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Introduction 

The purpose of this paper is to prove two theorems on abelian varieties 
(cf., Theorems 1 and 2 in Chapter III, ?? 6 and 7). The first one is known 
as the duality hypothesis for abelian varieties and implies that a certain 
canonical homomorphism from an abelian variety to the Picard variety of 
its own Picard variety is indeed an isomorphism. This theorem has been 
proved by Weil and Chow up to inseparability in characteristic p # 0. I 
have given (in [5]) the sketch of a proof for the characteristic p # 0 using 
very peculiar methods; but the argument was quite complicated and 
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316 PIERRE CARTIER 

assumed a thorough examination of many particular cases. 
Using a result by Matsusaka [10], the second asserted theorem implies 

that on an abelian variety numerical and algebraic equivalence for di- 
visors are identical. Here we prove that for any divisor D on an abelian 
variety and any integer m # 0, the relation m-D 0 implies D Z 0, that 
is D algebraically equivalent to zero. This result was first proved by 
I. Barsotti [2, 3] then by J.-P. Serre [14] in characteristic p # 0, the case 
of characteristic 0 being an immediate corollary of Weil's results [16]. 

Both theorems will be proved at the same time in our Chapter III. We 
use mainly a theory of isogenies disregarding any separability assump- 
tion. For separable isogenies, our results are a very sophisticated elabo- 
ration of the usual Galois theory. The main idea is the linearization of 
Galois theory, undertaken first by E. Artin [1], and under a less trans- 
parent form by N. Bourbaki [4]. 

A brief resume of the different chapters is as follows: 
In Chapter I, we give the formal definition of a k-structure for a vector 

space. The idea of working on a vector space with two scalar fields at 
the same time is largely taken from algebraic geometry, and the author 
owes this to A. Weil. We have attempted to give a convenient intrinsic 
language, the results being all trivial; the aim to be intrinsic, apart from 
aesthetic considerations, is mainly motivated by our methods of dealing 
with isogenies, where there is no privileged basis. Once a k-structure is 
given on a vector space, one can speak of rationality for a vector, a 
subspace, or a linear function, with respect to a field k' containing k. If 
A is such an object, the main properties are the following: 

(1) There exists a field k(A) such that A is rational over k' if and only 
if k' contains k(A). 

(2) If a: k' V" is a k-isomorphism, and A is rational over k', there is 
defined Asr rational over V" in such a way that k(Aa) = k(A)r, and As = A 
if and only if a induces the identity on k(A). 

(3) If z: V" > I"' is another k-isomorphism, one gets (A)r = Arc. 
From these properties it follows for instance that if k is the field of in- 
variants of some group G of automorphisms, A is rational over k if and 
only if it is invariant under G. 

The remainder of the chapter introduces the notion of a group operat- 
ing at the same time on a field and a vector space, and gives a criterion 
for lowering the field of definition, generalized from Weil [19]. 

In Chapter II, we study an algebraic group operating on a vector space 
over the function field of some transformation space for it. The general 
result asserting that there exist enough invariants under certain 
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ABELIAN VARIETIES 317 

conditions is taken from S. Lang and E. Kolchin [8], but the proof given 
here is rather different from theirs. We apply this result to give a new 
proof for the existence of invariant differential operators. This enables 
us to give (at least theoretically) a classification of isogenies. This question 
could also be explored by means of algebraic coherent sheaves, and we 
hope sometime to elaborate this point of view. 

In Chapter III, we study abelian varieties. The main idea comes from 
Hasse [7] and Roquette [11]. It is to associate to a divisor class a certain 
commutative algebra whose characters are in one-to-one correspondence 
with some other divisor classes. Roquette's investigations were limited 
to the separable case in order to apply Galois and Kummer theory; once 
this difficulty is overcome by the methods developed in our Chapter II, the 
remainder follows immediately and gives the principal result without fur- 
ther effort. The main point, due to Roquette, is to consider a generic 
divisor class instead of the zero class as suggested by Weil in ? 11 of his 
book [16]. 

Our main source of reference for abelian varieties will be Lang's book [9]; 
we shall refer to it by the following abbreviations: L-1113, Th. 3 means 
"Theorem 3 in ? 3 of Chapter III of Lang's book." The appearance of 
this book greatly helped the author, concerned for a long time by the 
fact that some of the main results on abelian varieties remained hidden in 
''secret" papers. 

CHAPTER I 

FIELD OF DEFINITION OF A VECTOR SPACE 

Notation. We consider a field K and a subfield k of K; by a field, we 
mean a subfield of K containing k. A vector space, unless otherwise 
specified, is a vector space over K, and a linear map is a K-linear map. 
If k' is a field, any vector space becomes by restricting the scalars a vector 
space over k'; we shall use a prefix "k'-" when referring to this structure 
over k'. 

1. Definition of a k-structure 
Let V be a vector space. A k-subspace V,, of V is said to define a k- 

structure on V if the following equivalent conditions hold. 
(a) At least one k-basis of VTk is a basis of V. 
(b) Any k-basis of V,, is a basis of V. 
(c) A subset of Vk linearly independent over k is still linearly inde- 

pendent over K; moreover, Vk generates the vector space V. 
(d) Let W be a vector space and f a k-linear map from V,, to W. Then 

f admits a unique extension to a linear map from V to W. 
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318 PIERRE CARTIER 

(e) The additive map X from 
K?,17, V, 

to V defined by X(t 0 v) =*v is bijective. 
Proof of equivalence: 
(a) # (d): Assuming (a), let {e} be a k-basis of V,, which is still a basis 

for V. If f and W are as in (d), there exists a unique linear map from V 
to W which agrees with f on the ej, that is on V,,. 

(d) e (e): Assuming (d), there exists a linear map p from V to K ?,, V,, 
such that p(x) = 1 0 x for x in V,,; clearly X and P are reciprocal maps, 
and this proves that X is bijective. 

(e) e (b): If {e,} is a k-basis of V,,, it follows from the standard proper- 
ties of tensor products that any element in K?,,1 V,, can be uniquely 
written in the form Eli ? e, with dj e K for all i. Assuming (e), the 
map X is bijective and any element in V can be uniquely written in the 
form X(Edj (0 e>) = J4,je,; therefore {e} is a basis of V. 

(b) e (c): Assuming (b), it is clear that V,, generates V. Moreover a 
subset of V, linearly independent over k is contained in a k-basis of 
V,,, that is, a basis of V by virtue of (b), and is therefore linearly inde- 
pendent over K. 

(c) e (a): Assuming (c), any k-basis of V,, is still linearly independent 
over K, and generates V since V,, does. 

Let V,, be a k-structure on V. For any field k', let us define V, as the 
k'-subspace k'- V,, of V generated by V,. A k-basis of V,, is a basis of V 
by (b); being linearly independent over K by (c), this basis is a fortiori 
the same over k' and is therefore a k'-basis of V1,,. This shows that V, 
is a k'-structure on V. When we shall refer to a k'-structure, for V, 
it will always be understood, without further specification, that this 
structure is defined by V7,, . 

2. Rationality for a vector 

Let V be a vector space with a k-structure V,. A vector v in V is said 
to be rational over k if it is contained in V,; a basis of V is said to be 
rational over k if all of its elements are rational over k. 

Let {e} be a basis of V, rational over k. The elements e, are linearly 
independent over K and a fortiori over k. Let v be in V,,; the subset of 
V consisting of v and the en is not linearly independent over K, and there- 
fore is not so over k, by property (c) of a k-structure; therefore, one gets 
a relation v = Eli ej with 5j e k for all i, and {e} is a k-basis of V,. 
Conversely, any k-basis of V,, is a basis of V by (b), and such a basis is 
rational over k. 
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ABELIAN VARIETIES 319 

Let k' be a field and v a vector in V. If {eb} is a basis of V rational over 
k, that is a k-basis of Vk and therefore a k'-basis of Vk,. If v = j-ej, 
the vector v is rational over k' if and only if the field k' contains all the 
hi, that is the field k(v) generated over k by these elements. Therefore 
the field k(v) is indeed independent of the choice of the basis {ej} rational 
over k. This follows also from the fact that k(v) is generated over k by 
all the values f(v) for the linear forms f on V such that f (V,,) c k. 

3. Rationality for a subspace 
Let V be a vector space with a k-structure Vk. A vector subspace W 

of V is said to be rational over k if it is generated by a set of rational 
vectors over k; this being so, one has a fortiori W = K.( W n VIk), and 
since any subset of W n Vk linearly independent over k is linearly in- 
dependent over K, the set W v 1k is a k-structure on W, called the 
induced k-structure on W. 

Let {acl} be a basis of K considered as a vector space over k. By standard 
properties of tensor products and property (e) in ? 1, any vector in V has 
a unique expression in the form: 

( 1 ) V = EMc, *Vc (Vct, e V71) 

Furthermore, one can assume c0 = 1 for some index a = 0; therefore, Vk 
consists of those elements v of the form (1) with v., = 0 for a # 0. This 
result implies two things: 

(a) Let T be a k-subspace of Vk; the vectors in K- T are those elements 
of the form (1) with v., e T for all a; therefore, K- T n vk consists of 
those vectors with v., = 0 for a # 0, that is v = 1-v with v, e T. We 
have proved the formula 

K- Tn Vk T; 
together with the formula 

W=K.(wfn Vk) 

valid for any subspace W of V rational over k, this shows that the re- 
ciprocal maps W - W n V,, and T - K. T define a one-to-one corre- 
spondence between the set of subspaces W of V rational over k and the 
set of k-subspaces T of Vt. 

(b) Let T be a k-subspace of Vk, intersection of a family of k-subspaces 
T7 of Vk. The vectors in K- T are the vectors v = c -v with v. e T 
for all a, that is v. e T, for all a and i; since T, is the set of vectors 
v = Cmel- v, with v. in T, for all a, one gets the formula 

K- T =flK- T 
from 

This content downloaded from 157.89.65.129 on Thu, 20 Nov 2014 20:26:24 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


320 PIERRE CARTIER 

T= niTi - 

Together with the preceding result, this shows that any intersection of 
subspaces of V rational over k is itself rational over k. 

Let k' be a field. If W is a subspace of V rational over k, let us put 
T =W n Vk in such a way that W = K- T; therefore W = K- (k'* T) and 
one gets W n Vk = k'- T by applying the result (a) proved before to k' 
instead of k and to the k'-subspace k'. T of Vk . In other words, W is 
rational over k' and W n Vk = k'.( W n Vk) in such a way that the two 
k'-structures obtainable on W by inducing or extending the scalars are 
identical. 

We shall now characterize the fields over which a given subspace is 
rational. 

PROPOSITION 1. Let V be a vector space with a k-structure. For any 
subspace W of V there exists a field k( W) such that the relations " W is 
rational over k"' and " k( W) is contained in k"' are equivalent for any 
field k'. 

Let {ej je be a basis of V rational over k; by standard results, there is 
a subset I" of I such that the vectors e, for j in I" form a basis of V 
modulo W. This means that V is the direct sum of W and the subspace 
V" having {ej}JeIf/ as a basis; but V is the direct sum of V" and the sub- 
space V' having as a basis the ej for i in I' = I - I". Therefore there 
exists a unique isomorphism f of V' onto W such that f(v') - v' e V" 
for any v' in V'. If one puts vi = f(ei) for i e I', the vectors vi form a 
basis of W and they are of the following type 

(2) vi=ej- jeI,,iu ej (i I') 
for some scalars tif in K (i e I' and j e I"). Moreover, no nonzero linear 
combination of the e, for j e I" is in W since W n V = o. 

Let k( W) be the field generated over k by the tif. If a field k' contains 
k( W), the vectors vi are rational over k' and so is W. Conversely, suppose 
that W is rational over some field k'. Let {c,} be a basis of K over k' such 
that c0 = 1 for some index a = 0; put f = d with some ri.m in 
k'; one gets therefore: 

(3) vi= co0(ei - EJo ej)- $,c- (Ej.- e,) - 

Since W is rational over k' and the vi are in W, the considerations in (a) 
above show that the coefficient of each c, in (3) belongs to Wand is ration- 
al over k'; for a # 0 the form of the coefficient of c, implies therefore 

0= for i e ' and j e I" since no nonzero linear combination of the 
e, is in W. Therefore tif = 7ijo is in k', and k' contains k( W). q.e.d. 
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When V is finite dimensional, it follows easily from the previous proof 
that k( W) is generated by the mutual ratios of the PlUcker coordinates 
of W with respect to any given basis of V rational over k. 

4. Rationality for linear and multilinear maps 

We shall investigate in this paragraph the question of rationality for 
the multilinear maps. Two particular cases are worth mentioning; the 
first one concerns the linear maps; the second one the multilinear and 
linear forms, that is, the case of functions with values in K endowed with 
the k-structure defined by k. 

Let V, for 1 < i < r and W be vector spaces, each one endowed with 
a k-structure. A multilinear map f from V1 x ... x V, to W is called 
rational over k if f(v,, * * *, vr) is rational over k when the vt are so. It is 
clear that any multilinear map obtained by composition of some multi- 
linear maps rational over k is itself rational over k. 

Let {e('i} be a basis of Vi rational over k (for 1 < i < r); since any 
vector in Vi rational over k is a linear combination with coefficients in k 
of the basic elements, a multilinear function f as before is rational over 
k if and only if f(e'l), *--, e'r') is rational over k for all choices of the 
indices a,, * * *, ar; if {e} is a basis of W rational over k and if one puts 
(4) f *(e .*-, e')= -el 

the function f is rational over k if and only if the components f 1 ... are 
in k. From that follow two facts: 

(a) Let i' be a field. In order thatf be rational over k', it is necessary 
and sufficient that k' contain the field k(f) generated over k by the ele- 
ments f J, ; in fact, the bases {e"i} and {e>} are rational over k, and 
a fortiori over k'. 

(b) Let us assume the spaces V1, *.., Vr to be finite-dimensional. Let 
1 be the space of all multilinear maps from V1 x * * - x Vr to W, and X4 
be the subset of S consisting of the maps rational over k. The corre- 
spondence f - (If J1. ,Cr) is linear and one-to-one between - and the set of 
all families of elements in K with only a finite number of nonzero com- 
ponents; since Sk is mapped in this way on the set of all families with 
components in k, one sees that Sk, is a k-structure on W. Furthermore, 
for any field k', the set .4, of the multilinear maps rational over k' is 
equal to k'iSk. 

Let finally V and W be two vector spaces with respective k-structures 
Vk and W1k and let f be a linear map from V to W rational over k. If a 
subspace S of V is rational over k, it is generated by S n V, and there- 
fore f(S) being generated by f(S r V,) c Wk is rational over k. Let 
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now T be a subspace of W rational over k; for a k-basis {acl} of K, any 
vector v in V is uniquely expressed as elt vt for some v., in Vk, and 
such a vector is in f-1(T) if and only if f(v.) is in T for all a since 
f (v) c= Ea.c -f (vm); therefore f -1(T) is generated by f -1(T) n V, and is 
rational over k. 

From the previous results, we shall deduce that the linear map f is 
rational over k if and only if its graph r is a subspace of V x W rational 
over k (for the k-structure Vk x Wk on V x W). Indeed, F is the image 
of the map g: v - (v, f(v)) of V into V x W and if f is rational over k, 
so is g and so is its image F. Conversely, assume F rational over k; there 
exists therefore a basis of F consisting of vectors of V x W rational over 
k; such a basis is of the form {(e,, f(e))} where e, and f(ei) are rational 
over k for all i; but since the projection from I' to V is an isomorphism 
of vector spaces, the ei form a basis of V rational over k, and since the 
f (ei) are rational over k, so is f. 

5. Conjugates 

Let V be a vector space with a k-structure Vk and let a be a k-iso- 
morphism from a field k' onto a field V". 

We shall study the behavior under a of the vectors, the subspaces and 
the multilinear maps. To begin with, we contend that there exists a 
unique map van vC from Vk, onto Vk,, such that: 

( 5) f(va) = f(v) 

for all linear forms f on V rational over k. Indeed, if {ei} is a basis of V 
rational over k, the only map satisfying this condition is given explicitly 
by the formula 

( 6) (E?0z - en) if=At-e 

(note that the of are in P' and therefore the 0 are defined and belong 
to V"). From formula (6) one deduces the following properties: 

( 7 ) (v + v')O = va, + v'O 

( 8) (e - vY = t0C *a v. 

Moreover, the map v va is bijective, one has k(va) = k(v)o and in order 
that v = va, it is necessary and sufficient that A = f for all i, that is a 
to induce the identity on k(v) (note that k(v) is contained in k' for v 
rational over k'). 

If W is a subspace of V rational over k', we shall denote by WC the 
subspace of V generated by the vectors va for v in W n Vk'; therefore W 
is a subspace of V rational over k". Moreover, any subspace of V rational 
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over k' is uniquely written as K. T' where T' is a k'-subspace of Vk', and 
a similar statement holds for k"; since (K- T)O = K. TV' where TV' is the 
k"-subspace of Vk,, deduced from T' by v - va, one easily sees that 
W e WC is a bijection from the set of subspaces of V rational over k' 
onto the similar set for the field k". We contend that the relation 
WC' = W holds if and only if a is the identity on the field k(W). For 
the proof of this statement, we keep the notations of the proof of Prop- 
osition 1. If a induces the identity on k( W), one gets Ad - Aim for all i 
and j, and therefore vi vf for all i; since the vf form a basis of W and 
the v, a basis of WC, one has indeed WC = W. Conversely, assuming 
WC' = W, one gets vr - v, e W for all i; since va - v, is equal to 

?e~ts (ti - s>)-e, by (2) and since Wdoes not contain any nonzero linear 
combination of the e,, one gets A = t for all i and j, that is a induces 
the identity on k( W). The same argument shows that for any subspace 
W of V rational over k' one has k( We) = k( W)Of. 

Let V1, ---, V, and W be vector spaces, each one endowed with a k- 
structure. For any multilinear function f from V1 x ... x V, to W 
rational over k', we contend that there exists a unique multilinear func- 
tion fi from V1 x ... x Vr to W such that: 

9 ) Of O(Via' . . . * V r) f (VlY .. * * 0or 

for vi in Vi rational over k', and that any such fa is rational over k". 
Indeed introduce for all vector spaces in question rational bases over k, 
as in ? 4; the coordinates of f introduced by (4) are in k' since f is rational 
over k'; moreover, for vectors vi in Vi with coordinates a, the coordinates 
of f(vj, ... , v,) are given by: 

(10) 
and if the vi are rational over k', the coordinates of v7 are the {&P} f; 
from these formulas, it follows that the multilinear map fa with the co- 
ordinates (f l, ... asr) is the only one satisfying (9). Since the field k(f ) is 
generated over k by the fa1 ... a>, one sees that fC = f if and only if a 
induces the identity on k(f), that k(fr) = k(f)0, and that for finite 
dimensional Vi the definition of f agrees with the definition deduced 
from the k-structure defined in ? 4 (b) on the space I of all multilinear 
maps. Finally, one gets the formulas: 

(11) (f +f7 =fG +fto 

(12) ( O') 
From the axiomatic characterization of fi, one deduces the following 
formula for composable linear maps rational over k': 
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(13) (U o fy = ft Ofa 
If r is any k-isomorphism from k" to a field k"', it follows from (6) that 

(14) (v ) v 

for any vector v in V rational over k'. This implies the relation ( We): - Win 
for any subspace W of V rational over k', and from (9) and (14) one infers 
(f I): = f 7 for any multilinear map f. 

Finally, let G be a group of automorphisms of K, and assume the field 
of invariants of G in K to be k. Then va is defined for any v in V and any 
a in G; by one of the previous criteria, one has va = v if and only if a 
induces the identity on k(v); therefore v is invariant under G if and only 
if any element in G induces the identity on k(v), that is k(v) = k; but this 
in turn means that v is rational over k. Therefore Vk is the set of in- 
variants of G in V. Since criteria similar to those just used for vectors 
are valid for subspaces of V and multilinear maps, the same reasoning 
shows that a subspace of V, or a multilinear map from V1 x *-- x Vr to 
W is rational over k if and only if it is invariant under G. 

6. Definition of a G-K-module 

Let G be a group operating on the field K and assume that k is the 
fixed field of G in K. More precisely, to any a in G there is associated 
an automorphism e Ad of the field K, one has (): = a' for t in K and 
a, r in G, and k is the set of e in K such that Ad = e for all a in G. 

By a G-K-module, we mean a vector space V (over K) on which G 
operates so to satisfy the following rules: 

(15) (v + v')0 va + v' 

(16) (4-v)y = d-v 
(17) (Va): = vie 

for all v, v' in V, t in K and a, z in G. According to the results of the 
preceding paragraph, there is a unique action of G on a vector space V 
with a k-structure Vk which gives to V a structure of G-K-module, and 
for which Vk is the set of invariants of G in V. The next proposition is 
devoted to prove the converse. 

PROPOSITION 2. Let V be a G-K-module and E the set of invariants of 
G in V. Then E is a k-subspace of V and any subset of E linearly inde- 
pendent over k is the same over K. Assume now that E generates V. 
Then E is a k-structure on V and the maps W - W n E and T o K- T 
define a one-to-one correspondence between the set of all subspaces W of 
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V invariant under G and the set of all k-subspaces T of E. 
It is obvious that E is a k-subspace of V. 
Let B c E be linearly independent over k. Among the subsets of B 

linearly independent over K, there exists by Zorn's lemma a maximal 
one, say B'. Assume B' # B; for v in B not in B', there exist some 
scalars tb in K such that: 

(18) V = EbEB, tb-b 

Since v is in E, that is invariant under G, one infers from (18) the follow- 
ing identity: 

(19) - b)b = v - v = (v e G). 

Since B' is linearly independent over K, (19) implies ab = fb for b in B' 
and a in G, and therefore eb e k for b in B' since k is the field of invari- 
ants of G in K. Since B is linearly independent over k by hypothesis, one 
gets therefore a contradiction from (18); therefore B' = B and B is linearly 
independent over K. 

Assume that E generates V. Then E is a k-structure by the last result 
and criterion (c) in ? 1. We have seen in ? 5 (cf., last statement) that the 
subspaces of V invariant under G are precisely the subspaces rational 
over k for the k-structure defined by E on V. The last statement in 
Proposition 2 follows therefore from the one-to-one correspondence 
between the subspaces of V rational over k and the k-subspaces of E 
(cf., ? 3, (a)). q.e.d. 

7. Criteria for Galois extensions 

In the case of finite Galois extensions, we shall now prove that the 
process of definition of a k-structure explained in Proposition 2 works 
effectively. 

PROPOSITION 3. Let k' be a finite Galois extension of k with Galois 
group G. Any G-k'-module is then generated by the set of its invariants. 

Let V be a G-k'-module and let E be the set of invariants of G in V. 
To show that E generates V, it is enough to prove that any k'-linear form 
f on V which induces 0 on E is 0. For v in V and t in k', it is clear that 
W = fEG(-IV) is in E, and this implies 

(20) fEeG f-f(V) = f(w) = (d e k'). 

By Dedekind's theorem (cf., Bourbaki, Alg. Chap. V, ? 7, no. 5, th. 3) 
this implies f(va) = 0 for all a in G, and in particular f(v) = 0. q.e.d. 

We shall apply this result to give a criterion to "lower" the field of 
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definition of a vector space with some additional structure. 
More precisely, let V be a vector space with a k-structure Vk and let 

k' be a finite Galois extension of k contained in K; let G be the Galois 
group of k' over k. If W is another vector space with a k-structure, let 
f be any isomorphism of W onto V rational over k'; then for any a in G 
the linear map f a from W to V is defined and rational over k', and since 
f induces a k'-isomorphism from Wk to Vk,, so does fit; therefore fa' is an 
isomorphism from W to V and a(a) = f o f -I is an automorphism of V 
rational over k'. Moreover, one gets 

f o f- ( ) o f- (fa ofi)Y o ) (f of) 

that is 

(21) a(zv) = a(a): o a(z) (q, e G). 

Conversely, suppose an automorphism a(a) of V rational over k' has 
been given for each a in G, formula (21) being valid. For v in Vk, and a 
in G, let vie] be the vector a(a)-i(va) in Vk,. The formulas (v + v')1'73 = 
v[cr] + v'0f3 and (4-v)10f] = 4a-v.f] are immediate consequences of (15) and 
(16); moreover using (21) one gets the following: 

-~C a(zov)1(vvff) =a(z)il {a(q)i} v((vO)r) 

for a, z- in G. Therefore, if G operates on Vk by the rule v - vied, the 
axioms for a G-k'-module are satisfied. By Propositions 2 and 3 the set 
E of vectors v e V with vlof3 = v for all a in G is a k-structure on the 
vector space Vk, over I'; therefore, any k-basis of E is a k'-basis of Vk 
and therefore a basis of V; this implies that E is a k-structure on V. We 
shall denote by W the vector space V with the new k-structure defined 
by E; therefore, we shall denote E by W1; we shall denote by f the identity 
map from W onto V. Since V,' is the k'-subspace of V generated by E, 
we have therefore f(Wi,) = Vk, and the isomorphism f from W to V is 
rational over k'. Finally, the linear map f from W to V is defined by 
f (vr3)= f(v)r for v in V, that is 

f (vIf1) = va = a(u)vlf] = a(U)f(v[Gf1) 

and one gets therefore: 

(22) a(f) = f o f (a e G). 

If W' is another space with a k'-structure and f' is any isomorphism from 
W' to V rational over k' such that a(a) = f'I oft-1 for a in G, one gets 
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f-1 f a)i = f1 o f for all a in G, that is f'-1 of is rational over k. 
In other words, if {a(a)} , is a family of automorphisms of V rational 

over k' and satisfying (21), there exists a vector space W with a k- 
structure and an isomorphism f from W to V rational over k' such that 
(22) hold; if W' and f' satisfy the same relation, there exists a unique 
isomorphism u from W to W' rational over k such that f = f' o u. 

We shall now consider the case of an additional structure on V. To be 
specific, assume that to any vector space T there is associated a set S(T), 
to any isomorphismf: TV T' a bijective mapf*: S(T) > S(T') and that 
(f 'o f )* = f '* o f * for two isomorphisms f and f '; assume furthermore 
that to any field L and to any L-structure on a vector space T be associated 
a subset SL(T) of S(T) and that for any isomorphism f: T - T' rational 
over L, the image of SL(T) under f* be SL(T'). Finally assume that the 
group G operates on Se,(T) for any vector space T with a k-structure, in 
such a way that Sk(T) be the set of invariants of G in S, (T) and that 
the map f * for any isomorphism f rational over k be compatible with the 
operations of G. As an example, we can take for S(T) the set of bilinear 
associative laws of composition on T, the set SL(T) being the subset of 
the laws rational over L, and the operations of G being defined as in ? 5 
for multilinear maps; finally f * will be the obvious map given by "trans- 
port de structure". 

Now, V and the a(a) being as before, suppose one has given on V an 
element s of Sk, (V) invariant under the maps a(a)*; stated otherwise, s 
is a structure of "species" S on V rational over k' and the a(a) are 
automorphisms of V with this additional structure. If f: W - V is an 
isomorphism rational over k' for which (22) holds, there exists a unique t 
in Sk,( W) such that f *(t) = s; furthermore, since s is invariant under the 
a(a)* and f* is compatible with the actions of G, it is immediate that t 
is invariant under G, that is, belongs to Sk( W). In other words, there 
exists a unique structure t on W of "species" S rational over k for which 
f is an isomorphism for the additional structures of "species" S. In 
the example explained above, one obtains therefore criteria to lower the 
field of definition of an algebra. 

CHAPTER II 
EXISTENCE OF INVARIANTS FOR GROUP VARIETIES 

Notation. We follow closely Weil's well-known treatise [15] for the 
notation and terminology in algebraic geometry, except that by 
''morphism" we mean "everywhere regular rational map"; K is the uni- 
versal domain and k is a subfield of K. By subfield of K we mean a 
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subfield k' containing k such that K be of infinite transcendence degree 
over k'. 

1. Principal homogeneous spaces 

Let G be a group variety defined over k. We shall consider in the 
sequel a principal homogeneous space P for G defined over k; by this we 
mean a variety P together with a morphism a from P x G to P, both 
defined over k, the following axioms holding true: 

(1) Let p be in P and g, g' be in G; if e is the unit element in G, one 
has p*e = p and p-(g-g') = (p.g).g'. 

(2) The map (p, g) - (p, p g) from P x G to P x P is an isomorphism 
of varieties. 
(The value of a at the point (p, g) of P x G is written p-g). (Cf., [17] 
for this definition.) 

According to the previous axioms, given any two points p and p' in P, 
there exists a unique g = /3(p, p') in G such that p-g = p'. The map /8 
is a morphism from P x P to G, defined over k; furthermore the following 
transitivity rule holds: 

(1) 3(p, p')-/(p', p") = (p, p") 

We denote by L the function field of the variety P; for any field k' of 
definition for P, the subfield of L consisting of the functions on P which 
are defined over k' will be called Lk,. Given any g in G, one defines an 
automorphism f Of, of the field L by the rule: 

(2) fq(p) = f (p * g) 

where p is any point in P such that f(p.g) be defined. Moreover, one has 
the formula (fg),,, = f,, ., for any two elements g and g' in G and any 
function f in L. In other words, the group G operates on the field L; 
since G is transitive on P, the fixed field of G in L is the field K of 
constants. 

2. Definition of a rational G-module 

The principal homogeneous space P being fixed and L being the func- 
tion field of P, let us consider a G-L-module V in the sense of ? 6 in 
Chapter I. Assume first that V is generated as L-vector space by its 
invariant elements; we can therefore choose a basis {ej for V over L, 
consisting of invariants. Let Vk be the vector space over Lk generated 
by the em. 

We shall state the main properties of Vk. 
(a) The subset Vk of V is an Lk-structure for the L-vector space V. 
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(b) Let k' be any subfield of K, and let Vk, be the vector space over Lk, 
generated by Vk. Given any g in G rational over k' and any vector v in 
Vk', the vector vg is in Vk'. 

(c) Let a be any k-automorphism of the field K; let a still denote the 
unique automorphism of L over Lk which extends a. Given any g in G 
and any vector v in V, one gets: 

(3) (v0)0 = (vT)6,c 

where the map van vT in V is defined by means of the Lk-structure Vk 
for the L-vector space V (cf., ? 5 in Chapter I). 

Property (a) is obvious according to the definitions. 
For any f in Lk, and any g in G rational over k', it is obvious that f, is 

in Lk,. Moreover, Vk, consists of the vectors 1:,f,-ei with fj in Lk, for 
any i; since the ej are invariant under G, one gets g-.v = E(fi),-e for 
v = Foe; this implies property (b). 

Since the map (p, g) - p- g from P x G into P is a morphism defined 
over k, one gets the formula: 
(4) (f0 = T)c=(fc), f eL,g eG 

where a is any k-automorphism of K. Moreover, from the definitions 
given in ? 5 of Chapter I, one gets: 

( 5) (at Ofi e 
e) 

a' = Ld, (f {) f * ej . 
Property (c) follows immediately from (4) and (5). 

The previous results suggest the following definition. 
A rational G-module (defined over k) is a G-L-module together with a 

subset Vk of V for which properties (a), (b), and (c) hold true. Strictly 
speaking, we should have to mention the principal homogeneous space P 
in the notation, but we shall omit it consistently in the sequel. 

With this terminology, we have proved that, given any G-L-module V 
generated by the set of its invariants, and given any basis of V consisting 
of invariants, the Lk-subspace Vk of V generated by this basis defines on 
V a structure of rational G-module (defined over k). We shall prove later 
that any rational G-module defined over k can be obtained in this way 
(cf., ? 5). 

3. Examples: derivations' 

We shall give a first example of a rational G-module. 
Let g be the set of K-derivations of the field L. On g we define a 
1 The results contained in this paragraph shall not be used in the sequel of this paper. 

Their purpose is mainly expository. 
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structure of L-vector space by means of the definitions: 

(6) (D + D')(f) = D(f) + D'(f), (h-D)(f) =h-D(f). 

Moreover, let the group G operate on g by the rule: 

( 7 ) (Dg)(f) = D(f-1)g . 

The defining properties of a G-L-module are easily checked and the veri- 
fication will be omitted (cf., formulas (15) to (17) in Chapter I, ? 6). 

If k' is any field of definition for P, let g,,, be the set of all derivations 
D in g such that D(Lk,) is contained in Lk,. We contend that g endowed 
with g, is a rational G-module defined over k, and that g, g for 
any subfield k' of K. 

The field Lk is a regular extension of k, and in particular is separably 
generated over k. There exist therefore n elements x1, , x *, Xn in Lk alge- 
braically independent over k such that Lk is separably algebraic over 
k(xl, "--, Xn). Since L is generated by Lk and K which are linearly dis- 
joint over k, the field L is separably algebraic over K(xl, *--, Xn) and the 
xi are algebraically independent over K. By well-known results about 
derivations of fields, g admits a basis {D1, .-., Dn} over L such that 
Di(xj) = bij for 1 < i, j < n (Kronecker symbol). This definition implies 
the formula D = E1flD(x) .Di for any D in q. 

Let k' be any subfield of K. If D is in qg, the previous formula and 
the relation D(xi) e Lk, arising from D(Lk') c Lk' show that D has co- 
ordinates in Lk, with respect to the basis {D1, .*., DnJ of g. Conversely, 
for D = %fi .Di with some fi in Lk,, one gets D(x) f= Of for all i; this 
implies that D maps k'(x1, "--, Xn) in Lk,. Since Lk, is generated by Lk 
and k', it is a separably algebraic extension of k'(xl, *--, Xn), and by the 
lately proved result, D maps Lk, into itself (cf., [4, Chap. V, ? 9, prop. 5, 
cor. 1]). Thus we have proved that qk, consists of the linear combi- 
nations with respect to Lk, of the basic elements D1. ---, Dn of g. This 
means that k is an Lk-structure on the L-vector space g and that 

gk' = Lk"* 9k- 

Let D be in g9, and g in G be rational over k'. For any f in Lk', the 
function fa1 is in Lk' since g-1 is rational over k'; since D is in gk,, one 
gets D(ff,-) e Lk,, and finally by the definition (7), one gets D(f ) e Lk, 

for any f in Lk'. By the previous criterion, D. is in gk,. This checks 
property (b) in ? 2. 

Let a be any k-automorphism of K and extend a to an Lk-automorphism 
of L. If the map D - Do in q is defined by means of the Lk-structure qk, 
one gets by definition DC -ZfTDi for D =f-.Di; for f in Lk, one 
gets D(f)a = EfT-Di(f)0 Ef*.Di(f) = D(ff) since D,(f) is in Lk 
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and a is the identity on Lk. Moreover, the map f D(f )a - D(f-) from 
L into itself is a derivation annihilating K; by the last result, this deri- 
vation annihilates Lk and since L is generated by K and Lk, it is identically 
zero, so that one gets: 

(8) D(f) = D(f-) D e t, f eL 

This last formula defines completely the derivation Do; using this charac- 
terization of Do, the formula (Dg) = (DO)gr follows immediately. 

Our contention is therefore completely proved. Since q is a rational 
G-module defined over k, the theorem to be proved later in ? 5 shall imply 
the well-known result that g admits a basis consisting of G-invariant 
derivations. In fact, it can be proved that the tangent bundle to P ad- 
mits n linearly independent regular cross-sections rational over k and 
G-invariant, where n is the dimension of P; furthermore q is the set of 
all rational cross-sections of this bundle. 

4. Examples: isogenies 

We give now another example of a rational G-module defined over k. 
This example will be used in Chapter III, ? 4. 

Let Q be any transformation space for G defined over k; this means 
as customary that Q is a variety defined over k and there is given a 
morphism (q, g) - q-g defined over k from Q x G to Q with property (1) 
in ? 1. Furthermore, let X be a surjective morphism from P to Q such 
that: 

(9) X(P g) = X(p)-g p e P, g e G, 

and assume that P and Q have the same dimension. 
An important particular case is the following: let P be G operating 

on itself by right translations; let H be another group variety defined 
over k and let X be any rational group homomorphism from G onto H 
defined over k; we let Q be H with G operating on H by the rule 
h- g h- X(g); finally assume G and H to have the same dimension, that 
is X to be an isogeny. 

Let M be the function field on Q, and for any field k' of definition for 
Q let Mk, be the subfield of M consisting of the functions rational over k'. 
Since X is surjective, the composite rational function f A = f o X is defined 
for any f in M; the map f ) fX is therefore an isomorphism of M with 
some subfield MX of L. Since P and Q have the same dimension, this 
isomorphism of M into L defines on L a structure of finite dimensional 
M-vector space. 

We shall denote by C the set of all endomorphisms of L considered as 
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an M-vector space as before. On C one defines a structure of L-vector 
space by the rules: 

(10) (t + t')(f) = t(f) + t'(f), (h-t)(f) = h-t(f) 

and one lets the group G operate on C by the formula: 

(11) (tg)(f) = tVfq-)q 

These definitions are completely similar to those of ? 3, and for the same 
reason they give rise to a structure of G-L-module on C. 

For any field k' containing k and contained in K, the set Ck, will consist 
of all t in C such that t(Lk,) be contained in Lk,. We contend that C en- 
dowed with Et is a rational G-module defined over k and that Ek, =L,- C 
for any subfield k' of K. 

Since X is defined over k, the field MA is the compositum of MI and K 
which are linearly disjoint over k; since L is the compositum of Lk and 
K linearly disjoint over k and M' is contained in Lk it follows immediately 
that L is the compositum of Lk and MI which are linearly disjoint over M'k 
(cf., [4, Chap. V, ? 2, prop. 7]); moreover, for any subfield k' of K, the 
field Lk, is the compositum of Lk and Ml,. Therefore if {x1, *--, Xd} is 
any basis of Lk over Mk, this set is also a basis for Lk, over Mk, and of L 
over M. It follows that the map p : t > (t(x), * * , t(xd)) is an isomorphism 
of L-vector space of E onto Ld, and that this isomorphism maps Ck onto 
(Lk)d and 6kt onto (Lk,)d. This proves that Ck is an Lk-structure on C and 
that Ek. = Lk'. kt. 

MX > L , - > 

k - k -> K 

Let still k' be any subfield of K. For t in Ckt and g in G rational over k', 
it is obvious from the definition (11) that tg maps Lk, into itself, that is 
tg e Ck' . 

Finally, let a be any k-automorphism of K, and extend a to an Lk-auto- 
morphism of L. Let the map t t in C be defined by means of the Lk- 
structure Ck on C; since q is an isomorphism of C onto Ld which maps Ck 
onto (Lk)d, the characteristic property of tV is by tT(x,)=t(x,) for 1< i <d, 
and this in turn implies immediately: 

This content downloaded from 157.89.65.129 on Thu, 20 Nov 2014 20:26:24 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ABELIAN VARIETIES 333 

(12) t(f)I = ta(fa) t e C, f e L. 
Checking (t)T = (tT) gc is then obvious and may be left to the reader. 

Our contention is therefore completely proved. By means of the theorem 
in ? 5, this implies that C admits a basis consisting of d elements of Ck 

invariant under G. By the way, more precise results using vector bundles 
over Q could be proved, since C is the set of rational cross-sections of a 
certain vector bundle over Q. I hope to return later to this question. 

5. Existence of invariants 

We give now a proof of the structure theorem for rational G-modules. 

THEOREM. Let V be a rational G-module defined over k. Let I be the 
set of all invariants of G in V, and put Ik, = I n Vk' for any subfield k' 
of K. Then Ik is a k-structure on the L-vector space V and for any sub- 
field k' of K one gets 
(13) Ik = k'*Ik, Vek = Lk',Ik 

The proof is rather long and will be divided into several parts. 
(A) Let k' be a subfield of K; for v a vector in Vk, and g in G generic 

over k', the relation vg = v insures that v is invariant under G. 
For, h being any point in G generic over k', there exists an auto- 

morphism a of K over k' such that g'T= h; let a denote the unique auto- 
morphism of L over Lk, extending this automorphism of K. From v9 = v, 
one infers (vT)gqc = vT by (3), that is vh = v since va = v is in Vk,. Therefore 
v is fixed by any point in G generic over k'; but any point in G is the 
product of two such generic points, according to a well-known elementary 
result. This proves our contention. 

(B) As a vector space over K, the set I of invariants is generated by 'k. 

Let A be the subring of L generated by K and Lk, and let W be the 
A-module generated by Vk in V, that is W = A- Vk. As a field, L is 
generated by K and Lk and therefore L is the quotient field of A; since 
V = L- Vk, any vector in V can be written as a-1-w with w in W for 
some nonzero element a of A. 

Let u be in I and let a be the set of all a in A such that a-u e W. 
Obviously a is an ideal in the ring A. By the previous alinea, there is a 
nonzero element in a. Let k be the algebraic closure of k in K and 
let G be the group of all points in G rational over k. Since k is algebraic 
over k, the field L3- is the ring generated by k and Lk and therefore L- 
is contained in A. Finally, one gets A = K-Lk; since L- as a whole is 
stable under G, the same is true for A which is in a natural way a G-LT- 
module. Since the set K of invariants of G in A is large enough, any 

This content downloaded from 157.89.65.129 on Thu, 20 Nov 2014 20:26:24 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


334 PIERRE CARTIER 

vector space over LV in A stable under G contains a nonzero element in 
K unless it be reduced to zero (cf., Prop. 2, Chap. I, ? 6). 

Moreover W== A-V, = K- LiVk = K-VE is stable under G by the 
defining property (b) for a rational G-module. This implies the stability 
of a under G; therefore by the previous result the ideal a in A is 0 or 
contains a nonzero element in K; since a is not 0 and K is a field one gets 
1 e a, that is u e W. 

Since u is in W, one finds some cai in K linearly independent over k and 
some uSA in Vk such that: 

(14) U = EaC" -U,, X 

For g in G generic over k, one gets u, = u and therefore: 

(15) LaC {(U)q - Ua} = 0 

from (14). Let f: Vk(g) - Lk(g) be linear over Lk(g); since Vk(g) is an Lk(Q)- 

structure on the L-vector space V, there is a unique L-linear form f' on 
V extending f. Applying f' to (15) one deduces the identity: 

(16) Ea- f ) = 0 

since (uf)g - UcA is in Vk(,) for each a. 
The fields K and Lk(g) are linearly disjoint over k = k(g) n K since g is 

generic over k. Therefore the linear independence of the cal over k im- 
plies that the coefficient of each c,,, in (16) is 0. Since f is arbitrary, one 
gets (u,)q = uSA for each a. By property (A), one infers that each uSA is 
invariant under G, that is uaS e I n Vk = 

Our contention is proved. 
(C) As a vector space over L, the set V is generated by I. 
We choose a point (p, g, h) in P x G x G generic over k. 
The point p.g in P is generic over k(g, h) and over k(p, h). Therefore 

there exists a unique isomorphism a from Lk(g,h) onto Lk(ph) such that: 

(17) f (p.g) = f (p.g) (f e Lk(9,h)). 

For f in Lk(h)I that is rational over Lk(,,h) and Lk(p,,h) one gets f r= f by 
(17); in other words, a is the identity on Lk(h) and in particular on Lk- 

Using Chap. I, ? 5, one defines a bijective mapping v - vT from Vk(g,h) 

onto Vk(,,,). If {vJ is a basis for Vk over Lk, this set is a basis for Vk(q,h) 

over Lk(g,,), and the set {g1. vJ is another basis2 for the same space (this 
follows immediately from the defining properties of a rational G-module). 
It follows that the set {(g-1-.vJ)} is a basis for Vk(p,,) over Lk(ph) and 
finally for V over L. 

2 From now on, we shall write g-v instead of vga for typographical reasons. 
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To prove our contention, it is enough to prove that w = (g1.-v)T is in I 
for any v in Vk; since w is in Vk(p) and h in G is generic over k(p), it is 
even enough to prove the formula h -w = w. 

Let us introduce a convenient notation. If X and Y are two algebraic 
varieties defined over k and F is any function on X x Y rational over k, 
the function F(x, -) on Y is defined for x in X generic over k by the 
equality F(x, -)(y) = F(x, y) for y in Y generic over k(x); this function 
F(x,- ) is rational over k(x) and any function on Y rational over k(x) can 
be uniquely written in this way for some F on X x Y rational over k. 

In particular, for v in Vk, one gets g-1. v e Vk(g) and there exists an 
identity: 

(18) - =Ff(g,* )=vc. 
with some v,, in Vk and some functions Fot on G x P rational over k. By 
definition of a principal homogeneous space, the point (p, p-g) in P x P 
is generic over k, and therefore, one defines some functions F' on P x P 
rational over k by the formula: 

(19) F'(p, p-g) = F.(g,p -g). 

Using the definition of a this identity amounts to the following: 

(23) F.(p, -) = F.(g, ) 

Since gh in G is generic over k there exists a k-automorphism c of K 
such that gh = gt. Since Vk contains both v and the v,, one gets v' = v 
and v' = v,. for each a. By (3) and (18) one gets: 

(gh)1-.v = (g-l-v)c = ,F ).(g,-),.v, = EF,(g- )- (21) 
-= E.F(gh, )-vow 

Since V is a G-L-module, one gets therefore: 

l- v = h.(gh) .v = EbFw(gh, ), (h vi) 

and finally 

w = (g-1v)' = Ej{F.(gh,-)h} (h-v) 

(note that h-v, is in Vk(,) and a is the identity on L,(h)). 
For each a, the function ur = {Fr(gh, -)h} )fon P is rational over k(p, h); 

moreover the point p.g in P is generic over k(p, h). The following com- 
putation insures therefore that ups is equal to the function F'(p,- )h on P 
rational over k(p, h). 

uw(p-g) F.(gh, - )h(p-g) = F(ghq. )(p.gh) = F,(gh, p-gh) 
= Fa(p, p-gh) = Fa(p, -)(p-gh) = F.(p, - )h(p-g) - 
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This implies 

W = Ua~ .(h.va) = h-(wF.(p9 * h.w 
This proves our contention (C). 
(D) Conclusion. 
Using (B) and (C) proves that V is generated as L-vector space by Is. 

Let us choose a basis {viJ for V over L consisting of elements in k1, and 
let k' be any subfield of K. Since the vf belong to Vk, and Vk, is an Lk,- 
structure on V, the set Vk, consists of the vectors with components in Lk, 
(with respect to the basis {va}). Since the vectors vi are invariant under 
G, the set I consists of the vectors with components in K. Finally 
It = :Vet n I consists of the vectors with components in Lk, n K = k'. 
Our theorem follows immediately. q.e.d. 

CHAPTER III 

DIVISORS ON ABELIAN VARIETIES 

1. Operations on divisors 

Let X be a nonsingular variety. The notation D - 0 (resp. D z 0) 
means that the divisor D on X is linearly (resp. algebraically) equivalent 
to zero; therefore D -- 0 implies D ; 0. A divisor class is a class with 
respect to linear equivalence; by definition such a class is rational over a 
field k of definition for X if some divisor in it is rational over k; the class 
of a divisor D is denoted by Cl (D). Suppose X is complete; then if a 
divisor D rational over k is linearly equivalent to 0, there exists a func- 
tion f on X rational over k such that D = (f ); if two functions f ' and f" 
have the same divisor, their ratio is a nonzero constant. 

Let Y be another nonsingular variety and f a morphism from X to Y. 
For any divisor D on Y whose support does not contain f (X), the divisor 
f -1(D) on Y is defined by the formula: 

(1) f '(D) =prXrf.(X x D) 

where rf is the graph of f; therefore f -1(D) is defined for any divisor D 
on Y if f is surjective. The relation D , 0 implies f 1(D) - 0; more pre- 
cisely, if D = (u) where u is a nonzero function on Y, the divisor f '(D) 
is defined if and only if the composite function u o f is defined and non- 
zero and one has the formula: 

(2) f '(D) = (uof) for D= (u). 

Let c be a divisor class on Y; since Y is nonsingular there exists a 
divisor D in c whose support does not contain a given point in f (X); then 
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f-1(D) is defined and by the preceding result the class of f -(D) depends 
only on c; this class we shall denote by f-1(c). The mapping cf-'(c) 
from the class group of Y to the class group of X is a group homomorphism. 

Let k be a field of definition for X, Y and f. When f -1(D) is defined 
for a divisor D on Y rational over k, then it is rational over k on X. For 
a class c rational over k on Y, there exists a divisor D in c rational over k 
such that f-1(D) be defined; therefore the class f-1(c) on X is rational 
over k. 

Finally, let f ' be a morphism from Y to a nonsingular variety Z. For 
a divisor D and a class c on Z, one has the transitivity formulas: 

(3) f --(f '-1(D)) (f o f )-1(D) 

(4) f -(f' -(C)) (f' ) -1(C) 

whenever the divisor to the left in (3) is defined. 

2. Divisors on an abelian variety 

Let A be an abelian variety. By 8a we mean the identity endomorphism 
of A. For a in A, the translation Ta : x > x + a is an automorphism of 
the variety underlying A; according to a familiar notation, we use a sub- 
script "a" to denote the transform by Ta of any object attached to the 
variety A. For instance, one has the formulas: 

( 5) fa(x) = f(x -a) 
(6) Da= T- (D) 

(7) Ca= Tz-(c) 

for a function f, a divisor D and a divisor class c on A, whenever f(x - a) 
is defined for x in A. 

If c is a class on A, the map rc: a Ca - c is a group homomorphism 
from A to the class group on A (cf., L-III3, cor. 4 to th. 4); we shall write 
c - 0 to mean than rc is 0, that is c invariant by translation; if D is a 
divisor, we write D 0 when Cl (D) 0, that is Da D for all a in A. 
If X is a homomorphism from A to an abelian variety B, one checks easily 
the formula: 

(8 ) X 0 Ta = Tna OX (a e A) 

where the notation T refers to A in the left hand side and to B in the 
right hand side. By (4) and (7) one deduces from this formula the rule: 

( 9 ) A (C)a = X (C *a) 
and therefore: 

(10)4 *Ar-l,(c(a, = X-.(c(Xa)){.-y4 
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for a in A and c a class on A. 
We shall now prove some properties of the equivalence - (cf., L-IV1). 

PROPOSITION 1. Let c be a divisor class on an abelian variety A and let 
S, p and p' be the morphisms from A x A to A defined by S(a, b) = a + b, 
p(a, b) = a and p'(a, b) = b respectively. Then the relation c 0 is 
equivalent to 

(11) S 1(c) = pI(c) + p -1(c) 

Let b be the class S-1(c) - p-1(c) - p'1(c) on A x A. For a in A let qa 
be the isomorphism of A onto the subvariety a x A of A x A defined by 
qa(b) = (a, b); one has S o qa - Ta, the morphism p o qa is constant and 
a' o qa is the identity map of A; by (4) and (7) one gets therefore: 

(12) q-1(b) = Ca - C (a e A). 

In the same way, one proves the relation: 

(13) qa (b) = C-a - C 

where q' is defined by q'(b) = (b, a). Therefore, c - 0 means that b induces 
the zero class on A x a and a x A for any a in A. The proposition will 
be proved if we show that the last condition implies b = 0. 

Let E be a divisor in b and k be a field of definition for A and E; since 
the support of E is k-closed, it does not contain a x A for a generic over 
k, and therefore the divisor q;1(E) is defined on A and rational over k(a); 
this divisor is linearly equivalent to 0 by hypothesis, and since A is 
complete, there exists a function f on A rational over k(a) such that 
q-I(E) = (f). For b generic in A over k(a) one has f(b) e k(a, b) and 
there exists a function g on A x A rational over k such that f (b) = g(a, b), 
that is f = g a qa. This relation implies that the divisor induced on a x A 
by E - (g) is 0; since the latter divisor is rational over k and a is generic 
over k, there exists a divisor D on A rational over k such that E - (g) = 
D x A. This implies b = p-1(c') where c' is the class of D; but c' = 
q'-'(p-'(c')) = q'-j(b) = 0 and therefore b = 0. q.e.d. 

COROLLARY 1. For two abelian varieties A and B and two homo- 
morphisms X and , from B to A, the following holds: 

(14) (X + ?5)-l(c) = A-1(c) + ,-1(c) 

for any class c on A such that c - 0. 
Let w be the homomorphism from B to A x A defined by w(b) = (X-b, 4a*b) 

for b in B; since p o a = X, p' o a = , and S o w=X + , formula (14) 
results from (11) by applying the operation 7r-1. 
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COROLLARY 2. Let A be an abeltian variety and c a divisor class on A. 
Then for any integer m, one has: 

(15) (m8A)-1(c) =m2c . 
For any class b on A such that b = 0, one gets (m83)-1(b) = m-b by (14). 

We know that crc is a group homomorphism; therefore one gets *c(a + b) 
*c(a) + kc(b) that is 

Ca+b - Ca - Cb + C = 0 

or (Ca - C)b = Ca- c. Finally, one gets *,C(a) 0 for any a in A. If one 
uses formula (10) with X = m-8 one gets therefore 

m.1A)(c)(a) = (m.8A)-1(qr(m-a)) = m.*c(m-a) = m?-*c(a) =frm2.c(a) 

and (15) is a consequence of this relation and the definition of the con- 
gruence-. q.e.d. 

By (10) the relation c- 0 implies -1(c)_ 0 for any homomorphism 
X: A > B and any divisor class c on B. Conversely, one has the following 
result: 

PROPOSITION 2. Let A and B be abelian varieties and X a surjective 
homomorphism from A to B. Then, for any class c on B, the relation 
X-1(c) 0 implies c_ 0. 

By Poincare's theorem of complete reducibility (cf., L-II1, th. 6) there is 
a homomorphism A: B > A and an integer m # 0 such that X o /1 = m-8B* 

Then X-1(c)- 0 implies fr1(XV1(c)) 0, that is (m-8B)-1(c)- 0, or finally 
m2I c 0 by Corollary 2 to Proposition 1. But this in turn implies 
*k((m2- a) = m2 (a) = m.c(a) = 0 for all a in A, and since m2-8B is an 
isogeny (cf., L-IV3, th. 6), one gets r = 0, that is, c- 0. q.e.d. 

3. Group associated to a divisor 

Let A be an abelian variety and L be the function field on A. 
If h is a function H 0 on A and a is in A, the map ,,a: f > h fa is an 

automorphism of L considered as a vector space over K; furthermore 
*h a = Bhrat implies h = h' and a = a' and the set 2 of all maps *,ha is a 
group according to the formulas: 

(16) Ah ,a ? *l~as *t=lh-h',a+af 

(17) i]Jiaa = e a' = 

of which verification is straightforward. Finally h = A is nothing but 
the homothety f - h -f in L. 

Let D be a divisor on A such that D - 0. To D we associate the set 
S(D) of pairs (h, a) such that: 

This content downloaded from 157.89.65.129 on Thu, 20 Nov 2014 20:26:24 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


340 PIERRE CARTIER 

(18) D + (h) = Da . 

It is easily checked that along with the pairs (h, a) and (h', a') the pairs 
(h-h', a+a') and (h- , -a) are in S(D); therefore, the set ?7(D) of opera- 
tors 1ka for (h, a) in S(D) is a subgroup of 9 and by (16) the map 

*,,a a from ?(D) to A is a group homomorphism; ? is surjective 
since Da -D for all a in A by hypothesis. Finally the kernel of ? in ?1(D) 

consists of the homotheties h for the functions h such that D + (h) = 
De = D, that is (h) = 0, or h constant since A is complete. 

If D and D' are divisors on A with D - D', there exists a function F 
on A such that D D' + (F); furthermore, since A is complete, this 
function is defined up to multiplication by a constant; therefore the map 
t - F-t-F-1 is an automorphism SDD of the ring of K-linear maps in L, 
independent of the choice of F. The following transitivity formula is im- 
mediate for D - D' , D"': 

(19) SDfD = SD/,Df ? SDfD 

On the other hand, for D = D' + (F) the relations (h, a) e S(D) and 
(h', a) e S(D') are equivalent provided that h' = h-FIFa; this in turn is 
equivalent to 

*la= F. *, a' F 
and therefore SD',D induces an isomorphism from ?7(D) to ?7(D') if D -- D'. 

PROPOSITION 3. Let D be a divisor on an abelian variety A such that 
D - 0; then the group 2(D) is commutative. 

Up to an isomorphism, the group ?7(D) depends only on the class of D; 
since in any class there exists a divisor, the support of which does not 
contain e, we can assume that e belongs to the complement U in A of the 
support of D. 

Proposition 1 applied to the class of D insures the existence of a func- 
tion f on A x A such that: 

(20) S-1(D) =D x A+A x D+(f) 

where S is the sum mapping (a, b) > a + b from A x A to A; further- 
more, since e is not on the support of D, the point (e, e) is not on the 
support of (f), and since A x A is complete, there exists a unique func- 
tion f on A x A whose divisor is given by (20) and such that f (e, e) = 1. 
Since by (20) the divisor of f is invariant under the symmetry (a, b) - (b, a), 
the uniqueness of f shows that the following formula holds: 

(21) f (a, b) = f (b, a) (a, b, a + b in U). 

If qa is the isomorphism b (a, b) from A to a x A, formula (20) implies 
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(22) D_ -D = (f o qa) (a e U), 
reasoning as in the proof of Prop. 1. In particular putting a = e in (22), 
one sees that f induces a constant on e x A and since f (e, e) = 1, one gets 
f(e, a) =f(a, e)= 1 for a e U. For a e U we shall put ha f a soq 5 
that D__ - D = (ha) and ha(e) = 1; since A is complete, these conditions 
are characteristic for ha, and if one puts t(a) =- *,a, for a e U, one 
therefore gets 

(23) Ah-a t(a)-h(e) 
whenever (h, a) is in S(D) and a in U. By (16) one gets therefore: 

(24) t(a)-t(b) = t(a + b)-f (b, a) 

for a, b and a + b in U. 
The set U' of operators t(a). - for a in U and & in K* is the inverse 

image of U by the homomorphism ? from ?(D) to A; by (21) and (24) two 
elements of U' commute provided their product is in U'. Therefore any g 
in U' commutes with all *,,a in ?(D) such that a and a + C(g) are in U, 
that is, provided a lies in a certain non-empty open set; but any element 
in A is the product of two elements in a given non-empty open set, and 
therefore any g in U' commutes with the whole of ?(D). By the same 
reasoning, any element in ?(D) is the product of two elements in U', so 
finally ?7(D) is commutative. q.e.d. 

REMARK. With the same notations as before, by the one-to-one corre- 
spondence t(a)-*(a, &), the group law on 7(D) defines a rational law of 
composition on U x Gm; it is easily checked that U x Gm is then a group 
chunk in the sense of Weil [17]. This in turn enables us to define on ?(D) 
a structure of group variety, extension of A by Gm. Using a well known 
result of Rosenlicht [13] one sees easily that, up to an isomorphism, one 
obtains in this way every extension of A by Gm, and that the isomorphism 
classes of those extensions are in one-to-one correspondence with the 
divisor classes c such that c -0. This would give another proof of a result 
of Weil-Serre (cf., [14] and [18]). 

4. Hasse's algebra 

The following notations and assumptions will be in force in this section 
and the next one. 

Let A and B be two abelian varieties, X an isogeny from A to B, d the 
degree of X and c a divisor class on A. Moreover, let k be a field of defi- 
nition for A, B, X and c and let D be a divisor in c rational over the field k. 

The following definitions are analogous to those of Chap. II, ? 4 to which 
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we refer for the proofs. The function fields on A and B are respectively 
called L and M; since X is surjective the composite function f A = f o X is 
defined for any function f on B and f ) f x is an isomorphism of M onto 
a subfield of L; this isomorphism gives rise to a structure of M-vector 
space on L, and we denote by C the endomorphism ring of this vector 
space. Finally the map which associates to an f in L the corresponding 
homothety f is an isomorphism of L with a subfield of C, which in turn 
defines on C a structure of left vector space over L (not an algebra!). 

The fields Lk and Mk are the subfields of L and M consisting respective- 
ly of the functions in L and in M which are rational over the field k; then 
Lk is an Mk-structure on the M-vector space L; on the L-vector space C, 
the set Ck of the maps t with t(Lk) c Lk is a Lk-structure. This implies 
the relations: 

(25) [C: L] = [Ck Lk] = [L: M] = [Lk: Mk] = d . 

The Hasse algebra n(D) associated to X and D is the subring of e con- 
sisting of the M-linear operators in L commuting with every element of 
the group ?7(D); we shall put 31k(D) = n(D) n E,. If D = 0, the group 
?7(D) is generated by the translations and the constant homotheties in L, 
and n(D) is the algebra we have associated to the isogeny X in Chap. II, ? 4 
(set of invariants of G in 6). 

If one puts 
(26) ta(f) = t(fa)a 

for t e 6, f e L and a e A, we have seen in Chap. II, ? 4 that ta is in C 
and that the group A operates rationally on C by this law. But for 
g = *,,a in ?7(D) one gets the formula: 

(27) g-t-g-' = hAta h-1 (t e C) 

and therefore ?7(D) operates on C by the law (g, t) - g*t g-1; but if g is in 
the kernel of the homomorphism " ^,a- a from ?7(D) onto A, it is a homo- 
thety by a constant, and therefore commutes with any t in C. Therefore, 
by (27) one sees that the group A operates on C by the rule: 

(28) t(a) = h*ta*- 1 

where h is any function on A such that D + (h) = Da. 
We shall prove that in fact A operates rationally on C by this new law; 

this will be an easy consequence of the same property of the action 
(a, t) > ta. In fact: 

(a) For f in L, t in C and a in A, one has: 

(fi)(a) = h(f t)a h-1 = hjfa taah-1 =fa h ta h-' =fa4t(a). 
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(b) With the same hypotheses and a rational over a field k', there exists 
a function h on A rational over k' such that D + (h) = Da since D and Da 
are rational over k' and A is complete; therefore h is in Ler, and since ta 
is in Ck', one sees that t(a) is in Ck'- 

(c) Let now a be a k-automorphism of K; since D is rational over k, the 
relation D + (h) = Da implies D + (ho) = Dae and since (ta)a = (tr),r 
(cf., Chap. II, ? 4) one gets 

(t(a))= = h"(ta)a(h')}1 = ha(ta)a0T(h0-)- = (to)(aaT) 

Since n(D) is obviously the set of all t in C such that t(a) = t for any a 
in A, one may use the theorem in Chap. II, ? 5; this theorem implies that 
any basis of l(D)k over k, is a basis of n(D) over K, a basis of 8k over 
Lk and a basis of C over L, and by (25) one gets the following equality: 

(29) [5l(D): K] = [l(D)k : k] = d . 

5. Divisor classes and characters3 

Let b be a divisor class onB such that X-I(b) = c and let X be a character 
of the Hasse's algebra n(D). We shall denote by R(b, X) the following 
relation between b and X: 

"There exists a divisor E of class b and a function f = 0 on B with the 
properties: 

(30) v-1(E)= D+(f) 

(31) t(f ) = X(t).f (t e n(D))." 

Our purpose is to prove the following statement: 
"The relation R(b, X) is a one-to-one correspondence between b and X. 

Furthermore, assuming R(b, X), for any subfield k' of K the divisor class 
b will be rational over k' if and only if X maps l(D)k into k'." 

Let us start first with a divisor class b on B rational over a field k' con- 
taining k, and such that v'(b) = c. Choose a divisor E in b rational over 
k; since the class of -' (E) is equal to c and A is complete, there exists a 
function f t 0 on A rational over k' such that (30) holds; this being done, 
put x(t) = t(f )/f for t in U(D). 

Let now El be a divisor in b and f1, be a function on A such that 
w' (Ej) = D + (f); since E and E1 have the same class, there exists a 
function ro # 0 on B such that E1 = E + (r0) and therefore 

D + (f1t) = x-1(Ej) = v-1(E) + (rx) = D + (fort). 
Since A is complete, and since the functions f1 and fM rx have the same 

3 If e is any algebra over a field K, a character of C will be any K-linear ring homo- 
morphism from C to K. 
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divisor, their ratio is a constant 0, and we get f1 = f * rA by putting r = r,. 
Since any t in n(D) is M-linear, we have t(f1) = t(f rx) = t(f )r = 

x(t) .f. rA = X(t) .f1; therefore X is independent of the choices made for E 
and f. 

By (3) and (8) one proves the formula: 

(32) X-'(E)a = X-1(Ex-a) (a e A) 

for any divisor E on B. The following formula is obvious: 

(33) D + (kha(f)) = {D + (f)}a 

for #ha in ?7(D). Moreover, from v1(b) = c and c 0, one deduces b 0 
using Prop. 2, that is the class b is invariant by translation. From this 
remark, one deduces by (32) and (33) that together with a solution (E, f ), 
the equation (30) admits (Ea, a a ,,a(f )) as a solution for any *,h,a in ?7(D). 
One has therefore t(#ha (f )) = X(t)l *,h,a (f ) for any t in 7(D), and since 
such a t commutes with every element in ?(D), this last formula can be 
written h* t(f )a= h*X(t) *fa, that is h *X(t)afa = h-X(t)*fa using (31). Final- 
ly one gets x(t)a = x(t) for every a in A and x(t) is a constant. If t is in 
nT(D)k one has t(f ) e Lk, since t e C c C G', and f e Lk,, and therefore 
X(t) = t(f)/f is in Lk,; since X(t) is a constant, it is therefore contained 
in k'. Since X(t) is in K for any t in n(D), formula (31) implies that X is 
a character of n(D). 

Finally, we have proved that given any divisor class b on B such that 
-'(b) = c, there exists a unique character X of nJ(D) such that R(b, X) 

hold; moreover, if b is rational over k', one has X(,7(D),) C k'. 
Let now X be a character of n(D) and let k' be a subfield of K such that 

X map U(D)k into k'; such a subfield exists, for instance the algebraic 
closure of k in K has that property, since J(D)k is of finite rank over k. 
Let f be the kernel of X; then S is the ideal in n(D) consisting of the 
elements t - X(t) - 1 for t in UY(D), and its rank over K is d - 1 since the 
rank of n(D) is d. The left ideal of C generated by S is S = 
L- n(D) -S = L.S since C = L - 7(D), and since any basis of n(D) over K 
is a basis of E over L, the rank of LS over L is d -1 and is d(d -1) 
over M. Since C is the ring of endomorphisms of the M-vector space L 
of rank d, it is a classical result that the set of all vectors in L annihilated 
by all operators in the left ideal L* S of rank d(d - 1) over M is a one- 
dimensional M-subspace V of L; it is clear that V is the set of all f in L 
annihilated by the operators t - x(t). 1, that is the set of solutions of (31). 
Since V is also the set of solutions of the equations (31) for t in ?Jl(D)k 
and since t - X(t). 1 is in Ckt for t in ?l(D)X, there exists a basis for V over 
M consisting of elements in Lk,. In other words, there exists a solution 
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f # 0 of the system (31) rational over k', and any other solution is of the 
form ra if with a function r on B. 

Since the function f is rational over k', so is the divisor D' = D + (f); 
since D' belongs to the class c and c = 0, it follows from Prop. 1 that there 
exists a function F' on A x A rational over k' such that: 

(34) S-1(D') = D' x A + A x D' + (F') 

where S is the sum mapping (a, b) - a + b from A x A to A. If a is 
the isogeny from A x A to B x B defined by 1a(a, b) = (XAa, Xfb), 
we shall now prove that there exists a function H on B x B such that 
F = HoPa. 

Let a and b be two points of A generic independent over k', and let h 
be a function on A rational over k(a) such that Da = D + (h), so that 
#h,-a belong to ?7(D). Since every t in W(D) commutes with ?1(D) and in 
particular with *h,,-a, the function J*,,-a(f) is a solution of (31) together 
with f; therefore the ratio ,,-a (f )/f is of the form rX for some function 
r on B. Since D' = D + (f), one gets 

D'a = D + ('kh,-a(f)) = D + (fLarx) = D' + (rx) 
on the one hand; using (34) one gets 

D'aa D' + (h') 

on the other hand where the function h' on A rational over k'(a) is defined 
by h'(b) = F'(a, b), by the same reasoning used to prove Prop. 1. Com- 
paring these two values of D'ia, and using the completeness of A, one 
infers that h'Ir" is a constant and there exists therefore a function r' on 
B such that h' = rE"; since h' is rational over k'(a) so is r' and therefore 
F'(a, b) = h'(b) r'(X>b) is contained in k'(a, Xfb). But F'(a, b) = F'(b, a) 
(cf., the proof of Prop. 3) and therefore F'(a, b) is contained in 
k'(a, Xfb) n k'(X.a, b) = k'(X.a, Xfb); this obviously proves the existence 
of H. 

Since the function H on B x B is rational over k', we can write 
(H) =- E x B + E1 where E1 is a divisor on B x B without component 
of the form T x B, and where E is a divisor on B rational over k'; on 
the other hand, one has (F') =-D' x A + D1 where D1 is a divisor on 
A x A without component of the form S x A. Let Y be a subvariety of 
codimension one of B x B, not of the form T x B; by the dimension 
principle for correspondences, any component Xof -1( Y) is of codimension 
one in A x A; if X were of the form S x A, one would get X(S) x B c Y; 
but since the counter-image by X of any point in B is finite, it follows by 
standard results that X(S) has the same dimension as S and therefore is 

This content downloaded from 157.89.65.129 on Thu, 20 Nov 2014 20:26:24 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


346 PIERRE CARTIER 

of codimension one in B; from X(S) x B c Y one infers therefore 
x(S) x B= Y, which is a contradiction. Therefore, from the relation 
(F') = p-1((H)), which is a consequence of F' = Ho 1a, one deduces 
PI(E x B) = D' x A and p-1(E1) = D1 and therefore X-1(E) = D'= 
D+ (f). 

We have therefore proved that given any solution f of (31) rational over 
k' there exists a divisor E on B rational over k' such that (30) holds. 
Now, any other solution of (31) is of the form f0 = fa rA for some function 
r on B, and the unique divisor E, such that X-1(EJ) = D + (f0) is obviously 
given by E0 = E + (r). Therefore, the set of divisors E on B such that 
there exists a function f ? 0 on A for which (30) and (31) hold, is a class 
b on B rational over k'; this class b is then the unique class on B for which 
R(b, X) hold. This completes proof of the statement at the beginning of 
this paragraph. 

Let a be a k-automorphism of K. This automorphism extends to an 
automorphism f - f>C of L over Lk and to an automorphism t - to of C 
inducing the identity on Ck. Moreover, as we have seen in ? 4, one has the 
relation (t(a)) = t(T.) for t in C and a in A; this shows that t e T(D) im- 
plies tT e n(D), and since the map t t- in n(D) is a ring automorphism 
inducing a on K and the identity on T7(D)k, it is the map associated to 
the k-structure J(D), on J(D) (cf., Chap. I, ? 5). Therefore, to any 
character X of U(D), one can associate another character X' by the fol- 
lowing condition: 

(35)~xa(ta) =X(00) (t e T(D)). 

This formula and the relation t(f)T = U(fT) for t in C and f in L show 
that the relations R(b, X) and R(bo, XC) are equivalent (use the fact that 
D and X are rational over k). 

Let D' be a divisor linearly equivalent to D. We have seen in ? 3 that 
the automorphism sD',D of the ring of all endomorphisms of the K-vector 
space L induces an isomorphism of ?(D) with f(D'); since n(D) is defined 
as the commuting set of ?(D) and similarly for n (D'), it follows that 
SD',D defines an isomorphism of n(D) with n(D'). Moreover, if D' is 
rational over k, there exists a function F on A rational over k such that 
D = D' + (F); since F is then in E, and SD',D is the map t FP. t * F-, 
this map sends n(D), onto T(D'),. Finally, one easily checks in formulas 
(30) and (31) that if X is a character of T(D) and X' the character X o SD,Df 

of 1l(D'), the relations R(b, X) and R(b, X') are indeed equivalent. We see 
therefore in what sense our constructions depend only on the class c of D. 
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6. Duality of abelian varieties 

We begin by recalling the characteristic properties of the dual of an 
abelian variety. For the proofs of the following facts, we refer to Lang's 
book (cf., L-IV4). 

Let A be an abelian variety defined over a field k0; there exists an 
abelian variety A defined over k, and a divisor class PA on A x A rational 
over k, with the following properties: 

(a) The divisor class PA induces the zero class on e x A and A x e. 
(b) For w in A, let 4A(w) be the divisor class on A which is the recipro- 

cal image of PA by the morphism a (a, w) from A to A x A. Then 
w JPA(W) is an isomorphism of the group of points of A onto the group 
of classes on A consisting of divisors algebraically equivalent to 0. More- 
over, for any field k containing k0, the class 4A(W) is rational over k if and 
only if the point w is rational over k. 

These two properties characterize A and PA up to a k0-isomorphism; 
moreover A and A have the same dimension. The abelian variety A is 
called the dual of A and the divisor class pA the Poincare class. 

Let now X be a homomorphism from A to another abelian variety B 
both defined over the field k,; we define B and PB similarly as A and PA* 

Then there exists a unique homomorphism tx from B to A, the transpose 
of X, for which the following relation holds: 

(36) X '(PB(W)) = A('X W) (W e B). 

If X is rational over a field k containing ko, tX is also. Moreover one has 
the formulas: 

(37) t( )=t +t ( ) = t y o t0 P 8 A 

We shall now apply the results obtained in ? 5 to prove the following 
theorem. 

THEOREM 1. Let A and B be abelian varieties and X an isogeny from 
A to B. The transposed homomorphism tx from B to A is an isogeny, 
and X and tX have the same degree.4 

Since X is an isogeny, there exists an isogeny [ from B to A and an 
integer m # 0 such that: 

(38) o X = mXA, X O , maB 

4 Added in proof. This last statement is the main result of the present paper. We 
refer to L-VII for the whole set of implications of this assertion. We mention only that 
the so called canonical homomorphism XA of A into A is an isomorphism for any abelian 
variety A. 
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(cf., L-II1, p. 29). Using the formulas (37), one gets: 

(39) tX o [= m83 , tlo tx =m*8 

and therefore tX is an isogeny. 

Let now k. be a field of definition for A, B and X and define the divisor 
class c on A by c = PA(v) where v in A is generic over k.; since tX is an 
isogeny, there exists a point w in B generic over k. and such that 
t'Xw = v; we put b = PB(W) in such a way that X-1(b) = c by (36). More- 
over, we put k = k,(v) and choose a divisor D in c rational over k; let X be 
the unique character of the Hasse's algebra T(D) for which the relation 
R(b, X) hold. 

Let k' be a subfield of K containing k; then on the one hand, the class 
b = PB(W) is rational over k' if and only if the point w of B is rational 
over k', that is if and only if k' contains k,(w). On the other hand, by the 
main result in ? 5, the class b is rational over k' if and only if k' contains 
the ring X(W(D)k); and since this ring is a finite-dimensional k-module, it 
is a field containing k. Since k,(w) contains k,(tX *w) = k,(v) = k, we have 
therefore the following equality: 

(40) X(W(D)k0V,) = ko(w) . 
Let d, d, e and e be respectively the degrees of the isogenies X, tX, p 

and tp and let n be the dimension of A and A. Since v and w are generic 
points over ko and v = tX.w, one gets d = [ko(w): k.(v)], and since the 
algebra J(D)k over the field k = ko(v) is of rank d (cf., ? 4, formula (29)), 
one gets [ko(w) ko(v)] < d by (40), that is d < d. By the same result ap- 
plied to the isogeny , instead of X, one finds e ? e. But, on the other 
hand, the degree of the isogeny mniA is equal to m2n (cf., L-IV3, th. 6) 
and therefore we get d e = M2n by (38); for the same reason, one gets 
d .e = M2n (since A and A have the same dimension). 

We have proved the formulas d < d e < e and d*e = d*e = mn2 and 
from this follows d = d and e = e; the formula d = d is the contention 
of our theorem. q.e.d. 

Let us remark for later use that the equality d = d, that is 
[ko(w): ko(v)] = [rl(D)k0(V,): k(v)] implies together with (40) that X induces 
a ring isomorphism from l(D)k0(V) onto ko(w); therefore U(D),,(v) is afield. 

7. Non-existence of torsion on abelian varieties 

Let A be an abelian variety. It is known (cf., L-IV2, cor. 3 to th. 4) 
that for a divisor D on A the relation D = 0 holds if and only if there 
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exists an integer m # 0 with m * D - 0. We shall now improve this result. 

THEOREM 2. Let A be an abelian variety and D a divisor on A. The 
relations D - 0 and D - 0 are equivalent. Moreover, the group of divisor 
classes with respect to algebraic equivalence on A is a torsion-free 
commutative group. 

According to the remarks preceding the theorem, the two assertions in 
the theorem are indeed equivalent. We shall therefore prove the second 
which means that m * D X 0 for some integer m # 0 implies D ; 0. 

Since moD is algebraically equivalent to 0, its class is of the form PA(W) 
for some x in the dual A of A; since meA is an isogeny, there exists a 
point y in A such that x = m * y and therefore Cl (m * D) = PA(W) = PA(m y) = 
m*4A(Y). If D' is any divisor of class 4A(Y) one gets Cl (m * D) = m * Cl (D') = 
Cl (m.D'), that is m.(D - D') - 0, and D' is algebraically equivalent to 
0. Moreover since a fortiori m.(D - D') : 0, one gets D -D' _= 0 and 
therefore (M8A)-'(D - D') m (D - D') - 0 by using Corollary 1 to 
Proposition 2. The following lemma will imply D - D' 0 and since one 
has D' > 0, we shall finally get D t 0. 

LEMMA. Let x: A m B be an isogeny where A and B are abelian 
varieties. For a divisor E on B, the relation X-1(E) ^- 0 implies E t 0. 

We use the notations introduced in the proof of Theorem 1; moreover 
we can assume the divisor E rational over k.. Put b' = b + Cl (E); the 
hypothesis X-1(E) % 0 implies w-1(b') = X-1(b) = c and there is therefore 
a unique character X' of the Hasse's algebra n(D) for which R(b', X') hold. 

We know by the remark following Theorem 1 that J(D),,(v) is a field. 
Since K is a universal domain, there exists therefore a k-automorphism a 
of K such that X'(t) = X(t)G for all t in U(D)ko(v). This implies X'(to) = X(t) 
for t e n(D) by linearity; by formula (35), this means X' = XC and there- 
fore b' =b since R(b, X) and R(bo, XA) are equivalent. We get Cl (E) = 

-b = - b = PB(w) - PB(w) = PB(W- w) and finally E m 0. q.e.d. 

8. Some remarks about separable isogenies 

Let X: A - B be a separable isogeny where A and B are abelian varie- 
ties, let c be a divisor class on A such that c 0 and let k be a field of 
definition for A, B, X, c and the different points in the kernel Nof X. We 
shall investigate the structure of the Hasse's algebra in this particular 
case. We keep the notations of ?? 4 and 5. 

Let D be a divisor in c rational over k; since D = 0, for each a in N 
there exists a function c(a) on A rational over k such that Da - D = (c(a)); 
define u(a) = #c(a),a as an element of ?(D). Since a is in the kernel of X, 
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it is obvious that u(a) is actually M-linear; but since the group ?(D) is 
commutative, any u(a) commutes with the whole of ?(D) and is there- 
fore in n(D), even in Tl(D)k since c(a) and a are rational over k. 

Since the automorphisms f ) fa of the field L for the a's in N are 
distinct, it follows from Dedekind's theorem that the elements u(a) of 
UY(D)k are linearly independent over k; since the rank of the k-algebra 
I(D)k is equal to the degree of the separable isogeny X, that is to the 

number of elements of N, one sees that 71(D)k admits the u(a) (for a in N) 
as a k-basis. Using formula (16), one finds easily the multiplication table 
of U(D)k; in fact, one has: 

(41) u(a) u(b) = c(b, a).u(a + b) (a, b e N) 

where c(a, b) is defined by the formula: 

(42) c(a, b) = c(a)b c(b)/c(a + b) . 

Let b be a divisor class on B rational over k such that w-1(b) = c, and 
let X be the character of n(D) associated to b. Then, for E in b and a 
functionf on A such that (30) and (31) hold, one gets X(u(a)) = u(a)(f )/f- 
c(a) *falf and this formula defines X. 

We are now in a position to compare our results with Roquette's con- 
structions in [11]. One has to remark that the translations f - fa for a in 
N form the Galois group of the extension LkIMk, and the formulas (41) 
and (42) show that our algebra TIl(D)k of operators in L is isomorphic to the 
abstractly defined algebra F of Roquette. By the way, it is rather dif- 
ficult to find in Roquette's paper an explicit statement concerning the 
relation between a divisor class b and the corresponding character X. 
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