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SUMMARY

The purpose of this note is to provide a simple proof (which we believe

to be new) for the weak zéro theorem in the case of homogeneous poly
nomials.From this theorem and Nakayama's lemma, we deduce easily
the main theorem of élimination theory. Our version of élimination theory
is given in very gênerai terms allowing a straightforward translation into
the language of schemes. Our proofs are highly non constructive?the

price we pay for simplicity and élégance.

We thank N. Bourbaki for numerous lively discussions about the subject
matter of this note.

1. Hilbert's zero theorem: a particular case

We dénote by k a field and K an algebraically closed extension of k.

The statement of Hilbert's zéro theorem, in its weak form for homogeneous
polynomials, reads as follows:

Theorem A. Let n be a nonnegative integer and J an idéal in the

polynomial ring k [Xo , Xl9 ..., Xn] gênerated by homogeneous polynomials.
One has the following dichotomy :

a) Either there exists a nonnegative integer d0 such that J contains every
homogeneous polynomial of degree d> d0;d

0 ;

b) or there exists a nonzero vector Ç= (£ 0 ,
Ç l9 ..., fn) with coordinates

from K such that P (<jf) = 0 holds for any polynomial P in J.

We begin by reformulating the previous theorem. It is immédiate that
properties a) and b) are mutually exclusive. For any nonnegative integer d,

let Sd be the vector space (over k) consisting of the polynomials in the ring
S=k [Xo , Xl9 ..., Xn] which are homogeneous of degree d. Then



S = ® Sd , and for the multiplication one gets Sd . Se c Sd+e . Otherwise

stated, S is a graded algebra over the field k. Since / is generated by homo
geneouspolynomials,it is a graded idéal, namely J= © (JnSd).

d^O
The factor algebra R = S/J is therefore graded with Rd = Sdj(JnSd)

for any nonnegative integer d. It enjoys the foliowing properties:

(i) As a ring, R is generated by Ro u R x .

(ii) For any nonnegative integer d, the vector space Rd is finite-dimensional

over k.

(iii) Ro = k.

Dénote by xO,x 0 , xu ..., xn respectively the cosets of Xo , Xl9 ..., Xn mo
dulo/. Let cp be any &-linear ring homomorphism from R into X, and put
£ 0 =9 O0),O

0), ..., Ç
n =cp (xn). It is clear that the vector Ç =?? (^ 0 , Ç l9 ..., Q

is a common zéro of the polynomials in /. Conversely, for any such common
zéro, there exists a unique /c-linear ring homomorphism cp : R -> K such

that Ç o =cp (x0), ..., Ç
n =ç> (xj. The vector is equal to zéro if and only

if <p maps R x = /:x0 + ... + /cxn onto 0, that is if and only if the kernel of cp

is equal to the idéal R + = © Rd in R.

Theorem A is therefore équivalent to the following.

Theorem B. Let R be a graded commutative algebra over k, satisfying
hypothèses (i), (ii) and (iii) above. One has the following dichotomy :

a) Either there exists a non-negative integer d0 such that Rd =0 for
d > d0;d

0 ;

b) or for every nonnegative integer d, one has Rd #0 and there exists

a k-linear ring homomorphism cp : R -> K whose kernel is différent from

Notice that R is a finite-dimensional vector space in case a), inflnite
dimensionalin case b).

2. Proof of Hilbert's zero theorem

We proceed to the proof of theorem B.

By property (i) above, one gets R x .Rd= Rd+lR

d+l hence Rd =0 implies
Rd+l =0. Hence either Rd is. 0 for ail sufficiently large d% or i^d 0



for every d. From now on, assume we are in the second case. Since R is

generated over the field k by a finite number of éléments, the maximum

condition holds for the ideals in R. We can therefore sélect a maximal

élément in the set 3of graded ideals linß such that Rd Inßd for

every nonnegative integer d (notice (0) belongs to 3, hence 3 is nonempty).

Replacing R by R/I, we may assume that R enjoys the following property:

(M) For every nonnegative integer d, one has Rd 0. Every graded idéal

I# (0) in R contains Rd for ail sufficiently large d's.

We claim that R 1 contains a non-nilpotent élément. Assume the converse
and let au ..., a r be a linear basis of R 1 over k. There would then exist an

integer N > 1 such that a\ = ... = a® ? 0, any monomial of degree > Nr
in a l9 ..., a r would be equal to zéro, and we would hâve Rd = 0 for any
integer d > Nr, contrary to assumption (M).

Pick a non-nilpotent élément xinßv The élément l ?x has no inverse

in R. Indeed xd belongs to Rd for any d > 0, and the inverse to 1 ? x would
be congruent to 1 +x+xl + ... +xd modulo the idéal I R t for every

i>d
d > 1, contrary to the assumption that R is the direct sumof the Rd s. By
KrulPs theorem, we may sélect a maximal idéal M in R containing 1 ? x.
Then L = R/M is a field extension of k, and the élément xofß± satisfies

x = 1 mod M. Since Kis an algebraically closed extension of k, it remains
to show thatL is of finite degree over k, hence isomorphic to a subextension
ofK.

Since x . R= © x.Rd is a graded idéal in R, one gets from (M)

the existence of an integer d0 >0 such that x. Rd = Rd +1 for d> dO.d

0 .

Hence, as a module over its subring k [x], R is generated by Ro + R x

+ ... + RdQ
hence by a (finite) basis b l9 ..., b N of this vector space over k.

That is, any élément u in i? is of the form

(1)

where/i, ...,/# are polynomials in one indeterminate with coefficients in &.

From (1) one gets

hence [L : k] <l N is finite.

Q.E.D.

For the reader who doesn't want to appeal to Hilbert's basis theorem,
hère is a direct construction of a maximal élément in 3. Let r0 = 0,



A) = (0) and 303
0 = 3 and define inductively rd , Id and 3rf as follows. For

d>o, let rd+lrd+l be equal to the maximum of the dimensions of In Rd+lR

d+l
for /running over 3d , let Id+lI

d+l be any idéal in 3d3
d such that dim (7rf+l ni^ +1 )

= rd+lrd+l and let 3d+l3

d+l be the set of ideals /in3d such that In Rd+lR

d+l =
7d+l7

d+l n Rd+l.R

d+l . Then the idéal © (IdnRd) is a maximal élément in 3,
as it is easily checked. d? *

3. Elimination theory

The main theorem of élimination theory may be formulated as follows.
Let P19..P

l9 ... 9 Pr be polynomials in k [XO9X
09 Xl9 ..., XX

n \ Y,, ..., Ym] with P,.

homogeneous of degree dj in the variables Xo , Xl9 ..., Zn alone, i.e. of the

form

where the/ a /s are polynomials in k [Yl9 ..., Ym].

Dénote by / the idéal in k [Xo , Xl9 ..., XX
n \ Yl9 ..., FJ generated by

Pu ...,Pr and by 31 the idéal of polynomials /in k [Yl9 „., yy
w] with the

following property (the so-called Hurwitz' Trâgheitsformen) :

(E) There exists an integer N>l such that fX NOJN

0JXN
u ...JXN

n ail

belong to /.
As usual we dénote by Pn (K) the 77-dimensional projective space over K.

Theorem C. Let V be the subset of P" (K) xKm consisting of the

pairs (x 9 y) with x= (x0 :xt : ... : xn) ««J j; = (y l9 ...,ym) such that

Pj (x09 x l9 ..., xn ; yu ..., jm) =0 for \<j <r. Let W be the subset of
Km consisting of the vectors y such that Q (y) =0 for every Q in 31.

Then the projection of FcP" (X) xKm onto the second factor Km is

equal to W.

To reformulate theorem C, let us consider the ring

together with its subring BoB
o = k [Y19...,Yl9 ..., YJ. Dénote by Bd the 2?

0-module

generated in Bby the monomials of degree din XO9X
09

Xi9...,X

i9 ..., Xn . Then B

= © Bd is a graded ring with /a graded idéal. Define the graded ring

y4= B/J with y4
d = Bd/(B

d/(BdnJ). We hâve the following properties:



(i) As a ring, A is generated by A o u Al.A
1 .

(ii) For any nonnegative integer d, AAA
A is a finitely gênerated module over A c

Furthermore, let 6be the idéal in A o consisting of ail a
9

s such that aA d

= 0 for ail sufficiently large rf's, i.e. the union of the annihilators of the

0-modules A o , A ± , A 2 , ... .

Theorem D. Let A= © A d be a graded commutative ring obeying

hypothèses (i) and (ii) aboyé. Let K be an algebraically closed field and

cp :Ao -> K be a ring homomorphism. In order that cp extend to a ring
homomorphism ¥:A-»K which does not annihilate the idéal A + = ©Ad

in A, it is necessary and sufficient that cp annihilate the idéal S defined
above.

We leave to the reader the simple proof of the necessity in theorem D

as well as the dérivation of theorem C from theorem D.

4. Proof of theorem D

Let be the kernel of (p, a prime idéal in A o . Assume Se Ss. We

subject the ring A to a number of transformations. At each step, the pro
perties(i) and (ii) enunciated before the statement of theorem D will be

preserved, as well as property A d # 0 for every d>o. We shall mention
what has been achieved after each step.

a) Factor A through the following graded idéal /: an élément a in
A belongs to /if and only if there exists an élément s in A o such s$
and sa =0. For every d>o, the annihilator 6d6

d of the 0 -module A d is

contained in 6 hence in and this implies /nAd# A d . Put A 1 = A/J,
W = (s+/)// and I = Ao-Ss'. Then any élément in I is regular in A'.

b) Enlarge A' by replacing it by the subring A" of the total quotient ring
of A' consisting of the fractions with denominators in I. Let A"à be the set

of fractions with numerator in Ad and denominator in I; then A"
= © Ad. Then Ag is a local ring with maximal idéal ty" = . Aq.

c) Factor A" through the graded idéal <$" . A". Since A d is a finitely
generated module over the local ring A"o , ont gets A d^ f'A d by Naka
yama'slemma. Put k = A^\ and R = A!'ffl'A\



At this point, k is a field (the quotient field of Ao/^)A

o/^) and R is a graded
algebra over the field fc, so ail assumptions of theorem B are fulfilled.
Moreover let s the composition of the natural maps

In degree 0, s0s

0 is nothing else than the natural map from A o into k with
kernel Since q> has the same kernel ï$ 9 it factors through eO,e

0 , making /£

an algebraically closed extension of k.
We quote now theorem B. There exists a &-linear ring homomorphism

f:R->K such that f(R + ) 0. The composite map ¥ = fs has ail the

required properties.

5. Application to schemes

We keep the notation of theorem D. Recall that the spectrum £
= Spec (A o) of A o is the set of ail prime ideals in A o ; the projective spectrum
X= Proj (A) of is the set of ail graded prime ideals in A, which do not
contain the idéal A + = © A d . We hâve a natural map tt :X->S
associating to every graded prime idéal in the prime idéal ty nAo
in 0 .

Moreover S and X are endowed with their respective Zariski topologies.
A set F in S (resp. X) is closed if and only if there exists an idéal 31 in A o

(resp. A) such that F is the set of ideals Sfi of 5 (resp. X) containing 31.

It is obvious that n is continuous.
The following theorem is Grothendieck's version of the élimination

theorem. Using his language, it is the main step in the proof that X = Proj (^4)

is a proper scheme over S = Spec (A o ).

Theorem E. The map n:X->S is closed, that is the image of a closed

set is closed.

Let F a X ht closed and let % be an idéal in A such that F consists

of the graded prime ideals of X containing 31. Replacing if necessary
21 by the idéal generated by the homogeneous components of its éléments,

we may and shall assume that 31 is a graded idéal. Let S be the set of élé
mentsainAo such that a . Ad c 31 for large d, and let Gbe the set of
prime ideals in A o containing S. It is obvious that n maps .F into G.

Let obea prime idéal in G, hence o =3 3I0 (where 3I0 = 31 n Ao).A

o).

Dénote by k the quotient field of A o/^o and by K an algebraically closed



overfield of k. Let cp be the natural composite map AO/^A

0 /^{0 -> A 0 / s# 0 ~*

-» Â". We are now in a position to apply theorem D to the graded ring A/ s}\,
and we get a ring homomorphism W : A/% -> AT extending <p and such that
ÎF ((^ + + 20/?0 0. Let % (for rf >I)be the set of éléments ain /( t/

such that lF (a+ 31) =0. Then = © s}> (/ is a graded prime idéal in A
d^tO

containing with $A+ and nAo = That is, s]3 belongs to F
and 7i maps onto 0 .
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