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REPRESENTATIONS OF p-ADIC GROUPS:
A SURVEY

P. CARTIER

Introduction. The aim of this article is to (partially) survey the present state of
knowledge about the representations (mostly infinite-dimensional) of reductive
algebraic groups over a local field. This includes the familar p-adic groups like
GLn(Qp)’ szn(Qp)a

This theory evolved slowly and lately. The first steps were taken around 1960
by Mautner and his students who concerned themselves with a detailed study of the
particular group GLy(Q,). The first general results were obtained by Bruhat [8]
who imitated the ‘real’ methods of his thesis [7] and by Satake who determined
the spherical functions [38]. But the next developments had to await the deep
results of Bruhat and Tits [10], [11], [12] and [13] about the structure of p-adic
reductive groups.

In their reference work in which they were basically concerned with the group
GL,, Jacquet and Langlands [34] introduced the important notion of an admissible
representation. They thus opened the way towards a purely algebraic theory of
these representations. The basic results about induced representations were soon
after obtained by Jacquet [32], who considered the case of GL, only, but used per-
fectly general methods. These results have been generalized by Casselman and
Harish-Chandra.

The main goal of this article will be the description and study of the principal
series and the spherical functions. There shall be almost no mention of two impor-
tant lines of research which are still actively pursued today:

(a) Plancherel theorem and detailed harmonic analysis on p-adic Lie groups.
Here Harish-Chandra is the uncontested leader. We refer the reader to Harish-
Chandra’s own description of his results [26], [27] and also to my Bourbaki lecture
[14] for more recent results due to Harish-Chandra and Roger Howe.

(b) Explicit construction of absolutely cuspidal representations (the so-called
‘discrete series’). Here important progress has been made by Shintani [40], Gérar-
din [21] and Howe (forthcoming papers in the Pacific J. Math.). One can expect
to meet here difficult and deep arithmetical questions which are barely uncovered.

Let us give a brief description of the contents of these notes. In §I, we describe
the various classes of representations in a very general framework. Following
Harish-Chandra [25], we give the definitions for totally disconnected locally com-
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pact groups. Number theory and automorphic functions provide us with a host of
such groups and their representations. Special attention is paid to various forms of
Frobenius reciprocity and various notions of induced representations. Our exposition
is based on an apparently novel method using tensor products (over rings without
unit element, alas!).

In §II, we build up the machinery which enables us, after Jacquet, to reduce the
classification of the irreducible admissible representations for a p-adic group G to
the two following problems:

(a) Construct the absolutely cuspidal irreducible representations for G and the
Levi components of its parabolic subgroups as well.

(b) Study the representations induced from parabolic subgroups to the whole group.

Our presentation of Jacquet’s fundamental construction (the two ‘Jacquet’s
functors’) is based on our previous description of the induced representations and
is slightly more symmetrical than usual. After specializing the previous results to
the classical case of GL,, we turn to the relation between unitary representations
and admissible representations. Here the basic results are due to Harish-Chandra
[28] (generalizing earlier results of R. Howe [29] for GL,) and Bernshtein [1]. They
show that any reductive algebraic group over a local field is of type I in the sense of
von Neumann-Murray classification. The foundations are thus laid down for
Plancherel theorem.

8§III is devoted to the unramified principal series. These representations are par-
ametrized by the so-called unramified characters of the Levi component of a min-
imal parabolic subgroup. Let us mention that those characters provide the crux of
the applications to Langlands theory of L-groups (see Borel lectures in these
PROCEEDINGS). In general, the representations I(y) in this series are irreducible.
They have always a nonzero vector invariant under a special maximal compact
subgroup. The main result concerns the explicit construction of an equivalence
between I(y) and I(wy) where w is an element of the (relative) Weyl group. In the
case of real Lie groups, this question led to the introduction of singular integral
operators (Stein, Knapp). The deep analytical problems involved in the construc-
tion of these operators are bypassed by a very ingenious trick of Casselman, making
full use of Jacquet’s construction ¥V => V. An important role is played by the so-
called Iwahori subgroups and their geometrical interpretation via buildings.

In §IV, we culminate with the theory of spherical functions. Using the results
expounded in §I1I, one recovers Macdonald’s formula [36], [37] for these spherical
functions. This theory has been highly developed in the case of real Lie groups.
From the point of view of representation theory, the spherical principal series is
quite special, but plays a prominent role in the applications to L-functions & la
Langlands.

The whole approach leading to spherical functions through §§III and IV has been
developed by Casselman in a still unpublished paper [18]. I borrowed extensively
from this paper as well as from a preliminary paper [17] by the same author de-
veloping the foundations of representation theory in the p-adic case. The reader
will have to consult these papers for the details of proofs and for numerous gen-
eralizations. It is hoped that they shall appear soon.

I have to thank several friends. Anna Helversen-Pasotto tape-recorded my
lectures and made out of her tapes a transcript of the spoken words. This ungra-
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tifying task proved very helpful to me when transforming the sketchy notes dis-
tributed during the conference into the present report.

Serge Lang and John Tate allowed me to use freely their notes about spherical
transforms. My treatment in §IV has been influenced by them. Also John Tate
corrected my misinterpretations about Frobenius reciprocity (see §1.7).

Notations and conventions. 1. Let A be a ring with unit element 1. Let 4* be the
set of elements a in A for which there exists b in 4 with ab = 1. Endowed with ring
multiplication, A* is a group, the “multiplicative group” of A.

2. Let M be a module over a ring 4 without unit element. One says that M is
nondegenerate if every element in M can be written in the form a;-m;+ --- +a,-m,
with ay, --+, @, in 4 and my, ---, m, in M.1

One says a sequence of elements my, ---, m, in M generates M if every element in
M is of the forma; - my + -+ + a, - m, + ny - my + -+ + n,-m, with ay, --+, a, in
A and integers ny, ---, n, (of either sign). If M is nondegenerate, we can omit the
terms n; - my, *--, H,- m,. The module M is finitely generated if there exists a finite
sequence generating M.

3. By a local field we mean a nonarchimedean local field with finite residue field.
Such a field F comes equipped with a subring Op, whose elements are called the
integers in F. There exists in O a unique nonzero prime ideal pp. Moreover there is
in Op a prime element @y such that pp = Op- @p. Every element x in F* can be
uniquely written as @% - u with some integer » and some u in DF = Dp\pp. We
set ordg(x) = n in this case. By convention, ordz(0) is put equal to + co. The index
g = (Op: pp) is finite and a power of a prime number p. We set |x|p = g—°rdFr® for
xin F* and [0|y = 0. The index ‘F’ may be omitted in O, pp, OF, @p, ordp(x) and
| x| when no confusion can arise.

There are two possibilities:

(a) If Fis of characteristic O, then F is a finite algebraic extension of the p-adic
field @, and O consists of the elements integrally dependent on the ring Z, of
p-adic integers.

(b) If Fis of characteristic p, then F is the quotient field of the ring O = F[[¢]]
of formal power series in one indeterminant ¢ with coefficients in the Galois field
F, (also denoted as GF(g) by various authors).

4. We use the standard notations:

Z for the ring of integers,

Q for the field of rational numbers,

R for the field of real numbers,

C for the field of complex numbers.

5. Let G be a topological group, whose unit element shall be denoted by 1. By
a character of G we mean any continuous homomorphism y: G — C*. We say y is
unitary in case y(g) is a complex number of modulus 1 for every g in G, that is 2

1@ = x(® = x(g™).

'We make the convention that any unitary module over a ring with unit element is nondegene-
rate.

2Some authors call ‘quasi-character’ what we call ‘character’ and ‘character’ what we call ‘uni-
tary character’.
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Assume that G is locally compact. We use the symbol C(G) to denote the space
of continuous compactly supported complex-valued functions on G. If y is a (left
invariant) Haar measure on G, we denote usually by [of(g)dg the integral of a
function fin C(G) w.r.t. u. The modular function A4; is characterized by the in-
tegration rule

[ fe1dg = acg0[_r(sg0)dg for 7 in C. (G,

The group G is called unimodular in case 4d; = 1.

One has sometimes to integrate over homogeneous spaces G/H. Suppose that
fis a continuous function on G and there exists a function f; in C(G/H) such that
f(g) = fi(gH) for any g in G. Choose an invariant measure y on G/H. The integral
of f; w.r.t. u shall often be denoted by [, ;/(g) d3.

If G is a Lie group (real or p-adic) we use the corresponding German letter g to
denote its Lie algebra.

6. Let X be any set. The identity map in X shall be denoted by 1. If 4 is any
subset of X, the characteristic function I ,: X — {0, 1} is defined by

T x) =1 forxinA,
=0 forxin X\4,

where we denote by X\A4 the set-theoretic difference.
If X is finite, its cardinality shall be denoted by | X|.
7. We use the abbreviations ‘iff’ for ‘if and only if” and ‘w.r.t.” for ‘with respect

9

to'.

I. Totally disconnected groups and their representations.

1.1. Groups .of td-type. Let G be a topological group. We say G is of td-type if
every neighborhood of its unit element 1 contains a compact open subgroup. Such
a group is a locally compact Hausdorff space. Moreover it is totally disconnected
(hence td), that is there is no connected subset of G with more than one element.

Let G be a group of td-type. If X; and X, are nonempty compact open sets in G,
there exists a compact open subgroup K of G such that X; and X, are unions of
finitely many cosets x;,; K, -+, x; ,, Kfor X;and x5 ; K, ---, x5 ,,, K for X,. We set

Q)] (X1: Xp) = my/ny.

For instance, if X; and X, are compact open subgroups and X, is contained in X7,
then (X;: X5) is the index of X3 in X;. The chain rule holds, namely

2 (X131 X3) = (X1: Xp) - (Xpt Xy).
Let x be a left invariant Haar measure on G. The following formula is obvious:
(©) (X2 Xp) = p(X1)/p(Xa)-

Hence if p(X) is rational for some compact open set X # ¢, the same is true for
every such set. In this case one calls the Haar measure 4 rational.
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1.2. Examples of groups of td-type. (a) Let G be of td-type. Then every open
subgroup, every closed subgroup of G is of td-type. A factor group of G by a closed
invariant subgroup is of td-type.

(b) If Gy, -+, G, are groups of td-type, so is their direct product G; x -+ x G,
endowed with the product topology.

(c) Let (G;);c; be any infinite family of groups of td-type, and let K; = G; be a
compact open subgroup for each 7 in 1. In the direct product [];c; G;, let G be the
subgroup consisting of the families (g,),c; such that the set {i € /|g; ¢ K} is finite.
Then K = [],c; K; is a subgroup of G. We endow K with the product topology. A
set Uin Gisopeniff gU (| K is open in K for every g in G. Then G with this topol-
ogy is a group of td-type and K is a compact open subgroup of G. The group G is
known as the restricted product of the groups G; w.r.t. the groups K.

(d) Let F be a local field. Then |x — y|r defines a distance in F, hence a topology.
Then F as an additive group is of td-type, with O as a compact open subgroup.
Moreover £ is open in F, hence, as a multiplicative group, it is of td-type with D%
as a compact open subgroup.

(e) Let » = 1 be an integer. The linear group GL,(F) is the open subspace
of the n2-dimensional space over F with coordinates x;;, Xy, -**, X,,,;, defined by
det(x;;) # 0. It is a group of td-type. A compact open subgroup is GL, (D), the
set of n-by-n matrices with entries in O, and determinant in O%.

(f) Let G be a subgroup of GL,(F) defined as the set of common zeroes of a set
of polynomials in the coordinates x;; with coefficients in F. For short, G is an
algebraic subgroup of GL,(F) (more precisely, the set of F-rational points of an
algebraic group defined over F). It is a closed subgroup of GL,(F), hence a group
of td-type on its own merits. A neighborhood basis of the unit matrix I, in G is
given by the subgroups

K,={g=(g,)inG||g;— ylr Sgmforl i j<n}

Let G’ be an algebraic subgroup of GL,,.(F) for some integer »’ > 1. Assume that
the group homomorphism p: G — G’ is rational, that is, there exist polynomials
Pw in F[Xqy, -+, X,,,] and an integer m = 1 such that

0(g) = (0w (811, *++» gun)/(det 8)") 12 12w

for g = (g;;) in G. Then p is continuous w.r.t. the topologies defined on G and G’
by their embedding in the linear groups GL,(F) and GL,.(F) respectively. In par-
ticular if p is a biregular isomorphism, i.e., p is a group isomorphism and p, p~! are
both rational, then p is a homeomorphism.

In more intrinsic terms, the algebraic structure on G is defined by the ring F[G]
of polynomial functions? and the topology defined above is the coarsest for which
the elements of F[G] are continuous mappings from G to F (F is given the topology
defined in (d)).

(g) By (b) and (f), the product of finitely many algebraic groups defined over the

*This ring consists of the functions g — u(g.;, -+, gxn)/(det g)™ for a polynomial u in
F[X,,, -, X,s]and an integer m = 0.
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same or distinct local fields is of td-type. Similarly, by (c) and (f), adelic groups
without archimedean components are of td-type.

(h) Let F be a local field and F,,, a separably algebraic closure of F. Let F,,, be
the maximal unramified extension of F contained in F,,, and ¢ the Frobenius au-
tomorphism of F,, over F. Let G = Gal(F,/F) be the Galois group of F,, over
F endowed with the Krull topology. It is a compact group of td-type. Let Wy < G
be the subgroup of automorphisms ¢ of F,, which induce some power ¢” of ¢ in
F,,.. In a unique way we can consider Wy, the Weil group of F, as a group of td-type
in which Gal(F,/F,,,) (with Krull topology) is a compact open subgroup of Wp.

1.3. Hecke algebra. Let G be a group of td-type. If K is any compact open sub-
group of G, we denote by #(G, K) the complex vector space consisting of the
complex-valued functions fon G which satisfy the following two conditions:

(a) f is bi-invariant under K, that is f(kgk') = f(g) for gin G and k, k' in K.

(b) f vanishes off a finite union of double cosets KgK.

Moreover, let us choose a (left invariant) Haar measure x on G. One defines a
bilinear multiplication in the complex vector space #(G, K) by the customary con-
volution formula

@ F1ef2) ©) = [ 1109 folx1g) dx.

This integral makes sense since, as a function of x, the integrand is locally constant
and compactly supported. For this multiplication (G, K) becomes an associative
algebra over the complex field C.

Let us choose a set of representatives {g,} for the double cosets of G modulo
K, i.e., G is the disjoint union of the sets Kg,K. For any index a, let #, be defined
by

ug) = WK)1 if ge Kg,K,
=0 otherwise.

&)

In particular we may assume that gy = 1 for some index 0 and the corresponding
function u, shall be denoted by ex. Hence

©) ex(g) = uK) ifgek,
=0 otherwise.

The family {u,} is a basis of the vector space #(G, K). Moreover, ey is the unit
element of this algebra and the multiplication table is given by u, * ug = 33, c 5,1,
where the coefficients c,s, are computed as follows. The group K, = K g,Kg;*
is compact and open, hence of finite index in K. There exist therefore elements
X1, *++, X, of K such that K is the disjoint union of the sets x,K,, ‘-, x,,K,. Then
Kg,K is the disjoint union of the sets x,g,K, -+, x,,g,K. Define similarly K and the
elements y;, ---, y,. Then c,4, is the number of pairs (i, j) such that g;'x,g,7,8s
belong to K (see Shimura [39]).

When K’ isacompact opensubgroup of K, then s#(G, K) is a subring of (G, K')
but with a different unit element if K # K'. Define #(G) = | Jx (G, K) where K
runs through a neighborhood basis of 1 consisting of compact open subgroups.
Then J#(G) is the space of locally constant and compactly supported functions on G.
For the convolution product defined by (4), #(G) is an associative algebra. It has
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no unit element unless G is discrete, and it is commutative iff G is commutative.

The algebra #(G) is called the Hecke algebra of G and #(G, K) is called the
Hecke algebra of G w.r.t. K4

For later purposes, we need a generalization of #(G). Namely, let Z be a closed
subgroup of the center of G and y a character of Z. We denote by 5#,(G) the set of
complex-valued functions which satisfy the following conditions:

(a) f'is locally constant;

(b) one has f(zg) = x(z)"1f(g)forzinZandginG;

(c) fis compactly supported modulo Z.
More explicitly, assertion (c) means that f vanishes off a set of the form Q - Z where
Qis compactin G.

Choose a Haar measure v on G/Z. The convolution product is defined in #,(G)
by

™ Fiw /D@ = [ 1012 6 ) ds

(notice that the integrand takes the same value for x and xz if z belongs to Z). This
product is bilinear and associative. There is no unit element in the algebra #,(G)
unless Z is open in G. When Z = {1}, this construction brings us back to s#(G).

1.4. Smooth representations. By a representation of G, we mean as customary a
pair (z, V) where V is a complex vector space and = a homomorphism from G
into the group of invertible linear maps in V. If H is a subgroup of G, we denote by
V H the space of vectors v in ¥ such that z(k)-v = v for any % in H, that is, vectors
whose stabilizer in G contains H.

DEFINITION 1.1. A representation (z, V') of G is smooth iff the stabilizer of every
vector in V is open, equivalently if V = | g VK where K runs over the compact open
subgroups of G. '

Let (z, V) be a smooth representation of G and V* the space of all linear forms
on V. The coefficient zc,, ,» of = (for vin ¥ and v* in V'*) is defined by

(8) Ty, v‘(g) = < V*a 7":(g)v>

It is a locally constant function on G.
For fin #(G) there exists a linear operator z(f) acting on ¥ and such that

© O 7)) = [ S (0) de.

It is computed as follows: given v in V there exist a compact open subgroup K of
G, constants cy,-++, ¢, elements gy,-++, g,, of G such that ve VK and f = 37, 1, «.
Then z(f)-visequal to w(K)- 17, c;m(gy) - v.

Using standard calculations one checks that f— z(f) is an algebra homomor-
phism from »(G) into Endy(¥); hence we may consider ¥ as an #(G)-module.
For every compact open subgroup K of G, the operator z(ex) is a projection of V'
onto V'K; hence every vector v in V satisfies v = n(eg)- v for a suitable K. As a corol-
lary, V' is a nondegenerate 2#(G)-module.

The following facts are easily proved:

‘For G = GL,(Q,) and K = GL, (Z,), this algebra is just the classical algebra of Hecke opera-
tors attached to p.
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(a) A subspace V| of V is stable under the operators (g) for g in G iff it is invariant
under the operators r(f) for fin #(G).

Otherwise stated, the subrepresentations (z;, ¥;) of (z, V) correspond to the
submodules of the #(G)-module V. In particular, the representation (z, V) is
(algebraically) irreducible iff V is a simple 5#(G)-module.

The representation (z, V) is said to be finitely generated if there exist finitely many
vectors vy, -, v,, such that the transforms z(g) - v, forgin Gand 1 £ i < m generate
the complex vector space V. By (a), this amounts to the assertion that (vy,-, v,,)
generates the J#(G)-module V.

(b) Let (z, V) and (z', V') be smooth representations of G, and let u:V — V' be a
linear map. Then u satisfies n'(g)u = un(g) for every g in G iff it satisfies n'(f)u =
un(f) for every fin #(G).

A map u:V — V' such that z'(g)u = un(g) for every g in G is called an inter-
twining map or a G-homomorphism. By (b), it is nothing else but a homomorphism
of #°(G)-modules.

(¢) Let (z, V) be any irreducible smooth representation of G. Assume that the
topology of G has a countable® basis.5 Then every intertwining map u : V - Visa
scalar.

This version of Schur’s lemma is proved as follows. Since G has a countable basis,
the index (G: K) is countable for every compact open subgroup K of G; hence
#(G, K) has a countable dimension over C. Moreover, there exists a countable
basis of neighborhoods of 1; hence #(G) = | Jx#(G, K) has a countable dimen-
sion. For any v # 0 in ¥V, the map f — zn(f)-v from #(G) to V is surjective; hence
the dimension of ¥ is countable. Let A be the algebra of intertwining maps from V
into V. For any v # 0in V, the map u — u(v) of 4 into V is injective because (, V)
is irreducible; hence the dimension of A4 is countable. But 4 is a division algebra
over the algebraically closed field C. If 4 # C, there exists a subfield of 4 isomor-
phic over C to the field of rational fractions C(x). In this field, the uncountably
many elements (x — )7, for A running over C, are linearly independent. Con-
tradiction! [This proofis due to Jacquet [33].] '

For instance, let z belong to the center Z(G) of G. Then z(z) commutes to z(g)
for every g in G. Hence there exists a character w, of Z(G) such that z(z) = w,(z) - 1y
for every z in Z(G). One refers to w, as the central character of 7.

(d) Any nondegenerate #(G)-module is associated to a unique smooth representa-
tion of G.

To summarize, the category of nondegenerate #(G)-modules is identical to the ca-
tegory of smooth representations of G and intertwining maps.

To conclude this section, we define the contragredient representation to a
smooth representation (z, V) of G. Let K be a compact open subgroup of G. Denote
by V*(K) the space of linear forms v* on ¥ such that (v*, z(ex)-v) = {v*, v) for
every vin V. The space V = | JxV*(K) is called the smooth dual to V. In V there ex-
ists a smooth representation 7 of G characterized by the relation

(10) (7(g)-¥, vy ={ ¥, n(g™)-v)

5 A finite set is countable!
¢ This condition is satisfied for the algebraic groups over a local field.
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for gin G, vin ¥ and ¥ in V. The representation (#, V) is called the representation
contragredient to (z, V).

1.5. Admissible representations and their characters. We come now to a more
restricted class of representations.

DEFINITION 1.2. A representation (z, V) of G is called admissible if it is smooth and
the space VX of vectors invariant under K is finite-dimensional for every compact open
subgroup K of G.

Fix a smooth representation (z, ¥) of G and a compact open subgroup K of G.
Let &(K) be the set of (equivalence classes of) continuous irreducible finite-dimen-
sional representations of K; every neighborhood of 1 in K contains a subgroup L
of K which is compact, open and invariant in K. It follows that every representation
in &(K) factors through the finite group K/L for such a subgroup L.

Let v be a vector in V. Since 7 is smooth, there exists a subgroup L as above fixing
v. Let ky,--+, k,, be coset representatives for K modulo L. The subspace spanned by
(ki) -v,---,m(k,,) - vis stable under K and affords a representation of the finite group
K/L. 1t is therefore the direct sum of subspaces affordingirreducible representations
of K/L, hence of K. In other words, the restriction of = to K is a semisimple re-
presentation. For any b in &£(K), let V', be the subspace of V' generated by the
minimal K-invariant subspaces of V affording a representation of K of class b.
The space V, is called the isotypic component of class b of z; if ¢ is the one-dimen-
sional representation of K given by e(k) = 1 for k in K, then V, = VX. More gener-
ally for any character y of K, the space V, consists of the vectors v in V' such that
w(k)-v = y(k)-vforevery kin K.

We state now the elementary properties of admissible representations.

@) If (=, V) is a smooth representation of G and K is a compact open subgroup of
G, then V is the direct sum @ yes)Vy. Moreover (z, V) is admissible iff 'V, is
finite-dimensional for every b in £&(K).

Let now b in &(K) and let § be the representation of K contragredient to b.
Since the space E of b is finite-dimensional, the space of b is the dual E* of E.

(b) Assume (z, V) is admissible. The restriction of the pairing between V and V
to V5 x V, defines a nondegenerate K-invariant bilinear form on Vg x V.

Since V, is finite-dimensional, so is V5 and each of the spaces ¥, and V5 can be
identified to the dual of the other. So we get from (b) the following result:

(<) If (z, V) is admissible, then (%, V) is admissible and the pairing between V and
V enables one to identify (z, V') with the representation contragredient to (%, V).

We come now to the characters.

(d) Let (z, V) be a smooth representation of G. Then r is admissible iff the operator
n(f) is of finite rank for every fin #(G).

By definition a distribution (in the sense of Bruhat [9]) on G is a linear form on
the space #°(G) of “test functions”. According to property (d) above, we can
associate to any admissible representation (z, V) of G a distribution 6, on G by

an 0:(f) = Tr(a(f)) for fin #(G).

One refers to O, as the character of «.

(e) Let (my, Vio)eer be a family of admissible and irreducible representations of
G. Assume that m, is inequivalent to wg for a # (. Then the characters 6, are
linearly independent, hence mutually distinct.
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For the calculation of ©, we may proceed as follows. Assume to simplify matters
that G has a countable basis of open sets, hence a countable basis (K,,),,=; for the
neighborhoods of 1 consisting of a decreasing sequence of compact open sub-
groups. Let V,, be the space of vectors in ¥ invariant under z(X,,). Since 7 is ad-
missible, each V,, is finite-dimensional, and V; < V, < --- €« V,,  --- with
V = JuVn Let g be in G. For every m, the operator z(ex, )-n(g) x(ex,) maps
V., into itself. Since V,, is finite-dimensional, this operator has a trace, to be denoted
by @,.,.(g). Notice that as a function of g, 6,,,,(g) is bi-invariant under K, hence
locally constant. Let f be in #(G). There exists an integer m, = 1 such that f
belongs to #(G, K,,,) and then one gets

(12 6:() = | 6:n(@(0) g

for every integer m = my. This fact can also be stated as
(13) 6, =1lim 6,,,, (weak limit in the space dual to #(G)).
For each m, let B,, be a basis of V,, over C; assume that B, « B, < --- = B,, =

B, < ---. Then B = |J,B,, is a basis of V over C. Put B = {v,},c;; hence
B,, = {Va}aes, for some finite subset I, of 1. Define the matrix (,4(g)) by

14 w(g)-vp = a;{ Tap(8)Va-
Then 6, ,, can be calculated as

(15) Or.n(8) =aEZ[im7ra,a(g)-
Hence we get the series expansion

(16) 6= % mua

which converges in the weak sense.

ReMARK. The definitions of the convolution product by (4) and of z(f) by (9)
depend on a Haar measure g on G. To free them from this dependence, we can
proceed as follows. Let C=(G) be the space of locally constant complex-valued
functions on G. By C2(G) we denote the space of linear forms 7 on C=(G) which
satisfy the following two properties:

(1) There exists a compact open subgroup K of G such that T is bi-invariant under
K.Namely, for fin C*(G)and ki, k, in K, then T(f) = T(f") where f'(g) = f(k,gks).

(2) T is compactly supported, namely there exists a compact open subset Q of G
such that T(f) = O for every fin C~(G) which vanishes identically on Q.

By a generalized function on G we mean a linear form on C%(G); they make up
a vector space C~>(G) over C. We can embed in a natural way C=(G) as a subspace
of C~=(G).

The convolution product on C%(G) is defined as follows: for T; (/ = 1, 2) in C%(G)
choose 2, as in (2) above and let @ = Q; U Q. For fin C=(G) there exist functions
S1s 5 S S 1> -+*> [ in C=(G) such that
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a7 f(g182) = _zilf;(gl)-f:«gz) for g, g, in 0.

Then (T * T)(f) is defined by

(1) (Ty* T = 5 T0D-TufD.

For T'in C2(G), the operator z (T') in V is defined in such a way that
(19) v (T vy = T(z, ) forvin V, v¥in V*

(notice that z, ,. belongs to C=(G)). If « is admissible, its character is the genera-
lized function defined by 6,(T) = Tr(z(T)) for T in C2(G).

If we choose a left invariant Haar measure g on G, we get an isomorphism of
#(G) onto CF(G) which associates to u € #(G) the linear form f — [ f(g)u(g) dg
on C=(G). By duality, one gets an isomorphism of C~=(G) with the space of dis-
tributions. This brings us back to our previous constructions.

1.6. Absolutely cuspidal representations. In this section, we denote by Z a
closed subgroup of the center of G. We fix a character y of Z and a Haar measure
on G/Z and assume that G is unimodular. A y-representation of G is a representa-
tion (z, V) of G such that z(z) = y(z) -1y for every z in Z. If = is smooth and ir-
reducible, this means that the restriction to Z of the central character w, is equal
to y (at least, when G has a countable basis of open sets).

Let 7 be a smooth y-representation of G. For fin #,(G), the linear operator
z(f) in Vis defined in such a way that

20) o w(y = f o ale) vy fie) dg

holds for vin ¥ and v* in V'*.

It is then easily proved that the category of smooth y-representations of G is
isomorphic to the category of nondegenerate s#,(G)-modules. Moreover the ir-
reducible smooth representations correspond to the simple #,(G)-modules.

DEFINITION 1.3. Let y be a character of Z. A y-representation (z, V) of G is called
absolutely cuspidal (or supercuspidal, or parabolic according to some authors) if
it is admissible and each coefficient 7, ; (vin V, ¥ in V) is compactly supported modulo
Z (hence belongs to s#;-1(G)). )

A representation is called absolutely cuspidal (w.r.t. Z) if it is an absolutely
cuspidal y-representation for some character y of Z.

One of the main properties of absolutely cuspidal representations is embodied
in the so-called Schur orthogonality relations.

THEOREM 1.1. Let (z, V') be any irreducible absolutely cuspidal y-representation of
G. Assume that the character |y| of Z can be extended to a character of G. Then
there exists a constant d(z) > 0 such that the following identity

e [ < (e ) Gy wle ) v2> dg = d(m) Gy, v iy

holds for vy, vy in V and ¥y, %, in V.
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The assumption about y is satisfied if y is unitary or else if G is a connected
reductive algebraic group over a local field.

The number d(z) is called the formal degree of w. It depends on the choice of the
Haar measure on G/Z. Indeed, multiplying the Haar measure by a constant ¢ > 0
amounts to replacing d(z) by d(z)/c. More invariantly, to x is associated a Haar
measure v, on G/Z such that

22) j ., <P w(&)- 11> iy, m(g™)- 12> deg = (P, 1)y )

holds for v;, v, in ¥ and ¥, #, in V. We denote by d,g the integration w.r.t. v,.
If K is a compact open subgroup of G/Z, the number v,(K) is well defined and may
be called the formal degree of = w.r.t. K. For instance assume that z is induced from
a finite-dimensional representation A of K. Then v,(K) is the degree of A.

Theorem 1.1 has a number of interesting corollaries. Generally speaking, let (7, V)
be any admissible irreducible y-representation of G. For any linear map u:V — V,
the following conditions are equivalent:

(a) There exists a function f'in #,(G) such that u = z(f) holds.

(b) There exists a compact open subgroup K of G such that u = z(k)-u- (k")
holds for k, k" in K.

(c) There exist vectors vy, -+, v,, in ¥ and linear forms 7, -+, 7,, in V such
that
m -~
23) ut) = 3 o vy,

holds for any v in V. The set #(x) of all such operators is a subalgebra of the al-
gebra of all linear operators in V.

Assume now that 7 is absolutely cuspidal. Denote by £ () the two-sided 1dea]
in #,(G) consisting of the functions f such that z(f) = 0. The vector subspace
A (%) of #,(G) generated by the functions of the form g — <¥, z(g~1)-v) is then
a two-sided ideal in 5#,(G) and #,(G) is the direct sum of o/(x) and o '(x). Hence
we get an isomorphism f— z(f) of the algebra .«/(z) with the algebra #(rx). The
inverse isomorphism is given by u — ¢, , where

24 Pru(8) = d(z)-Tr (u-m(g™))

for g in G and u in #(x). Notice also that we have an isomorphism
0:V® V - #(z) given by

(25) (v ® ¥)-v =<9, v')-y

for v, v/ in ¥ and ¥ in V. The three spaces V ® V, #(x) and </ () carry natural
representations of G x G and the previous isomorphisms are equivariant w.r.t. these
actions of G x G.

Let 6, be the character of 7. The projection A, of #,(G) onto «/(x) with kernel
A'(m) is given by A(f) = ¢r.z¢p; hence more explicitly?

7 We abuse notation by treating 6 as a function!
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26) A1)e) = dem) [ O.xg () dx

for g in G and fin #,(G). To simplify assume that Z = {1}. Then we can rewrite
formula (26) as a convolution (of a distribution and a compactly supported func-
tion!)

@7 A(f) = d(z) (65 *f),

where OY is the distribution on G deduced from 6, by the symmetry g — g71 of G.
From the decomposition /#,(G) = #'(z) ® «/(z) one deduces easily the fol-
lowing theorem, due to Casselman [16]:

THEOREM 1.2. Let (z, V) be an irreducible absolutely cuspidal y-representation of
G. Then V is projective in the category of nondegenerate #,(G)-modules.

There are two important corollaries.

COROLLARY 1.1. Any absolutely cuspidal y-representation of G is a direct sum of
irreducible absolutely cuspidal y-representations, each counted with finite multi-
plicity.

The following is a converse of Schur’s lemma and follows immediately from
Corollary 1.1.

COROLLARY 1.2. Let (z, V) be any absolutely cuspidal y-representation of G.
Assume every intertwining map u: V — V'is a scalar. Then 7 is irreducible.

So far we considered one absolutely cuspidal representation at a time. We give
now the second half of Schur’s orthogonality relations.

THEOREM 1.3. Assume (m, V) and (z’, V') are inequivalent absolutely cuspidal
x-representations of G. Then the following relation holds

28) [, < a(e)vy (¥mle vy dg = 0
whatever be vin V, v in V', vin Vand V' in V'.

Let /A be a complete set of mutually inequivalent irreducible absolutely cuspidal
y-representations of G. From Theorem 1.3, it follows immediately that the sum of
the two-sided ideals o/(z) (for z running over A) is direct in fo(G). This sum is
called the cuspidal part of #,(G) to be denoted by #,(G)°".

1.7. Change of groups and Frobenius reciprocity. Let G and G’ be two groups of
td-type and ¢ a continuous homomorphism from G into G'. Denote by ¥ (¥¢/)
the category of smooth representations of G (G').

The restriction functor ¢* from S, to & takes the smooth representation
(z’, V') of G' to the smooth representation (z, ¥) of G, where V' = V' and
7(g) = n'(p(g)) for gin G .8

To define the extension functor ¢, from ¥ to ¥, we take the view that ¥
consists of the nondegenerate s#(G)-modules and similarly for &;.. We consider
#(G") both as a left #(G')-module in the obvious way and as a right s#(G)-module

S If ¢ is the injection of G into a larger group G’, we write Res§” instead of ¢*.
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as follows: for f” in #(G’) and f in #°(G), we define the convolution f” %, f as the
function in #(G’) whose values are given by

(29) (f"*p /) = IG 1&g p(@)™) f(8) de(p(8)7) dg.

We define now ¢, via tensor products. Indeed for any V in #; we put
0V = #(G'") ® 4 V and define the action of #(G’) on ¢, V' by the rule

(30) fir(fz@v) =(fixf) @

forf1, f2in 2#(G')and vin V.
Let ¥ be in & and V' in .. Using the universal property of tensor products,
we produce a canonical map

(€2))] 6: Homg(V, ¢*V’') - Home.(p4V, V')

as follows: for u: V — ¢*V’, the linear map (u) takes f' @ vinto f”-u(v) (f in
H(G"), vin V).

Frobenius reciprocity is the assertion that @ is an isomorphism. Unfortunately,
as John Tate pointed out to me, this is not true in general due to the lack of unit
elements in our rings. We have to introduce another functor ¢'. First of all let us
define the notion of a generalized vector in a representation space (z, V) for G.
One defines in 2#(G) the translation operators by

(32) L, f(g) = flg7! g1)s R,f(g) = ds(g)- f(g18)

for g, g, in G and fin #(G). The space V'~ of generalized vectors consists of the
linear maps u : #(G) — V such that uL, = z(g)u for every g in G. We identify
any vector v in ¥ to the generalized vector f — z(f)-v. The representation = of G
into V is extended to ¥~ by 7~=(g)(u) = uR,-.. It is easy to show that V’ consists
of the ‘smooth’ vectors in ¥—=, that is the generalized vectors u for which there
exists a compact open subgroup K of G such that z—(k)(u) = u for every kin K.

We apply this construction to a smooth representation (z', V") of G'. We get a
representation (7', ¥'~=) of G’, hence a representation of G on the same space by
the operators 7'~=(p(g)). One defines ¢!V’ as the set of smooth vectors for G in
the space V'—=. It is clear that ¢* V'’ is a subspace of 'V’ and the carrier of a sub-
representation for G.

Let (z, V) be a smooth representation of G. One establishes easily the following
facts:

(a) The map O extends to an isomorphism

(33) 6': Homg(V, ¢'V') —» Homg eV, V).

Hence the functor ¢' from &, to P is a right adjoint to ¢,.

By general functorial results it follows that ¢, is a right exact functor and ¢'
a left exact functor.

(b) In order that © be an isomorphism for every V in & and every V' in L, it
is necessary and sufficient that o*V' = ¢' V' for every V' in #¢..

In order to get a counterexample to Frobenius reciprocity, it is enough to find a
smooth representation(z’, V') of G’ such that V'~ # V' and to consider the group
G = {1} since ¢' ¥’ = V'~ in this case. Consider the left translations acting on
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#(G"). The identity map is a generalized vector in s#(G’)~= and is not of the form
[ fxfo for a fixed fj in s#(G’) unless G’ is discrete. Hence s#(G’) # s#(G’)™ in
this case.

(c) Let ¢’ be a continuous homomorphism from G’ into another group G” of td-type.
Then the functors ¢y o @, and (¢’ o )y from F¢ to & are naturally isomorphic.

This follows from the associativity of tensor products.

Assume now that ¢ is open, that is ¢(U) is open in G’ for every open set U in G.
Then, for any module V' in ., a generalized vector in V'~ is smooth for G iff
itis smooth for G’, that is belongs to V. Hence one has ¢' V' = ¢*FV’ and by prop-
erty (b) above, Frobenius reciprocity holds.

Let (=, V) be any smooth representation of G. We can describe more explicitly
¢« V as follows. Let H be the kernel of ¢ and let ¥(H) be the subspace of V' gener-
ated by the vectors z(h)-v — v for A in H and v in V. Moreover, by Frobenius
reciprocity, there is a G-homomorphism ¢: ¥V — ¢*p, ¥ such that O(¢) is the identity
map in ¢, V. Finally, let {g;},c4 be a set of representatives for the cosets g’-p(G)
in G’ (notice that ¢(G) is open in G').

(d) With the previous notations, the kernel of the linear map ¢ from V into ¢,V
is equal to V(H) and ¢,V is the direct sum @ ,c 4 w(g.)- ¢ (V) where ' is the represen-
tation of G' in ¢, V' deduced from its #(G")-module structure.

(e) Assume that the kernel H of ¢ is the union of its open compact subgroups (for
instance H is a unipotent algebraic group over a local field, or ¢ is injective). Then
the functor ¢, is exact.

For every compact open subgroup K of G, the operator z(ex) (see §1.3, formula
(6)) is a projection of ¥ onto the set VX of vectors invariant under K, with kernel
V(K). Hence V' = VK @ V(K). Under the assumptions made in (¢) one has

V(H) = ) V(K) = | ker z(eg)
K K
where K runs over the compact open subgroups of H. Hence, for every G-invariant
subspace W of V, one gets W(H) = W () V(H), hence the exactness of ¢,.

There are two special instances of the previous results. Assume first that G is
an open subgroup of G’ and ¢ is the injection of G into G’. Then we can identify
V to its image by ¢ in ¢,V and then ¢,V = @, 4 z'(g) - V-

Assume now that ¢(G) = G’. Then ¢ defines an isomorphism of topological
groups from G/H onto G’. Moreover, ¢ defines an isomorphism of the linear space
Vy = V/V(H) onto ¢, V.

1.8. Induced representations. In this section, we denote by G a group of td-type
and by H a closed subgroup of G.

Let (z, V) be a smooth representation of H. We denote by ¥, the space of func-
tions f : G — V satisfying the following assumptions:

(a) One has f(hg) = =w(h)- f(g) for hin Hand g in G.

(b) There exists a compact open subgroup K of G such that f(gk) = f(g) for g in
Gandk in K.

The group G acts on ¥, by right translations, namely

(34) (0(8)-f)(g1) = f(g18) forg, g inG, fin ¥,

The representation (8, ¥",) of G is smooth. It is called the representation induced
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from 7 and usually denoted by Ind§ z. One has a kind of dual Frobenius reciprocity,
namely an isomorphism

(35) O6* : Homy(Res§ A, 1) —— Homg(4, Ind§ )

for every smooth representation (4, W) of G. The proof is trivial.

The functions in ¥, are locally constant, but assumption (b) is usually stronger
than just local constancy. Denote by ¥7¢ the subspace of ¥, consisting of the func-
tions which vanish off a subset of the form HQ where Q2 < G is compact. For g
in G, the translation operator 6,(g) induces an operator 6:(g) in ¥°¢. The repre-
sentation (f2, ¥7¢) is called the c-induced representation from z and is usually
denoted by c-Ind§ z. If G/H is compact, there is no need to distinguish between
v . and ¥¢, and ¢-Ind§ = = Ind§ 7.

The adjoint of a composite functor being the composite of the adjoints in reverse
order, one deduces from Frobenius reciprocity the possibility of inducing by stage.
Namely, if L is a closed subgroup of H, there is a canonical isomorphism

(36) Ind§ Ind¥ 2 —"— Ind§ A

for any smooth representation (4, W) of L. A similar property holds for the
c-induced representations.

Let ¢ be the injection of H into G. We want to compare our functor ¢, to the
induced representations. Define a character § of H by

(35) o(h) = Ay(h)/de(h) for hin H.

If y is any character of H and (z, V) a smooth representation of H, the twisted
representation (x @ y, V) acts on the same space as z via the operators

36) (r ® y)(h) = y(h) =(h) for hin H.

THEOREM 1.4. Let H be a closed subgroup of G and ¢ the injection of H into G.
For every smooth representation (z, V) of H, ¢,V is isomorphic to the c-induced
representation c-Indg(z ® 071).

COROLLARY 1.3. The functor c-Ind$; from & to & is exact.

We know that ¢, is right exact (see above, p. 124). It is clear that c-Ind§ is a
left exact functor, hence the corollary.
An explicit isomorphism P,: ¢,V — ¥"¢gs-1 is given as follows:

37 Pf ®v)(g) = jH fet o)™ w(h)-v dh

for fin #(G), vin V and g in G.

1I. The structure of representations of p-adic reductive groups.

2.1. Properties of algebraic groups. We summarize here a few properties of al-
gebraic groups. For a more complete exposition we refer the reader to the lectures
by Springer [41] in these PROCEEDINGS. As usual, Fis a local field.

Let n = 1 be an integer and let G be an algebraic subgroup of GL,(F). We say:
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G isunipotent if it consists of unipotent matrices (all eigenvalues in some algebraic
closure of Fequal to 1);

G is a torus if it is connected, commutative and any element of G can be put in
diagonal form in some extension of F;

G is a split torus if it is a torus and the eigenvalues of every element of G belong
to F;

G isreductive if there exists no invariant connected unipotent algebraic subgroup
of G with more than one element;

G is semisimple if it is reductive and its center is finite.

A connected reductive algebraic group G is called split if there exists in G a
maximal torus which is split. Then every maximal split torus in G is a maximal
torus.

From now on, we assume G is reductive and connected. Any split torus in G is
contained in some maximal split torus of G. Any two maximal split tori in G are
conjugate by an element of G, their common dimension is called the split rank of
G. There exists in the center of G a largest split torus Z.

We do not repeat the definitions of a parabolic subgroup of G, a Borel subgroup
and a quasi-split group (see [41]). A parabolic pair (P, A) consists of a parabolic
subgroup P of G and a split torus 4 subjected to the following assumption:

If N is the unipotent radical of P (its largest unipotent invariant algebraic sub-
group), there exists a connected reductive algebraic subgroup M of G such that
P = M- N (semidirect product)® and A4 is the largest split torus contained in the
center of M.

Any parabolic subgroup P can be embedded into a parabolic pair. Given P, the
split torus A4 is unique up to conjugation by an element of N. Given (P, A4), the
group M is the centralizer of 4 in G.

One says the parabolic pair (P, A) dominates the parabolic pair (P’, A’) in case
P o P'and 4 < A’ hold. There exists then a parabolic subgroup P; of M such that
P’ = P;-N and (P;, A') is a parabolic pair in M. This result is used very often in
proofs by induction on the dimension of G.

2.2. Jacquet’s functors. Let be given G, P, A, M and N as above. Define two
homomorphisms

7

were ¢ is the injection of P into G and p(mn) = m for m in M and n in N. The group
P is thus a kind of link between the groups G and M, and will be used to define
functors relating the categories of G-modules and M-modules.

The first Jacquet’s functor is Jg py = put*: F¢ > Sy Let (z, V) be a smooth
representation of G. Since ¢* is simply the restriction Res§, the space of the repre-
sentation J ¢ y 7 is Viy = V/V(N) where V() is generated as a vector space by the
elements (n)-v—v fornin N and v in V. The representation of M on ¥V is obtained
from the restriction of 7 to M, which leaves V(N) invariant since M normalizes N.

° The equation P = M- N is called the Levi decomposition of P.
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THEOREM 2.1. Suppose (z, V) is an admissible finitely generated representation of
G. Then Jg, (7, V) = (mn, V) is an admissible finitely generated representation of
M.

This theorem is a deep result essentially due to Jacquet [32] (see also [17]).

COROLLARY 2.1. Assume G is quasi-split and P is a Borel subgroup of G. Then
Vy is finite-dimensional.

If G is quasi-split and P a Borel subgroup, M is a maximal torus in G, hence is
commutative. It is then easy to check that any admissible finitely generated repre-
sentation of M is finite-dimensional, hence the corollary.

The second Jacquet's functor is Jy ¢ = Ind§ p*: ¥y - F¢. More explicitly,
this functor takes a smooth representation (4, W) of M into (z;, ¥";) where ¥";
is the space of functions /' : G » W such that

€)) f(mng) = A(m)- f(g) for gin G, min M and n in N.
The group G acts via right translations, namely

@ (z:(8)-f)(81) = f(8:8)

for g, g, in G and fin ¥7;.
The following result follows easily from the compactness of G/P.

THEOREM 2.2. Assume that (A, W) is an admissible finitely generated representation
of M. Then (z;, ¥";) is an admissible finitely generated representation of G.

This construction is especially interesting when G is quasi-split and P is a Borel
subgroup of G. We may take for (A, W) a one-dimensional representation corre-
sponding to a character of the maximal torus M. The corresponding representa-
tions of G comprise the principal series (see also §III).

The Jacquet’s functors are exact by the results quoted in §§1.7 and 1.8. They are
adjoint to each other, giving rise to a canonical isomorphism

HomM(JG,M V, W) - HomG(V, JM,G W)

for any smooth representation (4, W) of M and any smooth representation (z, V)
of G.

2.3. The main theorems. Let G, P, A, M and N be as before. The parabolic pair
(P, A) dominates a parabolic pair (P’, 4’) where P’is a minimal parabolic subgroup
of G; hence A’ is a maximal split torus in G. Let @ be the root system of G w.r.t.
A’ and 4 be the basis of @ associated to P’. There exists a subset @ of 4 such that
A is the largest torus contained in the intersection of the kernels of the elements of
O (we view the roots o in @ as homomorphisms from 4’ to F*). For any real num-
ber ¢ > 0, let A~(¢) consist of the elements @ in A such that |a(a)| » <e for every
root o in 4\O. Moreover, let P be the parabolic subgroup of G opposite to P. The
roots associated to P are the roots —q where « runs over the roots associated to
P. Let N be the unipotent radical of P.

Let now (z, V) be any admissible finitely generated representation of G. Let
(%, V) be the representation contragredient to (7, V). Using first Jacquet’s functor
we get representations (zy, Vy) and (zy, Vi) of M.
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The following theorem is due to Casselman [17]. It plays a crucial role in the
representation theory of reductive p-adic groups.

THEOREM 2.3. There exists a unique M-invariant nondegenerate pairing {-, >y
between Vy and Vy with the following property:

Given vin V and ¥ in V, with canonical images u in Vy and ii in Vy respectively,
there exists a real number ¢ > 0 such that

4 ¥, w(@)- vy = <@, my(@)-wdy
holds for every a in A=(¢).

As a matter of fact, the previous pairing identifies (7, V) to the representation
of M contragredient to (zy, Vy).

The following criterion is due to Jacquet [32] and results easily from Theorem
2.3.

THEOREM 2.4. Let (z, V) be any irreducible admissible representation of G. The
Sfollowing assertions are equivalent:

(1) (=, V) is absolutely cuspidal.

(2) For every parabolic subgroup P # G of G, with unipotent radical N, we have
Vy = 0.

Note that ‘absolutely cuspidal’ is with reference to the maximal split torus Z in
the center Z(G) of G.10

An alternate formulation of Theorem 2.4 is as follows. Choose a character y of Z
and recall that »#,(G)° is the subspace of #,(G) generated by the coefficients of the
irreducible absolutely cuspidal y-representations of G. Then the following condi-
tions are equivalent:

(a) f belongs to #(G)°;

(b) f belongs to +#,(G) and

®) [, fem dn =0

holds for g in G and every subgroup N as in Theorem 2.4.
The next result is again due to Jacquet [32]. It is easily proved by induction on the
split rank of G/Z.

THEOREM 2.5. Let (z, V') be any irreducible admissible representation of G. There
exist a parabolic pair (P, A) with associated Levi decomposition P = M- N and an
irreducible absolutely cuspidal representation (A, W) of M such that & is isomorphic
to a subrepresentation of Ind§ A, (where 1, is the extension of A to P = M- N given by
Aa(mn) = A(m).

In principle, the classification problem for irreducible admissible representations
of G is split into two problems:

(a) Find all irreducible absolutely cuspidal representations for G and for the
groups M which occur as centralizer of A for some parabolic pair (P, 4) in G.

10 It is well known that Z(G)/Z is a compact group. It makes no essential difference to take Z or
Z(G) as central subgroup. The choice of Z is quite convenient however.
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(b) Study the decomposition of the induced representations Indg 2, as above,
in particular look for irreducibility criteria.

Needless to say, a general answer to these problems is not yet in sight. The con-
struction of some absolutely cuspidal representations has been given by Shintani
[40] for GL,(F) and in more general cases by Gérardin in his thesis [21]. The idea is
to induce from some compact open subgroups.

As to problem (b), let us mention the notion of associated parabolic subgroups.
Two parabolic pairs (P, A) and (P’, A') are associated iff 4 and A’ are conjugate
by some element in G. Let 7 (P, A) be the set of irreducible admissible representa-
tions of G which occur in a composition series of some induced representation
Ind§ A; where 4 is an irreducible absolutely cuspidal representation of M and M is
the centralizer of 4in G. If (P, A) and (P’, A') are associated, then (P, 4) =
T(P',A".

2.4. An example. Take for instance the group G = GL,(F). For any (ordered)
partition n = n; + --- + n, of n, let P, .. , consist of the matrices in block
form g = (Gy)i=k, 1=, Where Gy, is an n, x ny-matrix and G,; = 0 if &k > [ Let
A, ... be the set of matrices which in block form are such that G,, =0 for k # /
and Gy, is a scalar matrix a-1,,. For M,, .. , take the matrices in diagonal block
form, i.e., Gy = O for k # [and let finally N, .. , be the subgroup of P, ..,
defined by the conditions Gy; = I,, -+, G,, = I,. Then(P,, .. ,, 4,, .. ») is @ para-
bolic pair, with associated Levi decomposition P, .., =M, . , N, . ,.Upto
conjugation, the pairs (P, ..., , 4y, ., ) comprise all parabolic pairs in GL,(F).
The pairs corresponding to partitions #n = ny + -+ + n, and n = my + -+ + m;
are associated iff r = s and ny, :--, n, is a permutation of m;, ---, m,. Notice that
the group M, .., is isomorphic to GL, (F) x --- x GL, (F).

The well-known operation a - 3 on characters of the various finite groups GL,(q),
introduced by Green [24], may now be generalized to the case of a local field.
Namely, let n = n’ + n”, let (z', V') be an admissible representation of GL,.(F)
and (z”, V") an admissible representation of GL,.(F). Define a representation A;
of P, . acting on the space V' ® V" by

Gn G2\ _ "
1 (% 2) = 26w © 7(Gw)

By induction from P, ,»to GL,(F) one gets a representation z’ o z” of GL,(F). This
product is commutative and associative. In particular, given characters ay, -, @,
of F* one gets a representation ay o --- o a, of GL,(F); these representations com-
prise the principal series. Given a partition n = n; + --- + n,, the intermediate series
associated to the parabolic group P, .., consists of the representations of the
form 7 o -+ o w, where r; is an irreducible absolutely cuspidal representation of
GL,(F) for j =1, ---, r. Finally the discrete series is the family of irreducible
absolutely cuspidal representations of GL,(F).

From the general results summarized in §2.3, one infers that any irreducible
admissible representation of GL,(F) is contained in some representation of the form
myo--om,Wheren = n + --- + n, and =z, belongs to the discrete series of GL, (F).
The question of the irreducibility of the representations z; o --- o 7, has now been
completely settled by Bernshtein and Zhelevinski [3].
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2.5. Square-integrable representations. For the results expounded in this section,
see Harish-Chandra and van Dijk [28, especially part I].

Let again Z be the maximal split torus contained in the center of G. Fix a unitary
character y of Z. We let &,(G, y) denote the (equivalence classes of) irreducible
unitary representations (z, V) of G which satisfy the following two conditions:

(6) 7(gz) = y(z2) n(g) forzeZ gegG,
(7) jc/z |(u|z(g)-v)|z dg < + oo.

Here (u|v) denotes the scalar product in the Hilbert space V.}1 Due to assumption
(6), one gets

|(u|m(gz)-v) |2 = |(u|m(g)-v)|2;

hence we can integrate over G/Z in formula (7). The integral (7) is equal to
d(7)|u||2||v||? where the constant d(z) > 0, the formal degree of 7, is independent
from u and v. These representations are called as usual square-integrable.

Fix now a compact open subgroup K of G and a class b of irreducible continuous
representations of K. Every representation of class b acts on a space of finite dimen-
sion, to be denoted by deg d. Moreover, for any unitary representation (z, V) of
G, denote by (7: b) the multiplicity of d in the restriction of z to K.

The following theorem is easy to prove (see [28, p. 6]).

THEOREM 2.6. Given K, b and y as above, one gets
®) >, d(m)(z:b) £ deg b/meas(K/(Z N K))
T€E2(G, X)
and in particular

deg b

©) @:0) = ey meas(KI(Z () K))

Jor every square-integrable irreducible representation it of G.

Let (z, V) be in &2(G, x). If b is the unit representation of K, the integer (z: )
is the dimension of the space VX of vectors in ¥V invariant under z(K). Let
V. = (JxV¥ where K runs over the compact open subgroups of G. It is easy to
check that V_ is dense in V and stable under z(G). By the previous theorem we get
an admissible y-representation (z.,, V..) of G. Moreover for any function f'in #(G),
the operator 7(f) = [¢/(g)n(g) dg in the Hilbert space ¥ has a finite-dimensional
range (contained in VX if f belongs to (G, K)), hence a trace 0,(f) = Tr(z(f)).
To sum up, every square-integrable irreducible representation has a character 6., a
distribution on G.

2.6. The fundamental estimate. Fix a parabolic pair (P, A) where P is a minimal
parabolic subgroup of G; hence 4 is a maximal split torus in G. Let N be the uni-
potent radical of P and N the unipotent radical of the parabolic subgroup 2 op-

! The scalar product (| v) is assumed to be linear in the second argument v.
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posite to P. Hence there exists a basis 4 of the root system of Gw.r.t. 4 such that N
(resp. N) is associated with the roots « with positive (resp. negative) coefficients
when expressed in terms of 4.

Let A~ be the set of elements a in 4 such that |a(a)|r < 1 for every root ¢ in 4.
According to Bruhat and Tits [13], there exist a compact subgroup L of 4 and a
finitely generated semigroup S in A such that A~ =ZLS. Moreover there exist
finitely many elements gy, -+, g,, in G and a compact open subgroup Kj of G such
that G = | Jiz/=m Ko SZg:K, (‘Cartan decomposition’).

Let K be a compact open subgroup of G. We make the following assumptions:

(a) K is invariant in K;

(b) one has K = (K (\ P)-(K (\ N) and

a (KN Nac KON, aKNPalcK)P

for every ain S (hence the inner automorphism g — aga™! of G expands K | N
and contracts K () P).

It is known that every neighborhood of the unit element in G contains such a
subgroup K.

The following estimate is due to Bernshtein [1].

THEOREM 2.7. The compact open subgroup K of G is as above. Then there exists
a constant N = N(G, K) > O such that every simple module over #(G, K) either is
infinite-dimensional (over C) or else has a dimension bounded by N.

Let y be a unitary character of Z and s#,(G, K)° be the subalgebra of #,(G)°
consisting of the functions invariant under right and left translation by an element
of K. If (z, V) is an irreducible absolutely cuspidal y-representation of G, then VX
is a simple module over #(G, K); hence dim VX < N by Theorem 2.7. By a well-
known argument due to Godement [23], one infers from this bound the following
corollary:

COROLLARY 2.2. There is an integer p = 2 such that the higher commutator

(10) [fla ""fﬁ] = Z Sgn(o)f,(l) "'fa‘(p)

JESp
vanishes for arbitrary elements f1, ---, fp in #,(G, K)°.

2.7. Properties of unitary representations. In his lectures [28], Harish-Chandra
was unable to prove Corollary 2.2, and had to assume it!2 in order to establish the
following result:

THEOREM 2.8. Let K be a compact open subgroup of G and b be a class of irredu-
cible continuous representations of K. There exists a constant N = N(G, K, b) > 0
such that (z: b) < N for every irreducible unitary representation (z, V) of G.

In the proof, one may assume that K is as in Bernshtein’s Theorem 2.7 and that
b is the unit class of representations of K.12

As before (see end of §2.5), one deduces from Theorem 2.8 the following corol-
laries:

2 Harish-Chandra assumes apparently the stronger ‘Conjecture I' (p. 16 of [28]). But the proof
(p. 18, end of first paragraph) uses only Corollary 2.2 above.
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COROLLARY 2.3. Let (7, V) be any irreducible unitary representation of G. Let V_,
be the space of vectors in V stable by n(K) for some compact open subgroup K of G.
Then V., is dense in V and stable under G, hence affords a smooth representation «.,
of G. The representation (z.., V.,) is admissible.

COROLLARY 2.4. Let (n, V') be any irreducible unitary representation of G. For any
Sunction f in #(G) the operator n(f) = [cf(g)n(g) dg in V has a finite-dimensional
range, hence a trace O,(f).

The distribution @, is called the character of r.

By aneasy limiting process one deduces from Corollary 2.4 that z(f) is a compact
(= completely continuous) operator in the Hilbert space V for every integrable
function f on G. Hence the group G belongs to the category CCR of Kaplansky. In
particular (see Dixmier [19]) every factor unitary representation of G is a multiple
of an irreducible representation, there exists a Plancherel formula, ... .

2.8. Some other results. Much more is now known about the characters of the
irreducible unitary representations of G. The character 6, is for instance repre-
sented by a locally integrable function on G, which is locally constant on the set of
regular elements (see Harish-Chandra [26] and my Bourbaki report [14]).

Moreover it is now known that Conjecture II in Harish-Chandra’s lectures holds
true. More precisely, if the Haar measure on G/Z is suitably normalized, the formal
degree of any irreducible absolutely cuspidal representation of G is an integer. As a
corollary (see [28, part III]), the algebra s#,(G, K)° is finite-dimensional and its
dimension is bounded by a constant depending on G and K, but not on y. Also for
any character y of Z, any compact open subgroup K of G and any class  of irredu-
cible continuous representations of K, there exist only finitely many irreducible
absolutely cuspidal representations = of G such that w, = y and (z: d) # 0.

Let (z, V) be a smooth representation of G. We say (z, V) is preunitary if there
exists a hermitian form @ on ¥ such that @(v, v) > Oforv # Oin Vand

an D(z(g)-v, m(g)-v') = O V)

for v, v'in ¥V and g in G. We can then complete ¥ to a Hilbert space ¥ and extend by
continuity z(g) to a unitary operator #(g) in ¥. Then (%, V) is a unitary representa-
tion of G. If (z, V) is admissible, V is exactly the set of smooth vectors in ¥, that is
V = (Jx V& where K runs over the compact open subgroups in G.

It follows from Theorem 2.8 and these remarks that the classification of the ir-
reducible unitary representations of G amounts to the search of the preunitary repre-
sentations among the irreducible admissible representations of G.

III. Unramified principal series of representations.

3.1. Preliminaries about tori. For this section only, we denote by k a (com-
mutative) infinite field. Let G,, be the multiplicative group in one variable, considered
as an algebraic group defined over k. To a connected algebraic group H defined
over k, we associate two finitely generated free Z-modules, namely

X*(H) = Homk—gr(H9 Gm)’ X*(H) = HomZ(X*(H)9 Z)

In these formulas, Hom,_,, (resp. Hom;) means the group of homomorphisms of
algebraic groups defined over k (resp. of Z-modules). We denote by <¢p, 4> (for
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¢in X, (H)and A in X*(H)) the pairing between X, (H) and X*(H). We canas well
use this pairing to identify X *(H)to Homg (X .(H), Z).

Let now S be a split torus defined over k. A sequence (4;, :-+, A,) is a basis of the
free Z-module X*(S) iff the mapping s — (2,(s), -+-, 4,(s)) is an isomorphism from
S onto the product (G,,)" = G,, X --- X G, (nfactors). Moreover we may identify
X (S) to Hom,, (G, S) in such a way that the following relation holds

M Apl)) = 197

for ¢ in X, (S), Ain X*(S) and ¢ in k.

By construction, the elements of X*(S) are polynomial functions on S and it is
easily shown that they form a basis of the k-algebra 4 of such functions. Otherwise
stated, S is the spectrum of the group algebra 4 = k[X*(S)] of the group X*(S)
with coefficients in k. For any commutative k-algebra L, the L-points of S corres-
pond therefore to the k-algebra homomorphisms from A4 into L, hence an isomor-
phism S(L) ~ Hom(X*(S), L*). From the duality between X*(S) and X,(S) we
get another isomorphism S(L) =~ X.(S) ®z L*.

3.2. Unramified characters. Let H be a connected algebraic group defined over
our local field F. There exists a homomorphism ordy : H — X,(H) characterized
by

2 Cordg(h), 2> = ordp(A(h))

for hin H and 1 in X*(H). In the right-hand side of this formula, ordz (A(h)) is the
valuation of the element A(4) of F*. We denote by °H the kernel and by A (H) the
image of the homomorphism ordy. By construction, one gets an exact sequence

(S) 1 — °H—— H 2%, J(H) —1.

We can also describe °H as the set of elements 4 in H such that A(k) € D% for any
rational homomorphism A from H into F*. Therefore °H is an open subgroup of H.

A character y of H is called unramified if it is trivial on °H. Otherwise stated, an
unramified character is of the form u - ordy; where u is a homomorphism from A(H)
into C*. Introduce the complex algebraic torus T = Spec C[A(H)]. By definition,
one has A(H) = X*(T) and T(C) = Hom(A(H), C*). Thus, there exists a well-
defined isomorphism ¢ — y, between the group T(C) of complex points of the torus
T and the group of unramified characters of H. If H is a torus, one has

3) x:(0(@r) = o(t)

fortin T(C), pin X*(H) = X ,(T) and any prime element @y of the field F.

Let again G be a connected reductive algebraic group defined over the local field
F. We fix a maximal split torus A in G and denote by M its centralizer in G. We let
N(A) be the normalizer of 4 in G and W = N(A)/M be the corresponding Weyl
group. We choose also a parabolic group P such that (P, A) is a parabolic pair.
Hence P is a minimal parabolic subgroup of G and P = M- N where N is the uni-
potent radical of P.

We denote by @ the set of roots of G w.r.t. 4 and by A the group A(M). Hence @
is a subset of X*(4) and P defines a basis 4 of @. Let 4~ be the set of roots opposite
to the roots in 4. The basis 4= of @ corresponds to a parabolic subgroup
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P~= M-N-of G. Let n be the Lie algebra of N. For any m in M, the adjoint re-
presentation defines an automorphism Ad,(m) of n. We set

4 d(m) = |det Ad(m)|r for min M.

The group °A (resp. °M) is the largest compact subgroup of 4 (resp. M) and °A4
isequal to °’M () A. Thus the inclusion of 4 into M gives rise to an injective homo-
morphism of 4/°4 into M/°M. We do not know in general if this map is surjective
(see however Borel [S, 9.5]). More precisely, the inclusion of 4 into M givesrise to a
commutative diagram with exact lines

1 °A A4 X (4) — 1
(D) |

1 —°M — M2, 4

Indeed, since A is a split torus, ord , is surjective. The inclusion of 4 into M enables
us to identify X,(4) to a subgroup of finite index in X.(M), hence the relation
Xu(4) = A = Xu(M).

We denote by X the group of unramified characters of M. We may (and shall)
introduce as before a complex torus 7 such that X*(7T)) = A and an isomorphism
t — y, of T(C) onto X. This isomorphism enables us to consider X as a complex
Lie group.

The subgroup N(A4) of G acts on M, °M, A, °A via inner automorphisms. Using
diagram (D) above, we may let the Weyl group W = N(A)/ M operate on X (M) so
as to leaveinvariant the subgroups X ,(4) and A of X, (M). The group W acts there-
fore on X and T by automorphisms of complex Lie groups. For instance, if y is any
unramified character of M and w any element of the Weyl group W, the trans-
formed character wy is given by

%) (wy)(m) = x(x;'mx,) formin M,

where x,, is any representative of w in N(A4). The unramified character y of M is
called regular if wy # y for every element w # 1 of W.

For the applications to automorphic functions, one has to examine the case
where G is unramified over F, that is the following hypotheses are fulfilled:

(a) G is quasi-split over F.

(b) There exists an unramified extension F' of F, of finite degree d, such that G
splits over F'.

Let o denote the Frobenius transformation of F’ over F. In this situation, the
L-group associated to G is defined. It is a complex connected reductive algebraic
group LG° endowed (at least) with a complex torus 7, an automorphism g’ — g'c
suchthat 7’7 = T’ and ahomomorphism ¢’ — y;. of T’ onto X. We say two elements
g7 and g; of LG® are g-conjugate if there exists & in LG° such that g5 = A~ giho.

The following theorem has been proved by Gantmacher [20] and Langlands [35].

THEOREM 3.1. (a) Any semisimple element in LG® is g-conjugate to an element of
T.
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(b) Two elements t; and t; of T' are g-conjugate iff the unramified characters
and y., of M are conjugate under the action of the Weyl group W.

Otherwise stated, the orbits of W in the group X of unramified characters of M
are in a bijective correspondence to the g-conjugacy classes of semisimple elements
in LG°.

For more details, we refer the reader to Borel’s lectures [5, §6, 9.5] in these Pro-
CEEDINGS.

3.3. The unramified principal series. This series shall presently be defined via in-
duction from P with the slight adjustment of §1/2.

DEFINITION 3.1. Let y in X be any unramified character of M. We define the re-
presentation (v,, I(y)) of G as follows:

(2) The space I(y) consists of the locally constant functions f: G — C such that

©6) f(mng) = 6(m)1/2 y(m)f(g) forminM,ninN,ginG.
(b) The group G acts by right translations on 1(y), namely
@ (&) f)&) = f(g'g) forfinl(y), g, g inG.

It is important to give an alternate description of I(y) as a factor space of #(G).
Indeed one defines a surjective linear map P, : #(G) — I(y) by

®) P (@) = [ | 82y 2om £ rng) dm ain.

(See formula (37) in §1.8.) The groups M and N are unimodular, hence the Haar
measures dm on M and dn on N are left and right invariant. The map P, intertwines
the right translations on s#(G) with the representation v, acting on the space I(y).

From the general results described in §II, one gets immediately the following
theorem.

THEOREM 3.2. (a) For every y in X, the representation (v,, I(y)) of G is admissible.

(b) The representation I(y™") is isomorphic to the contragredient (I(y))~ of I(x).

() If y, is a unitary unramified character of M, the representation (v,, 1(y)) of G is
preunitary.

One of the reasons for inserting the factor §1/2 in the definition of I(y) is to get
assertions (b) and (c) above. We state them more precisely: there exists a linear
form J on I(91/2) invariant under the right translations by the elements of G and
characterized by

® (P f) = ~‘.Gf(g) dg  for fin #/(G)

(see Bourbaki [6, p. 41] for similar calculations). For f'in I(y) and f” in I(y™1), the
function ff” belongs to I(§1/2) and the pairing is given by
(10 LD = I

Similarly, for y unitary and f, f; in I()) the function f; f; belongs to /(5'/2) and
the unitary scalar product in I(y) is given by

(1 (filfo) = I/ fo)-
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We now state one of the main results about irreducibility and equivalence (see
also Theorem 3.10 below).

THEOREM 3.3. Let y be any unramified character of M.

(a) If y is unitary and regular, the representation (v,, I(y)) is irreducible.

(b) Let w be in W. The representations (v,, 1(y)) and (v,,, I(wy)) have the same
character, hence are equivalent if they are irreducible.

(c) The #(G)-module I(y) is of finite length.

In general, if ¥ is a module of finite length over any ring, with a Jordan-
Holder series 0 = Vy < V) <--c V,_; = V, = V, the semisimple module V', =
@, Vi/V;_1 is called the semisimplified form of V. According to Jordan-Hélder
theorem, it is uniquely defined by ¥ up to isomorphism.

Let I(y) (s, be the semisimplified form of I(y). It exists by Theorem 3.3(c) above.
It is clear that I(y) and I(y), have the same character. Hence for any w in W, the
representations I(y), and I(wy)(, are semisimple and have the same character.
By the linear independence of characters, they are therefore isomorphic.

3.4. Structure of Jacquet’s module I(y)y. For any unramified character y of M,
let C, denote the one-dimensional complex space C! on which M acts via y, viz. by
(m, z) — x(m)-z. Frobenius reciprocity takes here a simple form, namely (see §2.2):

THEOREM 3.4. Let (w, V) be any smooth representation of G. For any unramified
character y of M, one gets an isomorphism Homg(V, 1(3)) = Homu(Vy, Cysr).

The proof is obvious. Indeed the relation

(12) o) (g) = {p,n(g)-v) (forginG,vin V)

expresses an isomorphism @ < ¢ of Homg(V, I(x)) with the space of linear forms
¢ on ¥V such that

(13) g, w(mn) - vy = G172 (m)y(m) {p, v>

forvin V, min M and nin N. Recall that Vy = V/V(N) where V(N) is generated by
the vectors z(n)-v—vfornin N and vin V. Any solution ¢ of (13) vanishes on V(¥),
hence factors through V.

The previous theorem exemplifies the relevance of Jacquet’s module I(y)y in the
study of the intertwining operators between representations of the unramified
principal series. We know by Theorems 2.1, 3.2 and 3.3(c) that I(y)y is a finite-
dimensional complex vector space.

The following basic result is due to Casselman [17].

THEOREM 3.5. For any unramified character y of M, the semisimplified form of
the M-module I(y)y is @ ,ew Cuyp-.o1r2. Moreover, the group ° M acts trivially on

I(0)n-

COROLLARY 3.1. The dimension of I(y)y over C is equal to the order |W| of the
Weyl group W.

COROLLARY 3.2. Assume y regular. Then I(y)y as an M-module is isomorphic to
@wEW C(wx).‘;l/z.
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For the proof of Corollary 3.2, notice that M acts on I(y)y through the commu-
tative group M/°M isomorphic to A. By Schur’s lemma, the semisimplified
form of I(y)y is therefore of the form @i.; Cy, for some sequence of unramified
characters y;, ---, y, of M; by a well-known lemma, each representation Cy, occurs
as a subrepresentation of I(y)y. Hence for win W, C,, s~ occurs as a subrepre-
sentation of I(y)y by Theorem 3.5. Corollary 3.2 follows at once from this remark
as well as the following corollary (use Frobenius reciprocity in the form of Theorem
3.4):

CoROLLARY 3.3. Let y be any unramified character of M and w be any element of
the Weyl group W. There exists a nonzero intertwining operator T,: I(y) — I(wy).
If y is regular this operator T, is unique up to a scalar.

A similar argument shows that if (z, V) is an irreducible subquotient of I(y),
then there exists w € W such that (z, V) is isomorphic to a subrepresentation of
I(w-y) (see 6.3.9 in [17]).

We shall describe more explicitly the operators T, in §3.7.

We sketch now a proof of Theorem 3.5, a streamlined version of Casselman’s
proof of more general results in [17]. Basically, it is Mackey’s double coset tech-
nique extended from finite groups to p-adic groups. The case of real Lie groups
has been considered by Bruhat in his thesis [7], it is much more elaborate.

(A) We remind the reader of Bruhat’s decomposition G = ( J,, PwP, where PwP
means PgP for any g in N(A) representing the element win W = N(A)/M. For win
W, the set PwP is irreducible and locally closed in the Zariski topology, hence has a
well-defined dimension. Set d(w) = dim(PwP) — dim(P). For any integer r = 0,
let F, be the union of the double cosets PwP such that d(w) < r. The Zariski
closure of any double coset PwP is a union of double cosets Pw'P of smaller
dimension, hence F, is Zariski closed, hence closed in the p-adic topology. We let
I, be the subspace of I(y) consisting of the functions vanishing identically on F,.
We have then a decreasing filtration

(14) ) =Lh>h ool oI, >

of I(y) by P-stable subspaces.
(B) The next step is to prove that any function on F, | which satisfies the relation

(15) f(mng) = 01/ 2(m)y(m)f(g) formin M,nin N, gin F,;

is the restriction of some function belonging to I(y). Indeed, one proves easily (using
local cross-sections of G fibered over P\G) that such a function is of the form

@ = | oy omptong) dm dn

for a suitable locally constant and compactly supported function ¢ on F,,;.
Extend ¢ to a function ¢’ in 5#(G). Then P’ belongs to I(y) and restricts to f in
F, r+1-

(C) From this it follows that I,/1,,; is the space of functions f on F,,; which
satisfy the following conditions:

(a) f is locally constant;

(b) f vanishes on F,;
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(c) relation (15).
Moreover, F,.; is the union of F, and the various double cosets PwP such that
d(w) = r, which are open in F,,;; hence one gets an isomorphism
(16) Ir/Ir-f-l = @ Jw

dw)=r
Here J, is the space of functions f on PwP such that
f(mng) = §1/%m)y(m)f(g) formin M, nin N, gin PwP,

and which vanish outside a set of the form PQ where  is compact. Since Jacquet’s
functor ¥ = Vy is exact, one infers from (16) that the s (M)-modules I(y)y and
@ ew(Jw) v have isomorphic semisimplified forms.

(D) It remains to identify the representation of M on the space (J,)y. Here we
are paid off the dividends of our approach to induced representations via tensor
products.

Choose a representative x,, of w in N(4) and put P(w) = P () x,'Px,; hence
P(w) = M- N(w) with a suitable subgroup N(w) of N. It is then easy to show that, as
a P-module, J, carries the representation c-Indf,, o, where the character o,
of P(w) is defined by

17 o,(mn) = w1(1/2y) (m) for m in M, n in N(w).

Consider the group homomorphisms P(w)-% P _8, M where « is the injection
and 8 (mn) = mform in M and n in N. By Theorem 1.4, one gets c-Ind%,, 0, =
as(o,-0,) where the character d,, of P(w) is defined by

(18) 0u(P) = dpw(P)/dp(p) for pin P(w).

Since g* is Jacquet’s functor ¥ = Vy and B4 oy = (B ° @), one gets that (J,))y is
the carrier of the representation (8 - a)«(c,-9,). Since 8o« is the projection of
P(w) onto M with kernel N(w) and the characters ¢, and g, are trivial on N(w) one
gets an isomorphism (J,)y ~ C; where A=0,0,/M. It remains to prove the
formula (see formula (24.) below) 6,1/ M = 01/%(w~15)"1/2 to be able to conclude

(19) (Jw)N >~ C(w—lx).gl/z.

(E) From (C) and (D) above, we know that I(y)y and @ ew C (uy.s12 have
isomorphic semisimplified forms. It remains to show that °M acts trivially on I(y)y.
But °M is a compact subgroup of M. Hence its action on I(y)y and its semisimpli-
fied form are equivalent. Since any unramified character of M (including ¢) is trivial
on °M, this group acts trivially on the semisimplified form of I(y)y, hence on
10N

This concludes our proof of Theorem 3.5.

3.5. Buildings and Iwahori subgroups. Our aim in this section is mainly to fix
notations. For more details, we refer the reader to the lectures by Tits in these
PROCEEDINGS [42] or to the book by Bruhat and Tits [13].

Let & be the building associated to G and let o7 be the apartment in & associated
to the split torus 4. We choose once for all a special vertex x, in &/. Among the
conical chambers in &/ with apex at x, there is a unique one, ¢ say, enjoying the
following property: for every n in N, the intersection ¢ (| n% contains a translate
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of . There is then a unique chamber C contained in ¢ having x, for one of its
vertices (see Figure 1). The stabilizer of x; in G shall be denoted by K;; it is called by
Bruhat and Tits a special, good, maximal compact subgroup of G. The interior points
of C all have the same stabilizer B in G, called the Iwahori subgroup of G attached to

. L /
“TSr

FIGURE 1

Any element g in N(A) takes the apartment .o to itself, it fixes every point of o/
iff it belongs to °M. We may therefore identify the group W; = N(A)/°M, called
the modified Weyl group, to a group of affine linear transformationsin 7. The group
W, can be represented in two different ways as a semidirect product:

(a) Let Q be the subgroup of W, consisting of the w’s taking the chamber C to
itself. The walls in o/ are certain hyperplanes and to each of them is associated a
certain reflection. These reflections generate the invariant subgroup W, of W;.
Since W, acts simply transitively on the set of chambers contained in 7, the
group W is the semidirect product Q - W .

(b) Any element w of W has a representative w(w) in K (| N(4) and °M =
K N M. We may therefore identify the Weyl group W = N(A)/M to the stabilizer
(K N N(A)/(K N M) of xyin W;. The intersection of W, with the group of transla-
tions in &/ is M/°M which we identify to /4 by means of the exact sequence (D),
p. 135. Then W is the semidirect product W- /A where Ais an invariant subgroup.

The fundamental structure theorems may now be formulated as follows.

IWASAWA DECOMPOSITION. G = PK and, more precisely, G is the disjoint union of
the sets Paw(w)B for w running over the Weyl group W.

BRUHAT-TITS DECOMPOSITION. G is the disjoint union of the sets Bw, B for w, running
over the modified Weyl group W,.

CARTAN DECOMPOSITION. Let A~ be the subset of A consisting of the elements of A
taking the conical chamber €~ of o/ opposite to € into itself. Then G is the disjoint
union of the sets K-ord;}(2)- K for A running over A.

IWAHORI DECOMPOSITION. B = (B (| N7)-(B (1 M)-(B(\ N) (unique factoriza-
tion). Moreover one has B(\ M = °M and

m(B N N)yml< B\ N, mY (BN N)mc B[ N
for any m in M such that ordy(m) e A~.

As before, we denote by @ the system of roots of G w.r.t. 4. We identify the ele-
ments of @ to affine linear functions on .« in such a way that a(xy + 4) = {4, @)
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for & in @ and A in /. The conical chamber ¥ is then defined as the set of points x
in &7 such that a(x) > 0 for every root « in the basis 4 of @ associated to the para-
bolic group P.

We denote by @, the set of affine linear functions a on .7, vanishing at x; and
such that the hyperplane a~1(r) is a wall in .« iff the real number r is an integer. An
affine root is a function on 7 of the form a + k where a belongs to @, and k is an
integer; their set is denoted by @,. For any affine root a, the reflection in the wall
a~1(0) is denoted by S,. The reflections S, for a running over @, (resp. @,;;) generate
the group W (resp. W,y). For a in @, there exists a unique vector ¢, in A such that

(20) So(x) = x — a(x)-t, forany x in 7.

We denote by a, any element in M such that ¢, = ordy(a,). The set @, is
obtained by adjoining to @, the set of functions «/2 for @ in @, such that
(Bw(S,)B: B) # d(a,)"1/2.

The sets @, @, and @, are root systems in the customary sense (see for instance
[37, p. 14 sqq.]). When the group G is split, the sets @, @, and @, are identical. In
the nonsplit case, all we can assert is that, for any « in @, there exists a unique root
M) in @, proportional to a, and that any element of the reduced root system @,
is of the form A(x) for a suitable o in @.

Let w; be any element of W;. Since w, is a coset modulo the subgroup °M of B
the set Bw, B is a double coset modulo B. We put

2D q(wy) = (Bw,B: B).
Since K = BWB, one gets
(22) (K: B) = ;Wq(w).

Let 4, be the set of affine roots in .« which are positive on the chamber C and
whose null set is a wall of C. The group W, is generated by Q and the reflections
S, for a in 4;. The value of g(w;) is given by

23) qgwy) = q(Sz) - 9(Sa,)

where w; = wS,, --'S,, is a decomposition of minimal length m (w in 0,
Ay, vy Oy A0 dy).

To each root 3 in @, is associated a real number gz > 0. This association is
characterized by the following set of properties

(24,) 4pp = qs for fin @, and win W,
(24,) q(w) = H s,
B0~ 1-6<0
(24) o(m) = [l gz for min M.
8>0

In the previous formulas 3 is a variable element in @, and the notation 8 > 0
means that 3 takes only positive values on ¥. We make the convention that
qqs0 = 1 for a in @ if a/2 does not belong to ®;. Two corollaries of the previous
relations are worth mentioning

(24d) q(Sa) = Goqars2>
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(24, 0(a,) = 92° qupss

for any & > 0 in @,. When G is split, g4 is equal to the order g of the residue field
Op/pp for any root fin @ = @y = @,.

The structure of the Hecke algebra #(G, B) has been described by Iwahori and
Matsumoto [30], [31].

THEOREM 3.6. For wy in W1, let C(wy) be the characteristic function of the double
coset Bw,B.

(@) The family {C(wy)},,ew, is a basis of the complex vector space (G, B) (Bruhat-
Tits decomposition!).

(b) Let wy be any element of W and let wS,,+S,, (w in Q, ay, -+, &, in 4y) be
a decomposition of wy of minimal length m. Then

(25) Cwy) = C(@)C(Sy) - C(S,,)-
(c) For each a in 4,, one has
(26) (C(S) —1)-(C(Sy) + q(Sa) =0,

where q(S,) has been defined by formula (21) above.
(d) If « and B are distinct elements in 4,, there exists an integer myp = 2 such that
C(S.)C(Sp)C(Sa)- = C(Sp)C(Sa)C(Sp)---

(27
meg factors Mg factors

Moreover the relations (26) and (27) are a complete set of relations among the C(S,)’s.

3.6. Action of the Iwahori subgroups on the representations. Here is the main result,
due to Casselman [18] and Borel [4].

THEOREM 3.7. Let (n, V) be any admissible representation of G. The natural
projection of 'V onto Vy defines an isomorphism of VB onto (Vy)M.

One proves first that 2 maps onto (V)™ using Iwahori decomposition of B
and the methods used in the proof of Theorem 2.3. There are some simplifications
due to the fact that P is a minimal parabolic subgroup of G.

To prove that VB maps injectively in (Vy)°M, one first proves that, for any given
vector v in V(N) (| VB, there exists a real number ¢ > 0 such that z(C(a))-v="0
for every a in A satisfying |a(a)|p £ ¢ whenever the root « € @ is positive on P.
But this relation implies v = 0 by Theorem 3.6, since one has g(S,) > 0 there.

CoROLLARY 3.4. Given any unramified character y of M, one has a direct sum
decomposition 1(y) = I(y)? @ I(x)(N).

This follows from Theorem 3.7 since °M acts trivially on I(y)y. A direct proof
can also be obtained using the methods used in the proof of Theorem 3.5.

Using the decomposition of G into the pairwise disjoint open subsets Pw(w)B
(win W), one gets easily a basis for I(y)8. Indeed, w(w) normalizes Mand B | M =
°M lies in the kernel of yg1/2. Hence the following function is well defined on G

Dy, (8) = 6V Hm)y(m) if g = mnw(w)b,

(28) =0 if g ¢ Pw(w)B.
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The family {®,,,},cw is the sought-for basis.
The next result is due to Casselman [18] (see also Borel [4]).

THEOREM 3.8. Let (%, V) be any admissible irreducible representation of G. The
following assertions are equivalent:

(a) There are in V nonzero vectors invariant under B (that is VB £ 0).

(b) There exists some unramified character y of M such that (z, V) is isomorphic
to a subrepresentation of (v,, I(y)).

By Theorem 3.7, assertion (a) means that (Vy)*™ # 0. By Frobenius reciprocity
(Theorem 3.4), assertion (b) means that there exists in the space dual to V' a non-
zero vector invariant under °M which is an eigenvector for the group M. Since °M
is compact, acts continuously on ¥ and M/°M is commutative, the equivalence
follows immediately.

COROLLARY 3.5. Let y be any unramified character of M. The space 1(x)? generates
I(y) as a G-module.

We prove Corollary 3.5 by reductio ad absurdum. Assume that /(y)? does not
generate I(y). Since I(y) is finitely generated, there exist an irreducible admissible
representation (z, V) of G and a G-homomorphism u: I(y) — V which is nonzero
and contains I(y)? in its kernel. Since B is compact, one gets V'3 = u(I(y)8) = 0.
By duality, one gets an injective G-homomorphism #: ¥ — (I(y))~. Since (I(x))~
is isomorphic to I(31) by Theorem 3.2, it follows from Theorem 3.8 that V'? # 0.
But the finite-dimensional spaces V8 and VB are dual to each other and this is
clearly impossible.

3.7. Intertwining operators. In this section, we assume the unramified character
¥ to be regular, that is the characters wy, for w running over W, are all distinct.

Corollary 3.2 may be reformulated as follows: given w in W, there exists a linear
form L, # 0 on I(y), such that

(29) L,pymn)- ) = 61/ Am)wy(m)L,(f)

for m in M, nin N and fin I(y), unique up to multiplication by a constant. We
normalize L, by

(30) L = flooym) dn

N(w)\N

for a function f whose support does not meet F, (r = d(w™1)). The Haar measure
is chosen in such a way that N(w)\N(w)-(N [} B) be of measure 1.
To L, we associate an intertwining operator T,,: I(y) — I(wy) defined by

31) T,f(g) = L,(v,(g)-f) forfinI(y)and gin G.

It is easily checked that L, hence T,, depends only on w, not on the representative
w(w) for w.

Since G = PK (Iwasawa decomposition) and the character 02 y of M is trivial
on M | K = °M, there exists in I(y) a unique function @y , invariant under K
and normalized by @k (1) = 1. Explicitly, one has

(32) Dk, (mnk) = 0/%m)y(m) formin M, nin N and k in K.
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If the Haar measures on M and N are normalized by {yx dm = [ypx dn = 1,
one may also define @ , as P,(Ix) where P, is defined as on p. 136 and I is
the characteristic function of K. The space I(y)X consists of the constant multiples
of K.z

The next theorem again is due to Casselman [18].

THEOREM 3.9. The operator T, takes I(y)¥ into I(wy)X. More precisely, one has

(33) Tw(q)K,x) = cw(x)'q)K,wx’

where the constant c,(y) is defined by

(34 eu) = Il ey

35 = (1= g¥? g2 x(a))(1 + a4 y(as))
(35 ca(x) I y@.)

The product in (34) is extended over the affine roots o in ©y which are positive over
&, but such that wa is negative over €.

When G is split, formula (35) takes the simpler form

I — g7 y(a)
(36) ) = | [ K
* 1 - X(aa)

The bulk of the proof of Theorem 3.9 rests with the case where w is the reflection
associated to a simple root § in @,. In this case, there exists exactly one positive
root « in @, taken by w into a negative root, namely o = . The general case follows
then since 7,,,,, is equal to T, T,, when the lengths of w; and w; add to the length
of wyw,.

COROLLARY 3.6. The intertwining map T, is an isomorphism from I(y) onto I(wy)
iff ¢, (y) and c,,—(wy) are nonzero. :

Indeed T,,-1T,, is multiplication by c,(y)c,,-1(wy) by Theorem 3.9.
One may strengthen the irreducibility criterion (Theorem 3.3).

THEOREM 3.10. Assume y is any unramified regular character of M. Then the re-
presentation (v,, I(y)) of G is irreducible iff c,(y) # 0, ca(woy) # O for every positive
root « in Oy positive over €, where wy is the unique element in W which takes € into
€.

IV. Spherical functions.

4.1. Some integration formulas. We keep the notation of the previous part.

If I is any of the groups G, M, N, K, then ["is unimodular. We normalize the
(left and right invariant) Haar measure on I"by [k dy = 1. The group P= M-N
is not unimodular. One checks immediately that the formulas

M) [, rwraw = [ e dman

@) I S dp = IM L f(nm) dm dn

define a left invariant Haar measure d;p and a right invariant Haar measure
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d.p on P. Since °’M = M (| K is the largest compact subgroup of M, one gets
(PN K)=M(N K)(N N K), hence the normalization

© [, dp={  dp=1
PNK PNK
The Haar measures are related to the Iwasawa decomposition by the formulas
@ [ f@de= [ [ riomyacap,
G KJP
) [ r@de={ [ reeacap
G K JP

for fin C/(G). Let us prove for instance formula (4). One defines a linear map
h — u, from C(K x P)into C,(G) by the rule

©) u,(pk-1) = j h(kpy, ppy) dipy.
PNK

The linear form & — [ u,(g) dg on CK x P) is then a left invariant Haar measure
on K x P; hence by our normalizations, one gets

™ [ m@de=( [ nk paedp.

It suffices to substitute f(pk~!) for h(k, p) in formulas (6) and (7) to get formula (4)!
From the definition of ¢ (see p. 135), one gets

®) j Sy dn = o(m) j S dn

for any function fin C(N). As a corollary, we get the alternate expressions for the
Haar measures on P

©) [ @ aw = [ awirifom dnan,
(10 [ sy = o6 sem)dmdn
Otherwise stated, the modular function of P is given by

(11) Adp(mn) = d(m)™! for min M, nin N.

The group N is unipotent and M acts on N via inner automorphisms. It is then
easy to construct a sequence of subgroups of N,say N = Ny o N; > --- o N,_; o
N, = 1, which are invariant under M and such that N,_;/N; is isomorphic (for
Jj =1, -, r)to avector space over F on which M acts linearly. Putting

(12) A(m) = |det(Ad(m) — 1,)|F
for m in M, one gets by induction on r the integration formula
(13) j f) dn = A(m) .f St ) din

for fin C(N) and any m in M such that 4(m) # O (see [28, Lemma 22]).
Let us define now the so-called orbital integrals. Let m be any element of M
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such that 4(m) # 0, let Z(m) be the centralizer of m in G and G,, the conjugacy
class of m in G. Then 4 =« M and Z(m) () M has finite index in Z(m); since M/A
is a compact group, the same is true of Z(m)/A. Moreover, the conjugacy class
G,, is closed in G; hence the mapping gZ(m) — gmg~! is a homeomorphism from
G/Z(m) onto G,,. Therefore, the mapping g4 — gmg~! from G/A into G is proper
and we may set after Harish-Chandra

(14) Fytm) = 40n) | flgmg™) dg

for any function fin C,(G). The Haar measure on A is normalized in such a way
that [, 4 din = 1.

LeMMA 4.1. Let f be any function in #(G, K) and m an element of M such that
A(m) # 0. Then F(m) is equal to [y f(nm) dn.

From formulas (2) and (5), one gets

(15) j _u(g) dg = j' ; j' ;) dmy dn

for any function u in C,(G) which is invariant under left translation by the elements
in K. Putting u(g) = f(gmg™"), one gets the following representation for F/(m)

16) Fym) = | o) i,

an h(my) = A(m) j Syt i) din,

Fix m; and set my = mymm;l. From the definition (12) of 4, one gets
A(m) = A(my). We get therefore

my) = A(my) j' Syt mgtymg) din by (1)
- .f Somg) dn by (13).

Notice that the group M/°M = M/(M () K) is commutative. Hence we get
my € mK and since the function f is invariant under right translation by the
elements of K, one gets f(nm,) = f(nm) for any n in N. It follows that A(m;) is
equal to [y f(nm) dn for any m; in M. The contention of Lemma 4.1 follows from
formula (16) since M/A is of measure 1.

4.2. Satake isomorphism. The construction we are going to expound now is due
to Satake [38]. It is the p-adic counterpart of a well-known construction of Harish-
Chandra in the set-up of real Lie groups.

For any A in /, let ch() be the characteristic function of the subset ord;}(2) of
M. Since [ynx dm = 1, one gets

(18) ch(d) = ch(X) = ch(A + X)

for A, 2’ in A. Moreover the elements ch(2) (for A in A) form a basis of the complex
algebra #(M, °M), which may be therefore identified to the group algebra C[A].
We define now a linear map S: (G, K) - s#(M, °M) by the formula

(19) Sf(m) = o(m)t/2 ij(mn) dn = o(m)~1/2 51\/ f(nm) dn
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for fin (G, K) and m in M. The two integrals are equal by formula (8). It is im-

mediate that the function Sf on M belongs to C,(M). That it is bi-invariant under

°M follows from the fact that f is bi-invariant under K and that °M = M N K.
The following fundamental theorem is due to Satake [38].

THEOREM 4.1. The Satake transformation S is an algebra isomorphism from
#(G, K) onto the subalgebra C{AW of C[A] consisting of the invariants of the Weyl
group W.

Here are the main steps in the proof.
(A) S is a homomorphism of algebras. By construction, S is the composition of
three linear maps

H#(G, K) 5 #(P) L (M) L 2 (M).

Here o is simply the restriction of functions from G to P. It is compatible
with convolution by an easy corollary of (4). The map §is given by (Bu)(m) =
[ u(mn) dn and one checks easily that it is compatible with convolution. The map
ris given by (yf)(m) = f(m)o(m)'/2; since ¢ is a character of M, it is compatible
with convolution.

(B) The image of S is contained in C[A]". Since W = (N(4) (| K)/°M, this pro-
perty is equivalent to

(20) Sf(xmx~1) = Sf(m)

for min M and x in N(4) N K.

The function m — det(Ad,(m) — 1,) from M to Fis polynomial and nonzero.
The elements of M which do not annihilate this function are therefore dense in M;
they are called the regular elements. Hence by continuity it suffices to prove (20)
for m regular.

From Lemma 4.1, one gets

@) Sfmy = Dm) ([ flgmg™ dg

for m regular in M. Here D(m) is equal to A(m)d(m)~1/2; hence
D(m)? = |det(Ad,(m) — 1,)|}-|det Ad(m)|7"
= |det(Ad,(m) — 1,)|¢-|det(Ad(m™) —1,)|r
= |det(Ad,(m) — 1,)|p-|det(Ad,-(m) — 1,-)|p

The last equality follows for instance from the fact that the weights in 1 ®» F
(F an algebraic closure of F) are the inverses of the weights in n~ ® F of any
maximal torus of M. Sinceg = n @ m @ n~, one gets

(22) D(m) = |det(Adg/m (m) — ]g/m)H‘?{z
and therefore
(23) D(xmx™1) = D(m) for min M, x in N(A).

On the other hand, the compact group N(4) (] K acts by inner automorphisms
on G and A. It leaves therefore invariant the Haar measures on G and A4, hence
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the G-invariant measure on G/A. Let m in M be regular, x in N(4) N K and
fin #(G, K). One has f(xgx~!) = f(g) for any g in G; hence

j.G/A flg(xmxNg) dg = IG/A S((x7 gx)m(x~1 gx)71) dg

= _[ f(gmg™1) dg.
G/ A

The invariance property (20) follows from the representation (21), the invariance
property (23) and the just-established invariance.

(C) The linear map S: #(G, K) — C[A]V is bijective. We let as before A~ denote
the subset of /A consisting of the translations in .7 which take ¢~ into itself. For A
in A, let ¢; be the characteristic function of the double coset K - ord;#(2) - K;
by Cartan decomposition, the family {@;};-,- is a basis of #(G, K). Moreover,
any element of A is conjugate under W to a unique element in /~. We get there-
fore a basis {ch’(A)},c4- of C[A4]" by putting

] B
24 ch'(Q) = ch(w-Q),
@24 ( [W(2)| WEZPV ¢
where W(J) is the stabilizer of A in W. Define the matrix {c(2, 2')} by
(25) Spi = D3 c¢A, A - ch’(Q)

7
where A, 2’ run over A~.

To calculate ¢(4, A"), choose representatives m and m’ respectively of A, A’ in M.
Then we get (y is the Haar measure on G)

(26) c(A, ') = Spp(m) = o(m)~1/2 W(Km'K | NmK).
It is clear that KmK (| NmK > mK; hence
(27 c(d, X') = d(m)y~172,

Moreover Km'K (| NmK is empty unless A’ — A is a linear combination with non-
negative real coefficients of the positive roots. Using a suitable lexicographic order-
ing =, we conclude that ¢(4, ') = 0, unless 0 = A’ = A. Since ¢(, 1) # 0 by (27),
this remark shows that the elements S¢;., for A’ in A, form a basis of C[A]", hence
our contention (C).

COROLLARY 4.1. The algebra #(G, K) is commutative and finitely generated over
o

The algebra C[A] is commutative and generated by ch(4,), ---, ch(4,,), ch(A(1),
-, ¢h(2;) if {4;. -+, A,,} is a basis of A over Z. Since the group W is finite, it follows
from well-known results in commutative algebral3 that C[A]" is finitely generated
as an algebra over C, and that C[A] is finitely generated as a module over C[A]".

We determine now the algebra homomorphisms from (G, K) to C. Let y be
any unramified character of M. Since [o) dm = 1, the map f+ [y f(m)y(m) dm
is a unitary homomorphism from (M, °M) to C, and we get in this way all
such homomorphisms. Define a linear map w,: #(G, K) - C by

13 See for vi-rgaince N. Bourbaki, Commutative algebra, Chapter V, p. 323, Addison-Wesley,
1972.
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(28) wlf) = [, SF)-5om) dm

COROLLARY 4.2. Any unitary homomorphism from #(G, K) into C is of the form
w, for some unramified character y of M. Moreover, one has w, = wy iff there exists
an element w in W such that y' = w-y.

This corollary follows from Theorem 4.1 and the classical properties of invariants
of finite groups acting on polynomial algebras (see previous footnote).

Otherwise stated, the set of unitary homomorphisms from s#(G, K) to C isin a
bijective correspondence with the set X/ W of orbits of W in the set X of unramified
characters of M. We refer the reader to §3.2 for a discussion of this set X/W. Notice
that since X is isomorphic to a complex torus T such that X*(T) = A, then X/W
is a complex algebraic affine variety and Satake isomorphism defines an isomor-
phism of (G, K) with the algebra of polynomial functions on X/ W.

4.3. Determination of the spherical functions. Since the characteristic functions of
the double cosets KgK form a basis of the complex vector space #(G, K), one de-
fines as follows an isomorphism of the dual to the space #(G, K) onto the space of
functions on G, bi-invariant under K:

@9) o) = [ f@r@)ds  forfin #(G, K.

(30) I'(g) = olxgk) / .[KgK dg, forginG.

I claim that the following conditions are equivalent:
(a) w is a homomorphism of algebras from #(G, K) to C.
(b) One has

G1) renr(en = | Ieke) de

Jor g1, g2 in G.
(c) For any function fin #(G, K), there exists a constant A(f) such that

(32) fxl'=Tsf=Nf)T.

The equivalence of (a) and (b) follows from the following calculation

w1259 = [ Meiga 11(e0 180 de deo

— [ rends, [ fuen dsa | resiken
and the fact that the function (g, g;) = [x/'(g1kgz) dk on G x G is invariant

under left and right translations by elements of K x K.
The equivalence of (a) and (c) follows from the following formula:

olfi+ £ = [N FieD)@) dg = [ fleX)(e) de

for f1, f2 in #(G, K) where f(g) = f(g~1). Hence A(f) = wo(f).
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DEFINITION 4.1. A (zonal) spherical function on G w.r.t. K is a function I' on G,
bi-invariant under K, such that I'(1) = 1 and enjoying the equivalent properties (a),
(b) and (c) above.

We may now translate our previous results in terms of spherical functions. Let y
be any unramified character of M. Recall that the function @, is defined by

(33) D, (mnk) = y(m)ol’¥m) formin M, nin N and k in K.
We put
(34) I'f) = j'  Oxy (kg) dk forgin G,

THEOREM 4.2. (a) The spherical functions on G w.r.t. K are the functions I,
(b) Let y and y' be unramified characters of M. The spherical functions I', and I';,
are equal iff there exists an element w in the Weyl group W such that y' = w-y.

It is clear that [, is bi-invariant under K, and /(1) = 1. Theorem 4.2 follows
from Corollary 4.2 and the formula

(35) wlf) = [ &) 1(®) dgfor fin #(G, K).

This in turn is proved as follows:

_‘.G I'(g)f(g) dg = jG Dk,(8)f(g) dg
- j' . j' ., _" . rcy (k) f (k) dlle i
= [, xmoemr/zam [ _fmn) dn

= [ xewssm) dm = ().

We used the integration relations (1) and (4).

4.4. The spherical principal series of representations.

DEFINITION 4.2. A representation of G is called spherical (w.r.t. K) if it is smooth,
irreducible and contains a nonzero vector invariant under K.

Let ["be a spherical function on G (w.r.t. K). We denote by V' the space of func-
tions f on G of the form f(g) = X%, c;.['(gg)) for ¢y, -+, ¢,inC and g, -+, g, in G.
From the functional equation of the spherical functions (formula (31)), one de-
duces

(36) |, fieke dk = I(g) - f(g") forfin ¥, andg,¢'inG.
We let G operate on V. by right translations, namely

(37 (zr(g)-f)(g) = f(g18) for fin Vyand g, g; in G.

I claim that the representation (zp, Vi) is spherical and that the elements of V)
invariant under 7(K) are the constant multiples of I'. Indeed, it is clear that for any
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function fin V. thereexists a compact open subgroup K of G such that fis invariant
under right translation by the elements of K; hence the representation (zp, ¥7) is
smooth. Let f # 0 in ¥, and choose an element g’ in G such that f(g’) # 0. The
functional equation (36) may be rewritten as

(38) I'=f(gH™ _‘-K wr(kg)-f dk = f(g") mp(Ixy)f.

Any vector subspace of ¥ containing f and invariant under 7z (G) contains there-
fore I, hence is identical to V.. Finally, if a function fin ¥ is invariant under z(K),
one gets f = f(1)- I'by substituting g’ = 1 in the functional equation (36).

THEOREM 4.3. Let (z, V) be any spherical representation of G. There exists a
unique spherical function [" such that (z, V) is isomorphic to (zp, V).

As usual, let VK denote the subspace of ¥ consisting of the vectors invariant
under z(K). If fis any function in #(G, K), the operator z(f) takes ¥V Kinto itself;
hence VX is a module over (G, K). I claim that this module is simple: indeed, let
v # 0 and V' be two elements of VX. Since the #(G)-module V is simple, there
exists a function f'in #(G) such that v' = z(f)-v. The function fyx = I * f =[x be-
longs to (G, K) and v' = z(fx)- v, substantiating our claim.

The algebra #°(G, K) over the field C is commutative and of countable dimen-
sion. By the reasoning used to prove Schur’s lemma (see p. 118) (or by Hilbert’s Zero
Theorem), one concludes that any simple module over #(G, K) is of dimension 1
over C. Hence VX is of dimension 1 over C and there exists a unitary homomor-
phism w: #(G, K) — C such that

39) z(f)-v =w(f)v for any fin #(G, K) and any v in VX,

Let (7, V) be the representation of G contragredient to (z, V). The space VX of
vectors in ¥ invariant under #(K) is dual to VX, hence of dimension 1. Choose a
vector v in VK and a vector ¥ in VX such that (%, v> = 1 and define the function I’
on G by

(40) I'(e) = ¥, n(g)-v) forgingG.

From (39) and (40) one deduces o(f) = [¢/'(g)- f(g) dg for any fin #(G, K). It is
obvious that /(1) = 1 and that ["is bi-invariant under K. Hence ["is a spherical
function.

The map which associates to any vector v' in V the coefficient z,, ; defines an iso-
morphism of (z, V) with (z, V). Moreover, for any spherical function /” on G,
the representation (z, V') is isomorphic to (z,,, V) iff the following relation holds

(41) m(Ix)n(g)n(lx) = I"(g)-n(lx) for gin G.

This holds for I = I"only. Q.E.D.

The definition of spherical functions as well as the results obtained so far in this
section depend only on the fact that K is a compact open subgroup of G and that
the Hecke algebra (G, K) is commutative. We use now the classification of sphe-
rical functions on G afforded by Theorem4.2. Let y be any unramified character of
M ; when the spherical function ["is set equal to [, we write (z,, V,) instead of
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(mp, Vr). The family of representations {(x,, V,)}x-x is called the spherical principal
series of representations of G.

We summarize now the main properties of the spherical principal series; they are
immediate corollaries of the results obtained so far.

(a) Any representation (z,, V) is irreducible, admissible, and the only functions in
V', invariant under z,(K) are the constant multiples of I

(b) Let y and y' be unramified characters of M. The representations (x,, V) and
(g, V) are isomorphic iff there exists an element w in the Weyl group W such that
xX=wy

(c) Assume that the representation (v,, I(y)) in the unramified principal series is
irreducible. For any function f in I(y) define the function f* by f*(g) = [k f(kg) dk.
Then the map f w f* is an isomorphism of the representation (v, I(y)) with the repre-
sentation (z,, V).

(d) In general, let 0 = Vyc Vi c - < V,_y < V, = I(y) be a Jordan-Holder
series of the #(G)-module I(y). There exists a unique index j such that 1 £ j < r
and that the representation of G in V,/V;_, is spherical. Then this representation is
isomorphic to (z,, V).

The last two statements come from the fact that @ , is, up to constant multiples,
the unique function in /(y) invariant under »,(K) and from the relation (34) which
can be expressed as [, = @Y% .

REeEMARKS. (1) It is easy to show without recourse to Satake’s Theorem 4.1 that
the representation (v,, I(y)) is spherical provided it is irreducible. Since then the
representations (v,, I(y)) and (V4 I(w-y)) are equivalent for any w in W, this
provides another proof of step (B) in Satake’s theorem (see criterion 3.10, p. 144).

(2) We refer the reader to Macdonald [37, p. 63] for a characterization of the
bounded spherical functions, that is the spectrum of the Banach algebra of inte-
grable functions on G which are bi-invariant under K. It does not seem to be known
which spherical functions are positive-definite, or stated in other terms, which
spherical representations are preunitary.

4.5. The explicit formula for the spherical functions. The following result is due to
Macdonald [36], [37].

THEOREM 4.4. Suppose that the unramified character y of M is regular. For any m
in M—, the value of the spherical function I, is given as follows:

42 Iy(m) = Q7 1a(m)172 3 e(w-y) w- y(m)
weW
where
(43) Q=% qw,
weW

(44) c(d = Ho(l — 4o’ 4 Aa) ) (1 + g Man) (1 — Aa,)72) !

a>
for any regular unramified character 2 of M (product extended over the roots « in @,
which are positive on the conical chamber ¥).

We sketch the proof given by Casselman [18], which rests on the properties of the
intertwining operators. We use the notations of §3.7.
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For each w in W, the linear form L, on I(y) transforms by M according to the
character §1/%(w- y) and is trivial on I(y)(V). Since y is regular, these characters of
M are distinct; hence the linear forms L, are linearly independent. The vector
space I(y)? is supplementary to I(y)(V) in I(y) and its dimension is equal to |W¥|.
Hence there exists in (y)? a basis {f,,,,},cw characterized by

L(fuw, )=1 ifw =w,
3) wx=0 ifw # w.

As a corollary of Theorem 3.9 one gets @, = X, ew cu())fu.,- On the other
hand, one has ['y(m) = x Pk, , (km) dk. Since f,,, is invariant under v,(B) and B
is a subgroup of K, one gets from these remarks the relation

(46) rm = % ) | gu0 de

wherelt g, = u(BmB) '%(Ip,p) - f,,,- By the methods used in Theorem 2.3, one
proves, in general, that, for any admissible representation (z, V) of G and any m in
M, the operator z(Ip,,5) — p(BmB)r(m) maps V into V(N). From (45), one infers

@7 gu = 02 w-y(m) fo,,.

From (46) and (47), one deduces that, on M~, the spherical function I, agrees
with a linear combination of the characters§1/2(w- y) of M. Taking into account the
invariance property I',., = I, it suffices to calculate one of these coefficients, for
instance the coefficient of §1/%(w,- ) where wy is the (unique) element of W which
takes the conical chamber € into its opposite ¥~ (or any positive root in @, to a
negative root). In this case, one proves without difficulty that £, , is equal to the
function @, , defined by formula (28) in §3.6. The sought-for coefficient is obtained
by multiplying c,(wo-y) by

IK S,y (k) dk = jK Doy, (k) dk = 1(BwB).

It remains to show that the measure of BwyB, that is the index (BwyB: K), is equal
to Q7L This follows easily from the formulas (21) to (24) in §3.5. Q.E.D.

Note added in proof. As I was told by the editors, my conventions about alge-
braic groups differ slightly from those of other authors in these PROCEEDINGS.
The local field F being infinite, the set G(F) of F-points of any of the algebraic
groups G used in the previous paper is Zariski-dense in G and I allowed myself
to identify G to G(F).

' The Haar measure ¢ on G is normalized by z (K) = 1.
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