=(0), if r_2, i>O, and j>O. Now we have dr(Ej,') 
CEJ+ri1-r. If r_2, we have therefore dr(EJ'f) =(0), unless i=r-1 andj=0. 
But if eE?r1, then ndre=dr(ne)=O, and also mdre=O, since d reCE?0. 
Hence dr=O, for all r>2. 

Hence E2'0->E?` and E?OJ>EO?J are isomorphisms onto and by ?1 this 
means that 1i: Hi(G/K, MK)-~Hi(G, M) is an isomorphism, and rj: H'(G, M) 
-+H1(K, M) G is onto. Since Ep,' = (0) for p > 0 and q > O, it follows further- 
more that Hi(G, M).=Hi(G, M)j. Since these groups are respectively the 
kernel of rj and the image of 4I, the following sequence is exact: 

(0) Hi (G/K, MK) -> Hi(G, M) -? Hi(K, M)G -> (0). 
li rj 

Now choose integers a and b such that am+bn=1. If xGHi(G, M), set 
a(x)=amx, f(x)=bnx, so that x=a(x)+?(x). We have then a43=/3a=0, 
a2=a, and l2=3. Hence a and : define a decomposition of Hi(G, A1), and 
we claim that this decomposition satisfies the requirements of Theorem 1. 

In fact, it is clear that rjf =0, and-using the exactness of the above se- 
quence-one sees easily that rj maps a(Hi(G, M)) isomorphically onto 
Hi(K, M)G, while l; maps Hi(G/K, MK) isomorphically onto f(Hi(G, Mt)). 

Now let uGHi(G, M) and vGHi'(G, N), where M and N are two G- 
modules which are paired to a third G-module, P. Then we have, clearly, 

(11) By means of the transfer homomorphism (of the cohomology group of a subgroup into 
that for the whole group) which has recently been defined by Eckmann and, independently, by 
Artin, a very simple proof for Theorem 1 can be given. The proof we give here is to serve as an 
illustration of the use of the spectral sequence. 

(12) This result is, of course, well known. 
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a(u)kJa(v) =a2(uUJv) =a(uUv), and A3(u)OJfl(v) =32(ukJv) =(ukJv). 
Finally, it is clear that V is uniquely characterized as the subgroup of 

Hi(G, M) consisting of all elements whose orders divide n. 
3. The transgression. We recall that the transgression is a certain homo- 

morphism which arises from an arbitrary spectral sequence in the following 
way: 

Write Eo=R, so that E'=HM(R). Also, let Si=E'0 and S= E=1 Si. 
Then d1(Si) CSi+l, and the corresponding cohomology groups Hi(S) are the 
40?. Hence, for i>2, the spectral sequence gives a natural homomorphism 
ai of Hi(S) onto E?. Furthermore, the injection of Z into A1 induces an iso- 
morphism ti of 9; into Hi(A1), if i >2. Clearly the composite map 4ioi is 
the homomorphism Pi of Hi(S) into Hi(A1) which is induced by the injection 
of S into A1. Now let i _ 2, and consider the following diagram: 

Hi-'(A) Hi-1(R) )-- Hi(Ai)^ ) Hi(A) 

1P Ai T Hi(S) 'Pi 1 
0,i-1 0,i-1 i,O /"0i i,O 

(0) --+ --Ei+1 Ei E- Ei- -->* (0) 
hi di Oi 

I I I I 
(0) (0) (0) (0) 

Here, the top line is the natural exact sequence for the pair (A, Al), 
noting that R=A/A1. The bottom line is composed of natural maps of the 
spectral sequence, and its exactness is evident from the fact that Ei+1 wH(Ei). 
The vertical lines are also exact sequences; the nontrivial maps in them are 
the natural maps induced by injections of subgroups of A. Finally, all the 
commutativity relations are satisfied. 

Now an element xCHi-1(R) is called transgressive if 3i_(x)Gei(Hi(S)). 
If Ni denotes the kernel of Pi, then t%(x) is defined as the coset 41'i8&(x) in 
Hi(S)/Ni. The map ti is called the transgression, and we shall see that, essen- 
tially, ti is the map d,: E?','--*E1'0; more precisely: 

PROPOSITION 1. Let xCEO,'-', with i? 2. Then x is transgressive if and only 
if there is an element yCE?'-' such that x is the canonical image pi(y) of y 
in E0?'-', and then ti(x) is the inverse image o`(d1y) of d,y under the natural 
homomorphism o-j of E40 onto E?. 

In fact, if x =pi(y), then bi-(x) = i-lpi(y) =uidi(y), by the diagram. Since 
ao is onto, there is a zeHi(S) such that ai(z) =di(y). Then bi1(x) =juiao(z) 
=vi(z), showing that x is transgressive. Since the kernel of oi coincides with 
Ni, we have then ti(x) =i-(diy). 

On the other hand, if 8i-1(x) =vi(z) (i.e., if x is transgressive) then, by the 
diagram, 4i'io4i(z)=,ei/iai(z)=eivi(z)=Efii-,(x)=0, and hence 0joi(z)=0. 
Hence there is an element y1CEE'-' such that diy1=ai(z). Now i-,1(x) 
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=Ai(diyi) =bi-=pi(yl), and hence there is an element aCHi-1(A) such that 
x-pi(yi) =7ri_l(a). Put y =yl+hi7ri-(a). Then pi(y) =p(yl)+pihiri_l(a) 
= (x-irjl(a)) +rj_l(a) =x, and Proposition 1 is proved. 

In our applications, A = C(G, M), and the restriction of cochains from 
G to K clearly induces an isomorphism of R onto C(K, M). On the other 
hand, by Theorem 1 of Chapter II, Si may be identified with C'(G/K, MK). 
The above definition now becomes the following: an element xCHi-1(K, M) 
is called transgressive if there is a cochain fCi-1 (G, M) whose restriction to 
K is a representing cocycle for x and which is such that df is the natural 
image in Zi(G, M) of an element of Zi(G/K, MK). Proposition 1 means that 
the transgressive elements of Hi-l(K, M) make up exactly the canonical 
image of Ef '-l in Hi-1(K, M), and that ti takes its values in that factor 
group of Hi(G/K, MK) which is canonically isomorphic with E'0. More pre- 
cisely, if x and f are as above, then ti(x) is the element of this factor group 
which is determined by df. 

4. An exact sequence involving the transgression. 

THEOREM 2. Let m> 1, and assume that Hn(K, M) =(0), for O<n<m. 
Then the subgroup constituted by the transgressive elements of Hm(K, M) coin- 
cides with Hm(K, M) G, the image tm?i+(Hm(K, M) G) is a subgroup of 
Hm+l(G/K, MK), and the following sequence is exact: 

(0) -* Hm(G/K, MK) --> H m(G, M) H -m(K, M)G 

_>Hm+'(GIK, AK) H In+ El(G, M). 
tm+l tm+l 

Since E20 is canonically isomorphic with El,', and so with H1(G, M)1, it 
is clear that 11 is an isomorphism. Hence, by induction on m, it will suffice to 
prove the result under the assumption that Im is an isomorphism into. The 
hypothesis of the theorem gives that E]', = (0), for 0 <i <m and all r _2. 
Taking j=m-i and r=m+1, we conclude from this that Hm(G, M)m 
=Hm(G, M)1. Thus the image of lm coincides with the kernel of rm. 

Further, dr(E?'m) CEm?+l-r = (0), if 2 <r ?<m. Hence, E20' is canonically 
isomorphic with E,+1, which means, by what we have seen in ?3, that the 
transgressive elements of Hm(K, M) are precisely those of Hm(K, M)G. 

We have also Er? '-r,r-1 = (0), if 2 <r <m, and we may conclude from this 
that E:+i'0 is canonically isomorphic with E'+1'0. Hence the homomorphism 
Jm?+ of ?3 is an isomorphism, whence tm?1 maps Hm(K, M) G onto a subgroup 
of Hm+l(G/K, MK). Moreover, tm?1 corresponds canonically to the map 
dm+?: E+1-*Emn+i0. Hence the kernel of tm+l is the canonical image of Em+2 
in Hm(K, M)G; but E?+2 is canonically isomorphic with Hm(G, M)/Hm(G, M)1, 
whence we conclude that the kernel of tm+l coincides with the image of rm. 

Furthermore, the image of tm+1 corresponds canonically to dm+1(E1+,), 
which is precisely the kernel of the natural homomorphism: Em:1'0*Emm2'0 
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A Hm+l(G, M)m?l This means that the image of tm+l coincides with the kernel 
of tm+1, and our proof is complete. 

REMARK. In the case m =1, the hypothesis of the preceding theorem is 
vacuous, and hence we have always the following exact sequence: 

(0) -- H'(G/K, MK) -> H'(G, M) -> H'(K, M)0 -> H2(G/K, MK) * H2(G, M). 

5. Interpretation in the theory of simple algebras("3). A particularly 
interesting case of Theorem 2 is the case where M is the multiplicative 
group L* of a field L, and G is a finite group of automorphisms of L. Then, as 
is well known, H'(K, M) = (0). The exact sequence of Theorem 2, for m = 1, 

(O) --+H2(GIK, F*) -+H2(G, L*) - H2(K, L* )G-- H3(G/K, I?*) - H3(G, L*) 
12 r2 t3 13 

is then significant for the theory of the simple algebras which have the fixed 
field, F, say, of K in L for center, and which are split by L(14). 

Let U be such an algebra. Then there is a vector space V over L which is 
at the same time a right U-module in such a way that LU' is the ring of all 
L-linear transformations of V, where U' denotes the ring of endomorphisms 
of V which corresponds (by an anti-isomorphism) to U. Those nonzero 
(L, K)-semilinear transformations of V which commute with the elements 
of U' are automorphisms, and constitute a group S. The map which asso- 
ciates with each sCS the corresponding automorphism a of L (si=of(l)s) 
is a homomorphism 4 of S onto the Galois group K of L/F whose kernel is 
precisely L*. Thus, to each algebra U, as above, we obtain a group exten- 
sion (S, 4) of L* by K. It follows from the theory of simple algebras that this 
construction("3) establishes an isomorphism of the Brauer group of the alge- 
bra classes over F with splitting field L onto the group of extensions of L* 
by K, where the multiplication in the latter is the Baer product. Actually, 
the commutator ring of U' in the full endomorphism ring of V consists of all 
sums of elements of S and is a crossed product, L(K, f), in the similarity 
class of U, where f is the "factor set," i.e., fCZ2(K, L*). Moreover, f is also 
a factor set belonging to the group extension (S, 4), and this correspondence 
gives an isomorphism of the group of extensions of L* by K onto H2(K, L*). 

Now let T denote the fixed field of G in L; TCFCL. The algebra U is 
normal over -T (in the sense that T coincides with the fixed subring of U 
for the group of all automorphisms of U/T) if and only if every auto- 
morphism of F/T can be extended to an automorphism of U. It is easily seen 

(13) For the classical theory of simple algebras, see, for instance, Deuring, Algebren, and 
Artin, Nesbitt, Thrall, Rings with minimum condition. 

(14) The exactness of the first half of this sequence is well known, cf. [9; 11]. 
(15) This direct construction of the "crossed product" of a given algebra class is due to 

J. Dieudonne (La th6orie de Galois des anneaux simples et semi-simples, Comment Math. Helv. 
vol. 21 (1948) pp. 154-184). 
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from the above that this is the case if and only if every automorphism of FIT 
can be extended to an "admissible" automorphism of (S, 0), i.e., to an auto- 
morphism of S which coincides, on L*, with a field automorphism of L. 
This, in turn, is easily seen to be the case if and only if the corresponding ele- 
ment of H2(K, L*) is G-fixed. Hence our group H(K, L*) Gis isomorphic with 
the group of those algebra classes over F whose members are split by L, and 
normal over T(16). 

If U is normal over T, then the extensions of the elements of GIK to 
admissible automorphisms of (S, 4) allow one to regard S as a G/K-kernel, 
in the sense of Eilenberg-MacLane. This means the following: 

If x* is an admissible automorphism of S which extends xCG/K, then 
there are elements s(x, y) CS such that x*y* =s(x, y) (xy)*, where s denotes 
the inner automorphism of S which is effected by s. In fact, x*y*(xy)*-1 
induces on L* an automorphism belonging to K. Hence there is an element 
s1(x, y) in S such that x*y*(xy) *-1 = V6(x, y) si(x, y), where V6(x, y) is an auto- 
morphism leaving the elements of L* fixed. Using the fact that H1(K, L*) 
= (0), one shows that such an automorphism is an inner automorphism 
effected by an element of L*, whence our assertion follows. This defines the 
structure of a G/K-kernel on S. 

Now one shows that x*(s(y, z))s(x, yz) =f(x, y, z)s(x, y)s(xy, z), where 
f CZ3(G/K, F*), and that the cohomology class of f (in H3(G/K, F*)) does not 
depend on the particular choice of the extensions x*. We choose the x* such 
that 1 * = 1, and denote by x the automorphism of L* which is induced by x*. 
Also we choose elements s;(o) ES such that 4(si(o)) =o-EK, taking si (1) = 1. 
Now define, for a-, T in K, 

7Jex T) =S1(0r)X*(S1(7-))S(X, y)laTxy) )1 

Then one can verify directly that each l(a, ,() commutes with every element of 
L*, and hence belongs to L*, i.e., leC2(G, L*). Furthermore, a direct com- 
putation shows that dlQ(o, T9, pZ) =f(x, y, z). Also, we have 1(cr, T) 

=s5(o-)s1(T)s1(oT')-, i.e., the restriction of I to K2 is in the cohomology class 
ueH2(K, L*)G which is determined by (S, 4), or by U. 

The cohomology class in H3(G/K, F*) which is determined by the above 
f is the "obstruction" of the G/K-kernel S as defined by Eilenberg-MacLane, 
and, at the same time, the "Teichmiiller" class of the normal algebra U. 
What we have just seen shows again that the element ueH2(K, L*)G is 
transgressive, and-furthermore that the transgression, t3(u), is precisely 
the Teichmiiller class. From Theorem 2, we can now conclude that the Teich- 
mUiller classes make up exactly the kernel of the homomorphism13: H3(G/K, F*) 
-*H3(G, L*), and that the Teichmiiller class of an algebra is 0 if and only if 
the corresponding cohomology class in H2(K, L*) G is in the canonical image 
of H2(G, L*), which is easily seen to be the case if and only if the given alge- 

(16) This is a reformulation of a result of Teichmuiller [15]. 
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bra belongs to the class of a tensor product F?TB, where B is a simple alge- 
bra with center T. These are the results of Teichmuiller, Eilenberg and 
MacLane, [15; 9](17). 

6. An exact sequence giving the cup product reduction. 

THEOREM 3. Let m > 1. If m > 1, assume that Hn(K, M)=(O), for n 
-2, . . *, m. Then there is an exact sequence of homomorphisms: 

H'I(GIK, MK) --- HlG(G, M) Hm-'(GIK, H'(KI M)) Im rm 
->H mn+l(G/K, MK) --> H mn+l(G, M) . 

The proof is similar to that of Theorem 2. Our assumption gives that Er'f 
- (0), for i = 2, * * *, m and all r> 2. Hence Hm(G, M)m_i =Hm(G, M)m_i+?, for 
i = 2, * *, m, whence Hm(G, M) =-Hm(G, M)1i. Now Hm(G, M)mi_/Hm(G, M)m 
is canonically isomorphic with E7,1, for m> 1, with E.'-'1, for m > 2, and 
with Em-1', for m>2. We wish to prove that it is isomorphic with E - l', 
for all m >1. From what we have just seen, this will follow if we have shown 
that Eln-"', is canonically isomorphic with Em-1 l, for m> 2. But this follows 
immediately from the fact that Ern-1-r?r=(0), for r=3, , m. Since this 
last fact holds also for r = 2, we find, furthermore, that Er--', is canonically 
isomorphic with the kernel of d2 in El'-1 l. Thus, we have a canonical homo- 
morphism of Hm(G, M) into E2m-r,' whose kernel coincides with the image 
Hm(G, M)m of Hm(G/K, MK) under Im, and whose image is the kernel of d2 
in Em"-1l. To this there corresponds a homomorphism r' of Hm(G, M) into 
Hm-l(G/K, H'(K, M)). (This homomorphism r' is induced by restricting 
the first argument of a suitably selected cocycle, representing the given 
cohomology class, to K.) The kernel of r' is the image of 1m, and the image of 
r' is the kernel of the homomorphism d' which corresponds canonically to d2. 

Finally, the kernel of lm+1 is the subgroup of Hm+?(G/K, MK) which cor- 
responds to the kernel of the canonical homomorphism of E2 +1'0 into Em4+i'? 
Since Er+l-r r-l= (0), for r=3, * * *, m+ 1, we have Em+ ?-Em+?,, so that 
the kernel in question is d2(E2m-"',). Hence the kernel of lm+? is the image of 
d2. This completes the proof. 

When K operates trivially on M, so that MK=M, we can describe the 
map d2 as a cup product. In this case, H'(K, M) is the group Hom (K, M) 
of all homomorphisms of K into M. Let K' denote the commutator subgroup 
of K. The factor group K/K' may be regarded as a G/K-module in the na- 
tural fashion. We can define a pairing of this G/K-module K/K' with 
Hom (K, M) to M by setting, for o' EK/K', of a representative of a-' in K, and 
fGHom (K, M), J'Uf =f(o-), which, indeed, is independent of our choice of 
representatives. This is evidently a pairing, compatible with the G/K-module 

(17) It is apparent that our argument is not confined to group extensions arising from simple 
algebras. For instance, it applies to idele classes in class field theory. 

This content downloaded from 150.216.68.200 on Fri, 03 Jul 2015 23:11:58 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


19531 COHOMOLOGY OF GROUP EXTENSIONS 133 

structures. From this we obtain a cup product pairing of H(G/K, K/K'). and 
H(G/K, Hom (K, M)) to H(G/K, M). We shall now prove the following: 

THEOREM 4. Let G be a group, K an invariant subgroup of G which oper- 
ates trivially on the G-module M. Let d2' denote the homomorphism of 
Hrn-l(G/K, Hom (K, M)) into H+l(GC/K, M) which corresponds to d2: E2r- l 
-E2+1,0. Let c denote the element of H2(G/K, K/K') which is determined by 
the group extension, 

K/K'-GC/K'-->G/K. 

Then, for every uCHmi-(G/K,Hom (K, M)), d2 (u) = -cUu. 

It is easy to see this quite directly, with the filtration (A*). We shall, 
however, give another proof which utilizes Theorem 3 of Chapter II, in order 
to illustrate the multiplicative features of the spectral sequence. 

Let unprimed letters refer to the spectral sequence for M, primed letters 
to the spectral sequence for Hom (K, M), and dotted letters to the spectral 
sequence for K/K'. The above pairing of K/K' and Hom (K, M) to M in- 
duces a pairing of E; and E,' to Er. Let us identify the element u of the theo- 
rem with its canonical image in Er"-1. On the other hand, let u' denote the 
element of E2m-m,O which corresponds to u, (Hm-l(G/K, Hom (K, M)) being 
canonically isomorphic with E2"ml,O also). The natural homomorphism of K 
onto K/K' may be regarded as a G/K-fixed one-dimensional cohomology 
class for K in K/K', and hence corresponds canonically to an element 
vGE;0,0. It is evident that vUu'=u, regarded as an element of Et1 1. We 
have d2(u)=d2(v)Uu'-vUd2(u'), by the formula of the coboundary for cup 
products of cochains for G (which represent v, u', and u). But since u' 
z E2m-'?, we have d2(u')=0. Hence d2(u)=d2(v)UJu'. Now let x-x* denote 

a choice of representatives in G for the elements of G/K, and let f be the 
map of G into K/K' which sends an element ox*(o-GK) into the coset mod K' 
of a. Then f is a cochain representing v; moreover, it is easily verified that df is 
the natural image in C2(G, K/K') of an element gCZ2(G/K, K/K'), and that 
g belongs to the cohomology class of -c. 

Now if we pass to the cohomology groups by the canonical maps, d2(u) 
becomes d2' (u), d2(v) becomes -c, and u' becomes u. By Theorem 3 of Chap- 
ter II, the cup product becomes the cup product of the requisite cohomology 
groups, and hence we obtain, indeed, d? (u) =-cUu. 

Now suppose that G is a free group. Then K is free, and hence the assump- 
tions of Theorem 3 are satisfied. Since now Hm(G, M) = (0), for m > 2, we 
conclude that d2' is an isomorphism onto for m> 1, and is a homomorphism 
onto, with kernel rf (H'(G, M)), for m=1. If, furthermore, K operates 
trivially on M, we can use Theorem 4 to conclude that the map u-c"cUu is 
an isomorphism of Hm-l(G/K, Hom (K, M)) onto Hm+l(G/K, M), if m> 1. 
In the case m = 1, this map is a homomorphism of Hom (K, M) G 
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=Ophom (K, M) onto H2(G/K, M), and the kernel is the group of those 
operator homomorphisms of K into M (i.e., elements of Hom (K, M) G) 
which can be extended to cocycles for G in M. This is the cup product reduc- 
tion theorem of Eilenberg-MacLane [8]. 
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