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Introduction

Let G be a separable locally compact space and let (X,), t in T, be a transient
Markov process with values in G, where T is either the set of positive integers
(discrete time) or the set of positive real numbers (continuous time). Let (Qt) be
the semigroup of transition kernels of (X,). Let f and A be, respectively, a positive
Borel function on G and a positive measure on the Borel a-field of G. Call f
(respectively, A) excessive if Qtf _ f and lim,-0 Qtf = f (respectively, AQt < A),
and invariant if Qtf = f (respectively, AQt = A).
Around 1955, the early studies of excessive functions of a Markov process

centered around two problems: the relations between Brownian motion and
Newtonian potential theory, and the behavior of the trajectories of the process
(X,) as t -- + x. The latter approach can be traced back to D. Blackwell ([4],
1955) who noticed the link between bounded invariant functions and the subsets
of G in which (X,) stays, from some finite time on, with positive probability.
The importance of these 'sojourn' sets became clear after W. Feller's magistral
article ([24], 1956), where they are used to construct (discrete T and G) a com-
pactification G u F of G such that each bounded invariant function f extends
continuously to G u F and is uniquely determined by its values on the Feller
boundary F.
The other approach was initiated by two papers of J. L. Doob: a study of the

behavior of subharmonic functions along Brownian paths ([16], 1954), and a
probabilistic approach to the potential theory of the heat equation ([17], 1955).
The relation between potential theory and general (transient) Markov processes
was completely clarified by G. Hunt soon after ([32], 1957-1958).
These two trends of thought each found their expression in Doob's work

([18], 1959) which revived the methods used by R. Martin ([39], 1941) in his
classical study of harmonic functions. In this article. Doob constructed (for
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discrete T and G) a compactification of G by essentially adjoining to G a set of
extreme invariant functions. obtained the integral representation of excessive
functions in terms of extreme excessive functions, and proved the basic results
about the almost sure convergence of(X,) to the Martin boundary, as t - +so.
Hunt ([33]. 1960) introduced new methods of achieving Doob's results. in par-
ticular the reversal of the sense of time for Markov processes.

It soon became clear that Feller's boundary is almost always too large
(1). Kendall [34]. 1960. J. Feldman [26]. 1962). and in later studies the approach
of' Doob and Hunt has prevailed. The extension of potential theoretic results to
the recurrent case began around 1960-1961, first for the case of random walks
(K. Ito and H. J. McKean, and F. Spitzer) and then for the case of Markov
chains (J. G. Kemeny and J. L. Snell). A very lucid exposition of the main ideas
of boundary and potential theory for Markov chains (for discrete T and G) was
given by J. Neveu ([46]. 1964). using G. Choquet's results on convex cones
([11], 1956) to obtain the integral representation of excessive functions. In [36]
(1965), H. Kunita and T. Watanabe treated the case of continuous time and
general state space. They considered two processes in duality with respect to a
measure on the state space, a situation whose importance had been recognized
earlier by G. A. Hunt [32] and P. A. Meyer (thesis). The construction of the
(exit) boundary uses, then, the compact caps of the cone of coexcessive measures
(that is, measures which are excessive with respect to the dual process).
Meyer ([42]. 1968) gave a new presentation of their results using Choquet's

integral representation theorem.
When the state space G is a topological group. a class of Markov processes

is naturally linked to the group structure, the random walks on G. We now
restrict our attention to this situation. In the abelian case, the first significant
result was reached by G. Choquet and J. Deny ([12], 1960), who showed that
the extreme invariant functions are essentially characters of the group. For the
particular case when G = Z. group of integers. this was noticed simultaneously
by J. L. Doob, J. L. Snell. and R. Williamson ([22]. 1960).

For the case G = Zn, the boundaries of random walks were then carefully
described by P. Hennequin ([31], thesis 1962) and the asymptotic behavior
of the Green function at the boundary was obtained by P. Ney and F. Spitzer
([47]. 1966). The basic results of the potential theory of random walks on Zn,
exposed by Spitzer ([49], 1964) were soon extended to countable abelian groups
in a joint paper with H. Kesten ([35], 1966).
For the nonabelian case, the extreme invariant functions were obtained first

for finitely generated groups by E. Dynkin and M. Maljutov ([23]. 1961). A
major advance was made by H. Furstenberg ([27]. 1963) giving an integral
representation of bounded invariant functions for random walks on semisimple
connected Lie groups. containing as a particular case the classical Poisson
formula relative to harmonic functions on a disc. He obtained partial results
([29], 1965) about the cone of all nonnegative invariant functions for the same
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class of groups. The main results of [27] were extended by R. Azencott ([3],
1970) to a larger class of groups.
We have tried to outline briefly the evolution of the main currents of ideas

relevant to our work. Lack of space has forced us to make a number of sizeable
omissions: the essential influences of "abstract" potential theory, the important
applications of the theory of excessive functions, and the rich material con-
cerning the recurrent case have been barely alluded to.
The "Poisson formula" obtained by Furstenberg [27] involves a family of

explicitly described, compact homogeneous spaces of G. the "Poisson spaces-
of G. One question arises naturally: what are the relations between the Poisson
spaces of G and the Martin boundaries of random walks of G? This problem is
solved in the last part of the present work. We study the case of a transient
random walk on a locally compact separable group; there is then a natural
random walk in duality with the first one with respect to any right invariant
Haar measure on G. Let U be the potential kernel of the dual random walk. To
any function r _ 0 on G such that 0 < Ur < Do ("reference" function), we
associate as in [36] a continuous one to one map from G into a compact cap of'
the cone of coexcessive measures. As in Neveu [46] and Meyer [42]. Choquet's
theorem gives, then, the integral representation of coexcessive measures. The
classical, Martin type compactifications of G have been abandoned here, mainly
because G does not in general act continuously on these spaces. Even a strong
restriction on the type of reference function used ("adapted" reference function.
see Sections 16 and 17) only insures an action of G on part of the boundary. The
only favorable case seems to be the one when the closed semigroup generated in
G by the support of the law of the random walk is large enough (see Section 8).
We have preferred to imbed G in the sets of rays of the cone of coexcessive

measures obtaining thus a Hausdorff space G u B with countable base, and an
"intrinsic boundary" B. This space is neither metrizable nor compact. in general,
but the slight measure theoretic technicalities required by this situation are
balanced by the fact that G acts continuously on G u B. We also obtain intrinsic
formulations (independent of the reference function r) for the main classical
results: integral representation of coexcessive measures and convergence to the
boundary.
We then prove a "Poisson formula" for bounded invariant functions, also in

intrinsic form, and use it to essentially identify the Poisson space and the
"active part" of the intrinsic boundary.
Although reference functions have been eliminated in the formulation of the

main results, they have been used in many proofs. and it is, in fact, possible to
present the whole question in the more classical setting of Martin compacti-
fications, provided only "adapted" reference functions are used (see Section 17).
We also point out that our proofs of the basic (nonintrinsic) results on integral
representation and convergence to the boundary follow classical patterns.
essentially those outlined by Neveu [46].
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Part A. Preliminaries

In this part, the main conventions are stated and a description of the random
walks on a group is given. A derivation of the recurrence criterion for such
random walks is proposed, after K. L. Chung and W. H. J. Fuchs [15]. The
boundary theory described is nontrivial only in the case of transient random
walks (see Section 8) which will be considered exclusively in later parts.

1. Notations and conventions

1.1. Measure theory. Let E be a Hausdorff space. The smallest a-algebra
containing the class of open subsets ofE is denoted by A(E) and its elements are
called the Borel subsets of E. We shall consider exclusively real valued functions
on E, with nonnegative infinite values included. For instance, b+(E) denotes
the set of all such functions which are Borel measurable (that is, A(E) measur-
able) and CC(E) denotes the functions which are finite at every point, continuous,
and have compact support.
A measure p on E is a a-additive mapping from !@(E) into [0, + oc] and pu is

a probability measure if, moreover, M(E) = 1. The unit point mass at a point x
of E is a measure denoted Es. We use the notations <mu, f > and SE f(x)pu(dx) for
the integral of a function f in b+(E) with respect to the measure P; such an
integral may be infinite. By definition of E., one gets f(x) = <E,, f > for any f
in b+(E).
The measure p on E is called a Radon measure if it enjoys the following

properties:
(a) (local finiteness) every point of E has an open neighborhood V such that

M(V) is finite;
(b) (inner regularity) for every Borel subset A of E, the number p(A) is the

L.U.B. ofthe numbers ji(K) where K runs over the class of compact subsets ofA.
When p is a Radon measure, ,p (K) is finite whenever K is compact and among

the closed subsets of E whose complement is p null there is a smallest one called
the support of M. When E is a separable locally compact space, local finiteness
means that p(K) is finite for K compact, and it implies inner regularity [8].

Let E and E' be Hausdorff spaces. A kernel Q from E into E' is a mapping
from bC(E') into b+(E) such that Q(2' 1 fA) = Yn- 1 Qfn forfA in b(E'), n _ 1.
The kernel Q is called markovian if and only if Q1 = 1. Let p be a measure on
E; then there exists a unique measure pQ on E' such that < pQ, f'> = <A, Qf'>
for each f' in b+ (E'). In particular, to Q there corresponds a map q from E into
the set of measures on E' given by q(x) = e2,Q. Then Qf'(x) = <q(x), f'> for
f' in b+(E'). If p is a measure on E, one gets

(1.1) pQ(A') = i q(x) (A')p(dx)

for each Borel subset A' of E'; we shall abbreviate this relation as pQ =
JE q(x)p(dx). Finally, let Q' be a kernel from E' into another Hausdorff space E".
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The composite kernel QQ' from E into E" is defined by (QQ')f" = Q(Q'f") for
f" in b+(E"). By duality, one gets M(QQ') = (MQ)Q' for each measure p on E.

1.2. Topological groups. Let G be a separable locally compact group. The
convolution p * M' of two measures p and pi' on G is the image of the product
measure p 0 p' by the multiplication map (g, g') -> gg' from G x G into G.
Note the following integral formula

(1.2) ft*i'f> = f ff(xy)p(dx)p'(dy), fin b+(G).

The n-fold convolution M*... * p shall be abbreviated as p1'. For any measure p
on G. the opposite measure /i is defined by i(A) = t(A -1) for each Borel subset
A of G.
A right invariant Haar measure m on G is a nonzero Radon measure such

that m(Ag) = m(A) for A in X(G) and g in G. It is unique up to multiplication
by a positive real number and there exists a continuous function A on G, the
module function of G, such that m(g- 'A) = A(g)m(A) for g in G and A in X(G).
By a G space, we mean a Hausdorff space E upon which G acts continuously

from the left. The group G acts on measures on E by (gp) (A) = /(g - 'A) for g
in G and A in A(E). In particular, G acts on itself by left translations, and hence
on the measures on G. One gets from the definitions the relations gm = eg*p
and gm = A(g)m for g in G, p a measure on G, and m a right invariant Haar
measure on G.
A probability measure p on G is spread out if it satisfies the following equivalent

conditions:
(a) there is an integer n _ 0 such that the n-fold convolution M'l is nonsingular

with respect to a right invariant Haar measure;
(b) there is an integer n _ 0. a right invariant Haar measure m. and a non-

empty open set V in G such that pM(A) _ m(A) for any Borel subset A of V.
This is the case for instance if p is absolutely continuous with respect to a Haar

measure (see [3] for a study of this notion).

2. Sums of independent random variables

In this and the next section, G denotes a separable locally compact group and
p a probability measure on G.

Let us denote by (Zn)nl> an independent sequence of G valued random
variables with the common probability law p, and define S = e (the unit
element of G) and S,, = Z, ... Z,, for n . 1. The canonical sample space
(Q, X(Q), P) for the process (Zn)n> is described as follows: Q is the topo-
logical product space H', Gn, where Gn = G for each n, X(iQ) is the class of
Borel subsets of 52, and P = ,,1 Pn where gn = p for each n. Moreover, Zn is
the projection of Q onto its nth factor. Since the topology of G is countably
generated, X(Q2) is the smallest a-algebra for which the projections Zn are
measurable (as functions with values in (G, X(G))).
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Let G. be the smallest closed subgroup of G containing the support of P. For
every n _ 0, the support of M' is contained in G.; if 1A is spread out on G, the
support of M" has an inner point for some n . 0. and hence G. has some inner
point, that is, GE is open. Consequently, one gets G, = G if G is connected and
,p spread out on G (for instance ft absolutely continuous with respect to a Haar
measure). In any case, the random variables Zn and S,, take almost surely their
values in GU. and we can consider (Zn)n. and (Sn)n.0 as random processes
carried by the separable locally compact group G,'
We shall say that an element g of G is pu recurrent if and only if each neighbor-

hood of g is hit infinitely often by almost every path of the process (8n)n _ 0. The
following theorem is an easy generalization of the results of Chung and Fuchs
[15]. According to the previous remarks, there is no real loss of generality in
assuming Go, = G and this hypothesis simplifies the enunciation.
THEOREM 2.1. Assume that there is no proper closed subgroup of G containing

the support of M. Let us define the measure X = E' 0 M' on G. There is the following
dichotomy:

(i) (transient case) no element of G is pt recurrent and 7r is a Radon measure;
(ii) (recurrent case) every element of G is pu recurrent and 7r( V) is infinite for

every nonempty open set V in G.
PROOF. Let R be the set of jp recurrent elements. We shall prove that

R is equal to 0 or to G. For that purpose, we introduce the set S of all elements
g of G enjoying the following property:

for every open neighborhood V of g there exists an integer n _ 0 such that
P[Sn E V] > 0.
The complement of S in G is the largest open set U such that P[Sn E U] = 0 for
all n > 0 hence contains no p recurrent point. It follows that S is closed and
contains R.
We prove next the inclusion S`R c R. Indeed, let g be in S and h be in R.

and let U be an open neighborhood of g- 'h. By continuity of the operation in
G, we can find open neighborhoods V and W. of g and h. respectively. such that
V1 W c U. By definition of S, there exists an integer k > 0 such that the
event A = [Sk e V] has positive probability. Let A' be the set of all co in A such
that there exist infinitely many integers n _ 0 such that Sn+k(c0) EC W. One gets
A' E X(i), and since W is an open neighborhood of the p recurrent point h.
one has P[A'] = P[A] > 0. Put Sn = Sk-7Sn+k for n _ 0; the process (S )n>0
is then independent from Z, Zk, hence from A', and for every cO in A' the
relation Sn+k(C0) EC W entails 8(co) = Sk(CW) -Sn+k(C0) E V'-IW c U. It follows
that almost every path of the process (S)n>0 hits U infinitely often, and since
the process (S1)no0 has the same law as (Sn)nO0 and U is an arbitrary open
neighborhood of g- h. it follows that g- 'h is p recurrent and we are through.
Assume now R nonempty. From R c S and - 1R c R, one gets R `1R c R.

that is. R is a subgroup of G. Consequently, e belongs to R; hence. S` =
S1e c S' R c R = R-',thatis,S c R.FinallyS = Risaclosed subgroup
of G and since p is the probability law of S, = Z1. its support is contained in
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S = R. Hence. R = G.
Assume that i( V) is finite for some nonempty open set V in G. Since

7r( V) = In-O PeST e V], it follows from the Borel-Cantelli lemma that almost
every path of the process (S., )n _o hits V only finitely many times. Consequently,
no point of V is p recurrent and from above there is no p recurrent point at all.

Therefore, in the case R = G, one gets i( V) = + oJ for every nonempty open
set V in G. Wrhen R = 0. one can use the reasoning of Chung and Fuchs
([15]. p. 4) to show that i is a Radon measure; one needs only to note that there
exists a left invariant metric defining the topology of G. Q.E.D.
The previous proof gives a useful criterion for transient processes. Indeed,

call a subset r of G a semigroup., if it contains the unit element e of G and is
closed under multiplication. Denote by rF, the smallest closed semigroup con-
taining the support of M. It is easy to see that the support of Ml' is the closure of
the set of products g1 ... g, for g1, ... , g. running over the support of p. Since
p'u is the probability law of S, it is easy to see that r, is the set denoted S in the
proof of Theorem 2.1. We have seen that R nonempty entails S = R = G. We
see therefore that the inequality F, + G,, can occur in the transient case only.
When G is the additive real group, the inequality r. = G, means that the prob-
ability law p of the elementary step is supported by either one of the two half
lines bounded by 0. and such a one sided process is necessarily transient. There
are obvious geometric generalizations of this case.

3. Description of the random walk of law p

We shall keep the previous notation. For every g in G. the random walk of law p
starting at g is the process (gSn)n... More generally, let a be a probability
measure on G. The random walk of law p and initial distribution a is the process
(Xn),,0, ofthe form X, = XOS,, where XO is any G valued random variable with
probability law a independent of the process (Z),, 0.
The canonical sample space for these processes is (W. X(W)), where W is the

topological product space H,' - G, with G, = G for every n _ 0. and X,,
is the projection W ~-*G on the nth factor. We denote by P9 the probability law
ofthe random walk of law p starting at g, that is, the image of P by the continuous
mapping (g1,g29 gn, *(g,gg1, gg91g2, ggng,) from Q2 to
W. Similarly, one denotes by P' the probability law of the random walk of law
p and initial distribution a. It is easily shown that for any A in X( W), the function
g - Pg[A] is Borel measurable on G and that

(3.1) P2[A] = fG PA[A] (dg).

We shall use this formula as a definition of the measure P' on 1f' whenever a is a
Radon measure on G. We denote by E9 and E' the expectation functionals
c(orresponding respectively to Pg and pa. If the function f on Wir is nonnegative
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and Borel measurable, the function g i- Eg[f] is Borel measurable on G and
one gets the formula

(3.2) E[f] = j' E9[f](dg).

This formula reduces to (3.1) when f is the indicator function IA of the Borel
set A.
The transition kernel of the random walk is the kernel Q on G defined by

(3.3) Qf(g) = Xf(gh)lu(dh), f in b+(G), g in G,

and the shift is the kernel 0 on W defined by

(3.4) OF(go, g,, * * * , gn, * * ) = F(gl, g2, *g,+* ), F in b+(W).
The Markov property of the random walk is expressed by the relation
E'[F. f(X.+1)] = E[F. Qf(XJ)], where F depends only on X0, ,X". By
induction on n, one gets

(3.5) EW[fo(X0) ... .f(X.)] = <a, foQf1Q ... f. Qf.>
for fo, *-- ,fn in b+(G). Specializing fo, *- ,fn to indicator functions in (3.5)
gives

(3.6) P¶[XO eA *, X, e A.] = <a,IAoAQ ...IA--Q- An>

for any finite sequence of Borel subsets Ao, ..* , A,, of G.

Part B. Construction of the intrinsic boundary

Here are our main assumptions: G is a separable locally compact group and p
a probability measure on G; we assume that n = Wo ,i is a Radon measure
(transient case). This part is devoted to an elementary study of the potential
theory associated with nr and to the construction of the intrinsic boundary
corresponding to p. Finally, we shall prove a certain number of theorems assert-
ing the existence of integral representations.

4. Excessive measures and excessive functions

Let P and j be the opposite measures of p and n. Define the kernels Q and U
on G by the formulas

(4.1) Qf(g) =G f(gh)p(dh), Uf(g) = f(gh)ih(dh)
for f in b+(G) and g in G. For a measure A, one gets dually

(4.2) AQ = A* i, AU = A* .
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The potential kernel U is defined in terms of Q by U = O Q', or more
precisely

(4.3) fUf E Qnf, ACU= E AQ
n=o n=O

for f in b+ (G) and any measure A on G.

The transition kernels Q and Q of the random walks of law p and Pi are in
duality with respect to any right invariant Haar measure m, that is, they satisfy
the (easily checked) identity

(4.4) <m,f Qf'> = <m,f' Qf>

for any f, f' in b+(G).
DEFINITION 4.1. A functionf on G is called excessive (respectively, invariant),

iff E b+(G) and Qf _ f (respectively, Qf = f). Any bounded Borelfunction such
that Qf = f will also be called invariant. Let 2 be a measure on G; one calls A
excessive (invariant), if it is a Radon measure and AQ _ A(2Q = A). One calls 1
a potential, if there exists a measure at such that A = aU.

According to the classical terminology, our excessive measures (respectively,
potentials) should be called coexcessive (respectively, copotentials), since the
kernels Q and Q are in duality (see [36]). Since the construction of the boundary
involves only the excessive measures in our sense, there is little inconvenience if
we delete the prefix co. We shall come back to the study of excessive functions in
Part D. For the moment, we simply note that if an excessive functionf is m locally
integrable, the measuref m is excessive (a direct consequence of (4.4)). We also
remark that m is an invariant measure.
We shall denote by & the class of excessive measures and by J the class of

invariant measures. Both are convex cones, that is, closed under addition and
multiplication by a nonnegative real number. Any invariant measure is excessive;
if a Radon measure is a potential, it is excessive according to the following con-
sequence of (4.3),

(4.5) OCU = a + (aU)Q.
In the following, we shall denote by X the space of Radon measures on G

endowed with the vague topology, that is, the coarsest topology making con-
tinuous the real valued functionals 2 1- <2,f> forf in C'(G). We now gather
the main algebraic and topological properties of the cone g of excessive
measures. The proofs follow well-known patterns (see, for instance, [46]) and
have been included here for the sake of completeness only.
THEOREM 4.1. (i) Let 2 be an excessive measure. There exist two Radon

measures a and fl on G such that A = ocU + fl and flQ = P3 (Riesz decomposition).
The measures a and /3 are uniquely determined by A; indeed, at = A -AQ and the
decreasing sequence ( Q')n20 tends to /3. Moreover, P3 is the largest among the
invariant measures majorized by A.
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(ii) The convex cone & is a lattice for its intrinsic order.
PROOF. (i) Since A is a Radon measure and AQ . A, there exists a Radon

measure a such that A = a + AQ. By induction, one gets AQn+1 < AQn for
n > 0 and thus there exists the limit/I = 1im AQ'. From the definition of aC,
one gets

(4.6) A = a + aQ + + ,Qn- + AQn

by induction on n > 1. By going to the limit in (4.6). one gets A = ocU + /P as
required.

Let us show that /3 is invariant. Substituting A = aU + /P into the relation
A = a + AQ gives

(4.7) aC + /3= a(+( + I)=Q=U +P±Q
by (4.5). Cancelling out ocd gives /3 = /3Q. It is clear that the invariant measure
/3 is majorized by A. Furthermore, if /3' is invariant and /3' . A, one gets /3' =
/3tQn . AQn for any integer n _ 0, hence. /3' . /3 by going to the limit.

Let ac' and /3' be Radon measures such that A = ac'U ±+ /' and ,B'Q = ,B'.
From (4.5). one gets A = at' + (a'U)Q + ,B'Q = at' + AQ: hence ac' = c. and
therefore ,B' = ,B.

(ii) We denote by A1 >- A2 the intrinsic order in the convex cone &. By
definition, this relation means the existence of a measure A3 in & such that
A1 = A2 + A3. According to (i), write Ai = ciU + P3i with /,i invariant for
i = 1, 2. It is immediate that A1 >- A2 is equivalent to ci1 > aC2 and /3l _ 2
(note that /31 _ /32 implies that /3l - /2 is an invariant measure).
With the previous notations, denote by ac (respectively, /3) the largest among

the Radon measures that are majorized in the usual sense by oci and 0C2
(respectively, /31 and /32). The existence of a and /3 is well known ([7], p. 53). For
i = 1, 2 one gets /3 _ /3i; hence ,BQ _ /3iQ = /3i. By definition of/I, we have
/3Q . /3. By (i), there is a largest invariant measure y majorized in the usual
sense by the excessive measure /3 (that is, by /31 and /32) namely, y = lim, B /0"Q.
It is then immediate that A1 A A2 = aU + y is the G.L.B. of A1 and A2 in
(e, >-).

Finally, from A1 A A2 -< A1 -< A1 + A2, one deduces the existence of an ex-
cessivemeasureA1 V A2suchthatA1 + A2 = (A1 A A2) + (A1 V A2). The proof
that A1 v A2 is the L.U.B. of A1 and A2 in (&, >-) is then straightforward. Q.E.D.
THEOREM 4.2. The convex cone & of excessive measures is closed in the space

A of all Radon measures on G. Moreover, any excessive measure is the limit of an
increasing sequence o f potentials.

PROOF. Letf in C+(G). It is well known that Qf is a continuous function on
G; hence, <acQ,f> = <ac, Qf> is the L.U.B. of the numbers <ac, g> for g in Cc+ (G)
and g _ Qf, whatever be the Radon measure ac. Hence, & is singled out from .
by the set of inequalities <ac, f > > <ac, g> for f and g in C + (G) such that g _ Of.
Each of these inequalities defines a vaguely closed set in A; thus, & is vaguely
closed in X.
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Let A be any excessive measure with Riesz decomposition A = cxU + /3. For
any compact subset K of G, the reduite /,K of P3 on K is a potential such that
,K /3P -BK <./ and /3K < 3,B for K contained in L (the properties of the reduites
needed here are derived again in Part C).

Since G is a separable locally compact space, we can find an increasing sequence
(Kj),,. of compact subsets of G such that G = unt= K, and the sequence of
potentials cU + /3K, is increasing and clearly tends to A. Q.E.D.

5. Intrinsic boundary of G

As before, let ( stand for the space of excessive measures on G with the vague
topology. The ray generated by a measure A =& 0 in o' is as usual the set of all
measures t A, where t runs over the positive real numbers. The rays form a
partition of the open subspace ; - {O} of 6. We shall denote by A9 the set of all
rays endowed with the topology obtained by considering it as a quotient space
of' - {0}. The ray D is called extreme if and only if the relations A -< A' and
A' e D imply A E D for any measure A =E 0 in 6'. Let Y be the set of all extreme
rays and B the subset ofY consisting of the extreme rays, all of whose elements
are invariant measures. Finally. for every g in G, let i(g) be the ray generated by
the potential egU = g~r.
LEMMA 5.1. The mapping i is injective and 5 is the disjoint union of i(G) and B.
PROOF. Let g and g' in G be such that i(g) = i(g'). There exists therefore a

real number t > Osuch that ec. U = t * £ U: hence. Egg = t * Eg by Theorem 4. 1, (i).
This last relation is possible only if t = 1 and g = g'; hence, i is injective.

Let A be a nonzero excessive measure with Riesz decomposition A = ou + /.
Since cU -< A and /3 < A. the ray generated by A can be extreme only if OCU or
/3 vanishes: that is. if A is a potential or an invariant measure. Finally. the
potential aU generates an extreme ray if and only if every measure a' with a' < x
is proportional to a; it is well known that this means that a is a point measure.
Q.E.I).

D)EFINITION 5.1. The intrinsic boundary of G (with respect to jA) is the set B
of extreme rays in & consisting of invariant measures. The intrinsic completion of
G (with respect to pi) is the disjoint union a of G and B.
We extend the map i: Ga-* A to a mapj: G -- ? byj(x) = x forx in B. By

definition a set U in U is called open if there exist open sets V in G and V' in A
such that U = Vuj1(V'). The axioms for a topology are easily checked (use
the continuity of i: G H-* .): hence, a becomes a topological space. Moreover,
by Lemma 5.1. j is a continuous bijection from a onto Y (but not necessarily a
homeomorphism): furthermore. G with its given topology and B with the
topology induced from Af are subspaces of C with G open and B closed.
Now we let G operate on G. For g in G one gets g(AQ) = (gA)Q (A in X);

hence, the map A ~-* gA leaves both & and X invariant. The group G operates
therefore by automorphisms of the convex cone &; hence, it operates on the set
AP of rays in &. It is clear that 5 and B are invariant under G and that g i(g') =



98 SIXTH BERKELEY SYMPOSIUM: AZENCOTT AND CARTIER

i(gg') for g, g' in G. The action of G on 0 is given by the left translations on G
and the previous action on B, in such a way that the bijectionj: G Y is com-
patible with the operations of G.
LEMMA 5.2. The intrinsic completion C is a Hausdorff space having a count-

able base of open sets, and G acts continuously on G.
PROOF. By construction, one has a continuous injective map j: G f- 3?;

hence, to show that C is Hausdorff, it suffices to show that 3? is Hausdorff. The
equivalence relation defined in & - {0} by the partition in rays is clearly open,
and its graph is closed. Hence, the quotient space 3? is Hausdorff. The natural
projection q: & - {0} -+ A3 is open, and i being a subspace of the separable
metrizable space X, has a countable base of open sets: hence, the topology of
A has a countable base. The definition of the topology of C implies then
immediately that C has a countable base of open sets.

Let us prove now that G acts continuously upon the convex cone e (upon X
indeed!). We have to show that for any f in C'+(G), the numerical function F
defined on G x i by

(5.1) F(g, i) = <g*f> =f f (gx)A(dx)

is continuous. Let e > 0 and (go, AO) in G x if be fixed. Let U be a compact
neighborhood ofgo and S be the (compact) support off; the set L = U 1S is then
compact in G and one can choose a function f' in C+(G) taking the constant
value 1 on L. Also, let c be a real number such that c > <LA, f'>. Since f is left
uniformly continuous, there exists a compact neighborhood V of go contained
in U such that

(5.2) If(gx) - f(gox)j < E

for g in V and x in G. The left side of this inequality vanishes for x off L (for g
fixed in V). Hence, we can strengthen (5.2) as follows:

(5.3) If)(gx) f(gox)| < 2f , g in V. x in G.f~gx)f~g~x) 2c

The function f" defined byf"(x) = f(gox), x in G, is in C+ (G). Hence, the set of
measures A in i satisfying the inequalities

(5.4) <RLJf> < c, 1K2,f"> -Ko,f">| < -

is an open neighborhood W of Ao in i. For g in V and A in W, one gets

(5.5) F(g, 2) - F(g0, 2)! _ |F(g, ) -F(go, 2)| + IF(go. 2) - F(go, 2o)l

<f f(gx) -fWox)1(dx) + I<, f">-1K20

c<K,f + <
2c 2
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by using (5.1), (5.3), and (5.4). The continuity ofF is therefore established.
If q is the canonical mapping from & - {0} onto .A, one has a commutative

diagram
M

G x e --- i

(5.6) Idj Xqq q

G x M, gp>

with m(g, A) = g. A and m'(g, x) = g x for g in G, 2 in & and x in M. We have
shown that m is continuous. Clearly, q is surjective and open; hence, IdG x q
is surjective and open and it follows from (5.6) that m' is continuous. Thus, G
acts continuously upon A and, afortiori. upon the stable subspace 5° of extreme
rays in &. This fact implies readily that G operates continuously upon G. Q.E.D.

6. Integral representation of excessive measures

We shall need an ancillary notion, that of a reference function.
DEFINITION 6.1. A reference function on G is a continuous function r on G

such that r(g) > Ofor each g in G and the potential Ur is a finite continuous function
on G.
LEMMA 6.1. For any Radon measure A on G there exists a bounded reference

function r such that <2, r> is finite.
PROOF. Since G is a separable locally compact space, there exists an increasing

sequence (f,).> 1 in C' (G) with limit 1 at any point of G.
The potential Uf of any function f in C' (G) is a continuous function on G.

and hence bounded on the support off; by the maximum principle ([40], p. 228)
the function Uf is therefore bounded on G.
Then let c, be the maximum among the numbers 1, <2, f,> and supeG Ufn(g).

It is an easy matter to cheek that r = E' 1 c` 2-'f, is the required reference
function. Q.E.D.
We shall now apply Choquet's theory of integral representations to the

convex cone of excessive measures. Let r be any continuous function on G with
positive values and let &r be the set of 2 in & such that <2. r> . 1. It is immediately
verified that &r is a cap in &, that is, a convex subset containing 0 with convex

complement in &. Furthermore, let Xr denote the set of nonzero extreme points
in or, that is, the set of excessive measures 2 such that <2, r> = 1 which generate
extreme rays. We claim that the cap &r is vaguely compact: indeed, the inequality
<2, r> _ 1 is equivalent to the set of inequalities <2, f> _ 1 for f in C+(G)
majorized by r; hence &, is vaguely closed. Furthermore, for f in C+'(G), the
positive continuous function r has a positive minimum on the compact support
of f; hence, there exists a constant c > 0 such that f . c. r. This last inequality
implies <2, f > < c for any A in &, and the compactness of &r follows from
Tychonov's theorem. Finally, from Lemma 6.1, it follows that & is the union of
its compact caps &r, where r runs over the reference functions.
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Let r be a reference function and 2 be an excessive measure such that <A, r>
be finite. By Choquet's theorem ([7]. [40]) there exists a bounded measure tr on

>':r such that A = r,.ar(do) and such a measure is unique since the convex cone
6 is a lattice for its intrinsic order. Let g be in G. By assumption. Ur(g)
<g7r, r> is finite: hence. there exists in 1, a unique measure generating the extreme
ray i(g). namely. kr(g) = Ur(g)-1'g'. For f in (C+(G). one gets <kr(g), f> =
Uf(g)/lUr(g) for any g in G: since the functions Uf and Ur are continuous on G.
it follows that kr is a vaguely continuous map from G into r. Furthermore. kr
is injective since i is injective (Lemma 5.1) and Lusin's theorem ([5], p. 135)
applies, since G is a separable locally compact space: kr is a Borel isomorphism
of G onto a Borel subset k,(G) of E, Therefore, any measure on k,(G) lifts
uniquely to a measure on G and, for instance, the restriction of A, to kr (G) lifts to a
bounded measure y on G. Let a = (Ur)V *I: by an easy calculation. one gets

(6.1) A x= UC + TB, u*,r(duT)

where Br = r- k,(G). By Lemma 5.1, Br consists of invariant measures, and
therefore the integral in (6.1) represents an invariant measure. Thus, in (6.1) we
have the Riesz decomposition of A. This decomposition corresponds to the de-
composition of ''r into kr(G) and Br and this supports the heuristic view that an
invariant measure is the potential of a charge located at the boundary (here Br
is the boundary).
We summarize our discussion in the following theorem.
THEOREM 6.1. Let r be a reference function and A be an invariant measure

such that <1, r> is finite. Let Br be the set of the invariant measures a, such that
<a, r> = 1, which generates an extreme ray in I. Then there exists a unique
bounded measure 6r on Br such that A = JB, a. 6r(da).

7. Intrinsic integral representations

The results derived in the previous section depend on the choice of a reference
function r. We now show how to switch to the intrinsic boundary and get
intrinsic formulations.
LEMMA 7.1. Let 2. be an invariant measure on G and r a reference function

such that <A. r> is finite. Define Br and 6r as in Theorem 6.1. There exists on
G x Br a unique Radon measure 0) r taking the following values on the rectangle
sets:

(7.1) 0)r(A x A') = f '(A)6r(d'). A in X(G). A' in (Br).

Moreover. ),, r projects onto the measure A on G.
PROOF. Since G is a separable locally compact space, each vaguely compact

set of Radon measures on G is metrizable. In particular. 6r is metrizable. Since
kr is a continuous map from G into (&r and G is a countable union of compact
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subsets, kr(G) is the union of a sequence of compact subsets of 4r. It is known
([40], p. 282) that the set Er of extreme points Of4 is a countable intersection of
open subsets of &r: hence, Br = , - kr(G) has the same property. It follows
([5]. p. 123) that G and Br are Polish spaces, that is, homeomorphic to complete
separable metric spaces. Hence, the topologies of G and B, are countably gener-
ated and the a-algebra A(G x Br) is generated by the rectangle sets A x A',
where A is in X(G) and A' in M(Br).

Let f be in C+(G); by definition of the vague topology. the function a o <a,f>
on Br is continuous. By a familiar argument of monotone classes, it follows that
the mapping a - <a, f> is Borel measurable on Br for any f in b'(G). One
defines therefore a Markovian kernel Kr from B, into G by

(7.2) K, f(a') = <a. rf > a in Brf in b+(G).

We can now use a construction familiar from the theory of Markov processes.
From the bounded measure 3r on B, and the Markovian kernel Kr from Br into
G, one derives a bounded measure 0 on G x Br characterized by the following
relation:

(7.3) 0(A x A') = <,r, IA, KrIA>, A in X(G), A' in A(Br).

Since G x B, is a Polish space. the bounded measure 0 on it is a Radon measure
by Prokhorov s theorem ([8], p. 49). The measure Or on G x Br, product of 0
by the locally bounded continuous function (g, a) r(g) is therefore a Radon
measure.

Equation (7.1) is readily checked. Moreover, one deduces the relation

(7.4) 0(EAr(A x Br) = af u(A)6,(d) = 2(A)

as a particular case of (7.1); hence, ),r projects onto the measure A on G.
Finally, since the a-algebra A(G x Br) is generated by the rectangle sets, there
is at most one measure taking given values on the rectangle sets, hence the
uniqueness of OA r. Q.E.D.
LEMMA 7.2. Let A be an invariant measure on G. For each reference function r.

let q, be the continuous mapping of G x Br into G x B which sends (g, a) into
(g, x), where x is the ray generated by a. There exists a Radon measure 0.. on
G x B with the following property: for each reference function r such that <2, r>
is finite, the image by q, of the measure 0- r on G x Br defined in Lemma 7.1 ifs
equal to 0(, Moreover, OA projects onto the measure A on G.
PROOF. Let r be a reference function such that <2, r> is finite. We denote by

A, the image of 0A by q,. For any compact subset K of G one gets

(7.5) Ar(K x B) = A,r(K x Br) = 2(K) < ant.

Hence, Ar is locally finite and projects onto 2. The inner regularity of 0;.,r and
the continuity of qr imply inner regularity for Ar Thus, Ar is a Radon measure
on G x B. If s is any reference function such that <2. s> is finite, then r + s is
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a reference function and <2, r + s> is finite. Therefore. the proof of the lemma
will be achieved if one establishes the equality A, = As in the case r _ s.
From now on, fix two reference functions r and s such that r . s and <2, s>

is finite. Again, using Lusin's theorem, one sees that the set B' of extreme rays
generated by the measures belonging to B, is a Borel subset ofB and that B' is
Borel isomorphic to B. under the natural map. The construction of A, can be
rephrased as follows: for each x in B' let k,(x) be the unique measure a in the
ray x such that <a, r> = 1; there exists a unique measure 65 on B' such that
i = fB. k,(x)63(dx) and then A, is given by

(7.6) A, = J (k,(x) ® 8,)6r(dx).

Since r . s, one gets B' a B' and there exists a function f in b + (B') such that

(7.7) k.,(x) = f(x) kr(X), x in Bs',

namely, f(x) = <k5(x), r> for x in B'. We have then

(7.8) A = f k,(x)b5(dx) = jf k,(x) f(x)65(dx),

and by the uniqueness of 6. one concludes that 6' is carried by B' and that
64(dx) = f(x) *'(dx) on B'. The proof of A, = A5 follows then by a trivial cal-
culation from the definition (7.6) of A, and the corresponding relation for A,.
Q.E.D.
To summarize, we have attached to any invariant measure A on G a Radon

measure 0Qk on G x B with projection 2 onto the first factor space. The pro-
jection of ®A onto the second factor space is not a-finite in general, and before
disintegrating 0(k with respect to the second projection, we have to replace it by
an equivalent bounded measure. This is achieved with the help of a reference
function r such that <2, r> is finite, the result being given by (7.6), namely,

.z = IBr (k,(x) ® 8x)6,(dx). On the other hand, the first projection of 0.t being
the Radon measure 2, we could appeal to general results ([8], p. 39) to get a
disintegration of 0A with respect to the first projection. Such a disintegration is
unique up to null sets only, but fortunately we can achieve a very smooth result
in an important particular case. The probabilistic significance of the measures
®A and y will appear in the next part (Theorem 12.2 and 12.3).
LEMMA 7.3. Let m be a right invariant Haar measure on G. There exists a

unique Radon probability measure y on B such that

(7.9) E)= f (a, $ g * m (dg).

PROOF. The group G acts upon G x B by g * (g', x) = (gg', g x). We shall first
establish the relation

(7.10) g-(m = M(g)- m, g in G,
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where A is the module function of G. Indeed, let r be a reference function such
that <m, r> = 1 and let B. and k,(x) be as in the proof of Lemma 7.2. There
exists a unique probability measure P, on B' such that

(7.11) m = Xk (49r (dX)B;
Then one gets

(7.12) fm= SB (kr(X) ® 8x)Pr(dX).

Let g be in 0. It is immediate that the relation s(x) = A(g) r(g -1x) (for x in G)
defines a reference function s such that <m, s> = 1. One gets easily

(7.13) gk,(x) = A(g)-kS(gx), xinB.

Transforming (7.11) by g one finds

(7.14) A(g)*m = 5 A(g)*k5(gX)p9(dx),

since gm = A(g) m. From the uniqueness of the integral representation of an
invariant measure and from gBA = & one concludes that g transforms the
probability measure P, on B' into the probability measure pS on B'. We act now
upon (7.12) with g and get

(7.15) go) = X (gkr(x) ® g8x),r(dx) = f A(g) (ks(gx) ( £gX)Pr(dx)

= A(g) 5 (k5(y) ® e,)/s(dy) = A(g). 0..

Hence, the sought after relation (7.10) follows.
The function A1 on G x B defined by A1(h, x) = A(h) is continuous and

locally bounded. Therefore, A1 *m is a Radon measure on G x B. We denote
by a the image of A1 ®m by the homeomorphism (h, x) -+ (A, h 1x) of G x B
with itself. For any function F in b (G x B), one gets

(7.16) Jb F(h, x)a(dh, dx) = 5x A(h) F(h, h-lx)0m(dh, dx).

In the same manner, (7.10) is made explicit by the following transformation
formula

(7.17) 5B F(gh, gx)8)m(dh, dx) = A(g) GxB F(h, X)Em(dh, dx)
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for any g in G. By an easy calculation, one deduces from (7.16) and (7.17) the
following transformation formula for a

(7.18) { F(gh. x)x(dh. dx) = f F(h. x)ci(dh. dx),
xB xB

where F is in bC(G x B) and g in G.
From (7.16), one deduces that the projection of a onto the first factor of

G x B is equal to A-m. and from (7.18), one recovers the well known fact that
A-m is a left invariant Haar measure. By specializing (7.18). one gets

(7.19) ct(gA x A') = x(A x A'). A in X(G). A' in X(B), g in G.

For fixed A' in X(B), the mapping A ~-+ a(A x A') of X(G) into [0, + cc] is
therefore a left invariant Radon measure on G. From the uniqueness of Haar
measure. one gets the existence of a functional i on X(B) such that

(7.20) x(A x 4') = (A m)(A) y(A'). A in A(G).A' in X(B).
It then follows easily that y is a Radon probability measure on B and that (7.20)
is equivalent to the relation a = (A.-m) (0 y. Using (7.16)-and Fubini's theorem,
one gets finally the following integration formula

(7.21) <Km, F> = f m(dg) J F(g, gx)y(dx), F in b+(G x B),

which is nothing other than the sought after formula (7.9).
It remains to prove that (7.9) characterizes y uniquely. Let y' be any Radon

probability measure on B such that Om = fG ('g 0 9g ')m(dg). Making this
relation more explicit, one gets

(7.22) K(m. F> = fG m(dg) fBF(g, gx)y'(dx), F in b+(G x B)

by analogy with (7.21). Using (7.16), one gets a = (A-m) 0 y': hence, finally
= y. Q.E.D.

8. Additional remarks

8.1. Smoothness of the intrinsic boundary. The intrinsic boundary B of G
(with respect to Iu) may seem very large. Since the space of rays in the cone

- {0} of all positive Radon measures on G is regular if and only if G is
compact, it is highly plausible that B is not always a metrizable space, although
we have no nontrivial counter examples (that is, such that G. = G). Never-
theless, since the topology ofB has a countable base, each compact subset of B
is metrizable. It follows that any bounded Radon measure on B is carried by a
countable union T of metrizable compact subsets of B. Since G is also a count-
able union of metrizable compact subsets and G acts continuously upon B, one
can even assume that T is stable under G. This applies, for instance, to the
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measures 6' and i defined above: it follows that the measure (-); is carried by
a x T, where T is a subset of B with the previous properties. In summary, the
measures we have to work with have all the desirable smoothness.

8.2. Martin comtpactification. Call any continuous nonnegative function r
on G (not necessarily positive) such that Ur is a positive continuous function on
O a generalized reference function. Classically (8ee [46], [36]. for instance), to
each generalized reference function r is associated the Martin compactification
G, of G, which is characterized up to homeomorphism by the following
properties:

(a) the space G,. is compact and metrizable;
(b) G. with its topology, is an open dense subset of "r:
(c) forf in (' (G) the function Uf/Ur on G extends uniquely to a continuous

function Lf on 0, and these functions Lf separate the points of C, - G.
The theorems of existence of an integral representation can be described in

terms of' Gr. But the main disadvantage of the space Gr is that the action of C
on G does not in general extend to a continuous action of G on Gr. The best
that can be achieved in general is to obtain a continuous action of 0 on a Borel
subset of' Gr, large enough to permit the integral representation of excessive
measures; this necessitates the use of reference functions of a special type (see
Section 16). We are nevertheless going to describe one case where the Martin
compactification seems preferable to the intrinsic boundary of C: let F be the
support of 2t: this is also the smallest closed semigroup in G containing the
support of M. One shows easily the equivalence of the two following properties:

(a') there exists a compact subset K of' G such that G = K r;
(b') there exists a function r in (a+(G) such that Ur(g) > 0 for any g in G,

that is, there exists a generalized reference function r having compact support.
Let us assume that (a') and (b') hold. Then. the Martin compactification Cr

associated with the generalized reference functions r with compact support are
all homeomorphic to a metrizable compact space G* on which C acts con-
tinuously. We sketch the construction of' G*. For any r in ('+ (G), let Nr be the
set of all excessive measures i. such that <2, r> = 1. One first shows that Cr > 0
implies <2, r> > 0 for each excessive measure A =& 0 and that N,. is vaguely
compact. Hence. if Ur > 0. any ray contains one and only one point in the
vaguely compact set N,.: this implies that the space A of rays is compact and
metrizable. Call G,,, = G u {oo} the Alexandrov compactification of G and
define a map q from G into_,G, x A by q(g) = (g. i(g)). There is then a closed
subset B* of A such that q(G) - q(G) = {X} x B*. One defines G* as the dis-
joint union of C and B*, one extends q to a bijection q' of G* onto q( G) by mapping
any x in B* into (00, x), and one gives C* the topology that makes q' a homeo-
morphism. It is straightforward to check (a) and (b). Iffand r' are in C' (G) and
if Ur' > 0. the boundary value of Uf/Ur' at x, for x in B*, is defined as the
number <2, f>/K<, r'>, where A is any representative of the ray x. and the ex-
tended function Uf/Ur' is continuous on C*, which proves (c). Hence, G* is
homeomorphic to Gr, for any r' e (at (G) such that (Ur' be continuous and > 0.
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The previous construction of 0* shows that the action of 0 upon itself by
left translations extends to a continuous action of G upon G*. Moreover, using
the fact that any excessive measure is the limit of an increasing sequence of
potentials, one shows that B is contained in B* and this fact allows one to con-
sider the intrinsic completion G of G as a dense subspace of G*, namely, a count-
able intersection of open subsets.

8.3. Recurrent case. Let us assume that there exists no proper closed sub-
group of G containing the support of p and that EX = u"( V) is infinite for every
nonempty open subset V of G (see Theorem 2. 1). We shall show that any Radon
measure 2 such that AQ < 2 is right invariant, hence that the convex cone &
has just one ray. Indeed, let f be in C' (G) and F the nonnegative continuous
function on G defined by F(g) = JGf(yg-f)(dy). The following calculation
shows that QF _ F:

(8.1) QF(g) J F(gx)=(dx) =F(gx=ffi(dx)

= f i(dx) jf f(yxg )2(dy)

= f f(zg1) (1* )(dz) . j f(zg-')A(dz) = F(g).

From QF < F, it follows that F is constant ([1]; [46], p. 64) hence that 2 is
right invariant.

It is now clear why the methods used in this part cannot provide nontrivial
boundaries in the recurrent case.

Part C. Convergence to the Boundary

Our assumptions are the same as for Part B. The scope of this part is pri-
marily probabilistic. We shall devote ourselves to the proof of several limit
theorems giving the asymptotic behavior of the random walk of law M on G.

9. Relativization

Let 2 be an invariant measure. Probabilistically, the relativized process
associated with 2 is defined as follows. From A * p = 2, one gets the existence of
a bilateral random walk (YJ) with n running over the integers of both signs,
where each random variable YI has 2 as distribution and the elementary steps
Y,,t1 Y, are independent with the same probability law fi. Then the relativized
process is (Y-n),0o by definition. In the sequel, we shall need only the distri-
bution H'I of this process in the path space W and we proceed to give a direct
construction of H`.
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PROPOSITION 9.1. Let A be an invariant measure. There exists on the path
space W with projections X,, n . 0. a unique Radon measure HA such that

(9.1) 11[X0e A, X, eAJ = <R, IA AQIA _ A 1 QIAo>

holds whatever be the integer n _ 0 and the Borel subsets A 0, . An of G. More-
over, if m is a right invariant Haar measure, [m is equal to P`t.

PROOF. It is well known that two measures on W which agree on the cylinder
setsAo x A1 x x A, x G x G x ** are equal; hence, there can beat most
one measure Hi for which (9.1) obtains.
For each integer n > 0O let W,, = G x x G (n + 1 factors) and let 1. be

the image of the Radon measure A 0Pi 0t (n factors ft) by the homeo-
morphism of W,, with itself which maps a point (go, g1, g.) onto the point
with ith coordinate equal to g0g1 g, - i for 0 < i < n. Now let fo, fl, 4,f
in b+(G); the integral offo f00l f , with respect to H,, is then equal to

(9.2) JA= (gog. gn-gn)fl (gog1 ...* )

... n- 1(gogl)fn(go)2(dgo)p(dg1) .f(dgn).

Assume n _ 1. In the previous integral only the first factor contains gn. Hence,
integrating first with respect to g,, and using formula (4.1) defining Qf,. we get a
similar integral with the sequence of n + 1 functions fo,f1, ,f,, replaced by
the sequence of n functions fl (Qfo), f2, * fn. By induction on n, one gets

(9.3) < l1X, fo0 ... (2 f.n> = <R., fn ~- 10 . f1QfO>
Let r > 0 be a continuous function on G such that <R, r> = 1 and let Hln be

the product of the measure Hfn on Wn by the continuous function (go, , gn )

r(go). Then l1r is the probability measure r-2 on WO = (. For fo. , fn in
b+(G), one gets

(9.4) <Inf0 ®2 0nf> = <R, fnQf,-1Q .. Q(for)>
from (9.3) and AQ = A implies

(9.5) <KI1nff00f3* * (,3An-1 (0 1> = <K _-1.fo in
whenever n _ 1. Otherwise stated, the projection of H' onto the first n factors
of Wn is equal to HA_ 1, and since 1E is a probability measure, it follows that Hln
is a probability Radon measure for each n _ 0. By Kolmogorov's theorem
([8], p. 54), there exists a unique Radon probability measure Hi ' on W whose
projection onto the product W,, of the first n + 1 factors is equal to [lr for each
n _ 0. As a final step, define HW as the Radon measure on W product of the
Radon measure I12 with the continuous locally bounded function r(X0)-1.
From (9.4), one gets

(9.6) <[l =,.(X.) .f..(Xn)> = <ifnQ-QQ fl(for)>.
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Hence,

(9.7) <H A. fo(X0) ... f"(X.)> = KI Qfn1Q f1Qfo>
whatever the integer n _ 0 and the functions fo. . .f in b'(G). The sought
after relation (9.1) is the particular case of (9.7), where fo, f, are indicator
functions.
A glance at (3.5) and (9.7) shows that, using the duality between Q and Q

(relation (4.4)), the proof of H"' = Pm is reduced to a straightforward induction
on n. Q.E.D.

In the following, we shall use without further comment the notation H1A and
the symbol HA for the integral defined by liA. For r in b+(G), we shall denote by
[V 'r the product of the measure Hi on W by the function r(X0): the integral
corresponding to Hlli will be denoted by Hi".
REMARK. The customary definition of relativized processes works for

invariant measures of the form f-m only. where Qf = f. Such a process is de-
fined as the Markov process with initial distribution f m and transition kernel
Qf given by

k".8) QfU = {f Q(fu) on the set [f > 0]
0 elsewhere.

for u in bV(G). The following calculation using (4.4) and the readily verified
relation f Qfu = Q(fu), shows that our definition agrees with the previous
description:

(9.9) Hf m[fo(X0) ... f(X)]
= <mffnQn- 1Q f1Qfo> = <m, foQf1Q f.. Q(ffQ)>
= <m,foQAfiQ. f. -1 Qff> = <f m,fo QC V .fiQ -1 Q fn>-

Similarly, for any invariant measure i. it is easy to show the existence of a
transition kernel Q, in duality with Q with respect to A (that is, <A, f OQf'> =
<A, f'. QAf >) such that the relativized process associated with A is the Markov
process with initial distribution A and transition kernel QA. We point out that QA
is not necessarily unique.

10. Reduites of measures

Let A be an invariant measure and K a compact subset of G. First, we shall
prove the transient character of the relativized process. Indeed, let r be a
reference function such that <A. r> = 1. From (9.6) one gets

(10.1) X, 11H[X e K] = E <, K* Q r> = Ur(g)A(dg).
n=0 n0 K

The last integral is finite because the continuous function Ur is bounded on the
compact set K and A(K) is finite. Since r > 0, the measures H'I and HtAr have the
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same null sets. From the Borel-Cantelli lemma, one concludes that V A almost no
path in W hits K infinitely often.

Define WK as the set of all w in W such that the set of integers n _ 0 for
which Xn(w) belongs to K is finite and nonempty. For w in WK. one denotes
tK(W) the largest among the integers n such that X,(w) e K. That is, tK is the last
time that the process is in K.
The reduite of A onK is the measure on G defined by AK (A) = A[XO eA WK]

for A in X(G). The following lemma states some elementary properties of the
reduites.
LEMMA 10.1. The reduite AK is a potential and 'K'2 _ AK . A.
PROOF. By definition, one has

(10.2) AK(A) = HA[XO eA, WK] . Hk [Xo A] = A(A), A in X(G).
Hence, AK . A. Moreover, whenever A is contained in K the event [X0 e A] is
contained up to a HIA null set in WK because of the transient character proved
above. We therefore have equality everywhere in the previous calculation, and
hence IKA < AK
To prove that AK is a potential, we need the following formula

(10.3) H)[f(X0).0F] = HW[Qnf(X0).F]
for fin b+(G) and F in b+(W). An easy induction reduces the proof of (10.3) to
the proof of the particular case n = 1; in this case, we can content ourselves with
taking F of the form f0(X0) ... f,(X), where fo, ,An are in b+(G) and the
sought after relation follows immediately from (9.7).

Define the measure a on G by a(A) = HA[XO E A, tK = 0] forA in 2(G) and
let J be the indicator of the event [tK = 0]. It is clear that OJ is the indicator
of the event [tK = n] for each integer n > 0. Hence, the indicator (D of WK is
E'Wo OnJ. For f in b'(G), one therefore gets

(10.4) <AK! f> = HA[f(X0)A(D] = , H [f(X0).OJ] = E HA[Qnf(Xo) J]
n=0 n=0

= HW[Uf(X0)-J] = <a, Uf>

by using (10.3). Hence, AK = ocU is a potential as promised. Q.E.D.
Finally, let us consider a compact subset L of G containing K. It is immediate

that WK is contained in WL up to a lIA null set and that tK(w) . tL(w) for w in
WK rn WL. Moreover, AK _ AL.

11. The basic convergence lemma

The following result is the main ingredient to prove convergence ofthe random
walk to the boundary. It is an extension of a theorem of Doob [18] who treated
the case of Markov chains with discrete state space. The arrangement of our
proof follows rather closely Hunt [33] and Neveu [46].
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THEOREM 1.1. Let A be an invariant measure, r a reference function such that
<R, r> = 1 andf in C,' (G). For every n _ 0 define the real valued random variable
F. by F. = Uf(X.)/Ur (X,). Then the sequence (Fn),,>0 ends Hl A almost surely to
a random variable F,, such that Hi r[F.] = <K, f >.
We shall subdivide the proof into several parts.
(A) Let K be a compact subset of G and t = tK; for each integer n > 0O we

denote by Tn the set of paths w in WK such that t(w) _ n, and define the real
valued random variable F,* by

(11.1) F,*(w) = SE, -(w) ifwE T,,
0 otherwise.

Also, the G valued random variables X_-_ are defined on Ti D Tn for 0 . i . n;
let 42 be the smallest a-algebra of subsets of Tn containing the sets [X,- EE A] n

T, for 0 _ i . n and A in AR(G). Furthermore, we let sd* be the a-algebra
consisting of the Borel subsets A of W such that A n Tn belongs to dn.
LEMMA 11.1. The sequence (F,*,),0 is a supermartingale with respect to the

increasing family (.W,*)n>0 of u-algebras and the probability measure I,'.
We fix an integer n _ 0. Let L be any sdn* measurable function on W with

values in [0, + co]. By definition of s4*, there exists a function L' in
b+(G x * x G) (n + 1 factors G) such that L = L(X, Xt1X,) on
Tn. Let J be the indicator of the event [t = 0] and h be the continuous non-
negative function Uf/Ur on G and let L" = L'(Xo, , X. nJ. On the set Tn, the
function F,* coincides with h(Xj); hence, the function Fn*.L coincides with
h(Xp-). L'(Xp ,, *. Xp -, Xp) on the set [t = p] for any integer p > n and
vanishes outside Tn = UP>,, [t = p]. Otherwise stated, one has

(11.2) F,*-L = E h(Xp-J)L(XJp- , Xp_1, Xp)OPJ
p=n

= Z Oq [h(X0).*L].
q=0

Since F,*+ is zero outside T + 1, one gets by a similar reasoning the relation

(11.3) F,*.+ L = E (XE(j--~p-n,* ,Xp 1Xp) Opi
p=n+ 1

= E Oq[h(X0)*OL"].
q0=

Using (10.3), one derives the formula

(11.4) 6,rOqR = HW[Ur(Xo)R], R in b(W),
q =0

and from the above representation of Fn** L, one gets

(11.5) H.r[En* .L] = HA [Ur(XO)*h(XO)*L"] = HA[Uf(XO)*L"].
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In order to get a similar expression for F,*, ,.L, we just need to replace L" by OL".
Once again using (10.3), we get

(11.6) HA.r[Fn+*.L] = HA[f(X0) OL"] = Hi[QUf(X0) L"]
_ H'[Uf(XO).L"] = Hir[F,*.L].

Therefore, we have the inequality H.'[F.*,l L] < HA'r[F,* L] for any 24*
measurable function L on W with values in [0, + se]. Since F,,* is obviously dn*
measurable, the lemma is proved.

(B) Let a and b be two rational numbers with 0 < a < b and let N be the
(random) number of upward crossings of [a, b] by the random sequence
(Fn,,,._o. Let K and t be as in (A) and define N* as the (random) number ofdown-
ward crossings of [a, b] by the random sequence (F,*),>0, that is, the number of
upward crossings by (F),,>0 of [a, b] in the random interval [0, t]. According
to the classical Doob inequality for a nonnegative supermartingale, one has

(11.7) (b - a). Hir[N*] < Hi [F*].
To compute HA r[FO*], it suffices to let n = 0 and L = 1 in (11.5), which yields

(11.8) HA r[FO*] = HA[Uf(X0).J].
Define the measure a on G by a(A) = H'e{EA, t = 0]; then we have

(11.9) HA[Uf(X0)- J] = <a, U>f = aU, f> = <AK, f >

because ocU is equal to AK by the proof of Lemma 10.1. Since AK _ A, we con-
clude from the relations (11.7) to (11.9) the following inequality

(11.10) (b - a).H Ar[N*] _ <iK f>.
Since G is a separable locally compact space, we can find an increasing

sequence (Kp)p2>0 of compact subsets of G such that G = UP=0 Kp. Because
a path is doomed to meet at least one of the compact sets Kp, the transient
character shows that up to Hi null sets (WK, )p0 is an increasing sequence of
Borel subsets of W, whose union exhausts W.

Moreover, for w in WK, the sequence (tKq(W))q>p increases Hi almost surely
without bound. Hence, the sequence of random variables (N*,)P>0 increases to
N. Going to the limit in (11.10), we get

(11.11) (b - a).HA,r[N] < <2,f>.

Hence, whatever be a and b, the number N of upward crossings of [a, b] by
(FJ,,),0 is HA almost surely finite and the random sequence (F,,),>0 converges HA
almost surely (note that HA and H'1' have the same null sets).

(C) Define F,,, = lim,,a, F.. Take the sequence (Kp)p>0 as previously and
define the random variables RP as follows

(11.12) RPM =
)F,(W)(w) for w in WKP,(11.12) R~(w) = }o otherwise,
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where tP is the exit time associated with the compact set Kp. By the previous
remarks about IIKp and the relation limp-, tp = - HIA almost surely, one gets
F, = limp-. RP (flA almost surely). ForK = Kp. the random variable denoted
Fo in (B) is nothing else than RP, and by (1 1.8) and (11.9). one gets

(11.13) HAir[Rp] = (AK, f>
The positive continuous function r on G has a positive minimum on the com-

pact support of f. Hence, there exists a constant c > 0 such that f _ c. r. It
follows that Uf/Ur, and hence F,, and RP are bounded by c. By the bounded
convergence theorem, one gets

(11.14) HiL r[F.] = lim Hi.r[Rp] = lim <iK2 f>

from (11.13). Since the sequence of measures (AKp)p>O tends increasingly to A
(see Lemma 10.1 and the proof of Theorem 4.2). the number <KKp. f> tends to
<2, f> as p tends to infinity. Finally, one gets the desired relation HAir[Fx] =
<2,f>. Q.E.D.

12. Convergence to the boundary

We come to the core of this part and establish three convergence theorems.
The first two deal with the relativized process and have an ancillary character.

Recall notation from Section 6. If r is a reference function and gr is the set of
all excessive measures 2 such that <2. r> _ 1. the vaguely continuous map kr
from G into &r is defined by k,(g) = Ur(g) -lgfi for g in G. Moreover. Y,. is the
set of nonzero extreme points of the convex set (r and Br = Er - k, (G).
THEOREM 12.1. Let 2 be an invariant measure and r a reference function such

that <2, r> = 1. Then there exists a random element X in Br such that kr(Xn)
tends FIA almost surely to X. Moreover, for each Borel subset A of Br, one has
ri r[X e A] = 5,(A) where 6, is the unique probability measure on Br such that
2 = j a,err(du). Finally, for 2 in Br, the relation X = 2 holds H1 almost surely.

PROOF. By definition, one has <kr(Xn). f> = Uf(Xn)/Ui(Xn) for f in C' (0)
and n _ 0. Moreover, let D be a countable dense subset of C+(G) (uniform
convergence on G). Then a sequence of elements 2,, of gr has a limit in &,r if and
only if <2,,, f> has a limit for each f in D, and a mapping T from W into 6Tr is
Borel measurable if and only if the numerical function <T, f> is Borel measur-
able for each f in D.
From these remarks and Theorem 11.1. one gets the existence of a random

element X in (g, defined on the path space K4' such that lim,,,O kr(Xn) = X holds
HI almost surely and that HAKr[<X, f>] = <2. f> holds for each Jf in D. This
last relation can also be written

(12.1) 2 = J a v(du)
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where v is the probability measure on eSr defined by v(A) = Hi-r[X E A] for A
in '(&r). If A is in Br, there can be no nontrivial representation of the form (12.1).
Hence, v = A, that is. X = A holds HA), almost surely.
From (9.6) and the definition of br, one gets immediately

(12.2) WIr[E] = Js Ha r[E]br(da). E in XY(W).

We have already shown H1a r[X = a] = 1 for a in Br. Hence. FHar[X e Br] = 1
for each ( in Br. By (12.2), one therefore gets V(Br) = I eI'r[XE Br] = 1. From
(12. 1), one gets A = fBr u. v(da) and finally v = br- Q.E.D.
REMARK. Using (9.1) instead of (9.6), one gets the integral formula

(12.3) IA[E] f Hal[E]6r(da) E in X(W)

instead of (12.2). For oa in Br. we know that X = a holds nH almost surely.
Therefore,

(12.4) Hl[XO e A, X E A'] = a (A)8q(A')

for A in X(G) and A' in A(Br). The last two formulas give

(12.5) II[X0 cE A, X EA'] = f U(A)br(dg) = (rA X A').

This gives us the probabilistic meaning of the measure 0; r on G x Br defined
by Lemma 7.1. Indeed, one gets

(12.6) Iii(X0, X) E C] = OA r(C). C in A(G x Br).

With the previous notations, let Pr be the canonical continuous map from Br
into the intrinsic boundary B of G, namely, Pr(2) is the ray generated by A. If
(g.)n2>0 is a sequence of points of G and a a point in Br. the relation
lim,0 kr(g.) = a in Ar implies lim,,O gn = pr(a) in G. Define the random
element X,, in G by X,, = p,(X). Using Theorem 12.1, the previous remark,
and Lemma 7.2, one gets the following result immediately.
THEOREM 12.2. Let 2 be an invariant measure. There exists a random element

X,,, in the intrinsic boundary B defined over the sample space 11 such that the
relation lim,,,., X,, = X,,, holds n'A almost surely in the space G. If the measure 2
generates the extreme ray x. then X,, = x holds 1H almost surely. Furthermore,
for any Borel subset C of G x B. one gets

(12.7) IlA[(Xo. XOO) E C] = 0)R(G),

where the measure 0, on G x B has been defined in Lemma 7.2.
We are now ready to prove our main theorem about the convergence to the

boundary of the random walk of law Iu on G.
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THEOREM 12.3. Let (Zn)n. 1 be an independent sequence of G valued random
elements with the common probability law p and let SO = e, S,, = Z1 ... Zn for
n _ 1. There exists a random element SOO in the intrinsic boundary B of G (with
respect to p) such that Sn tends to SOO almost surely in the extended space
G = G u B. Moreover the probability law of SOO is the probability measure y on
B defined by Lemma 7.3.

PROOF. Roughly speaking, the almost sure convergence of Sn to a point in
B is obtained as follows. Take any random element Z in G with distribution a
right invariant Haar measure m, independent from the process (Zn)n> 1. Then
the process (ZSn)n>0 has the distribution Pm = lHm in the path space W. Hence
by Theorem 12.2, it converges almost surely to the boundary B. By Fubini's
theorem, for m almost any sample value g of Z, the process (gSn)n, 0 converges
almost surely to the boundary: since G acts by homeomorphisms upon 0. the
process (Sn,)n 0 converges almost surely to the boundary B.
The previous argument is marred by some measurability difficulties; indeed,

we don't know that 0 is a metrizable space. Hence, the measurability of the
limit S, is not ensured a priori. One could be tempted to work in &r for some
reference function r, but there the invariance under G is lost. We shall now
repeat the previous reasoning taking more care of the measurability questions.

In the sample space £. of the process (Zn)n 1, let us distinguish the part Q2
consisting of the sample points co such that Sn(co) converges in G to a point in
B, to be denoted by S,(co). In the same way, W1 is the set of paths w in W con-
verging in 0 to a point in B, to be denoted by X,,(w). There is a homeomorphism
(D of G x Q1 with W characterized by the following relation

(12.8) Xn(.$(g, C)) = g Sn((), n _ 0, g in G, cl in Q..
Since G acts by homeomorphisms upon G, one gets W, = (D(G x Q.) and

(12.9) Xj0(g, co)) = g.S1(c), g in G. co in Qua.

By Theorem 12.2 with A = m, there exists a Borel subset W2 of W1 such that
Im[W - W2] = 0 and that X,,, induces a Borel measurable map from W2 into
B. Since (D is a homeomorphism of G x Q. with W transforming the measure
m 0 P into Pm = [tm, by Fubini's theorem, one gets

(12.10) 0 [H[W - W2] = f P[A - Ql]m(dg),

where i29 is the set of co in £. such that (D(g, co) e W2. Hence, there is at least a
point go such that P[Q - go] = 0. Thus, i2* = Qgo is a Borel subset of Q.
such that P[Q*] = 1 and 8c13 is a Borel measurable map from Q2* into B such
that limn,,O Sn(co) = Sa,(co) for any co in £l*.

It remains to identify the probability law y of S,,, in B. Let us modify S,,O by
giving it some fixed value b e B in Q - *. We modify X,,, so that (12.9) remains
valid. Let F in bC(G x B) and L = F(X0, X,). According to (12.7), one gets

(12.11) Em[L] = Hm[L] = <(Hm F>.
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Moreover, from (12.9) and (12.8) one infers LD(g, w) = F(g, g.S,(w)), and
since (D transforms m 0 P into pm, one gets

(12.12) E-[L] = fG f F(g, g S.3(a)))m(dg)P(dco) = fJ{F(g, g. x)m(dg)y(dx).

Comparing (12.11) and (12.12) gives

(12.13) <O,F> = fG f F(g g x)m(dg)y(dx)
for an arbitrary F in bC(G x B), that is, %m = JG(E, 0 g-y)m(dg). Hence, y has
the characteristic property stated in Lemma 7.3. Q.E.D.
The study of bounded invariant functions (Section 15) involves only a part of

the boundary B which we now describe.
DEFINITION 12.1. Let r be a reference function such that <m, r> = 1. Let

Pr be the image of 1lrn1 = pr`m by X.. We call the active part N of the boundary
B the (closed) support in B of the probability measure Mr, The space N does not
depend on r and is invariant by G.

If r and r' are reference functions such that <m, r> = <m, r'> = 1, we see
by (3.1) that the probability measures Pr`m and Pr"m are equivalent. Hence, ti,
and Pr, are equivalent, and consequently have the same support. It is obvious,
by Theorem 12.1, that jr is the measure occuring in (7.1 1); the proof of Lemma
7.3 shows then that gp,. = pM, where s is another reference function such that
<m, s> = 1. We then have jr - Pls - gM,. The measure Pr is hence quasi-
invariant (equivalent to its translates by elements of G) and afortiori, its support
N is invariant by G.
To justify the terminology "active part", we note that the limit X,,,

lim,,,, X,, exists and belongs to the active part N of the boundary, P9 a.s., for
each g in G. The proof is completely similar to the proof of Theorem 12.3; we
simply have to modify the definitions of Q£ and W1: namely, Q1 is the set of Cl in
i2 such that S,,(o) converges in C to a point in the active part N of B. A similar
definition is used for W1. Since N is invariant by G, we still have 1D(G x Q1) =

W. We thus obtain P[S.O = lim,,, ,, and SO in N] = 1, and using (12.8) and
g-N = N, we getP9 [X = lim,, X,, and Xx in N] =1, for each g in G.
The interest of the notion of the active part of the boundary lies essentially

in the fact that in many cases (see Section 17), N can be determined completely,
while the boundary B remains unknown.

13. Additional remarks

13.1. From Theorem 12.2, one deduces that any point in B is the limit in C
of some sequence of points in G. This could be proved directly by a purely
analytical argument. Indeed, from the fact that any excessive measure is the
limit of an increasing sequence of potentials (Theorem 4.2), one infers easily
that e, is the closed convex hull of kr(G) whatever the reference function r is.
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By a classical result, any extreme point of 8, is of the form A = limpet kr(gn).
Hence, x = lim xa g, in G for the ray x generated by A. Since any point in B
is the ray generated by an extreme point of er for some suitable reference
function r, we are through.

13.2. Let r be a generalized reference function (see Section 8). One shows
easily that <i. r> > 0 for any excessive measure 2 =& 0, that the set 4°, of ex-
cessive measures 2 with <R, r> . 1 is vaguely compact and that the measures
VIA and HA"P have the same null sets when <R, r> is finite. Using these remarks,
one checks that the proofs of Theorem 6.1. Lemmas 7.1 to 7.3. Theorems 11.1
and 12.1 remain valid when r is a generalized reference function.
We have refrained from making this generalization because we feel that the

reference functions and the compact spaces e, are only auxiliary tools and that
the ultimate concern is with the intrinsic boundary B. The most interesting
generalized reference functions are those with compact support; but, if they
exist at all. the convex cone & has a compact basis and it is better to work
directly with the Martin compactification G* of Section 8.2 without having
recourse to the reference functions.

Part D. Bounded Invariant Functions

In this part. we give an integral representation of the bounded invariant
functions analogous to the representation obtained by Furstenberg [27] and
we use it to compare the Poisson space of p to the intrinsic boundary of G.

14. Invariant functions

We have seen in Section 4 that if an excessive functionf is locally m integrable.
the measure f. m is excessive. This is particularly interesting in the case when p
is spread out since we have the following lemma.
LEMMA 14.1. Assume that p is spread out on G. An excessive function f is

locally m integrable if and only if f is m almost everywhere finite.
PROOF. Let f be an excessive function finite on the complement of an m

null set A. Since p is spread out there exists a nonempty open subset V of G. an
integer n, and a real number c > 0 such that Mu' majorizes c. m on V. Let h be
in G; since m(A) = 0, there is a g such that g E hV1 andg is not in A. We have

(14.1) °° > f(g) > <g"n,f> c<gm.Igv f> > cA(g)<m, Iv f>
Since g V is a neighborhood of h and h is arbitrary. f is locally mi integrable. The
converse is obvious. Q.E.D.
When the support of Iu is contained in no proper closed subgroup of G. an

invariant function is in L2(G) only if it is m a.e. constant, and hence m a.e.
zero when G is not compact (see U. Grenander, Probabilities of Algebraic
Structures, p. 58).
Now let f be an invariant function in L1(G). The measure f-m = 2 is an

invariant bounded measure: for any f' E (a(G), the function fl defined by
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fl (g) = <gA, f'> is a continuous bounded invariant function. This remark is
used (in [3] and [28]) to deduce a representation of the bounded invariant
measures from the integral representation of the bounded invariant functions.
We recall ([3]. Proposition 1.6) that when p is spread out, the bounded invariant
functions are continuous. We call H the Banach space of all bounded invariant
functions (with the norm of uniform convergence).

15. Integral representation of bounded invariant functions

We assume in this section that pu is spread out. Let r be a reference function
such that Km, r> = 1, let N be the active part of the intrinsic boundary B, and
let p,. be the quasi-invariant measure on N, image of prm by X. (Definition
12.1). Note that the null sets of/r are independent of r. so that the Banach space
L,,,(N, /Jr) does not depend on r.
THEOREM 15.1. Assume that p is spread out. There exists an isometry fi-f

from the Banach space H of bounded invariant functions onto L, (N, fir) such that

(15.1) f(Xo,) = lim f(Xj), prr a.s.,

and

(15.2) f(g) = <gy,f>, ginG,

where y is the probability measure on N occuring in Theorem 12.3 and Lemma 7.3.
PROOF. We recall the notation of Sections 6 and 7; Br is the set of the extreme

invariant measures a such that <a, r> = 1; B' is the corresponding Borel subset
of rays in B, and the natural map Pr: B, i-4 Br is a Borel isomorphism. By
Theorem 6.1, there is a unique probability measure br such that

(15.3) m = f U - (da)

and, taking account of (7.11), we have Pr(r) = sir
Let f be a bounded invariant function; let A be the invariant measure f m;

assume first f _ 0. Since <A, r> is finite, by Theorem 6.1 there is a unique
bounded measure fOr on Br such that A = SB (r 'fr(da). This result is readily ex-
tended to the case when f is not positive by writing f = (f + f 1) - lIf IL The
measure If Im - A is a positive invariant measure. Hence, by Theorem 6.1,
li ilf r - fir is a positive measure. There is then a function fr in L,,,(B,, br) such
that Or = fr-br and lIfril _ lIf I. On the other hand,

(15.4) = f m fBrfr.(a) 3r(du)

- I~fril X Jr f br(da) = IfrI x: .
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Sincef is continuous, (15.4) implies 11 f <,-- 11f , and finally ||f = Hf,
The map f i- f, clearly defines an isometry from H onto L. (B,, a,). Since
L0(B,, a,) is isometric to L ,(N, A,) by the map f, c--f,' = ftop -1, we have an
isometryf F-* ffrom H onto L,,, (N, !ur). We shall see, in fact, that the equivalence
class off,' in L. (N, Pr) does not depend on r.

As in Section 12, define X: W i-* B, by X = limn-,*c k,(X.) if the limit exists
in &,., and X arbitrary elsewhere. For any function F in b + (W), we have by (12.2)
and (15.3),

(15.5) Hm '[F] = fB 5r(da)H0"[F].
Let h be a function in bV(G); applying (15.5), we get

(15.6) Hm'r [h(Xn)fr(X)] = bra(do) Har[Ah(Xn )fr(X)].

Since, by Theorem 12.1, [la"[X = a] = 1 for a in Br, (15.6) becomes

(15.7) Hmr[h(X.)f,(X)] = jB 3,(da)f,(a))H, r[h(X, )].

From (9.6), we obtain

(15.8) Ha h[h(XJ)] = <C, h. Q"r>.

Using (15.8) and (15.4), we transform (15.7) into

(15.9) Hm" [h(X.)f,(X)] = SG m(dg)h(g)Q"r(g)f(g).

In the particular case f = 1 (and hence fr = 1), (15.9) yields

(15.10) Hr.[h(Xf)] = J' m(dg)h(g)Q"r(g),

which shows that the distribution of X. for the law frjr is Qnr* m. We can then
rewrite (15.9) as

(15.11) H- r[fr(X) | Xj = f(X.), H",r a.s.

The left side is a bounded martingale and fr(X) is measurable with respect to
the a-algebra generated by the X,. Hence, we have

(15.12) lim Hm'"[f,(X) | Xl] = fr(X), flmg' a.s.,
"_ 00

which combined with (15.11), implies
(15.13) f,(X) = lim f(X.), H'"r a.s.

The continuity of p, and Theorems 12.1 and 12.2 show that

(15.14) Pr(X) = X0, I'ma.s.,
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for any reference function r.
Let s be another reference function such that <m, s> = 1. Since H"', I',I',

and flr s have the same null sets, equations (15.14) and (15.13) imply

(15.15) f,(Xc) = fs(XJ), 1n1r a.s.,

(taking account of the definitions fl = f,.op ` and f = f op- 1). The image of
flm r = pr M by X0,, is p,. Hence, fr' andf. define the same element of L. (N, l,).
We now call f the equivalence class (independent of r) of f' in L. (N, Ar); the
equality (15.13) readily implies (15.1), since fr(X) = f(x.), Hm ,r a.s. Taking
account of (3.1), (15.1) implies

(15.16) f(x.0) = lim f(X.), P, a.s.,

for m almost every g in 0. Since f is bounded, (15.16) gives

(15.17) lim Eg[f(X )] = EW[f(Xf)], m a.e. g in G.
n 0

We have, since f is invariant,

(15.18) f(g) = Qnf(g) = El[f(X.)], g in G.

From Theorem 12.3, we see that the image of Pe by X. is the probability
measure y; this shows, by (12.9) and (12.8) that the image of P9 by X",) is gy. We
can now deduce, from (15.17) and (15.18),

(15.19) f(g) = <gy, f> m a.e. g in G.

The definition of X0 shows that F = f(Xcjc,) is shift invariant (see (3.4)), that is,
OF = F. If we define

(15.20) h(g) = <gy, f> = El [F],
using the Markov property, we get

(15.21) Qh(g)=E9[h(X1)] =E9[EX1[F]] = E9[Eg[OFIX,]] =Eg[OF] =h(g).
Since h is bounded and invariant, it is continuous (see Section 14); since f has
the same properties, we see that (15.19) implies (15.2). Q.E.D.
We now study formula (15.2) in more detail.
PROPOSITION 15.1. Assume that p is spread out. There is a Borel positive

function u, on G x N such that

(15.22) d(gy) (x) = u,(g, x) g in G, x in N.

For p, almost every x, the measure u,(*, x) -m is extreme and invariant. The
measure I, on B,. such that m = fB, a. 5,(da) is carried by the set of extreme
invariant measures a such that a << m. Any bounded invariant function f has the
representation
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(15.23) f(g) = ufNu(g, x)f(x) ,r(dx). g in G;

moreover, ifpu << m, Ur can be chosen such that Ur(*. x) is an invariantfunctionfor
Pr almost every x.

PROOF. Letf be any bounded Borel function on N andf the corresponding
invariant function. From (15.2), we see that f = 0 if and only if for each g in
G, f = 0. gy a.e. By (15.4), f = 0 if and only iffr = 0 6r a.e.. that is to say, if
and only iff = 0, Pr a.e. Hence,f = 0, pr a.e. if and only iff = 0. gy a.e. In par-
ticular, gy << Pr for each g in G. Since Pr is carried by a countable union of
metrizable compact sets (see Section 8). there is a positive Borel function ur on
G x N such that (15.22) is satisfied. Equation (15.23) is then an immediate con-
sequence of (15.2). We have Qf = f, which implies, by (15.23) and by the fact
that f is arbitrary in L, (N, pr),

(15.24) { p(dh)u,.(gh, x) = ur(g, x). Pr a.e. x,

for each g in G. Applying Fubini's theorem to the set of pairs (g, x) in G x N
for which (15.24) holds, we see that for Pr a.e. x the function ur(, x) satisfies

(15.25) QUr( . x) = Ur( . x). m a.e.

Equation (4.4) shows then by duality that the measure Ur(. x) }} on G is
invariant for ,r a.e. x. Note that ifp << m, (15.25) implies Q2Ur(.,X) = QUr(',X)
everywhere. so that we can replace ur(*, x) by the invariant function Qur( . x).
Coming back to the general case, call 9p(x) the invariant measure ur(', x)-m.
We get from (15.23)

(15.26) f m = TN ()f/()8pr(dx)

Since Pr = Pr(6r) andf = fr°P7'. we have

(15.27) fm fB (P°Pr(U)fr(U)r(d).

Comparing with (15.4), we see that since fr is arbitrary. we must have
(f0oPr(a) = a. for br a.e. a. Hence, we have a << m for br a.e. a and qp(x) is an
extreme invariant measure for Pr a.e. x. Q.E.D.

16. A special type of reference function

To prove the main result of this section. we shall have to use compact caps
gr of the cone of excessive measures. such that the subcone of r generated by

,r is stable by G. and on which G acts with some sort of uniformity. The
appropriate reference functions are constructed below.
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PROPOSITION 16.1. For any probability measure /1 on G (transient case) there
is a reference function r such that

(16.1) urn r(gh) - r(h)
g-e r(h)

uniformly in h and such that Km? r> = 1.
We shall need a lemma.
LEMMA 16.1. Let A be the modular function of G. There is a bounded Radon

measure C on G. an open subgroup Go of G. and a finite positive function E on Go
such that

(i) s(g) tends to 0 when g tends to e,

(iii) I<Kg, f > - <K.,f >| _ E(g)<n' }>f
for any g in Go, f in b'(G).

PROOF. Assume first that G is a Lie group having a finite number of con-
nected components. Let d be a left invariant distance on G. It is known ([30],
p. 75) that there is a positive number k such that for b > k the function
A(g) exp {-bd(e, g)} is in L1(G, m), and such that A(g) . k exp {kd(e, g)} for
g in G. Define the measure q on G by q (dg) = C exp {-bd(e, g)} A(g)m(dg).
For b large enough, n is bounded, and <71, A> is finite; we then choose C such
that Kn, A> = 1. The proof of (iii) is readily deduced from the following
elementary inequality: for g in G and h in G.

(16.2) exp {-bd(e, hg)} - exp {-bd(e. h)}I . £(g) exp {-bd(e. h)},

where c(g) = exp {bd (e, g)} - 1.
Assume now that the quotient of G by its connected component is compact.

There exists ([43], pp. 153 and 175) a normal compact subgroupK of G such that
G, = G/K is a Lie group with a finite number of connected components. Let
mK be the normed Haar measure on K; for each f in C' (G), the function f(g) =
<m~g, f> can be considered as a function on G1. Let q, be a measure on G1 satis-
fying (i), (ii), (iii). Define q on G by <K f> =Kfu1f>. It is readily checked that
satisfies (i), (ii), (iii) with Go = G.

Finally, in the general case, G contains an open subgroup G1 such that the
quotient of G, by its connected component is compact ([43], pp. 153 and 175).
Nitrite G as a disjoint union G = Un>0 gG1,. Let n 1 be a measure on G1 satisfying
(i), (ii), (iii). Define q on G by q = En>oCngn>O * where cEn>Cn < o) and
Yn>O CnI(gn) = 1, which implies (ii). Then, one checks (iii) with Go = G,.
Q.E.D.
PROOF OF PROPOSITION 16.1. The proof of Lemma 6.1 shows the existence

of a bounded reference function s such that <m, s> = 1 and such that Us is
bounded. Let sl be the measure on G obtained in Lemma 16.1. Define r by

(16.3) r(g) = <Kgg s>, g in G.
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We have Ur(g) = <rig, Us>, since U commutes with left translations on G.
Since s and Us are both continuous, bounded and positive, it is clear that
r and Ur have the same properties. Hence, r is a reference function. We have

(16.4) <m, r> = f ti(dg) <gm, s> = <K ,> =1.A>

For g in G0, h in G, we have, by (16.3),

(16.5) |r(gh) - r(h)I = I<Kg, Rhs> -<q, Rhs>j,
where Rhs(g) = s(gh). Applying inequality (iii) from Lemma 16.1, we get
|r(gh) - r(h)I _ e(g)r(h), for g in Go and h in G and the proof is completed.
The following result describes the action of G on B,. when r satisfies (16.1).
PROPOSITION 16.2. Let r be a reference function satisfying (16.1) and such

that <m, r> = 1. Some open subgroup G0 of G acts then on 8', - {O} by

(16.6) Tg(a) = (< 'r> ga,

and we have

(16.7) lim T9(a) = a,
g-*e, geGo

uniformly for a in B. There is a Borel subset E of B,. such that the whole group G
acts continuously on E by (16.6) and such that 6, (E) = 1, where a, is the measure
onB,.suchthatm = Ifra* ,(da).

PROOF. For a in 8,, define the function F, on G by

(16.8) FP0(g) = <ga, r>, g in G.

By the proofs of Proposition 16.1, there exists an open subgroup Go of G such
that if F,(g) is finite for some g in G, F, is finite on Gog; moreover, (16.1) shows
then that F, is continuous at g. We thus see that on each coset Gog, the function
P, is either finite and continuous or identically infinite. This has two pleasant
consequences used below:

(a) if Pa is m a.e. finite, F, is everywhere finite and continuous;
(b) if we choose a sequence (gJ) such that G is a disjoint union of the sets

Gog", we see that PF, is everywhere finite and continuous if and only if F,, (g.) is
finite for all n.
Also, since a is in ',, FP(e) = 1, and all the P, are finite and continuous on Go.
It is then easy to check that (16.6) defines a continuous action of Go on 4', -
{0}, which obviously leaves globally invariant the set Br of extreme invariant
points of 4', - {0}.

Formula (16.1) implies readily that the (FP, a in 4,-{0}, are equicontinuous
at e, and it is then trivial to check (16.7)-where the restriction a inB,. is essential.

Let ± be the set of all a in B, such that P, is everywhere finite and continuous.
Conclusion (b) above shows clearly that E is a Borel set. From <gm, r> = A(g)
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and gm = JB, go. 5(da) (a consequence of (15.3)), we obtain that, for each g
in G, <go, r> is finite 6r a.e. By Fubini's theorem, this implies that, for 6r a.e. U

in Br, the function F, is m a.e. finite on G. Using conclusion (a) above, we then
see that dir(z) = 1. It is then immediate that (16.6) defines a continuous action
of G on E. Q.E.D.

17. Intrinsic boundary and Poisson space

In this section, we assume that M is spread out. As before, we call H the Banach
space of bounded invariant functions. Let H, be the closed subspace of H con-
sisting of those f in H which are left uniformly continuous on G. A construction
due to Furstenberg ([27], [3]) shows the existence of a compact G space H
(depending on M), a probability measure v on HI, and an isometry f - f from
H, onto C( H) (space of continuous functions on 11) such that

(17.1) f(g) = <gv,f>, ginG;

11 and v are called Poisson space and Poisson kernel of A, respectively. They
have been studied extensively in [27] and [3] and in a large number of cases HI
is known explicitely. We are going to compare H1 and the intrinsic boundary.
We recall briefly the construction of HI (see [3]). For every Borel function f

on G, we define a measurable function F = t(f) on the sample space W by

lim f(Xn(w)) if the limit exists,
(17.2) F(W) = n-

0O elsewhere.

Two functions on W are considered as equivalent if and only if they are P9 a.s.
equal, for each g in G; we call t(f) the equivalence class of t(f). The set
{t(f) If in H.} is a C* algebra A for the norm

(17.3) IT(f)l = sup It(f)II ,(p)
gEG

The map t is an isometry from H. onto A; the Poisson space HI is the spectrum
of A.
THEOREM 17.1. Let u be a probability measure on the locally compact separ-

able group G, and let Hl and v be the Poisson space and Poisson kernel of p.
Assume that M is spread out, and that the random walk of law M is transient. Let
N be the active part of the intrinsic boundary B of G, and y the measure on N
occurring in Theorem 12.3. Then there is a Borel subset H1 1 of H, invariant by G,
such that v( l 1) = 1, and a continuous map afrom H1 to N, commuting with the
action of G, such that /(v) = y. If, moreover, HI is a homogeneous space of G, the
map ai is infact a homeomorphismfrom Hl onto N, commuting with the action of G.

PROOF. Let r be a reference function as in Proposition 16.1. (The notation
is that of Section 15.) Let q be the isometry from L ,(N, Mr) onto H such that

(17.4) f(g) = q(f )(g) = <gy, f>, g in G, f in L,,(N, M,).
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Let M be the compact support of 6r in 4f. Since 8r(Br) = 1, the space C(M) of
continuous functions on M is naturally identified to a Banach subalgebra of
Lc,(Br. sr), which we denote by C1(M). Any function f,. in C1(M) is clearly
uniformly continuous on Br. Taking account of (16.7). we see that

(17.5) lim I fr Tg - fril = 0 fr in (C (M).g-.e,gc-Go

The isometry s from L,,,(Br. 6r) onto Lc,(N. Mr) defined by f = S(fr) = fr Pr-
maps C(,(M) onto a Banach subalgebra (12(M) of L,(N. Mr), and we rewrite
(17.5) as

(17.6) lim lif(g ) - f()| = 0. f in C2(M).
g-~e,gc-Go

By (17.4), the invariant function corresponding to f(g ) is f(g.). Since q is an
isometry, Ilf(g) - fl-)1 = lif(g) - f(-)I| and (17.6) shows that if f is in
C2(M), f is left uniformly continuous. Hence, q maps C2(M) into H".
From (15.1), we get

(17.7) f(Xo,) = lim f(Xj) qt(f). P` as.

Let Fi = toq(fi) for i = 1, 2. with fi in C2(M). Since t is an isometry from H.
onto A and since A is an algebra, there is an f in H. such that F1E2 = T(f).
We then have in A

(17.8) tcq(f) = t(f) = F1F2 = toq(f) toq(f2).
which by definition, is equivalent to

(17.9) toq(f) = toq(f1) toq(f2).

P9 a.s., for each g in G.
Combining equations (17.7) and (17.9), we get

(17.10) f(X.) = fl(X.)f2(X.)., pr` a. s.

The image P`m by X,, being iur, we see that f = f112 in Lx,(N. ,ur). But (17.8)
now becomes

(17.11) toq(f1f2) = toq(f1)-toq(f2), fl, f2 in C2(M).

Hence, the isometry toq is a homomorphism of algebras from C2(M) into A,
such that toq(l) = 1. Since C(M) C1(M) and C1(GI) -+ C2(M) are isomor-

phisms of Banach algebras (preserving 1). we have a homomorphism of C(M)
into A (preserving 1). By duality, we obtain a continuous mapping 4$ from the
spectrum H of A onto M.

Let f be a function in C,(M) and f the corresponding bounded invariant
function (left uniformly continuous); the function fr on Br is the restriction to
Br of a continuous function fr' on M: definef,° = f For each g in G. we have

(17.12) f(g) = <gv, f> = <$D(gv), f,>.
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But we also have, by (15.2) and f = fr Pr ,

(17.13) f(g) = <gyf> = <pr7(gy)?fr>.
Finally, for each g in G.

(17.14) <(D(gv),fr'> = <IBr r(gy)'fr>
Since the function fr' is arbitrary in C(M), we conclude that

(17.15) D(gv) = IBrpr(g)
for each g in G.

Let E be the subset of Br defined in Proposition 16.2. We have seen in the
proof of Proposition 15.1 that gy << Mr for each g in G. Since br(y5) = 1 and

br= P7 1(Ir), we see that E has measure one for p- '(gy). for each g in G. Hence,
by (17.15), we have

(17.16) (D(gv) = Ispr'(gi)
for each g in G.

Define l' = $-'(E). From (17.16). we deduce gv(Hl') = 1 for each g in G.
The map V = Pr"( is obviously defined and continuous on IT and maps 11'
into the active part N of the boundary. We then rewrite (17.16) as

(17.17) 0/i(gv) = gy

for each g in G.
We now show that i commutes with the action of G (which is not obvious

since C(M) is not invariant by G a priori). Let x in H' and g in G be such that gx
is in HT. It is known ([3], p. 13) that the measure v on H is "contractile,' that is.
any point mass on H belongs to the vague closure of the set (hv)hGG. Let (hi)ie,
be a net in G such that lim, (hiv) = £x (point mass at x). which implies since H
is a G space, lime (ghiv) = egx- Assume that gofr(x) and 0i(gx) are distinct points
of N. Since N is Hausdorff and since 0 acts continuously on N, we can find in
N neighborhoods A of 0(x) and B of 0fr(gx) such that gA and B are disjoint.
Then - '(A) is a neighborhood of x in H'. Hence. /-'(A) = C n H', where C
is a neighborhood ofx in H. The vague convergence of (hiv) to ex in the compact
space H implies the existence of io in I such that for i > io, hiv(C) > 2. Since
hiv(H') = 1. we then have hiv[o-'(A)] > 2 for i > io. that is, by (17.17),
hiy(A) > 2. Similarly, we find i, in I such that fori > il.ghiy(B) > 3. Choosing
i larger than i0 and i1, we have

(17.18) 1 _ ghiy(gA) + ghiy(B) = hiy(A) + ghiy(B),

an obvious contradiction since the last term is larger than 4. We have proved
(17.19) i(gx) = g fr(x) x. gx in HT.
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Let (g.) be a dense sequence in G, containing the identity of G, and let H1 =
nf g - 1 Ho. Since gv(HI') = 1 for any g in G, we have gv(Hn 1) = 1 for each g in
G, and by (17.19) we have

(17.20) /(g~x) = g"o(x)
for any n, for x in n1. By (16.6), we see that p,(Tea) = gpr(a) for any a in Br.
Hence, (17.20) implies

(17.21) 'D(g~x) = T,,0:(x)
for any n, for x in H 1. But x in H 1 implies @(x) in A, which by Proposition 16.2
implies that T.0(x) is a continuous function of g, for any fixed x in II.
Obviously, 1(gx) has the same property, and from (17.21) we get

(17.22) 4D(gx) = Tg0(x)

for any g, any x in H1. Since T. (B,) = B., we see that GO 1 is included in H'. A
fortiori Gn1 is included in g -1HI' for any g., which implies GH1 = H1. By
composition with p,, from (17.22) we can now deduce

(17.23) *(gx) = g/(x)

for any g in G, any x in H 1.
We now assume that H is a homogeneous space of G. Then we obviously

have H1 = HI. Hence, 0(n) is a compact subset of N; on the other hand,
q (n) = p,(4(1)) = p,(E) so that M,[?/(H)] = ', (E) = 1. But N is the closed
support of M,, so that N = 0(n), and / is a continuous map from H onto N
commuting with the action of G. We now show that ' is an isomorphism. Let/be
a continuous function on H and let f be the corresponding left uniformly con-
tinuous, bounded invariant function defined by (17.1). By Theorem 15.1, there
is anf in L,,(N, u,) such that f(g) = <gy,f>, forg in G. Using (17.17), we then
have

(17.24) <gv,f> =f(g) = <gy, f> = (/(gv), f> = <gv, foi/>, g in G.

By Theorem 1.3 in [3], this implies / = g , a a.e. on H, where £ is any quasi-
invariant measure on H. Define V(g) = f(gx) and F(g) = foi/i(gx) for g in G,
where x is an arbitrary fixed point in H. Then V is continuous on G and V = F
m a.e. on G. Let G' be the stability group of *(x) in G and let h be in G'. We have
F(gh) = F(g) for each g in G. Hence, V(gh) = V(g) for m a.e. g in G; the con-
tinuity of V implies then V(gh) = V(g) for all g in G. In particular, we see that
f(hx) = f(x) for each h in G'. Since f is arbitrary in C(n), we obtain G'x = x,
and G' is included in the stability group of x; the converse inclusion is obvious
since f commutes with the action of G. Hence, x and *(x) have the same
stability groups. Then f must be a bijection (H[ and N are homogeneous spaces),
and H being compact, V/ is a homeomorphism. Q.E.D.
REMARKS. The case where n iR a homogeneous space of G has been studied

in [27] and [3]. It occurs in particular if G is a semisimple connected Lie group
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or if G is a compact extension of a solvable group of a certain type (including the
nilpotent groups, (see [3] for details)). In both cases, the space H is known
explicitly.

Let us call reference function adapted to G any generalized reference function
r (see Section 8) such that the functions (F,,), u in 4r, defined by (16.8) are finite
and equicontinuous at e (as functions on some open subgroup GO, of G). The
reference functions constructed in Proposition 16.1, as well as the generalized
reference functions with compact support (see Section 8) are adapted to G. When
r is adapted to G, GO, acts uniformly on Br (see (16.7) and (16.6)) and it is possible
to obtain a result analogous to Theorem 17.1 in terms of the Martin compacti-
fication Gr (see Section 8), that is, to identify the Poisson space and the active
part of G, (modulo null sets which are empty in the homogeneous case).
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