A COURSE ON DETERMINANTS

P. Cartier

INTRODUCTION

Determinants enter the field of quantum physics via
Pauli's exclusion principle. The mathematical expression of
this principle is as follows: denoting by Fj the coordinates
of the j-th electron (three space coordinates taking arbitrary
re?i values, plus a spin coordinate taking the values + % and
- Y)’ the wave function w(rl,...,Fp) for a system of p elec-
trons is antisymmetric in its arguments Fl,...,Fp. If, for
instance, wl(F),...,wp(F) are normalized one-electron wave-
functions, mutually orthogonal, corresponding to energy levels
El""’Ep’ then the_?ggmaiized p-electron wave function
W(Fqse ,Fp) = (p!) det wi(Fj) satisfies the exclusion
principle and corresponds to the total energy E1+...+Ep. Simi-
lar constructions occur in Fock space or statistical mechanics.
It is not the place to review the manifold physical implica-
tions of the exclusion principle; it suffices to say that the
stability of matter as we know it depends strongly on this
principle. At the mathematical level, the basic estimate was

provided by Hadamard: if A = (a.,) is a p x p matrix with com-

iJ
plex elements, and if C is the maximum of the numbers |aij|’

then the determinant D of A satisfies |D| = pp/sz. This re-
sult shows a remarkable compensation occuring among the p!

products of size cP (approximately) which compose D, since
pp/2 is roughly of the order of (p!)l/2 for large p. Nothing
similar could occur in the case of Bose—Einstein statistics,

where w(Fl,...,Fp) is symmetrical in its arguments Fl,...,Fp

and the determinant should be replaced by a permanent

oésp 1pl(?‘c(l))“'l”p(?‘o(p))

(symmetrization of the product wi(Fy) ... vp(Fp)).
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A glance of the table of contents will reveal the orga-
nization of this paper. It is essentially a leisurely exposi-
tion of the basic properties of determinants, with special
emphasis on the infinite-dimensional case. In a venerable sub-
ject like this, it is hard to innovate. In part one, we mostly
review the properties of finite determinants in a form most
suitable for generalizations. One of the novel features is our
use of volume forms in subsections 1.4 and 1.5; we aim at
giving characterizations not only of ordinary determinants, but
also of powers of (absolute value of) determinants, and we
provide a link with a non-commutative determinant introduced
by Dieudonné around 1940. The connection between determinants
and antisymmetric tensors is well-known. We made some efforts
to present this (classical) theory in the spirit of supersym-
metry. The analogy between the symmetric (Bose-Einstein statis-
tics) and antisymmetric (Fermi-Dirac statistics) cases is es-
pecially transparent in the so-called Mac Mahon's master theo-
rem,connecting various generating series of interest in sta-
tistical mechanics. We end part one by reviewing various for-
mulas about Gaussian integrals; they are all classical and
provide useful integral 'representations for various determi-
nants. These formulas should be compared with the ones derived
in part three using Berezin intearation of functions of
Grassmann variables.

Part two is devoted to the infinite-dimensional determi-
nants which occur as variants of the Fredholm determinants for
integral operators. We beqgin an exposition of the classical re-
sults of Fredholm. We endeavoured at motivating, as far as pos-
sible, the definitions by analogy with the finite-dimensional
case. With the notable exception of Fredholm's alternative, we
favoured the constructive proofs over the purely existential
ones. The basic formula, which is used to define the determi-
nant in various contexts is the followina

det(l + A) = = Tr(a"A) ,
nz0
where A"A is the operator acting on the antisymmetric tensor
space A"V by mapping X1A-.-AXp into  AxjA...AAx,. In physical
slang, AT is the n-particle Fock space for fermions, if V is
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the one-particle state space. The theory is especially smooth
in the case of operators in Hilbert spaces - incidentally, this
is the case of greatest relevance in quantum physics. But the
Hilbert space theory does not contain the original case of in-
tegral operators with continuous kernels. The main difficulty

to be overcome is that the series I A, of the eigenvalues of
n

an integral operator does not always converge, but instead

z IAn[2 is finite. Various authors (Grothendieck, Ruston)
Made efferts to extend the definition of Fredholm determinants
to suitable classes of operators in Banach spaces. We present
here a novel version, which depends strongly on the properties
of Hilbert-Schmidt operators. This can be considered as the
beginning of a theory of renormalized determinants.
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PART ONE:
DETERMINANTS IN THE FINITE DIMEMSIONAL CASE

1. A Review of the Elementary Theory

1.1. Let A be a square matrix of size n, with complex entries

i3 (for 1 =i sn, 123 =n). We denote by a;,...,a, its
column vectors, so

o

221 ‘
|

P A 0 N

are elements of the complex n-space ¢

Therefore A s sy

We also denote by I (or In) the unit matrix, by 8 its ele-

ments (Kronecker symbol) and El,...,én the co1um;Jvectors
of In‘ Therefore e, is the vector whose only nonzero component
is the i-th one, which is equal to 1. Any vector x in ¢" with
components Xj,...,X, is therefore written as the linear com-
bination x;&; + ...+ x &, and él,...,én is the so-called
canonical bastis of En.
1.2. The determinant of A is a complex number, denoted usual-
lv by det A (or sometimes |[A|). Viewed as a function of the
columns 51,...,5n of A, we denote it as a(d;,...,3,). We can
express as follows the basic properties of the determinant:

a) A(él,...,én) =1 normalisation

b) for al""’ai-l’*ai+1"“an
fixed, A(al,...,a.,..,an) is a n-linearity
linear function of the vector

31, hence a Tinear comhination
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of agis... with coefficients

s s
ni
depending only on the other columns.

c) if we exchange a; and a;,; and keep
the other vectors fixed, a(3;,...,3,) antisymmetry.

gets multiplied by -1,

These properties completely characterize the determinant.

It is easy to give an inductive construction of the de-
terminant, Denote by A(l) (for 1 < i s n) the square matrix
of size n-1 obtained by erasing from A its first column and
its i-th row. Then we have

n . .
deth = ¢ (-1)"la . detal?) | (1.1)

1 i
1.3. A slightly more invariant presentation is as follows. We
consider a vector space V of finite dimension n over the field
€ of complex numbers. A volume form on V is a function

w(Xy,...,X,) depending on n vectors Xj,...,X  in V, with com-

n
plex values, which is multilinear and antisymmetric, namely

wleoesXaseon) = A'wleue,Xyeun) + x"w(...,ig,...) (1.2)

w(...,;i,ii""l,...)=~w('..,;i+l,ii,...) . (1.3)

of V, there exists a unique volume

,e
n
normalized by mo(él,...,én) = 1, Then, for any volume

Given any basis &p,...
form w,
form, we get

0(RyseresX,) = tug(XyseonnXy) (1.4)

for il,...,i arbitrary in V, with a constant t = w(ey,...,e ).

Hence, up tona scaling factor, volume forms are uniqué.

If there is a non-trivial linear relation A1§1+
+xnin = 0 among the yectors il,...,in, it follows immediately
from (1.2) and (1.3) that w(Xy,...,X,) = 0 for any volume form

w on V, On the other hand, if a volume from w assumes a non-
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zero value on some basis El,...,En, then it is nonzero on any

basis il,...,in whatsoever.

1.4. Let us denote by B(V) the set of all (ordered)basis

n Of V, by (V) the set of volume forms,*and 2*(V) the
set of nonzero volume forms. Any element w of @ (V) can be
viewed as a function from B(V) to the set t* of nonzero com-

il,...,i

plex numbers. As such, it is characterized by the following
variants of properties (1.2) and (1.3)

- - -

m(xlil,...,xnxn) = A e A a{Xgseeeaxy) (1.5)

if Ais--+2h, are in CX, and

if k is different from 1.
Let us check for instance the antisymmetry; it suffices
to write the proof in the case n = 2. Hence

- - - - -

(A)(X2,X1) = (A)(.).(2+.).(1,;1) = (A)((X2+Xl), "X2 + (‘)‘(2‘*';(1))

by repeated application of (1.6) and w(Xy,-X;) = -w(Xy,Xp)
by (1.5).

To construct a volume form w in 2*(V), we can proceed
inductively as follows. Decompose V as the direct sum of a
1ine D (of dimension 1) and a hyperplane H (of dimension n-1).
Choose a vector @ # 0 in D and a volume form ¢ in Q*(H). Then
there exists a unique w in Q*(V), such that

-

m(é. yls---syn_l) = ‘D(YIs°--lyn_1) (1°7)

n

for any basis yl,...,yﬁ_l of H. Let X;,...,X be a basis of
V, and express & as the linear combination aqXy,+...+#r X

n*
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From (1.5) and (1.6) it follows that one doesn't change the
value w(Xq,...,X,) if one adds to any x; a linear combination
of the other vectors. From (1.7) one derives

m(il,...,in) = (-1)"1A;1 @(P(Xg)seeesP(X5_1)5P(X541) -

<P (X)) (1.8)

for any index i such that 1 £ i £ n and Ai # 0; for every
vector X in V, p(x) is the unique vector in H such that x-p(X)
lies in D (that is, is proportional to e). It is easy to
check that the right-hand side of (1.8) <is <ndependent of the
index 1 as long as Ai # 0, hence we have a construction of w;
checking properties (1.5) and (1.6) for w is easy if a little
tedious.

If @),...,8, is a fixed basis of ¥, let & = &; and H be

the subspace of V with basis 52,...,En. If we accept that there

exists a unique ¢, in o*(H) normalized by ® (&,,...,& ) = 1,
it follows from (1.7) that there exists a unique w, in 2* (V)
normalized by wo(El,Ez,...,én) = 1 and that wo(El,yz,...,yn) =

0o(¥ps.-+s¥,) for every basis J,,....y, of H:

1.5. The previous construction of volume forms has some ad-
vantages on the more orthodox ones. For instance, we can modi-
fy the homogeneity property (1.5) into

w(A%paeeead X)) = Iy oo 1 w(Ese X)) (1.9)

where s is a complex number., If s is an integer, we can also
consider (Ay +.. An)s instead of [x; ... Anls Then it follows
that any function w: B(V) > €* satisfying (1.9) and (1.6) is
of the form

- = y(S
w(Xl,..-,Xn) = t|wo(X1,...,Xn)| (1.10)
where w  is as before and t = w(€y,..,,€,) is a constant.

The previous considerations are valid verbatim in the
real case. If we denote by A(il,iz) the area of the paralle-
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logram built in the plane R% on the vectors x;, Xp» it fol-
lows from geometric reasons that A satisfies the following
rules (fig. 1):

BAXA0%0) = InplIngl alxyHx) (1.11)

B(XsXp) = B(X{ + Xp, Xp) = B(Xys X, + X1) . (1.12)

X1+2x2

2x1+x2

,.A\\\\\‘,_

0 X1
Fig. 1
Hence A(Xy,X,) = |det X| where X is the 2 x 2 matrix with co-

Tumns %; and 22 (a well-known result !). This extends immedia-
tely to the volume of the parallelotop in the space ®" span-
ned by n vectors X;,...,X 3 acain this is equal to |[det X|

if X is the n x n matrix with columns il,...,in.

We can also consider vectors in the quaternionic space
", whose n components are quaternions. If El,...,én are the
columns of the unit matrix I (as in section 1.1), we can asso-

ciate to any invertible n x n matrix A = ( ) with guaternio-

-
1
nic entries a determinant A(A) characterized by the following
properties
Aleqs..erey) =1 , (1.13)
A(alxl,...,E Ag) = dag e AnlA(El,...,é (1.14)
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A(El,...,a t 8 ,...,a,) " A(El,...,éi,...,én) (i # k).
(1.15)
Here the determinant A(A) is expressed as a function of the
columns 51""’5n of A, a quaternionic vector a = t(al,...,an)
is multiplied on the right by a quaternion A, hence

a1>\
ar = ( (1.16)
\anx) :

and the modulus of a quaternion q = a + bi + ¢j + dk is as
usual |q] = (a2 + b2 + c2 + d2)1/2.
nant is a particular case of a non-commutative determinant

defined by Dieudonné [5, tome II, p.67].

This quaternionic determi-

1.6. The basic property of determinants is multiplicativity.
Let again V be a vector space of finite dimension n. The vo-
Tume forms on V form a one-dimensional vector space Q(V).

If A is any linear operator on V, it acts on Q(V) by

(w-A)(il,...,Rn) = w(AXys.-sAX,) (1.17)

for il,...,in in V; to verify this, it suffices to check
that if w satisfies the conditions (1.2) and (1.3),s0 does
w+A, and this is obvious. Since @(V) is one-dimensional, A
acts on Q(V) via multiplication by a scalar det A, hence

w(AXsesAX) = (det A) w(Xyse..sX,) . (1.18)
The muitiplicative property

det(AB) = det A * det B (1.19)

follows immediately.

A matrix A = (aij) of size n can be viewed as an opera-
tor acting on ", transforming the vector X with components
X1s+-+2X, 1into the vector y = AX with components Yyseeoa¥y
given by
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n
Yi = § a.. X, . (1.20)

In particular, the columns of A are d; = Aél,...,ﬁn = Aén, and
the determinant of A as an operator in ¢" is the one defined
in section 1.2. The multiplicative property (1.19) therefore
applies to matrices.

1.7. It is not the place to review the numerical methods used
to evaluate determinants. Needless to say, the inductive defi-
nition afforded by (1.1) 1is not practical unless n is very
small, since it requires n! operations.

The myltiplicative property can be used to give various
characterizations of determinants. By the elementary matrix
Mij(x) we mean the matrix differing from the unit matrix I
by the entry in row i and column j being put equal to A (here
i # j). If we denote the diagonal matrix with diagonal entries
Clses+sCp AS diag(cl,...,cn), we have

det Mis(x) = 1, (1.21)

det diag(cys..vscy) = cq «.. Cp . (1.22)

If a square matrix A has columns 51,...,5n, the columns of
AM;5(2)  are 51,...,3n except that Sj is replaced by Ej + 3.
Similarly, if ¥;,...,r are the rows of A, the matrix Mis (A)A
differs from A by replacing the row Fi by Fi + ij. By pre- or
postmultiplying the matrix A by elementary matrices, we can
therefore achieve to transform A into a diagonal matrix.
Noticing that the matrices AMij(x), Mij(x)A and A have all the
same determinant, we conclude that the multiplicativity proper-
ty together with formulas (1.21) and (1.22) characterizes the

determinant.

1.8. A systematic procedure of this kind is known as Gauss'
pivoting method. Put generally, assume that A is given in
block form
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where the sizes of the blocks are as follows

M is p x p, N is p x g,
. . (p+4q=n)
P is g x p, Q is g x g

If X if any q x p matrix and Y any p x q matrix, one gets

P p -

X I P Q 0 I XM+P XMY +XN+PY+Q

(1 0 M N\ (I Y M MY+N
q

/1 0 I Y
Moreover, the matrices P and P are products
X I 0 I
q q
of elementary matrices, hence of determinant 1. If M is inver-
tible, choose X and Y such that XM+P = 0 and MY+N = 0. Hence

(1, o \[m N\/Ip -m 1y M 0 \

|-pu-2 Iq}kP o/\o I, o q-ewin]

and the final result reads as follows

1

M N
det( ‘ = det M . det{(Q - PM "N) . (1.23)

P Q
Hence an n-th order determinant is expressed as product of de-
terminants of order p and q respectively.
The case p = 1 is worth recording. After permuting if
necessary some rows and columns, one obtains the rule:
+ choose a nonzero entry ai3 in A, known as pivot ;
« erase from A the row and column containing the pivot;

+ replace any remaining element a by
b = a - a,. aT% a. ;
k1 k1 kj “ij “i1
+ compute the determinant b of the (n-1}(n-1) matrix
with entries bkl;

« multiply b by (-1)1+j a;; to get the determinant of A.

J
1.9. Two final remarks are in order. The previous methods can
be used to compute the quaternionic determinants with two small
changes. Namely change €y -+ Cp into |c1 vee C into formu-
la (1.22) and use det A = b-|a

ting method.

nl

ijl in the last step of the pivo-
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Moreover, in formula (1.23) assume that p = q and that
the square matrices M, N, P, @ of size p commute pairwise.
Then one gets

det (M N\ = det (MQ - NP) . (1.24)
\P Q/
Using a limiting argument, one gets rid of the restriction
det M # 0. Now the determinant of a 2 x 2 matrix (g g) is
mgq - np.
Therefore the rule: wuse the formula to compute a 2 x 2
determinant replacing the scalar entries by the commuting
p x p matrices, then take the determinant of the resulting
p x p matrix. This rule can be generalized when the matrix A
is in block form

whenever the p x p matrices Aij commute pairwise (and pr = n).

This is known as Williamson's theorem.

2. Symmetry Properties of Tensors

2.1. Let us recall the notion of tensor product of two vector
spaces V and W. This 1is a new vector space denoted by V 8 W;
moreover, to any pair of vectors (x,y) in V x W is associated
an element x @ y of V & W and the following properties hold:

a) for any y in W, the map x v x & y from V into V @ W
is linear;

b) as a) with V and W interchanged;

¢) if (e,) is a basis of V and (fB) a basis of W , then
the vectors e @ fs form a basis of V & W.

With the previous notations, any element x of V has components

x® such that x = =z x“ea ; similarly for any element y = ySfS
of W and any e]em%nt t =azeta8ea Q fe of V & W. Moreover if
s

t = x 8y, one gets teB = x%yB.
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Notice that we do not assume the dimensions of V and W
to be finite. In a similar way, one defines the triple tensor
product U & V & W as (U 8 V) & W, etc.

Tensor products of spaces help transform multilinear
functions into linear functions. For instance, if ®©(x,y) is an
element of a space T depending linearly on x in V for y fixed
in W, and symmetrically depending linearly on y in W for x
fixed in V, there exists a unique linear map ¢ from V & W into
T such that o(x,y) = ¢(x & y). This follows from c) above,
namely

o(t) = = tre(e,, fg) (2.1)
a,B
- aB
for t = ¢ t e, ?] fB

a,B

2.2. We fix now a vector space V of finite dimension n, and
if necessary we use coordinates with respect to a fixed basis

eq5...,e_ of V. Fix an integer k 2 2 and denote by VQk the
1 n
tensor product V, A ... 8 Vk where all spaces Vl"“’vk are
put equal to V. By convention we set VQO = € and VQl =V,
A general element in Vek is written as a tensor
Aq...0
t= ozt T R e a.ae (2.2)
al...ak 1 k

where the indices @1s +e+s @) run over 1, ..., n independently.

Let us denote by S| the group of permutations of the in-
tegers1,2,...,k. It operates on V in such a way that

o-(x48 ...8%x,) = x _ g ... 8 x _
1 k o 1(1) o l(k) (2.3)
for XqaeeeaXy in V. In components:
CUqeeael a R
(ort) 1Tk o go(D) o (k) (2.4)
Moreover, the rule of operation is satisfied
(oet)t = o:(r-t) (2.5)
for t in VQk and o, t in Sk
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Vﬂk enables one to

2.3. The action of the symmetry group on
define the symmetric part skv of v k and the antisymmetriec
part AkV of Vak.

By definition, SkV consists of the tensors t in vk such
that ot = t for all o in Sk, or what is the same, the compo-
nents tal"“k

S ERERENE If X{seoosX, are vectors in V, we denote simply by

are unchanged by any permutation of the indices

X1 ... X, their symmetric product <L 6*(x,8 ...8x, ). Then the
1 k ses 1 k
k

vector space SkV has a basis consisting of the symmetric pro-

ducts e, ... e for Bis el in ascending order @ 5.

o

s . These k products can also be expressed as monomials
ey ey €y co0 €p cennn e, e,
e—— Y e AL L V)
! B2 Bn

with integers 61,...,8
Bl+ “o +Bn = k.
Otherwise stated, SkV can be interpreted as the set of

n such that 61 20, ..., B 20,

polynomials in e;,..,e, , homogeneous of degree k. Its dimen-
(n+k'1)
K .

2.4, For a permutation o , the number I(c) of <nversions is

sion is equal to

thenumber of pairs of integers i,j such that 1 < i < j s k,
a(i) > o(J).

The signature sgno is defined as (-1)1(0); its main
property is expressed by

sgn(ot) = sgno - sgnt . (2.6)

Then AkV consists of the tensors t such that o+t = (sgno)-t
for all o in Sy alternatively, the component tOtl %k va-
nishes when two of the indices @js...s0) Are equal and is mul-
tiplied by - 1 if one interchanges two indices. Hence, up to
a sign, the nonzero components of t are the 21tk oy
1 g0y < ..ocap s n. Putin another form introduce the wedge

product XiA .. AXy of the vectors XpseeonXy by

X{A oo AX =X (sgno) c-(xlﬂ “e ka) . (2.7)
cESk
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Then the vector space AkV is spanned by such products and a

basis of AkV consists of the products e“lA ce hey for
k

1 = @< ...< ap S n. Hence AkV is of dimension (k).
2.5. The case k=n <s particularly <nteresting. The vector
space AW ois one-dimensional, spanned by the products X{heoo
AXp for Xq,..o., X, running over V, and a basis is given by
eh ... re,. We shall follow Grothendieck's convention and de-
note A"V by det V (recall n is the dimension of V).

The volume forms on V can be interpreted as linear forms
on det V. More precisely, for any volume form w on V there
exists a unique linear form @ on det V such that

WXy vees xn) = x(xlA Axn) (2.8)
Conversely, for any linear form ¢ on det V, the formula
W(Xys vees Xp) = (xqh oou AXp) (2.9)

defines a volume form w on V.

2.6. Let W be a subspace of V. Denote by m the dimension of
W, and by V/W the factor space (of dimension n-m). Let p be
the natural projection of V onto V/W. Then one can identify
the spaces det V and det W 8 det(V/W) in such a way that the
wedge product xjA ... Ax, in det V is identified to
(xgh oo Axm)@(p(xm+1)A e Ap(xn)) in case XpsneesXp belong
to W.

Dually, if Wy is a volume form on W and Wy /Y a volume
form on V/W, there exists a unique volume form wy on V such
that

wV(xl""’xn) = ww(xl"“’xm)“’V/w(p(xm+l)"“’p(xn))

(2.10)

for X1seeeaXp in W and x Ve X in V.

m+ls: n

A variant is obtained by choosing a subspace H of V such
that V be a direct sum of W and H. We can identify det V to
det W 8 det H in such a way that XQA eoe AXp AYQA coo AY o

corresponds to (xlA “e Axm) ] (ylA e Ayn_m) for Xqs...5xp

458



in W and YiseesYp-m in H. Similarly, a volume form wy on v
is obtained from a volume form wy On W and a volume form wy
on H. Namely

wv(xl,...,xm,yl,...,yn_m) = wp{Xpsee s xplog(¥ys oY o)
(2.11)

for X1seeeaXy in W and Yise- s ¥pem in H. The construction given

in section 1.4 corresponds to the particular case m = 1.

2.7. Let A be a linear operator acting on V. Then A acts on
VQk in such a way that

Av(xq8 ... 8x, ) = Ax R ... 8Ax, (2.12)
for XQseneaXy in V. In components, if A is represented by the
matrix (aS) in such a way that Ae,= éazeB , then a tensor t

Oqeeslt
with components t 1 k is transformed by A into a tensor

At with components

QBqes .
(A-t) 1Tk 5 a agt t . (2.13)

Blae.esBy 1 k

This is in accordance with the standard rules of tensor calculus.

It follows from the formulas (2.3) and (2.12) that A
acting on VQk commutes with the action of the symmetry opera-
tors. Hence it leaves invariant the subspaces SkV and AkV. As
a matter of notation, we denote by AQk the operator in VEk
given by the action of A, by SkA its restriction to SkV and by
aka its restriction to AkV. For the three kinds of products of

vectors, we have therefore the rules

8
ABK(x 18 LLoex) = AxgE ... BAX, (2.14)
SKA(xy con X)) = Axg ... Ax (2.15)
AkA(xlA Axk) = Axqh oo MAX . (2.16)

If we restrict A to the group GL{(V) of invertible linear trans-
formations in V, we get thus three linear representations of
GL(V) in the spaces ng, SkV and AkV respectively.
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In particular, A"A is an operator in the one-dimensional
space A" = det V. It follows from the duality of det V and
(V) and from formula (1.20) that A"A acts by multiplication
by det A on det V. Otherwise stated, one has

Axqd o AAxn = (det A)-(xy0 ... Axn) (2.17)

for X1seeesXp in V. This is yet another characterization of
the determinant.
Assume that W is a subspace of V, stable under A. Choose

the basis ey,...,e, of V in such a way that S EREREL consti-

n m
tute a basis of W. The matrix of A in this basis is in block

form \

where the sizes are as follows: M ismxm, N dism x (n-m),
and P is (n-m) x (n-m).

Then the identification of det V and detW & det(V/W)
amounts more or less to the classical determinant formula

det A = det M . det P . (2.18)

2.8, It is the aim of supersymmetry to unify bosons and fer-
mions, or in algebraic terms to unify symmetric and antisymme-
tric tensors. We present here a general method inspired by re-
cent work on Yang-Baxter equation.

Fix an integer k 2 2, and define elements sl,...,sk_1 in
the symmetric group Sk by

[ iF 3 A i, i+l
5:(3) = i+ 1 if § o= (2.19)
i if 0§ o= i+l

(s; is the interchange, or transposition,of i and i+1). It is

a classical theorem in group theory (Moore, 1894) that these
elements generate the group S and that a complete list of rela-
tions among these generators is as follows:
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s; =1 for i = 1,...,k-1 (2.20)
SiS5 = 5354 if |i-jl 2 2 (2.21)
SiSis15i = Si+15i5i+1 for i = 1,....k-2 (2.22)

In graphical terms, the generators Syse+esSko1 correspond to
the nodes of a chain

1 2 3 k-2 k-1

two generators commute if the corresponding nodes are not di-
rectly connected in the chain, and the relation (2.22) holds
for pairs of generators corresponding to nodes adjacent to the
same edge.

g2

Let now T be any operator acting on V' ". We denote by

Ti’i+1 the operator acting on VQk in such a way that
T1’1+1(x10...ﬂxk) = xlﬂ...ﬂxi_lﬂT(xiﬂxi+1) ]
ﬂxi+29...ﬂxk . (2.23)

One could in a similar way define more generally operators
Ti’j acting on the factors of ranks i and j of V k. This cons-
truction can be illustrated by a simple quantum—mechanical mo-
del. We consider a system of k particles labelled 1,2,...,k,
subjected to pair interaction. If V is the space of one-particle
states, Vek describes the states of the system. The elementary
interaction law is expressed by a two-body potential, an opera-
tor T in VQZ; then Ti’j is the contribution to the potential
energy stemming from the pair of particles labelled i and j.
When |i-j| is at least 2, the sets {i,i+1} and j{j,j+1}
are disjoint and the operators Ti’i+1 and Tj’j+1 commute. From
the equations (2.20) to (2.22), one concludes that there exists
a linear representatjoq T of the group Sk in the space VQk
such that wp(s;) = T+l 6o 1 < i s k-1) iff the following
conditions are satisfied
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We denote by ZkV the subspace of V(’lI< consisting of the
tensors t such that o-t = t for every o in S- e define a pro-
duct xq ... X, for vectors by

X{ oo X = I or(xq® ... ax, ) (2.30)
gES
k
It reduces to the symmetric product of vectors if XQsoeosXy
are all even, to the wedge product x4 ... Ax if X{seeesXy
are all odd. The space ZkV decomposes as a direct sum of sub-
spaces ZB’FV where B 2 0, F 2 0, B + F = k. The number B is the

B’FV is gene-

bosonte number and F the fermtonic number, and &
rated by the products (x1 ce xB)-(ylA cee AyF) where X1s.sXp
are even and y s s Yp are odd; it can be identified in a natu-
ral way with S vt g aFvo. In particular, if Vv = v* (that s

e = 1) then 1XV reduces to sKv, and if V = V7 (that is ¢ = -1)
then sz reduces to AkV. The elements in zBJN are considered as
even or odd according as F is even or odd (parity by fermionic

number).

3. Mac Mahon's Master Theorem

3.1. We keep the previous notations. For instance, V is a com-
plex vector space of finite dimension n. We defined previously
the antisymmetric tensor spaces A%y = C, AIV =V, AZV,...,AnV =
det V. Moreover, AkV is reduced to O for k > n. Denote by AV

the direct sum of the space AOV, ey AV, We define parity on

AV by the rules

+

Aty o= e atfy (3.1)
k20

ATV o= e 2Ky . (3.2)
k20

The wedge product of vectors can be extended to a multiplica-
tion in AV, which is bilinear, associative, complying with the
signe rule

eAn = (-1)P9 A (3.3)
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TT = 1 in V8% myniranieyn (2.24)

112723712 L 23,12023 5 83y Bawter  (2.25)

equation”

2.9. Let us assume that e is an operator on V such that s2=1.
Then V is the direct sum of V' and V™, where vt corresponds

to the eigenvalue +1 of ¢ and V to the eigenvalue -1. A vec-
tor in V¥ is called even(or bosonic) and a vector in V™ is cal-
led odd(or fermionic). We consider the operator T in

Vﬁzz V & V characterized by

T(x, 8 y,) =y, & x,

T(x, 8 y_) y_ 8 x

- +
(2.26)

T(x_ 8 y,) y, 8 x_

T(x. 8 y_) =-y_ 8 x_

where X, and y, are even, and x_, y_ are odd. This is the well-
known kosazul's sign rule: "insert a factor -1 each time you
permute two odd factors". The properties (2.24) and (2.25) are
easily checked, hence we get an action of the symmetric group

Sy on Vﬂk. Explicitely, one gets

o (x8 ... 8x) = (DT x ) a ax

(2.27)
where I is the number of pairs (i,j) of integers such that

1 24 <3 sk, o(i) » o(j) and X5 xj are both odd (we assume
that x;,...,x, have well-defined parities, either even or odd).

In particular

o+ (xq® ... 8xp) = x _ 2 ... 8x 4
k o~ 1(1) o~ (k) (2.28)
if X1s -+.5 X, are all even
o' (x8 ... @x ) = sgno-(x _ Q ... 8x _ )
1 k o~ 1) Ly (2.29)

if X1seresX, are all odd.
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if ¢ belongs to APV and n to AqV. Even elements commute to even

or odd elements and ¢ A n = =n A & if both ¢ and n are odd.
If ¢ = XA oo AXp and n = YA o qu, then ¢ A n is by defi-
nition the wedge product of vectors XA ... AXp ANYIA e Nge

3.2. Let A be an operator acting linearly on V. le defined the
operator AkA acting on AkV. We denote by aAA the operator on

AV which coincides with AkA on AkV for k = 0,1,...,n. Then AA
extends the operator A on V = Alv and respects multiplication

AA(E A n) = (AR)e A (AA)+n . (3.4)

The first statement in Mac Mahon's theorem is the following
formula

n k k
det(l + tA) = & t"Tr(a"A) , (3.5)

k=0
where t is a complex parameter (or a formal variable).
The proof is especially simple if A can be diagonalized.

Assume that there exists a basis €1,00.,8 of V consisting of

n
eigenvectors of A, namely
Rey = xjeq, .., Ae, = A€y . (3.6)
Then the tensors e, A ... Ae. for 1 < i1< oo <1y, £ n form
iy iy k
a basis of AkV and o A multiplies such a tensor by LT
1 k
Hence the trace of AkA is the elementary symmetric function
. Iy ...xi =<y of s eee xn‘ Moreover, the ope-
Toce o<y 1 k

rator 1+tA multiplies every basis vector e; by 1 + thy. Hence

formula (3.5) reduces to the classical statement

k
¢t . (3.7)

L =1
W™

(1 + ty;) =
i=1 k=0
3.3. In the general case,we could argue by continuity since it
can be proved that any matrix (or operator) is a 1imit of ma-
trices conjugate to diagonal ones. Instead, we shall rely on

the possibility of finding for the orerator A a basis R
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of V such that the matrix (a%) expressing A in this basis be
upper triangular (& = 0 if i < j).

Let us not assume at first that the matrix (ag) be trian-
gular. For every increasing sequence I = (1< -, <ik) of indi-

ces between 1 and n, denote by e; the wedge product e; A...hey
. 1 k
By definition, we have Ae; = I a%ej. It follows
J
a% e (3.8)

k .
(AfR)-e; = ]

z
J
where a? is the minor of A corresponding to the set I of co-
Tumns and the set J of rows. In particular, we get

Tr(akay = ? al (3.9)
where the sum is extended over all sequences I = (i1<...<ik)
of length k. ]

Assuming now the matrix (ag) to be triangular with diago-
nal elements Al,...,xn, then a% is the determinant of a tri-

s seey A. . By a well-

angular matrix with diagonal elements 2. i

1
1 k
known generalization of formula (2.18), we get a% = Ail...xi R
k
hence I a% = c and one concludes the proof as before.

I
We conclude with two remarks:

a) Putting together formulas (3.5) and (3.9) we get

n
det(1+tA) = = th = ar | (3.10)
k=0 [1]=k

a well-known formula for the characteristic determinant.Here
IT| is the length of the increasing sequence I,

b) We can put t = 1 in formula (3.5). Hence we get
det(1 + A) = Tr(AA) = Tr(a*A) + Tr(a"A) . (3.11)
Putting t = -1, we get

det(1 - A) = Tr(a*A) - Tr(a"A) (3.12)

The right-hand side is the so-called supertrace of A acting
on the space AV with even part A*V and odd part A7V,
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3.4. We study now the action of A in the symmetric algebra
SV = o SkV. The symmetric product of vectors can be extended
to a hﬁ?tip]ication in SV which is bilinear, associative as
well as commutative. Choosing a basis €yseresly of V enables
one to consider the elements of SV as the polynomials with com-
plex coefficients in B1reeeslp.
The operator A on V defines operators SkA acting on SkV.
We denote by SA the operator on SV which restricts to SkA on
the subspace SkV of polynomials homogeneous of degree k. It
respects the symmetric product.

With these notations, the second statement in Mac

Mahon's theorem is the following formula

det(1 - tA)"L = 1 tX Tr(Ska) . (3.13)
kz0
The proof is quite similar to the previous one. Assume

first that A can be put in diagonal form as in formula (3.6).
B B

Then the monomials el1 can enn with By + ... B = k form a
B B
basis of SkV, and A multiplies such a monomial by All v Ann
Hence we get for the trace
B g
Tr(ska) = 7 bt (3.14)

Bl+ v +Bn=k

and therefore

rtkTr(ska) = D gt A"
kz0 Bye++8,
] B
= b (tr)) 1 (ta,) n
—
1 n
- 8 o 8
= 1 (tag) 1 T (ta,) n
Blz Bn=0
1 1
T-tx; T=En,

But the determinant of 1-tA is the product (l—txl)...(l-txn),
hence formula (3.13).
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In the general case, assume that A can be put in trian-
gular form. It means that there exists a basis I EERRELM of V
and scalars Ags-++sh such that Ae; - ey be a linear combi-
nation of the vectors e; for j < i. The monomial

Bl fn ’ k B1 Bn
e;” ... €, is transformed by S A into (Ael) ...(Aen)
Expanding this product, it is easy to see that the coefficient
81 noo. 81 Bn . 81 Bn
of e;” ... e, into (Ae;) (Aey) Ts equal to X;"...x,

Formula (3.14) is still valid,and the determinant of 1-tA is
still the product (1-tx;) ... (1-tx ). The proof is finished
as before.

3.5. It is interesting to put together formulas (3.5) and
(3.13). We get

@ n
k, Kk k
1= Cx t"Tr(s"A)r0 s (1) *tRTr(afA))
m=0 k=0 (3.15)
Comparing the coefficients of the powers of t, we get
5 (-1 F B F B
=1) Tr(S°A)-Tr(A A) = 0 for k 2 1 . (3.16)

B+F=k

This formula can be given a supersymmetric 1interpretation.
Denote by W the double V x V of V, with a parity ope-

rator given by e = (1 0) in matrix form, and a parity chan-
0 -1
. r 0 1) + -
ging operator =« =( ). Hence m exchanges W and W , and
1 0
n2 = 1. Both W' and W~ are copies of V. In physical slang,

T associates to every boson state in W' its fermionic partner
in W~. From what we saw in section 2.9, we can identify KW
with the direct sum of the spaces 2BoFu - sBut e afun (for

B+F = k),and in turn to the sum of the spaces SBV Q AFV.

A 0\, that is A(x,y)=

We extend A to W, in matrix form (
0 A

(Ax,Ay) for x,y in V. We then extend A

Y
A acting on kW in such a way that

to an operator

R(xy vov xp) = Axp oee Axp (3.17)

for XisowesXy in W. Then the subspaces zB’Fw are stable under
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Y
K, and if we identify z2°Tu to sBv @ aFv, the action of X on

ZB’FW is given by the operator SBA 8 AFA. Let now ¢ be the
operator on ka which acts by multiplication by (-1)F on ZB’FW.
It is related to the parity operator in W by

"

s(xl . xk) = EX] .. EXy (3.18)
for XQseeoaXy in W.

After all these preparations, the identity (3.16) turns

out as a supertrace vanishing theorem
,\J’\a
Tr(eA) = 0 (for k 2 1) (3.19)

(trace of operators acting on EKW). A direct proof can be gi-
ven using two new operators d and s acting on ka by

B
d{xq -« Xp¥Yp «-- yF) = iil Xpee o X31TX5%441
Xg¥1 - Yf (3.20)
F j-1
s{x] xB-yl...yF) = jil(-l) XqeeeXg ¥peee¥jo1
TYi¥ie1 v YF (3.21)

where xi's are even and the yj's are odd . Since d changes the
fermion number F by +1 and s changes it by -1, one gets

& = -Ed s¥ = -%s ) (3.22)
Moreover, from the previous definitions, one gets

Y

AY = €8 , RKd = dk , Ks = sk . (3.23)

It can also be proved that sd + ds multiplies every element of
zkw by k (see for instance subsection

From these formulas, one derives

468



N N
Tr(eAsd) = Tr(Acsd) because Ae = ¢k
= -Tr(Ascd) because €S =-se
= -Tr(gdks) by cyclic invariance of the
trace
N
= -Tr(gxds) because Xd = dA

4" 4"
From sd+ds = k, one gets then kTr(cA) = Tr(cA(sd+ds)) = O and
4"
Tr(gA) = 0 follows provided k 2 1.

3.6. We derive as an application an important formula in group
theory, known as Cartan-Molien's formula. Suppose G is a
finite group, of order |G|, acting linearly on the vector space
V. We let G act on the symmetric tensor space SkV in such a way
that 9'(x1"‘xk) = (gx1) ... (gx,) for the symmetric product of
vectors Xp,...,Xp in V. Denote by Ik the subspace of SkV con-
sisting of the invariants of G. The dimension of these spaces
is given by the following generating series

: tXdim 1% = 617l = det (1 - tgy)7! (3.24)
k=0 g€t
For clarity, we denote by ay the operator afforded by g on V.
A similar formula with |G|~ £ replaced by IG dg holds for
geG

a compact group G acting linearly on V.
The proof of formula (3.24) dis as follows. Define an

operator P, in sky by P u = IGI-l T u for u in SKV. Then
k k get 9

Pk is a projection of sky onto Ik, hence its trace is equal to
the dimension of IK. But P, is nothing else than IGI_1 g Skgv,
hence 9¢€6
gim 1% = |67t 1 Tr(skay) X (3.25)
geG

One concludes using formula (3.13).

3.7. So far we have associated to an operator A acting on V
the numbers ¢ (A) = Tr(AkA) and h (A) = Tr(SkA). In terms of
the eigenvalues Ay,...,r, of A, ¢ (AR), is the elementary symme-
trie function of order k and h (A) is the complete symmetric
function of order k, namely the sum of all monomials of de-
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gree k in Al""’xn each with coefficient one. We found the

generating series

Ioc (Mth = det (1 + tA) (3.26)
k20
Ko -1
Ioh (A)tK = det (1 - tA) (3.27)
k=0
K K

We introduce now the sum-of-powers rk(A) = A1+...+Xn s
or what is the same rk(A) = Tr(Ak) (put again A in triangular
form). The corresponding generating series is expressed in the
following various forms:

ALt . At
k _ 1 n
kilTk(A)t —m + ... +T—:—)\:f N (3.28)
Do (Mt = e (a1 - eyl (3.29)
k21
£t (A)tK = -t 9 Tog det(1 - tA) ; (3.30)
k=1 K at s ’ '

for the last equality, use the product formula

det(1 - tA) = (1 - apt) ... (1 - A t) . (3.31)
Formula (3.30) can easily be inverted to give

det(l - tA) = exp - T (M)th/k . (3.32)
k21

We can now restate formulas (3.26) and (3.27) in the
following form

[}
=
—
x>
~—
t
n

(-1 e (ke (3.33)

exp

z z
kz0 kz1

ek (3.34)

=
=
—
x>
~—
t
n

z exp I Tk
kz0 kz1
If we expand the exponentials and compare the coefficients of
the various powers of t, we get the following variants of

Waring's formula:
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h(A) = = U . (3.36)

In both cases, the summation is restricted to the systems
@y,...,0, Of positive integers (including 0) such that

l-al + 2.a2+ cen +k-uk = k. This latest restriction expresses
the homogeneity of the functions s h, and 7, : 1if we choose
a basis of V and represent accordingly A by a matrix (aij)’
then ck(A), hk(A) and rk(A) are polynomials in the entries aij’
homogeneous of degree k.

If U(t) and V(t) are power series such that U(t)=expV(t),
one gets U'(t) = V'(t)U(t) for the derivatives. Using this re-
mark in connection with formulas (3.33) and (3.34), we derive
the following recursion formulas (due to Newton) (recall co(A)=

ho(A) = 1)
m = 2 03ty o (3.37)
pcp ) j=1 J p-J i )
p
phy(A) = jil i(A) ho_j(A) . (3.38)

From these recursion formulas, one derives determinantal for-
mulas due to Plemelj, namely

Ty T, 17273
¢y =1y s 2ley = det( » 3leg =det|2 1y 1,

1l 0 1,

and,in general, p!cp(A) is a p x p determinant whose nonzero
entries are given by Uiy = Tj-i+1(A) for j 2 i and uj+1’j=p-j
for j=1,...,p-1. To prove this statement, develop the p-th de-
terminant according to its first row and get back to formula
(3.37). To get a similar formula for hp(A), the best is to use
a duality principle, which follows obviously from formulas
(3.33) and (3.34): <Zn every formula, one can exchange cl(A)
with hl(A)""’ck(A) with hk(A),... provided that at the same
time one multiplies T, (A) by (-1) -

So far, we considered the generating series as formal po-
wer series. If we care about convergence, the following has to
be said:
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(a) If n is the dimension of V, then ck(A) = 0 for k > n.Hence

the series (A)tk 28 a polynomial of degree n zin t

Lc,

kz0
(and so does det(l + tA)).

(b) If Ay,...,A are the eigenvalues of A, denote by llAIlsp
the maximum among the numbers lel,...,lxnl (the so-cal-

led spectral radius of A). Then the series I hk(A)tk,
) kz0
z Tk(A)tk and I rk(A)tk/k have the same radius of con-
k=1 k=21
vergence equal to the inverse of ||A||Sp.

3.8. In the preceding subsections, ck(A), hk(A) and rk(A)
have been considered as symmetric functions of the eigenvalues
Aps-«rsr, OF A and our relations are in fact theorems about
symmetric functions. An operator in the finite-dimensional case
can be transformed into a triangular form, and we made exten-
sive use of this possibility. Nothing of this sort exists for
operators acting on Hilbert or Banch spaces. It is therefore
not without interest to sketch alternate proofs of some of the
previous results. In the infinite-dimensional case, formula
(3.26) shall be a definition of the determinant, with a pro-
per interpretation of cp(A). One convinces easily oneself that
everything can be deduced from the Waring formulas (3.35) and
(3.36).

As Cauchy remarked already, any permutation ¢ in the
group Sk can be decomposed into cyeles. If there are g cycles
of length l,...,ak cycles of length k, obviously l-a1+2-a2+...
+k+a, = k and the signature of o is (-1)k+a1+°"ak or
(-l)lé+S where s is the total number of cycles. Moreover, the
number of permutations o corresponding to given values of
S ERRRNT T is k!/alllal v ak!kak. Introduce a functionaon the
group S, whose value I(c) is equal to t,(A) 1. T (A) k

It is characterized by the following two properties.
(a) 1 28 a clase funetion, that is l(c) = I(rcr_l) for o,t
in Sy.
(b) If o Zs decomposed into cyecles (1l...a)(a+l...a+b)
(a+b+1l...a+b+c) ..., then I(oc) Zs equal to ra(A)rb(A)rc(A).
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Moreover, our formulas take the following form:

ke (A) = I (sgno)-1(o) , (3.35bis)
cESk

kth (A) = 2 (o) . (3.36bis)
cESk

Here is a direct proof. For clarity, denote by n  the ac-
tion of the permutation o on the space Vﬂk defined by formula
(2.3), namely

ns{x18 ... ﬂxk) = xc_l(l)ﬂ e ﬂxc_l(k) . (3.39)
The operator P, = (k!)'lcé n, 1is a projection of vk onto
SkV and similarly P_=(k!)'1kcé (sgno).m  1is a projection of
VK onto 1KV; they both commute with ARK A8k

k k

. The operator-P_
A on S"V and with O on a subspace of Vek

coincides with S
supplementary to SkV; hence the trace hk(A) of SkA is equal to
the trace of the operator P+.Aﬂk acting on Vﬂk. Similarly c (A)
is equal to the trace of P_-Ask. Hence the formulas (3.35bis)
and (3.36bis) are true with I{c) defined as Tr(nc-Ask). It re-
mains to check that this function I enjoys properties (a) and
(b) above.

As for (a), it follows from the cyclic invariance of the
trace and the permutability of Ask with =, namely

I(rcr-l) =Tr(w_= ﬂ—lAﬁk) = Tr(m

T 0 T

-1,8k
o't A ﬂr) -
= Tr(x_ABKy

s = I(o)

To prove (b), introduce a basis €1se--8 of V, and denote by
A(i,J) the matrix of A with respect to this basis. The tensor
products eilﬂ ... Be; make up a basis of Vak; the matrix of

ak K
A with respect to this basis is

Aligseensiys Gysenend) = Aligsdg) e Aliy3d)  (3.40)

and moreover = transformse; @ ... fe, into e; _4 a...
1

(o]
e; 1 . It follows k o (1)

Yo" (k)
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I(c) = i Z.i A(il,ic(l))...A(ik,ic(k)) . (3.41)
1°°° 'k
If ¢ is decomposed into cycles (l...a)(a+l...a+b)(a+b+1l...
a+b+c) ... , then the term under the summation sign can be writ-
ten as the product of the factors

AT aip)A(Tp0ig) e A(T, 12T )A(T, 1) = 3,

LYGOURTS INPOT.YE FUPIS SIPS POV TS FOVEPES ST .YE FUTER SRS EN

The sum in (3.41) breaks accordingly into a product. The sum of
terms of the form Ja gives the trace of Aa, etc ... hence

b

I(g) = Tr(A?)Tr(A°)Tr(AS)...

= (AT (A)T (A)

This ends our proof.

One particular case of the preyious results is worth men-
tioning, Namely, consider the cyclic permutation Y| acting on
vﬂk by

Ylxy 8 x5 8 ... Bx,) = X 8 x; 8 ... Bx,_, - (3.42)

Then we get

k 8k

Tr(a%) = Tr(a® Ly . (3.43)

More generally, let Al,...,Ak be linear operators acting on V;
define the operator A;& ... 8A, acting on vk in the following
way

(A18 ... BA) (X8 ... 8x) = Ajx,8 ... BALx, . (3.44)

Then
Tr(Ay ... A = Tr((Alﬂ - ﬂAk)-yk) . (3.45)
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4, Some Integration Formulas
4.1. The basic formula reads as follows, in the simplest form

~1x? dx = 1 ) (4.1)

The proof uses a well~-known trick. Denoting by I the previous
integral, we get

2,2
12 - ffe-“(x ) gy dy

or, using polar coordinates,
2 © 2n 2 © 2 0

-Tr

1°=[ rdr [ e o = [ e 2nrdr = [ e Ydu = 1 .
0 0 0 ) )
(u=m7r")

Since I is obviously positive, we get I = 1.

4.2. Let E be a real euclidean space of dimension n. We denote
by x-y the dot product of two vectors. It is bilinear and sym-

metrical, and x¢x > 0 unless x = 0. Let the basis €1s.0es€p

of E be orthonormal; hence ejte; = 1 and ei°ej =0 for i £ j.

Consider the volume form w such that m(el,...,en) = 1. A clas-

sical calculation gives the following formula (where XpseensX

are arbitrary vectors in E)

n

2

w(xl""’xn) = dEt(Xi . Xj) . (4.2)
In particular, one gets w(ei,...,eé)2 =1 if ei,...,eé is ano-
ther orthonormal basis of E. Up to a sign, « is therefore inde-
pendent of any orthonormal basis of E.

To the volume form w is associated an integration element
d"x in E. Explicitely, one gets

n 1 1

fEf(x)d x = oo f f(xTepr. . ax"e Jdx L. dx" (4.3)
for every orthonormal basis eys...,e of E. More generally,

n
from (4.2), one derives

[ofx)d" = o] fixtepr e gt axt L ax" (4.4)
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for an arbitrary basis (e ) with 9gg = ©€y°@

o' €8 and g=det(g

as)'

4.3. From the basic formula (4.1), one gets by multiplication

n .
[...] expl-n _Zl(x1)2} dx1 codx” o= 1, (4.5)
‘I =

To get an invariant formula, use (4.3) and get
[g ™ X d™ = 1. (4.6)

More generally, consider a symmetric positive-definite
operator A in E. Hence Ax.x > 0 unless x = 0, and Ax.y = x-Ay.
It is legitimate to take as a new dot product of the vectors
x and y the scalar Ax.y. From subsection 4.2, one gets the
existence of a volume form wy on E, associated to this dot pro-
duct, and unique up to sign. From (4.2), one gets

2
WalXpseensXy)™ = det(Axi-xj) (4.7)
for an arbitrary basis XQsesenX of E. Specialize x; to ey

and notice that the matrix (a;.) of A with respect to the or-

iJ
thonormal basis ej,...,e is given by a5 = Aei-ej. We get
2
walegseeesep)” = det(aij) = detA. (4.8)

Comparing with the definition of w , we conclude
oy =+ (detA)/% 0 ) (4.9)
For the corresponding integration elements, we obtain dzx =

(det A)1/2
in formula (4.6). Conclus<ion

d"x. We can now replace x+x by Ax+x and d"x by dzx

[ e—ﬂAx-x " 1/2

e x = (det A)”

(4.10)

The most customary form is obtained by replacing A by A/27 and
reads as follows

fo expl- 5 Axoxd d"x = (2n)"%(det a)"/2 (4.11)
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n/2

The normalization factor (2m) may be troublesome when ex-

tending these formulas to the infinite-dimensional case.

4.4. MWe need a complex form of the previous formulas. “e con-
sider now a finite-dimensional Hilbert space H. That is, H

is a complex vector space of dimension n, and there is given a
scalar product <x|y> for vectors in H, with the following
properties

<xlyp + yp> = <xly> + <xlyy,> (4.12)

<x[}‘y> = }‘<x|y> . (4.13)
*

<ylx> = <xly> , s (4.14)

<xfx> > 0 unless x = 0 . (4.15)

where ¢® s the complex-conjugate of a complex number c. We
are following the physicist's convention (adopted also by
Bourbaki!) that <x]y> is Tinear in y, and conjugate linear
in x.

We denote by A" the adjoint of any operator A in H , so

<Ax|y> = <x|A*y> . (4.16)
Now assume that the operator A satisfies the inequality
Re<z|Az> > 0 unless z = 0 , (4.17)

that is A = B + iC with g* = B, ¢* = ¢ and B is positive-defi-
nite <z|Bz> > 0 for z # 0.

To define an integration element in H , let us remark
that the dot product x.y = Re<x|y> enables one to consider the
complex hilbertian space H of (complex) dimension n as a real
euclidean space E of (real) dimension 2n. The dot product de-
fines an integration element in E, (see section 4.2), which we
denote by de.

Let S be an invertible selfadjoint operator in H . It
can be diagonalized, hence there exists an orthonormal basis
€1seees€p in H and nonzero real numbers SpaeeeaSy such that
Se\.j = sje:j for 1 s j £ n. Put €j4n ° iej and Sj+n = s:j
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for 1 £ j £ n. Hence S ERERIL-P™ is an orthonormal basis of the
real euclidean space E, and Sej=s.e. for 1 £ j < 2n. Since the

JJ

determinant of S is equal to Sy---S,s We get the following

n
change of variable formula

dy(sz) = (det S)%d,z . (4.18)

4.5, After these preparations, we state the complex version of
formula (4.10), namely

-1

Iy e~ ZlAz> dyz = (det A) (4.19)

To prove it, we first remark that A = B +iC where B is selfad-
joint and positive-definite. Hence B can be diagonalized with
strictly positive eigenvalues, and there exists a selfadjoint
operator S in H such that BS2 = 1. Set D = SCS; it is a selfad-
joint operator. Using (4.18) we see that the integral

1 =] e""<zlAz> dyz is equal to
H

1= o T<SZ[ASZ>

d, (S
" H( z)

-r<z|(1+iD)z>

2
(det S) IH e dyz

Notice that (det S)2 = (det B)-l. Moreover, since D is selfad-
joint, it is again diagonalizable with real eigenvalues
dy ... dn' We obtain

n * .
1= (det B)"! 1 [ "2 (I*¥idj)z g, . (4.20)

Here dz is put for dxdy if z = x + iy. Now using polar coordi-
nates in €, one derives immediately

/ e-vralzl2 dz = a1 (4.21)
[8

for any complex number a such that Rea > 0. Hence

I = (det B)"! -1

=

(1 + id,
j=1 3
- (det B)" ! det (1 + i)~}
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But

det(1 + iD) = det(l + i5CS) det(1 + is%¢c)

i

1 1

det(l + iB "C) = (det B) “det(B + iC) .

This finishes the proof of (4.19).

4.6. To conclude this section, we shall rewrite (4.19) as
follows
n n

[ exp-{: = z?ajkzk} dziAdzlA cen Adzz Adz

N i=1 k=1 n

1

=(2ni)"(det A)” (4.22)

for every complex matrix A = (ajk) whose selfadjoint part
B = %(A + A*) is positive-definite. We remind the reader that

for z = x + iy, with complex conjugate 2* = x - iy, one has

dz*Adz = 2idx A dy . (4.23)
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PART TWO:

FREDHOLM DETERMINANTS

5. Fredholm Theory of Integral Equations

5.1. For orientation purposes, we record here a few formulas
in the finite-dimensional case. We consider a vector space V

with a finite basis e;,...,e and a linear operator A acting

on V, whose matrix with respgct to the previous basis we de-

note by (A(i,j)). Let us denote by x{(i) (for (1 s i £ n) the

coordinates of a vector x. Then the coordinates of the tran-
sformed vector Ax are given by

(Ax) (i) = ACis3)x(3) (lsisn) . (5.1)

1

nm~M S

J
Moreover, according to formula (3.10), the determinant of 1+A
can be expanded as follows

det(1+A) = 3 (p1)™1 & ¢ ) . (5.2)

p20 11...ip il N |

The series breaks up after the term for p = n and the minors
of the matrix A are defined as follows

a( ) = det  (A(iadq)) . (5.3)
Jgp e d lgks=p
P 1s1sp
After some routine calculations with determinants, Cramer's
formula for inverting a matrix takes the following form: the
operator inverse to 1 + A exists iff the determinant A of 1+A
does not vanish, and it is then of the form 1 - A'IB where the

matrix B is given by the following power series expansion:

o -1 ey
B(i,j) = Lo (p!) ilf.i al ) (5.4).
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Again, the series breaks up after the term for p = n-1 since
the minors of order p+l > n are all zero.

5.2. We now replace finite sums by integrals using the well-
known analogy. Let us denote by @ a compact subset of some eu-
clidean space mm and by dx the integration element in R™. An
integral operator with kernel K is defined by the formula

Kf(x) = IQK(x,y) f(y) dy . (5.5)
Let us dnote by C(q) the Banach space of complex-valued conti-
nuous functions on &, with the norm ||f|| = sup |f(x)|. One
XEN

defines C(@ x @) similarly. Then, if K belongs to C(2 x @),
the function Xf defined by (5.5) belongs to C(e) if f does,
and the linear operator feKf in C(Q) is bounded with norm

C s |[|K[]-vol (R); here we denote by vol(R) the volume

[ dx of @.

@ Everything in the rest of this fifth section extends
verbatim 1if one replaces @ by a general Hausdorff compact
space, integration being taken with respect to a regular Borel
measure on Q. This extension may be useful in some problems of
classical statistical mechanics.

5.3. Let us denote by 1 the identity operator in C(Q); it is
not an integral operator of the sort previously defined, since
we consider only continuous kernels K(x,y) and not singular
kernels like the Dirac &§(x-y).

Fredholm proposed (around 1900) to define the determi-
nant of the operator 1+K (taking f into f + Kf) by the fol-
lowing formula, analoqous to (5.2):

XpeeoX

det(14K) = = (p!) Y [ ...f af P) dxq...dx . (5.6)
p20 Q Q xl...xp P

Again the minors are defined by analogy

sCVTTP) = det Kixgyy) s (5.7)

Y1e.oY 1<j<p
1 P lsksp

they are jointly continuous functions of their arguments.
To prove the convergence of the series (5.6), one uses a de-
terminant inequality discovered by Hadamard (and in a weaker
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form by Fredholm):
ldet Al = [|3{[], -... [|5p||2 . (5.8)

Here A is any p x p matrix with complex entries, columns

d1s-nns ép in ¢P, and ||5|[2 is the hilbertian norm of a vector
- . p
a in C":

ilal|

t

([a1|2 + oLl + |ap|2)1/2 . (5.9)

To prove (5.8), we may assume that det A # 0, that is the co-
lTumns El,...,ép are linearly independent. By a well-known geo-
metric construction, we may find new vectors Bl,...,Bp mutually
orthogonal in ¢P, such that Bj - Ej be a linear combination

of the vectors 51""’5j-1' From the properties of volume
forms explained at length in section 1, it follows that the ma-
trices A with columns 51,...,5p and B with columns Bl,...,Bp
have equal determinants. Moreover Ej - Bj is also a linear com-
bination of Bl""’Bj-l’ hence it is orthogonal to Bj; this
implies the inequality |l5j1|g l|5j|[ by Pythagoras'theorem.
Finally, the property that Bl,...,Bp are mutually orthogonal
can be expressed by the fact that1 8%¥3 s a diagonal matrix
with diagonal entries IIBII(Z,...,|[BPI|2. Hence

e
|det A]° = |det B|? = det(8¥3) =

1B 112 o015, 112

2

- ) -
< AP

ol
and Hadamard's inequality (5.8) follows.

Using Hadamard's dinequality, we get the estimate

X1eeaX p p
1 2 2
|A( p)| s z 1K(xj,yk)| s
Yie++¥p j=1 k=1
hence
XqeeoX
1 2
| PY) s pP/2 fk|yP : (5.10)
yl...yp

lhere B* is the matrix hermitian conjugate to B,
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By definition, the determinant of 1+K is I cp(K) With co(K)=1

and p=0
XqeoeX
e (K) = (p)" g .l st Pydxy...dx (5.11)
P Q Q 1 P
Xl-o.Xp
for p 2z 1.
Using (5.10), we obtain the inequality
le (k)| = pP/2 [1KIIP vol(2)P/p! (for p 2 1). (5.12)

P

By Stirling's formula, there exists a constant C, such that
0 <C,<1andp!2 Coppe'p V21p; therefore we get the estimate

lep(K)] s c;tel1kl] voi(a) p 1t/ 2erP (5.13)
for p 2 1, hence 1im lcp(K)ll/p = 0. The convergence of the
>
series I cp(K) follows.

5.4. We can view the Fredholm determinant as a functional
K~ det(l + K) on the Banach space C( x 2). From the basic

estimate (5.13), one infers that the series I cp(K) converges
pz0
uniformly on the set ||[K|| S R, for every constant R > 0. Hence

det (1 + K) is acontinuous funetional of K.

It follows also from (5.13) that det (1 + zK) = ¢ ¢
2

(k)zP
p
p20

18 an entire function of the complex variable z. More

can be said about analyticity. For Kl""’Kp in C(axa) let us

define
-1
KyseeosK ) = (p! [ ... det K.(x. dxq...dx .
cp( 1 p) (p!) . jg{ls§gp J(XJ’Xk)} X1 Xp
1sksp (5.14)
Obviously, cp(Kl,...,Kp) is a multilinear functional of
Kl""’Kp . Moreover, by construction,
det(l + K) = = ¢ (K,...,K) (5.15)
20 P
p
(with p arguments equal to K). Ifwe set C5=C;1vo1(9)pp'p/zep,
one gets
Tim (¢cH)YP = o . (5.16)
b P
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Moreover, from Hadamard's inequality (5.8), one gets the esti-
mate

Lep(Kpseeaakp) s cp Tk I oo TTK T (5.17)

by a proof completely analogous to the proof of (5.13), The
last three formulas express that K= det(l + K) <s an entire
funetion on the Banach space C(2) in the very strong sense
used by Bourbaki [3. p.281.

As a corollary, suppose that K,(x,y) is an analytic fami-
ly of kernels 1in the following sense: D being a domain in the
complex space t", the function (Asx,y) > K (x,y) is continuous
on D x & x 2, and moreover K, (x,y) is an holomorphic function
of » for x,y being fixed. Then the determinant det (1 + K,) <s

an homomorphic funetion of A Zn D.

5.5. We come now to the multiplicative property of Fredholm
determinants. Using the analogy between finite sums and inte-
grals, the usual matrix product suggests the following product
for continuous kernels

(KL)(x,2) = IQ K(x,y)L(y,2z) dy . (5.18)

It is obviously linear in K and in L and nossesses the expected
associativity properties:

(KL)f

K(LF) (5.19)

(KL)M

K(LM) (5.20)

where f is a continuous function on @ and M another continuous
kernel.

Let K and L be kernels, and consider the operators U=1+K
and V=1+L acting on C(Q). The product UV is of the form 1+M with
a kernel M = K + L + KL. We claim:

det (1+K) det (1+L) = det (1 + K + L + KL) . (5.21)

This could be proved by a brute force calculation. We prefer to
resort to an approximation procedure.

A decompoiable kernel is a function K in C(Q x @) of the
form K(x,y) = Zl f (x)gu(y) for fy,....f and gq,...,q,. in

a r
Q=
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C(Q2). Such functions are dense in the Banach space C(ax?) (a
well-known lemma of Dieudonné [5, p.141],or an obvious corolla-
ry of Weierstrass' approximation theorem). Since the determi-
nant is a continuous functional on C(2 x @), it is enough to
prove (5.21) for the case of decomposable kernels X and L.

Suppose now that K and L are decomposable kernels. Using
Sehmidt's orthonormalization process, we find a family of con-
tinous functions fl,...,fr on @, orthonormal in the following
sense:

f Fa(X)fg (x)dx = 8 (for 1sasr, 15gsr), (5.22)

and complex matrices A = (a,g) and B = (b,g) of size r x r
such that

K(x,y) fa(x)aas fs(.Y) > (5.23)

r
z
a=1 B=1
r
z

Selie ]

Lix,y) = fou(X)byg faly) . (5.24)

a=1 B8=1

The kernel M

i

K+ L + KL admits of a similar description

r r

M(x,y) = f (x) casfsiyi (5.25)

L P

a=1 g=1 ©
with the matrix C = (cqg) given by € = A + B + AB. By the mul-
tiplication rule for finite determinants, we obtain therefore

det (1 + A) det 1 +B) = det (1 +¢C) . (5.26)

To establish the multiplicative property (5.21) for kernels,
it suffices to prove the equality

det (1 + K) = det (1 + A) (5.27)

for a kernel K as in formula (5.23).

The proof of (5.27) rests on a generalization of the
multiplicative property of determinants known as Binet—Cauchy
formula. Namely, let U = (“ij) be a matrix of size m x n and
V = (vjk) a matrix of size n x p, so that the matrix W = UV is
of size m x p. Define the minors of r-th order of U by
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u YTy - det . (5.28)
Jyeeod 1sasr  'odg
r 1<B<r

and similarly for the minors of V and W. Then

i i Jieend
1 _ B TR IR TR RS BN P 1
kl“‘kr NEREEERN Jpe--3, kl“‘kr

In invariant form, this can be expressed as follows. Set E = tm,

F = In, G = ¢P. Then the matrices U, V and W correspond to ope-
rators u: F > E, vi G > F, w¢: G > E such that w = uv. Moreover,
there exists an operator A"u: A"F > ATE characterized by

(Aru)(xlA coe AxE) = u(xg)A L Au(xr) for vectors xj,...,x
in F. One defines similarly A"v and p"w. From w = uv one de-

r

rives immediately Awo= a"u . Arv. In natural basis for p"E

and ArF, the entries of the matrix of Aru consist of the minors
i .ir

U( ). Hence formula (5.29) is the matrix version of
jl...j

Aw o= a"u e A"y,

Introduce now continuous functions on o = ax ... xa

(p factors) as follows

fal...ap(xl""’xp) = det f“i (Xj) s (5.30)
that is
f (XqseeesX,) = T (sanc)-f (x7)...f (x,).
al...ap 1 p GESp ac(l) 1 % (p) p
(5.31)

From the orthogonality property (5.22), one derives.

(XqseeesX )dxl...dxp =

[ ... F L (Xqee X)) fBl" 0

Q Q %pccc p p .Bp

= pl§ .. 8 (5.32)
“181 apsp
for ay< ... <a , By< ...<B . Moreover, from Cauchy's formula

P p
(5.29), one derives
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a( Py = o AT Py (KqseonsX )"
y1oeY, Oyl By 8 Ageeoy 01 P
Sl<..<8p
f, ... (¥1see:5Y,.) (5.33)

X Otl...t!

[ Y p)dxl...dxp =p!l oz A Py,
e 2 xl...xp a1<..<ap al...ap
(5.34)
and by summing over p, one obtains finally
; . al...ap
et (1 + K) = = b3 A( ) . (5.35)

p20 alc.cap S RRRL

OQur contention (5.27) follows by using formula (3.10) for
matrices.,

5.6. A crucial property of determinants in the finite-dimen-
sional case is the following criterior: an operator A acting
linearly on finite-dimensional vector space V is invertible iff
jts determinant is not zero. An analogous property holds for
integral operators: <f K Zs a continuous kernel, the operator
1+K on C(Q) possesses an inverse (necessarily bounded by ge-
neral results of functional analysis) Zff the Fredholm deter-
minant det (1+K) Zs not szero.

The proof consists of three steps:

(a) Suppose that T is an inverse for 1+K, hence T(1+K)=1,
or T =1 - TK. We claim that TK is an integral operator. Indeed,
write Ky(x) for K(x,y). Then yr Ky is a continuous map from
into the metric space C(q) (by uniform continuity of K). For y
in @, set Ly = T(Ky) and let L(x,y) = Ly(x). Then y»r Ly is a
continuous map from ¢ into C(Q) or, equivalently, the function
L belongs to C(q x @). We claim that the integral operator with
kernel L is equal to TK. This is easily verified if K is a de-
composable kernel of the form K(x,y) = 51 fa(x) ga(y) (with

o=

f1oeeesflsgys..-59,. in C(a)). The general case is obtained by
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using a sequence (K,) .
vim| [K - K | = 0.

N>

of decomposable kernels such that

(b) Suppose that 14K is invertible. By step (a), there
exists a kernel L such that (1+K)(1l-L) = 1. By the multiplica-
tion property (5.21), one gets

det (1+K) det (1-L) = 1, ,

hence det (1+K) # 0.

(c) It remains to prove that when the Fredholm determi-
nant of 1+X is not zero, the operator 1+K is Zinvertible., This
will be done by providing an explicit formula for the inverse.
For every integer p 2 0, one defines a continuous kernel Lp by

X Xl...Xp
Lo(xsy) = [ oo 8¢ ) dxq ... odxg . (5.36)
P Q S SEERE P

From the basic estimate (5.10), one derives

L (x,y)] s (pr1)PFI2 | PHL yor ()P, (5.37)

P

Using Stirling's formula as in section 5.3, it follows that the
series I (pl)_le(x,y) converges uniformly on 2 x @, hence
20

its sum L(x,y) defines a continuous kernel.
From its definition, the Fredholm determinant & = det(1l+K)
is given by the series I yp/p! where y _is defined as follows:

pz0 P
XqeeoX
yoo= [ .o a P) dx; ... dx . (5.38)
P Q 2 xp...x P
p
] X Xpee X
Notice that A( ) is the determinant of the matrix
Y Xpee X,
K(X,y) K(XsX7) veonn. K(x,
[KOy) KOox) (x,xp) \
K(XI,V) K(Xl,xl) ..... l\(Xl,Xp) .
K(xp,y) K(xp,xl) ..... K(xp,xp)
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Developing this determinant according to its first row, one
obtains

X XpeeeXp XpeeeXp
Y ) = KOy ) -
Y XpeeXp SERRET ) (5.39)
p X: XqeeaXioasX
T KGoxg)a( T LT ITR
j= Yo XpeeeXy Xp

We use the standard convention that a term with a carret
has to be omitted. Integrating with respect to x; ... Xp gives
then

Lp(x,y) = YpK(XsY) - P IQK(xsZ)Lp_l(Zsy)dZ ’ (5'40)

notice that the labelling of the integration variables being
irrelevant the p terms in the summation of (5.39) give the
same integral. Notice also the 1imiting case Lo(x,y) =YOK(x,y)
for p = 0 (and Yo = 1!). Since L(x,y) is given by the uniform-
ly convergent series §0 Lp(x,y)/p!, integration term by term
is legitimate, and from (5.40) one gets

L(x,y) = aK(x,y) = [ K(x,z)L(z,y) dz (5.41)
Q

In terms of kernels, this formula can be stated as follows
(where & is a constant):

L = aAK - KL . (5.42)
X XpeeoX
By a similar proof, expanding the determinant A( p)
Y XpeeeXp
according to its first column,we get
L = AK - LK . (5.43)

It is time to assume & # 0. The previous formulas (5.42)
and (5.43) just mean that the operator 1 - KlL 18 an Tnverse
for 1 + K. The reader will undoubtedly notice the analogy of
this statement with formula (5.4).

Let us just add one remark. An inverse of 1+K is qgiven

by the geometris series (1+K)'1 = 1-K+K2... =1 - ZO(-l)pr+1.
pz
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By definition, Kp+1 is given by a p-fold integral

Kp+1(x,y) = fQ...fQ K(x,xl)K(xl,xz) e K(xp,y)dxl..dxp s
(5.44)

hence the estimate |Kp+1(x,y)l s [|k||P*l vol(2)P.rhe conver-

gence of the series M = I (-l)pKp+1 is therefore guaranteed
_ pz0
if [IKIT < vol(e) 1 but may fail in gemeral. Multiply M by

the convergent series A = I yp/p!, and rearrange the terms
pz0
according to Cauchy's rule for multiplying series. We get

AM = ¥ L!'/pl! with
pz0 P
T VoL 2 _ 2 3
Lo = YK s L1 = viK - YoK™s Lé = YZK-ZYIK +2YOK v o
Formula (5.40) provides a recursive definition of the kernel
Lp, and the equality LE = Lp follows easily. Using Hadamard's

inequality (5.10) as above then shows that the series =& Lé/p!
pz0

converges uniformly on @ x Q. Hence, after rearranging, the

product MM is given by a convergent series, even if M does not.

5.7. Using once more the analogy between sums and integrals,
we are led to define the trace of a kernel K as the scalar

Tr(K) = [ K(x,x) dx . (5.45)
Q

The trace of a product of p kernels is given by the multiple
integral

Tr(Kl...Kp) = IQ...IQ Kp(x1s%5)Ko(Xpsx3) ..

Kp_l(xp_l,xp)Kp(xp,xl)dxl ...dxp

(5.46)

It is then obvious that the trace Tr(K1 ce Kp) tg invariant
under cyclic permutations of Kl""’Kp'

We proceed now to the proof of an analogous to Waring's
formula, namely

det (1 - zK) = expi- L Tr(k"yz"/n} . (5.47)
nz
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Notice the estimate |Tr(K")| s [|K]||"vol(g)",which follows
from (5.46); the series 3z Tr(kK™)z"/n 1is then guaranteed to
converge when ]z]<[|KjT1n5;1(Q)_l and the identity (5.47)
holds under this assumption.

Denote by I(oc) (for ¢ in the symmetric group Sp) the
following integral

I(c) = [ ...jQ K(xl,xo(l))... K(xp,xc(p))dxl...dxp

(5.48)
XeeeXp
By expanding completely the determinant 4( ), one gets
Xl...Xp
y. = I (sgna) - I(o) . (5.49)
P oeSp

Moreover, one does not change the integral (5.48) by relabel-

ling the integration variables X; as yT(j), for t in Sp. It
then follows easily that
_ -1
I(¢) = I(to1 7) R (5.50)

that is, I(o) 1is a class function of o in Sp. Finally, if o
is decomposed into cycles (l...a)(a+l...a+b)(a+b+1l...a+b+c)...
the integrand in (5.48) <can be written as a product of the
factors

K(XI’XZ) e K(Xa-l’xa) K(Xa’xl) = Ja

K(Xa+1’xa+2) . K(Xa+b—1’xa+b) K(Xa+b’xa+l) = Jb

The integral (5.48) splits accordingly, and by (5.46), we get

I(s) = Tr(k?) Tr(x®) Tr(k%) ... . (5.51)

The rest of the proof of formula (5.47) is now completely si-
milar to the proof in the finite-dimensional case (see subsec-
tion 3.8).

The consequences of formula (5.47) are derived as in sub-
section 3.7. Taking the logarithm, we net

log det(1l - zK) = - ¢ Tr(k™Mz"/n (5.52)
nzl
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for the principal branch, in the domain |z]| < HKll_1 vo1(9)_1.

By derivation, this implies

9 Toa det (1-zk) = - = Tr(k)z""! = —Tr(k(1-k2) ™)
nzl (5.53)
in the same domain. Recall the series expansion
det(l + zK) = & ¢ _(K) 2P s (5.54)

pz0 P

where cp(K) is defined by formula (5.11). We get an inductive
definition of these coefficients

pe, (K) = I ey j(K) (for pz1). (5.55)

Finally, gp(K) can be given in determinantal form (with
Ty o= Tr(kd)):
Tl 12 13 . Tp_z Tp-l Tp
-1 7T T "p-3 Tp-2 Tp-1
0 P2 Ty ..ol Ty Tpez Tpe2
p!cp(K) =det . .. (5.56)
0 0 0 . 2 T T
1 2
0 0 0 .o 0 1 L3

5.8. Fredholm's alternative(or at least the main statement in
in) reads as follows:
e« either the operator 14K is invertible,
e or there exists a nonzero function f in C(Q) such that
(1+K)f = 0.

According to the theorem proved in subsection 5.6, the first
case occurs if det(l+K) # 0 and the second if det(l+K) = 0.
Otherwise stated, if the Fredholm determinant of 1+K is 0, then
there exists a nonzero function f in C(o) such that (1+K)f = 0.
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Consider the entire function D(z) = det(l - zK), with
D(0) = 1. From the previous statement, one concludes that a
nonzero complex number X is a zero of this entire function,
namely D(X) = 0, iff there exists a nonzero function f in C(Q)
such that (1-2K)f = 0, or equivalently Kf = x-lf. Hence the
zeroes of the entire function D(Z) are the inverses of the
nonzero eigenvalues of the operator K. In typical applications
of Fredholm theory, the integral operator with continuous ker-
nel K shall be the inverse of some differential operator P,
and the equations Kf = x'lf and Pf = Af are equivalent. In
this case, the zeroes of the entire function D(Z) are the
eigenvalues of the operator P.

The Fredholm alternative was established by Fredholm
using computational methods. The method used in modern text-
books is due to F.Riesz and relies on a compactness property
of the integral operators, namely: the closure of the set of
functions Kf, for f i<n C(Q) of norm =1, is compact in the me-
tric space C(Q). This is proved using a sequence of decompo-

sable kernel K converging uniformly to K on Q x @ ; then

n’
the integral operator with kerne]SKn is of finite rank and con-

verges in operator norm to the integral operator with kernel K.

5.9. Integral operators with continuous kernels are special
cases of Hilbert-Schmidt operators (see subsection 7.16). The
eigenvalues of these operators satisfy therefore the following
properties:

(a) the nonzero eigenvalues of the operator K can be arranged

into a sequence (Xj)jzl with lel 2 |x2| 2 . and
Tim Xj = 0, each eigenvalue being repeated according to
J-)m
a well-specified multiplicity.
(b) The sum I Ix-lz if finite, but in general I |r.| <s
. Jj . Jj
Jjz1 jz1
not fintte.
(¢) For the traces of powers of K, one gets
Tr(k") = = A" for every integer nz2 . (5.57)

jz1 d

It may occur that there is only a finite number of nonzero
eigenvalues for K, possibly none of them. In this case, for-
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mula (5.57) remains valid with an obvious interpretation, na-
mely Tr(Kn) = 0 (for every integer n 2 2) if there is no non-
zero eigenvalue of K.

We can now derive a product formula for the Fredholm de-
terminant, namely

4

n (1 - a:z)e J (5.58)

det(l - zK) = e j

for every complex number z., If there is no nonzero eigenvalue
of K, the product in (5.58) has to be interpreted as 1, that
is det(l - zk) = e 2TM(K)
the infinite product in (5.58) converges uniformly on every

in this case. We mention also that

bounded domain of €, since L |>\'|2 is finite.
jz1 3
To prove formula (5.58) define two entire functions by
the formulas

) eZTr(K)det(l-ZK), D,(z) = T (1-qu)esz

Di(2)
1 j21

(5.59)

We want to prove the equality D (z) = D,(z). By analytic con-
tinuation, it suffices to prove that these functions, with va-
lues Dl(O) = DZ(O) = 1 at the origin, have equal logarithms
around the origin. By formula (5.52) one gets

-logDy(z) = = Tr(k") z"/n (5.60)
nz2

whenever |z] < (lKirlvol (Q)'l.

Moreover, using the usual
Taylor series for the logarithm , one gets

-logD,(z) = = % (a.z)"/n (5.61)
jz1 n22 J
2¢1/2 . . .
whenever |z] < (& [r.]%) . This double series is then abso-

; J
jz1
lutely convergent, hence can be rearranged as

-logdy(z) = = (£ 1%3z"/n (5.62)
nz2 jz1 Y

Using now the equality of Tr(Kn) and zlxg (formula (5.57)),
jz
one deduces -logDy(z) = -logD,(z), hence D;(z)=D,(z) for lz]
small.
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From the formula (5.58), one deduces that the multipl<-
eity of A as a zero of the entire function D(z) = det(l - zK)

is equal to the multiplicity of X = as an eigenvalue of K.

5.10. One central difficulty in Fredholm's theory is that the
identity (5.57) <s wvalid for n22 , but not in general for

n =1, When the series lej converges to the sum Tr(K), for-
jz
mula (5.58) can be simplified, namely

det(l - zK) = I (1 - a,z) . (5.63)
jzl J

That this can not be true in general can be seen using
Fourier series. Namely, assume that our space @ is the closed
interval [0,1] with the endpoints 0 and 1 identified and con~-
sider a kernel of the form K(x,y) = k(x-y), where k is a con-
tinuous function on the real l1ine with period one: k(g+1)=k(x).
Introduce the exponential functions ey by en(x) = e2"1nx.
Any continuous function f on @ with f(0) = f(1) can be uniform-
ly approximated by finite linear combinations of the en's.
Moreover, one gets Ke = c e, where Ch is the usual Fourier
coefficient Ig k(x)en(-x)dx of k. The eigenvalues of the inte-
gral operator with kernel K are therefore the Fourier coeffi-
cients c¢,. One gets
Yy = [ k{x)k(-x)dx . {5.64)

2 ci 18 just another form of

) - ©

Parseval's tdentity. Bu@ there are well-known examples (see

+m
The tdentity Tr(K b
Titchmarsh [14, p.416]l of continuous pertodie functions k(x)

whose Fourier series % cnen(x) fails to converge and repre-

n=-e

sent k(x) , for x = 0 say.
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6. A Review of Operator Theory in Hilbert Spaces

6.1, We consider a Hilbert space H , and we assume that H is
both infinite-dimensional and separable. Then there exists an
orthonormal basis (wn)ngo in H. Every vector v in H is deter-
mined by its components ¢, = <wn|w> , restricted only by the

convergence of the series = |c“|2 which represents <y|y> ,
20

that is the square of the ngrm [lwl] . For scalar products, we
follow the conventions introduced in subsection 4.4.

Let A be a bounded operator in H . We shall write
<v|Alv'> for the scalar product of ¥ with Ay'. We say that A
is selfadjoint in case <y|Aly>is real for every v,and that it
is positive in case <v|Aly> 2 0 for every ¥ in H .

Assume now A to be positive. We claim that the sum

20 <y IAly, > (a positive number or +=) is independent of the
nz
orthonormal basts (wn). Indeed, A possesses a square root B

(also denoted by Ai) which is the unique positive operator B
such that B = A, Choose another orthonormal basis (em)mQO‘
Our contention follows from the following calculation:

2o<y[Aly> = 2 <y [B¥Bly,>= 5 <By, |By,> =
n n n

]

2 2
2 l<e |By >1® = £ |<o_|Bly . >]
nom ml ®¥n nom m n

Indeed, since B is selfadjoint <o, |Bfy > is the complex-conju-
gate of <wn|B‘em> and a symmetrical calculation oives the re-
sult
£ <o [Ale> = | <wn|B|em>|2
mz0 m,n

We define the trace of the positive operator A as the

number Tr(A) = I <y [Aly,> in [0,+=].
nz0

6.2. A fundamental theorem asserts that a positive operator
with a fintte trace can be diagonalized. More precisely, we
can find an orthonormal set (¥, s¥1s+ee2¥pyss.s) in H and a non-
increasing sequence (AgsAgsApseeesry,.-.) of strictly positive
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numbers such that Awn = Ap¥n for every n, and Ay = 0 for every
vector ¥ in H orthogonal to all wn's. Both sequences can con-
sist of finitely many terms (wo,...,wN_l) and (ko,...,AN_l)
if A is of finite rank N, or be infinite. In the last case,

completing the sequence (Vv ) to an orthonormal basis of # ,

n’‘nz0
one concludes to the equality

Tr(A) = : o ) (6.1)

A similar statement holds in the finite rank case.

The vectors b, are not uniquely defined by the previous
conditions. The scalars A, are unique because of the following
peoperty: for any number A > 0, the number of times X occurs
in the sequence (Ao,kl,... ) 1is equal to the dimension of the
eigenspace corresponding to A, that is the vectors ¢ in H such
that Av = Ay .

6.3. For the mathematically inclined reader, we sketch a
proof of the diagonalization theorem based on a compactness
argument (due essentially to Hilbert). Let A, B and 6 as in
subsection 6.1. Denote by Hl the set of vectors ¢ in H such
that ||v]] s 1. Associating to a vector ¢y its components

Cp = <6m|w> , we map bijectively H; onto the subset I of the
sequence space consisting of the sequences C = (Cm)mZO

such that I ICmI2 s 1. Endow ¢ N with the product topology,
m=0
which may he defined via the distance I 2 minf(lcm-c[;]|,1)
mz
between two sequences € = (cp) and ¢' = (cp). If ¢ = (cm)

belongs to I, then lc | =1 for every m; moreover £ = N I
m mz0 M

where £ is defined by the inequality |co|2+...+ lcml2 < 1.
It follows that £ is bounded and closed in T ', hence com-
pact by Tychonov's theorem. Transporting the topology to Hy,we
conclude that H s a compact Hausdorff space for what is the
weak topology.

Let ¢ be a fixed vector in H, with components dm. Since
a uniform limit of continuous functions in continuous, the
inequality

l<ely> - (dge g+ oo + dpe )l g |d
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for y in Hy, together with 1im by | d !2 = 0, shows that the
m-o p=m+1 p

function ¢+ <8 |y> is continuous on Hy.
For y in H, put F(y) = <y|{Aly> . A calculation similar
to the one in subsection 6.1 gives F(y) = = I<Bemlw>|2 .

m:
Since |<Bem|w>|2 is majorized by ||Bem||2 and the series

£ ||Be ||2 converges to the finite limit = <8 |Ale > = Tr(A),
m=0 m m=0 " m
it follows,again by uniform convergence, that the functional

F <& continuous on Hl' Since the space H1 is compact, F
achieves its maximum at some point v of Hl' If by = 0, then
F is identically 0 on H;, hence A = 0. Otherwise, ||w0||-1 Yo
belongs to Hy, hence F(y ) majorizes F([Iwoll-lwo) =
F(wo)/|lwo||2, hence |lw0|l = 1. Let y in H be orthogonal to
b,s comparing the values of F at y  and at the point ¥(t) =
(vy * tu;)/v/_l—::_t‘?~ for real t, one gets Re<w|A|wo> = 0. Repla-
cing v by iv we prove that Im<y|A[y > is also 0. Conclusion:
Awo is orthogonal to any vector orthogonal to LN that is

Ay
A

o = oo for some scalar A, . Notice that F(wo)=<wo|Awo>=

o+ hence Ao > 0.
We repeat the same reasoning in the space H(1) of vec-
tors orthogonal to Yoo We get a vector ¢ in H(1), of norm 1,
such that y; attains on Hy n H(1) its maximum XA; at ¢,
moreover i z 0 and Awl = Aq¥qe Continuing in this way, we
get an orthonormal sequence (wn)n of vectors and scalars
xn > 0 such that Awn = AV Ao

The process may break after a finite number of steps, or give

z0
2 Ay 2 hy zee.zho2 A2

an infinite sequence. Anyhow, if a vector in H1 is orthogonal
to wo,wl,..., one gets F(w) = 0, that is By = 0, that is

Ay = 0 (Hint: use the definition of the Ay as successive maxi-
ma !).

6.4. For any bounded operator A on H, the operator A A s

(selfadjoint) positive, hence its square root |A| = (A*A)l/2
is defined. We set

[IAIl; = Tr(lal) (6.2)
and denote it the trace-norm. The basic property

1A+ Bl s [IAIly + 11B]1, (6.3)
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is not at all obvious. The main difficulty is to prove that
if [[All, and [IB||, are finite, then |[A + B| can be diagona-
1ized; one can again rely on compactness arguments,.

One denotes by Ll(H) the set of bounded operators A in H
for which |IA(|1 is finite. According to (6.3), this is a sub=-
space of the vector space L(H) of all bounded operators. More-
over, any element A in LI(H) is a finite linear combination of
positive operators Aj, with Tr(Aj) finite. It follows that the
trace of A can be defined by

Tr(A) = = <y [Aly > (6.4)
nzQ
the series converges absolutely for every orthonormal basis
(wn)ngo of H, and its sum does not depend on the particular
basis chosen. Moreover, one proves the inequality

ey s LAl (6.5)

By formula (6.3), Ar [IAII1 is a norm on the space Ll(H),which
i8 a Banach space, that is satisfies Cauchy's convergence cri-
terion.

Let A in L
operator |A| can be diagonalized. From the definition of |A]
by |A|2 = A*A, it follows that Ay and |Aly have the same norm
for every vector ¢ in H. Suppose that |Al is not of finite rank,

l(H). As we saw in subsection 6.2 and 6.3, the

and diagonalize it with eigenvectors ¥, and eigenvalues A, as
in subsection 6.2. Then

Al = 11 IALe Ll = e ] = A,

and, for m # n

<y | |A

<Ay Ry > = <y [AYAy > Y *

2
= Vg 0

It follows that there exists an orthonormal sequence (en)nzo
such that Awn =28, for every n, hence the following represen~
tation for the operator A
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Ay =
n

no~ 8

0 Xnen<wnlw> (for v in H) . (6.6)

Notice that the series converges in norm since Ix, is finite.

. . . n
In Dirac's notation, this can be expressed as

A = Ao o<u, | ) (6.7)

noe 8
o

n

When A is of finite rank N, just replace the summation symbol
N-1

by = .

n=0
Conversely, if Y and 6, are vectors of norm 1 in H, and

the scalars M form an absolutely convergent series, then for-
mula (6.7) defines an operator A in Ll(H); we do not assume
any orthogonality property of the vectors 12 and - In a se-
ries of operators like (6.7), the following estimate holds

N

A -
n

Iz

Agbopz<wpl 1l s \

n

nl

[[ e I |
[ R

neo 8

and since I [x,| tends to O with 1/N, it follows that the ope-
n=N
rators of finite rank are dense in the Banach space Ll(H).

Define un(A) as the eigenvalue of rank n of |A]. Hence

olA) 2 wy(A)z ...z w (A) = Hpep(A)2 oo 20,

and put un(A) =0 for n 2z N if A is of finite rank N. Moreover
by definition

AT, = 5w () . (6.8)
=0

The inequality (6.3) can be strengthened to the sequence of
inequalities

Hoem(A+B) = u (A) + um(B) (6.9)

forn >0, mz0 and A,B in Ll(H). For n = 0, u,(A) is equal
to the operator norm of A, that is the smallest constant ||A]||
such that |{Ae|| < ||A]] |]v!] for all vectors y in H.
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In general, un(A) can be calculated using the minimax prin-~
ciple. Let V be a vector subspace of H , of finite dimension n;
let us denote by [|A]], the smallest constant such that

|[1Aw| s [[Ally}lel] for each vector y in H orthogonal to V.
Then the following inequality holds

LAl Ty 2 wp(A) (6.10)

with equality when V is spanned by the vectors Ygreera¥p.s
where lAIwk = w (A)y, for any k 2 0.

6.5. The trace class of operators Ll(H) is very important in
theory, but there exists no easy criterion to decide whether

a concrete operator is in Ll(H). According to the connection
between Fourier series and integral operators described in sub-
section 5.10, such a criterion would settle the question of
characterizing the continuous functions with absolutely conver-
gent Fourier series, a notably difficult question.

Contrasting with this situation, Hilbert-Schmidt opera-
tors are plentiful and easy to characterize. Define L"(H) as
the class of operators A for which Tr(A A) = Tr(IAIZ) is
finite. This means that the positive operator [A| can be dia-
gonalized with eigenvectors Voalpsersabps -o- and eigenvalues

NgsApseeestysees such that & [Anl be finite. As before,
n=0
set u, (A) = A and define the Hilbert-Schmidt norm by
1AL, = Te(A*m) /2 = zo w (A28 (6.11)
n=

The minimax principle holds again, as well as the representa-
tion (6.7) with two orthonormal sequences (y ) and (en).

Let (en)ngo be an arbitrary orthonormal basis of H .
One gets, for any bounded operator A in [(H)
2

t <e |A*A e > = zllAe ||° =
n n n n n

Tr(A*a)

2
T |<e.|Ale >| .
mn m n
If we associate to any operator A its matrix with entries

amn = <em|A|en> » We get an isomorphism of LZ(H) with the set
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of matrices (amn) such that = 2 be finite. Otherwise

5 m,nlamn|
stated L"(H) is a Hilbert space, and the operators |em><en|
form an orthonormal basis in LZ(H).

Let A,B be operators in LZ(H). From the polarization

Fformula \
4A%B = (A+B)*(A+B) - (A-B)™(A-B) - i(A+iB)*(A+iB)
+ i(A-iB)"(A-iB)

and the definition of LZ(H), it follows that A*B is in L1(H),
and the trace of A*B is defined. By repeating the calculation
of Tr(A*A), one gets

Tr(A*B) = = <em|Alen><em|B|en> . (6.12)

m,n

Otherwise stated, the scalar product in the Hilbert space LZ(H)

is given by

<AlB> = Tr(A¥B) . (6.13)

Cauchy-Schwarz inequality then holds:

[Tr(A™8) s LIAl[,11B11, . (6.14)

It can be strengthened to

[1A81 1y s [1Al 1511811, (6.15)

(compare with formula (6.5) and notice that LZ(H) is stable

under Aw> A*). It can be shown that conversely, any operator
in Ll(H) can be factored as the product of two operators in
2

Lo(H).

6.6. We conclude by two remarks:

(a) Suppose that @ is any (measurable) subset of some eucli-

dean space R™. Consider the Hilbert space LZ(Q) of
square-integrable functions on o with scalar product

<flg> = fﬂ F(xXY g(x) dx . (6.16)
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The Hilbert-Schmidt operators in LZ(Q) are then the operators
given by a kernel K in L2(Q X Q). More precisely, for f in
L2(2), and K in L%(2 x a), the integral

Kf(x) = IQK(x,y) f(y) dy (6.17)

converges for almost all x in @, the function Kf is in L
the operator fr Kf is in LZ(LZ(Q)) and

Tr(K*) = [ iK(x.y) 12 dx dy . (6.18)
Q0

The proofs are easy consequences of Fubini's theorem about
double integrals.

(b) For any bounded operator A acting on H, we have

A

LIALD = [1AlT, s [1All , (6.19)

hence hence in the opposite direction

L(H) > L2(H) D 1(n) : (6.20)

One can interpolate with the spaces Lp(H), introduced by
Schatten around 1940, that is the set of operators A for which
|Al can be diagonalized with eigenvalues XA shjs..shp,.

such that iIAn(p be finite. One can mimic the basic properties

of classical Lebesgue spaces Lp(n), for instance Minkowski
and HGlder inequalities.
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7. Fredholm Determinants in Hilbert Space

7.1, Suppose one wants to define the determinant of an opera-
tor B acting on some Hilbert space H. Choose an orthonormal
basis (wn)nzo of H and represent the operator by its matrix

b = (bmn) where bmn = <wm|B|wn>. To define the determinant A
of this infinite matrix, a natural procedure is to truncate it

to a finite determinant

\
boo ..... boN
big +o-- bin
AN = det e e e e e (7.1)
\bNo ..... bNN/
and to look for the limit &4 = 1im Ay~ If the matrix b is dia-
N-)oe
gonal, we get oy = boo v bNN and A is the infinite product
HO byn- It is known that such an infinite product converges
nz
absolutely iff bnn can be put in the form bnn =1 + a, where

zolanl if finite. This remark led Poincarg and von Koch to
n2
assume that the operator B is of the form 1 + A, where A is

"small" in a suitable sense. Denoting as before by

il"'ip
a(, . i : - :

(Jl"'Jp) the minors of the matrix a = (a, ) associated to
the operator A, we get

LI |
by = I .z a( bRy (7.2)
pz0 0§11< ..<1p§N i 1p

by formula (5.2) (first noticed by von Koch). Hence, at least
formally, we get

8= = 1 sl “‘p) (7.3)

for the determinant of 1 + A, It can be shown that the previous
series converges absolutely provided the double sum = |a__|is

finite (Poincarg's criterion)

mn

qur a lively account of the ?rehj
minants,the” reader may consult D
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We shall follow this methgd, but to obtain a theory in-
dependent of the orthonormal basis chosen, we shall suppose
that A is of trace class, a more general assumption than the

mere convergence of I |a
m,n
connected with such a definition:

mn|. There are a number of problems

e convergence of the expansion (7.3)

e the multiplicative property of determinants

e relations between the eigenvalues of A and the zeroes
of the characteristic function det(l~ zA), where z is
a complex variable.

7.2. Our method will be based on the construction of the
fermionic Fock space. Let us extend to the Hilbert space set
up the constructions of tensor spaces given in subsection 2.
Let #, and H, be two Hilbert spaces. We propose to associate
to H; and H, a new hilbert space H, to be denoted by

Hy 8, H,, together with a map associating to a vector x; in H,
and a vector x, in H, a vector x; 8 x, in H and assume the
following properties to hold:

(a) The vector x; 8 x, depends linearly on x; for a fixed
Xos and symmetrically in Xo for a fixed Xq -

(b) For the scalar products, one gets
<xp 8 x2|y1 By = <xjlypaxy|lyy . (7.4)

(¢) Aﬂy vector in # is a limit of finite linear combinations
rox; 8y, Equivalently, if z is any nonzero vector in
i=1
H , there exist x; and x, such that <x; @ xo|z> £ 0.

As for the existence of H, choose an orthanormal basis

(w£1))n20 in H; (for i = 1 or 2), take any Hilbert space

with an orthonormal basis indexed as a double sequence

(emn)mzo,nzo and define the map (x;,x,) > x; & x, by the
formula
Xq 1] Xy = z <wr$]1)lxl><w§]2)lxz>emn R (7'5)

m,n
The properties (a), (b), (c) are easily checked. Moreover,
accordz?a to this definition, one gets in particular

eqn =¥m ¥ ¥
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To prove the uniqueness of this construction, one first
proves using (a), (b) and (c) that the tensor product

(1)

(¥ 8 wgz)) of the orthonormal basis in #; and H, s an
orthonormal basis in Hq 82 Ho. Moreover by specializing formu-
la (7.4), one gets the values <wél)|xl><w£2)]x2> for the com-
ponents of x; A X9 in the previous basis of Hi 8y Ho, hence
formula (7.5)is forced upon us.

8y an obvious generalization, one defines the tensor pro-
duct H 92 o ﬁsz of any finite family of Hilbert spaces
Hl,...,Hk. For the record, notice the formula for the scalar

product

k
<X1Q oo &Xk‘_yl& oo ka> = g <X_i]_y.i> H (7.6)

moreover, 1 W 1s any orthonorma asis 1n H. or
'f(r(]1))ng0 i h 1 basis in H, (f

i=l,...,k) then the multiple sequence of tensor products

wgl) @ ... @ wgt) is an orthonormal basis in H8, ... B H) -
In"the sequel, we restrict our attention to the tensor product
HQK of k identical spaces Hy = «oo = He = He Whenever convenient,
we assume that an orthonormal basis (wn)ngo has been chosen for

H , hence the tensors U 8 ... ﬂwnk form an orthonormal basis in
8k 1
Hoo.

fk

7.3. The symmetry operators in are defined as follows.

Given any permutation ¢ in Sk’ there exists a unitary operator

U, in HQk permuting the basic tensors as follows
U (L[J @...@w ) =y |Q...al}1 1 (7.7)
54 nl nk n1 nk

where n, = né(i) for 1<ick. By linearity and continuity, one

deduces the relation

U (xq8...8x = X e

0( 1 k) 0_1(1)8 xo'l(k)
for Xpse.esXy in H. Hence U, is invariantly defined, and the
product rule Ugu, = U, holds. Otherwise stated, one obtains
a unitary representation of the group Sk in the Hilbert space

L

(7.8)

As in the finite dimensional case, one introduces the

subspace AkH of the antisymmetric tensors, elements t in HQk
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such that U t = (sgno).t for all o in S+ It is customary to
modify the definition of the wedge product as follows

-1/2

XqAe e AX) = (k) L (sgno) Uq(xlﬂ...ﬂxk) (7.9)

aESk

With this convention, the scalar product is given by

XA Ax Ly A Ay > s lg$§k <xi|yj> (7.10)

1<j<k
without normalization constant. It follows that the wedge pro-
ducts v A...Ay_ where 0 = Np<e..<ny form an orthonormal ba-
n Nk

sts of AkH.

By the antisymmetry properties of the wedge product, it
follows that xqA...Ax, s equal to xjA...Ax, where Xj,...,Xy
are deduced from X1seeeaXy by the orthonormalisation process:

x! - x, is a linear combination of xl,...,xj_1 and xi,..,xL

J J
are mutually orthogonal. By Pythagoras'theorem, one gets
||x%|| < ||xi||’ and from (7.10) one gets

2 : 112 (12 YA
FIxqaecenx [17 = PIxqaeeonxy 1T = [Ixq 7o e Xl

hence

[Ixqaeoonx [ Ios PIxqlleea [ Ixgl] ] . (7.11)

Using Cauchy-Schwarz inequality, one derives the corollary

k
|<xpAee o AX YA Ay > s i§1||x1|[||yi|| . (7.12)

These formulas are just reincarnations of Hadamard's inequali-
ty for determinants,

In many applications, # is a Hilbert sEace LZ(Q) of
square-integrable functions. QOne ident1f1‘esHQ to the space
LZ(QX...XQ) (k factors) of square- integrable functions
f(tl,...,tk) where the variables t; run over q. ;he tensor
product f;8 ... 8f, of one variable functions in L"(a) is then

given by

k
(F18 .0 BF ) (tphenesty) = T Fi(ty) (7.13)
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and the wedge product is a determinant

-1/2

(FiAeo AE ) (tyyena,t,) = (KI) det f.(t
1 k!t k 1555,

1£j=k (7.14)

7.4. Let us insert a few remarks.

(a) We remind the reader of the so-called "reconstruc-
tion theorem"” for Hilbert spaces. Let I be any index set and
let aij be complex numbers, for i and j in I. In order that
there exist a Hilbert space H and vectors by in H (for 1 in I)

such that <w1|wj> = aij’ it is necessary and sufficient that
the following inequalities hold
NN
z f za, ,z_20 (7.15)
pel s=1 F ipig"s

for any set {11,...,1N} of indices and any set {zl,...,zN} of
complex numbers. We can always assume that the set of vectors
Y
to all wi's. If this is the case, the Hilbert space H is unique;

generates H , that is no vector ¥ # 0 in H is orthogonal

namely if H' is any Hilbert space, generated by vectors w;
such that <w;|w5> = a;j, there exists a unique unitary opera-
tor U: H > H' such that U(¥;) = ¢: for all indices i.

HBk 2nd 2K

rated by vectors of the form xlﬁ...ﬂxk and X{Aca AX The sca-

The Hilbert spaces H are respectively gene-~
lar products are given by the formulas (7.6) and (7.10) respec-
tively. One could therefore appeal to the reconstruction theo-
rem to establish the existence of the spaces HQk and AkH. For
this it would be necessary to establish the inequalities (7.15)
directly.

(b) The concept of tensor product of Hilbert spaces is
closely connected to the notion of Hilbert-Schmidt operators.
Namely, let H be any Hilbert space. We associate to it a new
Hilbert space H* and a map ¢y ¢* from H onto H' as follows:
H* consists of the bounded linear forms on H (i.e. Tinear map-
pings h: H -~ € for which there exists a bound ¢ 2 0 with
[h(g)l = Ccllvll). For v in H, we denote by v the linear form
$' = <plp'>. It is a well-known result by F.Riesz that yw ¢
is a bijection of H onto H*. The Hilbert space structure of H*

508



is defined in such a way that (cw)* = and <« v =
<$'[v> for ¥ , ¥' in H and a complex scalar c. In Dirac's no-
tation, denoting ta vector ¥ in H{ as a ket [v> , the element
¥ of H* is the corresponding bra <y,

There is a natural isomorphism of the Hilbert space
H QZH* onto the space L2(H) of Hilbert-Schmidt operators. It
associates to a generator wl a w; the operator lw1><w2| '
(taking ¥ into w1<w2[w>for ¥ in H). This isomorphism is impli-
citely used in the Dirac notation of bras and kets.

7.5. We show how to extend a bounded operator A acting on H

gk and AkH . First of all consider two Hilbert

to the spaces H
spaces Hy and Hos with orthonormal basis (wgl)) and (wgz))
respectively and bounded operators A1 in L(Hl) and A2 in L(Hz)'
Any vector in Hq 82 H, can be uniquely expanded as t

t=It 8 w,ﬂz) where |lt]1? EIIth2 is finite; for ins-

n
tance, if t = Xq ] Xy then tn

Hq Qz H2 by the rule

n,(2)
N lx2> “Xy. Extend A; to

1) 2) 2)

- (
t = = Atn Q v

(
A 7.16
i : { (7.16)

- (
for t = ﬁtnawn

This defines a bounded operator Agl) in L(H1 82 H2) according
to the estimate

AV = cpine 112 s 1R1Z zlie 112 =118l 12 11

hence l|A§1)|| = ||Ay]]. Moreover, if t = x; & x, we get
Agl)t = Alx1 8 P thereby the definition of Agl) is in-
dependent of the basis (wgz)
ded operator Aéz) acting on H1 Qz H2 in such a way that
Agz)(x1 f x,) = x; & Ayx, with a bound ||A£2){l = |[A2||.
Define the operator A1 @ A2 as the product A1 A » hence

y. Similarly, there exists a boun-

the rules

(AIQAZ)(XIQXZ) = AIXIQAZXZ )
(7.17)
||A1 2 A2|l = HA1||||A2||
The extension to the case of k spaces Hl""’Hk is obvious.
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Coming back to H and A, there exists therefore a bounded
operator AQk acting on Hak in such a way that

ak

A (x18 ... 8x,) = Axy8 ... @Ax (7.18)

k Ak
Bk = Al

and ||A
and U, commute for o in S , hence A

From formula (7.8), it follows that A

Bk induces a bounded opera-

8k,

tor AkA in the closed subspace AkH of It is characterized

by its action on the wedge products

KR (xpALcaAxp) = AxpALL AR . (7.19)

7.6. THEOREM. Suppose A is a trace-class operator on H. Then

Akn 18 a trace-class operator on AkH; tts bound is given by
k k k

[[A"A]] = ug(A) .. uk_l(A) and moreover ||A Ai[1§||A||1/k!

Proof: It follows from the construction of AkA that Ak(A*) is

equal to (AkA)* and Ak(AB) to AkA- AkB for another operator B

in L(H). Since the positive operators are the operators of the
form C*C and |C| is the unique positive operator such that

Icl1? = c*c, we get [a*A] = aK|A]. Since A is trace-class, the
operator |A| can be diagonalized with eigenvectors 1= and ei-

genvalues v 2 0. Then the wedge products wn A...Awn for
1

Np < Np<eee<ny form an orthonormal basis of AkH, and Ak[A|

multiplies it by Vi eV By definition, the sequence
1 k

n

g (R) 2 uy(A)z oo 2u_{(A) 2 u (A)

is obtained by rearranging in descending order the nonzero ei-
genvalues v . Therefore w (A) ... w, _;(A) is the largest among
the products v ...v , hence is equal to IlAkAll. Finally

1 k
I[AkAll1 is the trace of IAkA[, that is

Hakal, = I Vv (7.20)
Np<ee.<n, ny i
In the same vein
[IALL, = = v, (7.21)
n
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hence the inequality |[AkA||1 s [|A||§/k!
Q.E.D.

Let us add a few comments:

(a) Suppose the operator A is of finite rank N. Then the
formu1a||AkAI| = Ho(A) ... “k-l(A) holds for 0 = k £ N, more-
over AkA = 0 for k > N. This justifies the convention uk(A)=0

for k 2 N.

(b) For a while, we do not assume that A is trace-class.
It can be shown that the normllAkAll can be defined as

[1ARATT = supl [AxqA. .. ARx, || (7.22)
or
|IAKATT = sup| det <x;iAly;>] (7.23)
1sisk J
1<jsk
where x;,...,x, run over the vectors of norm 1 in H(for (7.22))

and similarly for YooYy in (7.23). Define the numbers

A g akag) -t : (7.24)

Uk(A)

By reduction to the finite-dimensional case (hint: wuse (7.22)),
it can be shown that the sequence is non-increasing

uo(A) 2 wqy(A) 2

with u (A) = [[Al]. It may very well be that wu (A) = [ 1Al
for all k's.
(c) By a proof similar to that of theorem 7.6, one gets
fk

that A is trace-class if A is. Moreover

AR = e R s (7.25)

and the inequality is optimal. The antisymmetric part AkH of

Hﬂk is the fermionic Fock gpace. One can define in a similar
way the symmetric part SkH of Hﬂk, consisting of the element

t such that U t = t for ¢ in Sk+ It is the bosonic Fock space.
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ak

The operator A induces an operator SkA in SkH , and we get

the estimates
[Iskatl = 11all®, qrskally = [1all% (7.26)

which are again optimal. The constant 1/k! in the estimate
||AkA||1 < (1/k!)|(A[|T has therefore no counterpart in the
spaces H"" and S"H , It is one of the deepest manifestations

of Pauli's exclusion principle.

7.7. We are ready to define the determinant det(l+A) in case
A is trace-class. Indeed, define ¢ (A) as the trace of AkA.
By theorem 7.6 one gets the estimate

Lo (Al = TTra®al = 11a%al1, = [[all%/K
k 1 1
The series I ck(A) is therefore absolutely convergent and
we put k=0
det(1+A) = I ¢, (A) . (7.27)

kz0

Replacing A by zA, where z is a complex variable, one de-

fines the characteristic determinant

det(1-2A) = 1 (-1)% ¢ (M)2* (7.28)

kz0

which is an entire function of z by the basic estimate

le (AL s Ll s (7.29)

Put in another form, introduce the total Fock gpace AH , ortho-
gonal sum of the Hilbert spaces AOH, AlH, ... It is aenerated
by the wedge products XqA. A% of varying order k, with sca-
lar product given by

XA AKX YA LAY s = det<xi{yj> {7.30)

SXPA e AR YA Ay =0 ifk£1, (7.31)
The various operators AkA extend to an operator AA acting on
AH and mapping XA Axy into AxqA...AAx) . From theorem 7.6,
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it follows that AA is a trace-class operator such that
||AAI|1 = I IIAkA||1 hence
kz0

IIAAHI éeXpHAHl . (7.32)
From (7.27) we get the compact definition
det(1+A) = Tr(aA) . (7.33)

Introduce an orthonormal basis (wn) for H and the matrix a cor-
responding to A with elements a, = <wm|A|wn>. Then the wedge

products wilA"'Awi for il<...<ik (k variable) form an ortho-
k .00
1 k

normal basis of AH. Moreover the minors a(, ) are simply

Jl...jk
scalar products, namely
il...ik
A( y = Ui Al A [AA 9. Ao iAg, > . (7.34)
jl' 'jk 1 k I I

The trace of an operator can be calculated using any orthonor-
mal basis, hence the absolutely convergent expansions

K il...ik
¢ (A) = Tr(r"A) = T A, <) (7.35)
Py<..<i TpeeeTk
1 k
and
K.k Tpeee Ty
det(1l-zA) = I (-1)"z b A( ) . (7.36)
k20 IFREE2 PRI PR 1)

Von Koch' definition (7.3) is fully justified !

7.8. The previous definitions can be illustrated with the
help of some considerations of quantum statistical mechanics.
So suppose H corresponds to a quantum-mechanical particle,

with hamiltonian operator H(l). Then the space AH corresponds
to an assembly of particles obeying Fermi-Dirac statistics. The
total hamiltonian Hp acts on AH in such a way that

n ™M x

HF(XlA...Axk) = Ao AH XiAee o AXy (7.37)

b3
j=1 1
(non-~interacting system, the total energy is the sum of the
energies of the k constituents). We do not discuss the ques-
tion of domains, the self-adjoint operator H(l) being in gene-
ral unbounded. At least formally, one gets
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" BHp gn(1) -entd)

e (XA M) = e Xq A A (7.38)

XK
for 8 > 0. So the last definition of the total hamiltonian HF
is as the infinitesimal generator of the semi-group of opera-

- BHE el
tors e = A(e ). In the cases of physical interest,the
spectrum of H(l) has a lower bound, hence the operator
e
e BH is bounded.

The particle number operator N is given by Nt = kt for
t in AkH. In statistical mechanics, one introduces the inverse
temperature B = 1/kT where k is Boltzmann's constant, and the
chemical potential u, According to Gibbs and Boltzmann, the
thermodynamical quantities can be calculated using the so-cal-

'B(HF+},1N)
led (fermionic) partition function Z.(8,u)=Tr(e )
From our definitions, one gets
_g(u(l)
Ze(8ou) = det(1 + o BH T )y (7.39)

These definitions make sense provided the operator e be
of trace-class for 8 > 0. In this case, the operator H(l)
can be diagonalized with eigenvalues Ej < Ey < E,<... and ei-
genvectors YosWpstps »ov - For k fixed, the state with lo-
west energy is VAU corg?;E?gfing to the eigenvalue
Eg * «-- *E,_y OF He. Put A = e M), hence aA =
=8(HptuN)
e Then woA...Awk_l corresponds ti the largest
efgenvalue exp - e(Eo+ ces +Ek_1 + ku) of A A, hence we get

a "physical"interpretation of the formula
HARATT = ug(A) (A)
Mo T Hk-l

where “i(A) = exp 'B(Ei+p). Since the operator AA is now in
diagonal form, it is easy to calculate its trace, that is
det(1+A), and we get the well-known formula

"B(Ei-i-u)

ZF(Bsu) = n (1 + e
i20

) . (7.40)
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7.9. We can repeat almost verbatim the considerations in

section 3. For instance, the operator

P k)l s (sano) U (7.41)

OESk N

ak

is the orthogonal projection of H onto the closed subspace

AkH. For o in Sk, put

I(c) = Tr(u -Af%y . (7.42)
The trace of AKA is equal to Tr(PE~AQk) since AQk restricts
to AkA on AkH; hence we get
ki ¢ (A) = 2 (sgno) I(o) . (7.43)
oesS
k
We have now to check the following properties:
1

) = I(9);

(b) Zf o is decomposed <Into cycles (1 ... a)(a+l...a+b)
(a+b+1 ... a+b+c)..., then I(0) 28 equal to
Tr(A%).Tr(AP) . Tr(AS)

The proof of (a) rests on the fact that U, commutes to

AQk and on the unitary invariance of the trace

(a) for o,1 <n Sks we get I(wot

1

Tr(UBU™ ") = Tr(B) . (7.44)

where U is any unitary operator (notice that the trace can be
calculated using any orthonormal basis). For the proof of (b),
introduce an orthonormal basis (wn) in H; since the tensors

wn Q...an form an orthonormal basis of Hﬂk, we get the
1 k
absolutely convergent expanston,
k
I(o) = b) no<v, 1ALy, > . (7.45).
Ngee-ny =1 i o (1)

If ¢ is decomposed into cycles as in (b), this summation breaks
into a product of sums like

J, = o<y, [Alw, s<u [Aly, >oo.<u [Ale, >,
a NyeeoNy n Ny na N3 Na n
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From Parseval theorem, one gets in general the matrix rule

§<erB|ws><wSICth>

<v, |8Cly,> (7.46)

hence J. = = <¢_ [A%]y > = Tr(A%). Hence (b) follows. A si-
a nl nl nl

milar proof would give
Tr((Alﬂ ces EAk)yk) = Tr(Ay ... AY) (7.47)

for trace-class operators Al""’Ak in #H and the cyclic permu-
tation Yo

In a similar vein, introduce the trace hk(A) of SkA ac-
ting on the bosonic Fock space SkH. Since the orthogonal pro-

jection of HQk onto SkH is given by

T U 10 R SR TR (7.48)
g€S
k
one gets
kth (A) = = I(o) . (7.49)
cESk

Putting rk(A) = Tr(Ak), the formulas (3.33) to (3.38) as well
as Plemelj's determinantal formulas (5.56) can be taken
verbatim 1in our new context. Let us also mention the analogue
of formula (3.27)

I h(A) 2% = det(1-za)7 (7.50)
kz0
as well as the logarithmic derivative
d_10g det(l + zA) = Tr(A(1l + zA)™}) 7.51
4 Tog det( = Tr(A( . (7.51)

Notice that formula (7.50) holds for |z| small enough and that
both sides in (7.51) are meromorphic functions of z.

Here is a "physical" interpretation of formula (7.50).
Suppose again that H is the one-particle state space with ha-
miltonian operator H(l). Introduce the total bosonic Fock
space SH as the orthogonal sum of the spaces SOH, SlH, SZH,...

The total hamiltonian H acts on SH in such a way that
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H,(x X = ; H(l) 7.52)
X1 - X)) = E X X o Xy (7.
(symmetric product of vectors !). The bosonic partition function
-B(HB+uN)
ZB(B,u) = Tr(e ) is then given in invariant form as

sy -1

Zg(8,u) = det(l - e ) (7.53)

provided u is large enough. This corresponds to the customary
relation of Planck-Einstein

1
yA s = I 7.54
g(Bsm) T (FEm) ( )

(valid whenever E +u > 0) in terms of the energy levels E <Eqs..

7.10. Recall that the space of all trace-class operators is a
Banach space Ll(H) with norm |[A[]; = Tr([A[), and that the
operators of finite rank are dense in Ll(H).

By definition, det(1+A) is given by the series kZock(A)
2
with the estimate |ck(A)| s ||A||§/k!. It follows that this

series converges uniformly on any set of operators with

I[{All; s R, where R is a fixed bound. Hence the functional

Av det(1+4A) s continuous on the Banach space Ll(H). It is
even holomorphic. Indeed as in subsection 5.4, introduce a mul-
tilinear form on Ll(H) by

Ck(Al"°"Ak) = Tr(P_ (A8...8A.)) (7.55)

hence

det(1+A) = 1 ck(A, ...y A) . (7.56)
kz0

Use now the polarization formula

k
2 k!ck(Al,...,Ak) = I ck(e1A1+...+ekAk)el...ek

€7900sE

L k (7.57)
where eq,...,¢ take independently the values 1 and -1. By the
estimate |ck(A§l P llAl[%/k!, one obtains easily
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Lo (Apseenh )b s v AT T (7.58)
with a constant

v, = 27K (n? : (7.59)
From Stirling's formula,one gets 1im yi/k = 0 and one concludes
as in subsection 5.4. ke

As a corollary, suppose (AA)AeD is a family of operators
in Ll(H), bounded in norm |[A,||; s R for a fixed constant R,
and holomorphic in x» (D is a domain in a complex space Cr) in
the sense that the matrix elements <y|A|ly'> are holomorphic
in » for fixed vectors ¢ and ¢'. Then the determinant det(1+AA)

is a holomorphic function of X in D,

7.11. The multiplizcative property 1S now easy to prove., Let A
and B be trace-class operators acting on H. Then (1+A)(1+8) is
equal to 1+4C with C = A + B + AB. The productof atrace-class
operator and a bounded operator is again trace-class, hence C
is trace-class. We state

det(1+A) det(1+B) = det(l1 + A + B + AB) . (7.€0)

Any trace-class operator can be approximated by finite
rank operators in the Banach space Ll(H) and the determinant
is a continuous functional on Ll(H). Hence it suffices to con-
sider the case where A and B are of finite rank. We may then
choose an orthonormal basis (v,) of # such that A and B map H
into the subspace K generated by Ppseeesty for a suitable N.
Let the operators A, and By in the finite-dimensional space
K be obtained by restricting A and B respectively. Since the
multiplicative rule holds for determinants of operators in K,
it suffices to check that 1+A and 1+A0 have the same determi-
nant (and similarly for 1+B and 1+Bo). The matrix elements

a = <wm|A|wn> of A agree with those of A, for 1 s m < N,

mn
1 < n £ N and are zero otherwise. The minors
11...ik
A ) of A agree therefore with those of A when
1001
1 k
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11,...,ik lie between 1 and N, and are 0 otherwise. By using
formula (7.36) for both A and A , we get det(1+A) = det(l+Aj)
as asserted.

7.12. We derive a few consequences of the multiplicativity of
determinants. Let A be again a trace~class operator in H,
According to formula (6.6), the operator A can be approximated
in operator norm by finite rank operators, hence is compact.
By F.Riesz'theory, Fredholm's alternative is valid:

(a) either the operator 1+A has a bounded inverse,

(b) or there existe a nonzero vector ¥ <n H such that (1+A)¥=0.

In case (a), let T be a bounded inverse to 1+A. Then T=1-AT and
AT is trace-~class again. By the multiplicativity of determi-
nants, we get

det(1l + A) det(l - AT) = det(1l) =1

hence det (1+A) # 0.

In case (b) choose an orthonormal basis bia¥os oo of H
with ¥ = ¥y, and represent A by its matrix (ann)‘ Then the de-
terminant of 1+A is the limit of the truncated tdeterminants

1+a11 agp ... Ay
as 1+a22 vee Aoy
\ anl Ay e 1+aNN /
the hypothesis (1+A)y; = O means that the first columns of the
previous determinant consists of 0's, hence Dy = 0 and in the
1imit det(1+A) = 0,

Hence, the cases (a) and (b) of the alternative corres-
pond to det(1+A)#0 and det(l+A)=0 respectively.

7.13. Put in another way, the inverse etgenvalues 1/x, corres-
ponding to the nonzero eigenvalues a, of A are the roots of the
equation det(l - zA) = 0. We want now to express the determi-
nant itself in terms of the eigenvalues; the question is very
easy when A is selfadjoint and lies much deeper in the general
case.
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Assume first that A is trace class and selfadjoint.
There exists an orthonormal basis (v,) diagonalizing A, that
is Awn = Apgpe The matrix elementsof A are given by

(An if m=n
<UplAlvy> = (7.61)
LO otherwise
The minors are those of a diagonal matrix, hence
Tqeadd
s VTR - i ee A (7.62)
Tpeeedy 1 k

for iy<...<i . Since A is trace-class, the series of diagonal
elements = <wnlA|wn> = I A, converges absolutely, hence the
n n

infinite product H(l—knz) converges absolutely and can be
n
expanded as follows

(1 - a,z) = & (-2) b) Ao Ay . (7.63)
n k20

Comparing with (7.36), one concludes

det(l - zA) = (1 -2 z) . (7.64)
nzl n
We come to the general case and denote by D(z) the entire
function det(1-zA) of the complex variable z. As it is customa-
ry, let us introduce the growth ZIndicator

M(R) = sup ID(z)l . (7.65)
fz]=R

To estimate M(R), the strategy consists of comparing the eigen—
values of A and |A|. Indeed, one gets

le (A1 = [Tr(a*A) sl 1a®AT | (=Tr(ak A1) =c (1A]).
Since D(z) = =& (—l)kck(A) zk, using a term-by-term estimate,
one gets k20
MR) = = le (MIRK s = ¢ (IA1IRK = det(1+R]A]).
k=0 kz0 :
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Introduce now the eigenvalues y »>uy,... oOf [A[; they are posi-
tive and 2 L is finite. Hence
n=0
M(R) & T (1 + uR) . (7.66)
nz0
Taking the logarithm, one gets

1
2 10g M(R) s T & Tog(l + uR) . (7.67)

nz0
Each term in the left-hand side converges to 0 with 1/R, and
is majorized by Hhe Since Eun is finite, one gets by dominated
convergence

.1
1im 7 log M(R) = 0

R >

(Notice that M(R) tends to += with R, unless D(z) is a constant).

We can now appeal to Hadamard's factorization theorem.
(see Titchmarsh [14], th.8.24). We know already that a number
z, satisfies D(zo)= 0 iff there exists an eigenvalue A#¢ 0 of
A with z, = 1/Xx. Hence there are two possible cases:

(a) The characteristic determinant det(l - zA) Z8 a po-

lynomial in z, and can be expanded as (1 - Alz)...(l-ANz) where
Asev-sXy are the nonzero etgenvalues of A (with possible re-
petition). The Timiting case D(z) = 1, that is Tr(Ak) = 0 for

each k 2z 1, occurs iff there is no eigenvalue of A, except pos-
sibly 0. In the self-adjoint case, this would mean A = 0, but
not necessarily here.

(b) There Zs an <nfinite sequence ()\n)nzl tending to 0
such that L |An| coni erges and
n
det(l - zA) = 1&m (1 - Anz) . (7.69)

nz1

7.14, We know that the xn's are the eigenvalues of A. There
remains to settle the gquestion of multiplieities. Let » # 0 be
any eigenvalue of A and let m be the number of times A occurs
among the xn's, that is the multiplicity of 1/x as a zero of
the entire function B(z) = det(1l-zA). We need a refinement of

Fredholm's alternative. For every integer p 2 0, let Lp be
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the set of vectors ¥ in H such that (I-A—lA)pw = 0, Then Lp

is finite~dimensional, and there exists an integer M such that
Lp = Ly for p 2 N (notice that L & LIC"'CLp C:Lp+f:...2i )
Moreover, let MN be the set of vectors of the form (1 -1 "A)7y.
Then My is a closed vector subspace of H , the space H is the
direct sum of LN and My and 1 27 1a induces an operator in
MN with a bounded inverse. There is a slight difficulty, namely
LN and MN are not necessarily orthogonal. So let us introduce
the orthogonal complement Lﬁ of LN, so that the operator A can

be expressed 1in block form

)

where E is an operator acting on the finite-dimensional space

LN and G is a trace class operator acting on the Hilbert space
LN. Since 1 -x~ A has a bounded inverse, so does 1 -x 1G. Cal-
culating the determinant of 1 - zA as a limit of finite deter-
minants, and using an orthonormal basis (wn)ngl of H such that

(wl,...,wd) forms a basis of LN’ one gets

det(1 - zA) = det(l - zE) det(l - zG)

From our previaus description, one aets (1 -3 E) = 0, hence

A is the only eigenvalue of E and therefore det(l - E)=(1-Az)d.
Define D (z) as det(1l-zG), so that D(z) = (1 Az)d Dy(z). Then
Do(z) is an entire function of z, and DO(A ) = det( A-IG)

is not zero, since the operator 1 -A'IG has a bounded inverse.
Hence 1/% is a zero of D(z) of multiplicity d.

Summing up: an eigenvalue ) of A occurs in the list
Apsrosee. @ number of times equal to the (finite) dimension
of the subspace H, of H consisting of the vectors Yy for which
there exists an integer p>0 with (A-A)pw = 0.

The previous subtlelties are connected with the so-called
Jordan normal form of a matrix, when it can not be put in dia-
gonal form. In most cases the space HA defined above consists
of the eigenvectors, that is the vectors ¢ such that (A-i)y =0.

We know that for small |z|, the logarithmic derivative
D'(z)/D(z) can be expanded as k21(—-1)kTr‘(,’-\k)zk'1, Since D(z)
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is equal to the praduct 1 (1 ~r z) where zlr | is finite,
nzl n
D'(z)/D(z), can be expanded as an absolutely convergent double
series I I (—l)kxkzk"l.
nzl kzl n
D'(z)/D(z), one gets

Comparing the two expansions of

k k

Tr(A") = = Xn (7.70)
nzl
and in particular
Tr(A) = I b . (7.71)

nz1

These relations are obvious in the selfadjoint case and were
established by Dikii in 1957 for the general case.

7.15. We consider now the case of a Hilbert-Schmidt operator
2 ,3
AT,

but not of A itself, and so we need a modification of the de-

A in LZ(H). In general we can define the traces of A

terminant; this way introduced by Carleman around 1930, and
the method simplified by Seiler in 1972,

We introduce a map ¢ from LZW) into Ll(H) by ¢(A) =
1 - (1+A)e_A. Indeed, expanding the exponential into the fami-
liar power series, we get

o(A) = & (~-1)K(k-1) AX/k1
kz?2
Notice that for A in LZ(H), its square is in Ll(H) and
[|A2||1 = IIAIIE. For k = 2, one gets therefore

AR = TIRZ 1A 2 = Tiati2rial %2 s j1allk

since ||All s [|A[],. Hence the general term in the series for
¢(A) is bounded in tionorm by lIAIIE/(k-Z)! This is enough to
show that this series is absolutely convergent in the Banach
space Ll(H), and that ¢ is a continuous map from LZ(H) into
LI(H). We set

det,(1+A) = det(l - o(A)) = det{e P(1+A)) (7.72)

where the determinant of 1-¢(A) is the one considered before.
We state the main properties of the modified determinant:
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(a) The functional Aw det2(1+A) 18 continuous on the Hilbert
space LZ(H), as a composition of continuous maps

(b) The operator 1+A is invertible ¢ff det,(1+A)#0; indeed
e'A has a bounded inverse eA hence 1+A is invertible iff
1 - ¢o(A) s, that is iff det(l - ®(A)) # 0.

(c) For a trace-class operator A, one gets

-Tr(A)

det,(1+A) = e det(1+A) . (7.73)

Indeed Ll(H) is a subspace of LZ(H) and the embedding is conti-
nuous since ||A||2 5 |lA||1. Therefore in formula (7.73) both
sides depend continuously on A in Ll(H) and it suffices to
check it for a finite rank operator A. But then we can split

H as F ® G where F is finite-dimensional, A induces an opera-
tor A, in F, and vanishes on the orthogonalAcomp1ement G of F.
WeTiEE ;eft with the verification of det(e o(1+Ao) =

e ° det(1+Ao), and using the multiplicativity %f determi-

nants, everything is reduced to the proof of det(e °©) =

-Tr(A,)
e . Putting A  in triangular form, we find
-A -A =X
det(e %y = e L .. € N
and Tr(Ao) = Apte.thy where A{seeeshy are the eigenvalues of
A_. Done !

0
(d) If A and B are Hilbert-Schmidt operators, then

dety((1+A)(148))= det,(l+A)det,(1+8) e "(AB) . (7. 74)

Notice that A3 is trace-class, hence Tr(AB) is defined. Arguing
by continuity, we need only to prove (7.74) for finite rank
operators, and this case follows from (7.73) by an easy calcu-
lation.

7.16. A Hilbert-Schmidt operator is compact, hence its eigen-
values are described qualitatively by F.Riesz'theory. So let

I be the set of nonzero eigenvalues of A, and for A in & its

multiplicity m(ix) be defined as the (finite) dimension of the
space f, of vectors annihilated by some power of the operator
A-x. Alternatively, we can rearrange the eigenvalues in a
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sequence Aj,A,,... such that Ikll 2 lkzl 2... and each ei-
genvalue A # 0 occurs m(\) times in the sequence (A, ). If A
is of finite rank, there are only a finite number of nonzero
eigenvalues; otherwise, lxnl tends to 0 with 1/n.

Fix an integer k 2 2, so that the operator Ak is trace-
class. Let z(k) be the set of nonzero eigenvalues of Ak, and
m (1) be the multiplicity of aA. By an algebraic reasoning, it
can be shown that a complex number x» # O belongs to r(k) iff
it is the k-th power of an element of £. Moreover, the set of
vectors annihilated by some power of Ak - 2 is the direct sum

0] Hu where p runs over the k-th roots of A belonging to I.
u

Hence m (%) = kz m(u), and this implies
Ho=A
by am(2) = I uk m(u) . (7.75)
AET (k) ues

By Dikii's theorem (7.71), the left-hand side represents the
trace of Ak. Hence we get

>~

Y= & wu-m(u) = = Xn (for k =z 2) . (7.76)
ues nzl

0f course, when A itself is trace-class, the same formula re-

mains true for k = 1. Notice that the series in (7.75) are ab-

solutely convergent and in particular I
nz

Let us introduce the characteristic determinant

Ia | is finite.
1

D,(z) = det,(1 - zA) (7.77)

where z is a complex variable. Notice the series expansion

PPl -2y =1 - kgz(k-l)(k!)-l akzk (7.78)

which converges absolutely in the Banach space Ll(H). Since
the map B+~ det(1+B) from Ll(H) to € is holomorphic, it fol-
lows by composition that DZ(Z) is an entire function of z. By
property (b) of subsection 7,15, the roots of the equation
DZ(Z) = 0 are the inverses of the eigenvalues X # 0 of A.
More precisely, we claim

DZ(Z) = N

AnZ
(1-2,2) e , (7.79)

v =

1
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where the infinite product converges absolutely since len
n

finite., To prove this formula, let us remark that both sides
are entire functions of z, hence it suffices to prove it for

small |z], Moreover, both sides take the value 1 for z = 0,
hence it suffices to consider the logarithmic derivatives, that
is to prove
A2z
Dy(z)/Dy(z) = - = —D— : (7.80)
nzl 1 -x z
n
The right-hand side can be expanded into a double series, and
taking (7.76) into account we get

2
A z
- 0 R T T L S zk-lTr(Ak)
nzl 1 - z nzl kz2 N kz2
= -z Tr( z 2K72AK"2 a2y o re(aZ(1-za)7Y).
k=22

The formal manipulations are easily justified for |z| small,
On the other hand, using the modified multiplicative property

(7.74) and putting R(z) = A (1-zA) 1, one gets

D4(z)/Dy(z) = lim {det,(l-zA-cA)det,(1-zA)" ! « 1}
2 2 e~0 2 2
= Vim {det(eR(Z)(1-er(z))) e “2Tr(A-R(2)) 1}
€0
Since the expansion of eER(Z)(l - €R(z)) into powers of ¢ has

z)
no term of degree 1, one gets detz(eER(z)(l-eR(z)) =1+ 0(e2)

hence D5(z)/D,(z) = - zTr(A-R(z)) and we are dane.

7.17. We noticedalready that the determinant det,(1 +zA) is an
entire function of z when A is in LZ(H). Introduce the power
series expansion

det,(1 + zA) = ¢ b
kz0

The coefficients b, (A) can be calculated as follows

(A) z ) (7.81)

2 . .
b (A) = (20) L RK [ dety(1 +Re®®n)e™ 1KY 4g . (7.82)

0o
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It is now easy to estimate bk(A). Indeed using the product ex-

pans;on (7.79) and the elementary inequality [(1 + E)e'glé
elg[ /2 (for a complex number £), one gets
1 2 2
dety(l + zA) S exp » I Ixnl Jz| (7.83)
n

Using (7.82) and choosing R as the square root of k/zlxn[2 R
one gets n

byl s (e 2 (2 Ia 1HRE (7.84)

n
A crucial estimate, due to H.Weyl, asserts

2 . 2
ﬁ A 19 s Hall; . (7.85)

It is in turn derived from a similar statement for trace-class

operators, which can be proved using the comparison of eigenva-
lues of AkB and Ak!B[ as in subsection 7.6. Hence we can derjve
from (7.84) the final estimate

b (A 5 (es)¥/ % TIallK : (7.86)

We offer now a method to calculate the coefficients
bk(A). First of all, use polarization as in subsection 7.10 and
define by (Aps-..sA,) for Ap,...oA, in L2(H) by

2D (Apseesh) = B by (e Akt A )e ey
51...5k
(7.87)

(sl,...,ek take independently the values 1 and -1). From
(7.86) we get the estimate

b (AgseeuA) | s v LIALTT oo TIAT T, (7.88)
with a constant

o= (ek/&)¥ 2k . (7.89)

Since the functional Aw det,(1+A) is continuous on the
Hilbert space L2(H), it follows from (7.82) and (7.87) that the
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functional bk(Al""’Ak) is jointly continuous on L2(H) X
X L2(H). By continuity, it suffices to consider the case where
Apse..nA are of finite rank. When A is of finite rank, we

know that det,(l+zA) is equal to e"ZTr(A)det(1+zA), hence we
get
k . R
b (A) = = (-1)2Tr(A)’ Cpai (Asevn )/ (7.90)
i=0 ;
using the multilinear form
-1
Cr(Al""’Ar) = (r!) oés (sgno) Tr((Alﬂ...ﬂAr)Uo)
r

(7.91)

as in subsection 7.10. It follows immediately that bk(Al"“’Ak)
is a continuous multilinear form on L2(H) X +o. X L°(H). More-
over, by some group-theoretical calculations, one derives

! = LI .
kib (lwp><eql, oo,y ><e,0) 12$§k ay; , (7.92)
l<jsk
with <6;lvy> TR
aj5 = (7.93)
L 0 ifio=

Problem: derive the estimate (7.88) from the definition
of bk(Al""’Ak) by the previous formulas.

To conclude this subsection, let us remark that the for-
mula for the logarithmic derivative of DZ(Z) aiven at the end
of subsection 7.16 <can be rewritten as follows
_ k-1 _k k
det,(1 + zA) = exp I (-1) 2" Tr(A")/k . (7.94)
k=2
Notice the similarity with the formula for trace-class operators

det(1+28) = exp T -1)k 1 Zkreakye (7.95)
k2
Since Tr makes in general no sense for k = 1, when A is

Hilbert-Schmidt, just omit it I We leave it to the reader to
modify accordingly Waring's formula,

7.18. Let us go back to intearal operators. So let o and the
continuous kernel K(x,y) be as in section 5. Since a conti-
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nuous kernel K(x,y) is a square~intearable function on @ x a ,
the operator fe> Kf acting on the space C{(q) of continuous
functions ig the restriction of a Hilbert-Schmidt operator Ay
acting in L°(@).The main results in subsection 5.9 can be
expressed as follows:

z1

det(1l + zK) = e det, (1 + zAK) (7.96)

where the left-hand side if Fredholm's determinant and
= K(x,x) dx.
Q

The question about the trace can be reformulated as fol-
lows: suppose the continuous kernel K on @ x @ <Is such that
Ak 18 a trace-class operator in LZ(Q). Ig it true that
Fredholm's determinant det(1+zK) agrees with the determinant
det(1l + ZAK) of Hilbert space operators ? Or, accordina to
formula (7.96), do we have in this case

Tr(A) = IQK(x,x) dx. (7.97)
The answer is yes, by Mercer's theorem, if Ak is a pnositive
operator. I do not know the answer in general.

From (7.96), one can derive a power series expansion for
det2(1 + zAk). Indeed recall the definition of Fredholm's
determinant

) K Xpee Xy
det(1+zK) = = (z%/k!) [ ...[ & Ydxy ... dx
k20 Q Q Xqeee Xy
(7.98)
Xqew Xy ) )
where A( ) is the determinant of the matrix with ele-
Xpeeo Xy
ments K(Xi’xj) for 1 s i sk, 1 =2 j 2 k. Define similarly
Xpee Xy
a'( ) as the modified determinant where we replace the
Xqeeo Xy
diagonal elements K(x;,x;) by 0. Then we get
) K L Xgeee Xy
det,(1+zAL) = & (z°/k!)f..f &'( Ydxy. . dx
k=0 Q Q Xpeeo Xy
(7.99)
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This formula remains valid if we suppose only that K belongs
to L2(Q X 92}, hence AK is Hilbert-Schmidt. This modification
of Fredholm's definition was first proposed by Hilbert and

Harnack 1in 1906,

8. Fredholm Determinants: the Case of Banach Spaces

8.1. Let E be a Banach space, with norm ||x|| for vectors. If
A is a bounded operator in E, its norm LIAll is the smallest
constant C 2 0 such that [lAxI| = ¢ [Ix!] for a1 x in E.

We owe to Grothendieck the following definition of a nuclear
(or trace-class) operator in E: any operator which can be re-
presented as a series A = ﬁhn where each hn is of rank 1, and

Zl|hnliis finite(such a series converaes in operator norm).
n
The nuclear norm ||A[]; is the infimum of the set of numbers

Z{Ihn1| for all such decompositions A = Zh, . Usina the fact
n n

that a normed space is complete (hence a Banach space) iff
any absolutely convergent series has a sum, it follows easily
that the set Ll(E) of nuclear operators is a Banach space for
the nuclear norm.

Introduce the dual space E' of E and denote by <x'[x>
the natural pairing between E' and E (for x in E and x' in E')
More explicitely, a nuclear operator can be represented as
follows

<x$|x> X (8.1)

n

Ax = % »
n n

where X, are vectors in E and xa in E', A, are complex numbers
and ||xnI| =[xyl =1, tia,| finite. In Dirac's notation,
where the elements of E' gre bras and those of E are kets,

this is expressed as

A = }r:] M [xn><xr']| . (8.2)
According to subsection 6.4, when E ¢s a Hilbert space, the
nuclear operators are exactly the trace-class operators. More~
over, in this case, we can compute the trace of A using any
orthonormal basis (wm), hence
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Tr(A) = ;<wm|Alwm>= mfn A< Ixp><xp o>

and using Parseval's equality, we conclude

- ]
Tr(A) = ﬁ A< xp x> . (8.3)
8.2. There arises the question whether a similar definition
of trace works for nuclear operators in a Banach space. The
series (8.3) converges absolutely since Elkn[ is finite and
n

]<x$|xn>| s x| ||xn|| < 1. The question is whether the va-
Tue given by (8.3) 1is independent of the chosen decomposition
(8.2) for A. First of all, the trace is well-defined for

finite rank operatorﬁ. Indeed, 1et B be such an operator, re-

presented as a sum & lxn><xa|. Let us choose a set of linear-
n:

ly independent vectors e;,...,ey such that every x  is a linear

combination of the em's. Now any vector of the form Bx is a
unique linear combination of S ERRRRLD hence there exist wuni-

quely definea elements ei,...,eM of E' such that B=m§{em><eﬁ,‘

Write X, = mil Unm€m with complex numbers Unm® Then

B ==z |x.><x'| = I u le ><x']
W n S LI

and, by the uniqueness of the expansion B = ¢ |em><e6 , one

) 1} m
= . e
gets e ﬁ Unm*n Therefor
h) <xﬁ|xn> = 1 Unm <xé|em> = 3 <eﬁ|em>
n n,m m

If we start from two decompositions

- J - '
B =2 [xp<xpl = = lyo<y !l
n r

we can use the same em's for both, hence I <xﬁlxn> and
n

T <y;|yr> are equal. Conclusion: The finite rank operators
r

farm a dense linear subspace Lf(E) of Ll(E) and a trace is

defined on Lf(E) which ts linear and takes |x><x']|

into <x'|x>.
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We can extend the trace to the whole of Ll(E) when E
satisfies Banach approximation property: given any compact
set K in E, there exists a sequence of finite rank operators
p, such that stp||pk|| be finite and lim Ilpk(x) - x|l =0

ke
uniformly for x in K. The standard Banach spaces (continuous

functions, Hilbert spaces, LP spaces, Sobolev spaces) satisfy
the property. At the time Grothendieck considered these pro-
blems (around 1950), it was still conjectured that every
Banach space does. Counter examples were discovered much later
the most remarkable being the space L{(H) of all bounded opera-
tors in a Hilbert space H, with the operator norm |[A|l]. Sup-
pose that E satisfies the approximation property and let

A =12 2 |x ><x'| be a nuclear operator. Since Ljx_| is finite,

N n noon

we can write A = u v with Zlunl finite and 1im v = 0.
n n->o
Choose a compact set K in E containing the vectors VX and

operators p adapted to K. Then pkA are finite rank operators,
hence their traces are defined; the formula

TripA) = & wpexilp (v x )> (8.4)
n
is easily checked. By dominated convergence for series, one
deduces
llz Tr(pA) = ﬁ“n<xn|“nxn> = ﬁxn<xn|xn> . (8.5)

As in the finite rank case, the same set K and the same pk's
can be used simultaneously for two decompositions

A = I )\n|Xn><Xr']| = I 1rr|_yr><y"”[ , (8.6)
n r
hence
] - ]
)r:1 ‘n <Xn|Xn> = )'i'nr<yr|yr> . (8.7)

Conclusion: when E satisfies the approximation property, there
exists a linear form Tr on Ll(E) such that |Tr(A)| s ||A||1

and taking |x><x'| Znto <x'|x>.
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8.3. MWe come now to the general case. It turns out that nu-
clear operators in Banach spaces are better compared to
Hilbert-Schmidt operators than to trace-class operators in
Hilbert spaces. We proceed to define the trace of the square
of a nuclear operator.

Let B and C be nuclear operators in E, with decompositions

B = ﬁxn|xn><x5| . c = ;umlym><y$| . (8.8)

Then one gets absolutely convergent series

oA uo<xtly s<ytlx > = Ix o<x!lCx > = Zup<y!lBy >
n,m nm “n''m m “n pnon n m mJm m
Thsogeeond expression does not depend on the decomposition cho~-
sen/and the third one does the same for B. Hence these expres-
sions depend solely on B and C. It follows that there extsts

a bilinear form Tr(B;C) on Ll(E) X Ll(E) with the following
properties:

(a) the inequality [Tr(B:C)| = ||B||1 ||Cl|1 5
(b) when B = [x><x'| and ¢

Tr(B;C) = <x'|y><y'[x>

= |ly><y'| are decomposable, then

(c) symmetry Tr(B;C) = Tr(C;B)

We prove now that Tr(B;C) depends solely on the product
A = BC. Let us introduce an auxiliary Hilbert space H with an
orthonormal basis (v.). We factor every X as Bneﬁ with

_ | 2 _ V12 .
8,1 = |81, hence ﬁ I8 1% = ﬁ l8;1° is equal to ilxnl , hence
finite. Define operators 8: H# - E and 8': E » H by

B = I g |xp><ul (8.9)
n
g'= ﬁ85|¢n><x5‘ (8.10)

(by convention, our indices run over the integers 1,2,3...).
More explicitely, for v in H, one has

(v) = ; Bp<vplv> xp (8.11)
and the series converges absolutely in E since [[x, [ =1 and
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|2, z|<wn|w>|2 are finite (Hint: use Cauchy-Schwarz
n

inequality). Similarly

B'(x) =z G['1<Xr'1|x> b (8.12)
n
and I |Bé<xé|x>|2 is bounded by |lx||? %|36|2 According
n
to these calculations, we get the norm estimates
2
a2 s sle 12, Iler1% sz 801 . (8.13)
n n

From the construction of 8 and 8' , we get B = BB' since
B(v,) = BnX, by (8.11). On the other hand, B'6 is a bounded
operator in the Hilbert space H, with matrix elements

<wplerele > =8 80 <xtix > . (8.14)

Since I<xplx >lis bounded by 1, and : lsnlz, z IGI;]I2 are

n

finite, it follows that = |<y l6'8ly >|% s finite. Taking
m,n

into account the definition of the nuclear norm, we conclude:

gitven the nuclear operator B and any € > 0 , there exists a
decomposition B = BB' with bounded operators B: H > E and
B': E > H, while B'B is a Hilbert-Schmidt operator <n H
with [l18reil, = {18l + e,

Introduce a similar decomposition C = yy' where «y'y
is a Hilbert-Schmidt operator in # with [Iy'vI[, s [lclly + «.
By calculations similar to the previous ones, one shows that
B'y and y'g are Hilbert-Schmidt operators in H. Putting
& = g'yy' and noticing that sg = (8'vy)(y'8), we conclude:
the operator A = BC in E can be factored as VU with bounded
operators U: E »H and V: H > E , in such a way that UV be a
trace-class operator tn H with trace given by Tr(UV)=Tr(B;C).

We can calculate the trace of UV in terms of its eigenva-
lues. By easy calculations, one shows that for any »# 0, and
any integer N > 0, U maps the set of solutions y in H of
(uv - x)Nw = 0 1isomorphically onto the set of solutions x in
E of (VU - 2)"x = 0. A similar statement holds with U, V inter-
changed and E,H interchanged. Hence the operators UV in H
and VU in E have the same eigenvalues A # 0, with a common
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multiplicity m(x). Borrowing from the spectral theory of trace-
class operators in Hilbert spaces (see subsection 7.14), we
can conclude:

Let the operator A in E be factored as BC , where B and
C are nuclear. Let ¥ be the set of nonzero eigenvalues of A ,
and m(X) the multipliceity of A in L. Then the series

L m(A)x <s absolutely convergent and <ts sum is equal to
AEL

Tr(B;C). In particular Tr(B;C) depends only on BC, as asserted.
8.4. From now on, it is very easy to transfer the properties
of Hilbert-Schmidt operators into properties of nuclear opera-
tors. Taking B = C in the previous result, we get:

(a) et B be a nuclear operator, not of finite rank.

Then its eigenvalues (multipliecities <Included) can be arranged

as a sequence (} ) >4 s tending to zero, with IA1| z A, le, ..
Moreover Zl*n[z is fintte and bounded by ||BI|§ .
n
k-1

Then taking C = B , With k 2 2:
(b) For every integer k2 2 , one gets

Tr(esskly =z ak , (8.15)
nzl N
The (modified) determinant of 1 + B can be defined as

follows

=X
dety(1+4B) = T (1 +xr )e " ; (8.16)
nzl
the convergence of the infinite product is guaranteed since
b iAn|2 is finite. The characteristic determinant of B is the
n
function Dz(z) = det2(1 - zB), that is
)\nZ
Dy(z) = m (1 - AnZ) e . (8.17)

nz1
Hence Dz(z) is an entire function of the complex variable z.
We can expand it as a power series

D,y(z) = (-1)° b, (8) z . (8.18)

z

kz0 ‘
Recall the existence of a factorization E E H E E of B such
that 8'B be a Hilbert-Schmidt operator in H. By a previous re-
mark, the operators B = gg' and T = B'B have the same eigenva-
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values, with equal multiplicities. ience one gets
tr(B:k "y = Tr(Thy (8.19)
det2(1 - ZB) = det,(1 - zT) . (8.20)

Notice also that, given ¢ > 0, we can choose B and B' such

that IITII2 < IlBII1 + e. We can derive the properties of

Dz(z) from those of T without any new calculiation. For instance,
we get

k-1

Dy(z) = exp - £ Tr(8;8X1) 2X/k (8.21)

k22

for {z| < 1/11Bl 1, as well as the estimate

b ()] s (e/k)*/2 Il . (8.22)

From (8.21) flow the usual corollaries, such as Waring formulas
and Plemelj determinants. From (8.21) and the bilinearity of
Tr(B;C) it follows that there exists continuous multilinear
forms by (By,...,8,) on L'(E)x ... xt'(E) such that b,(B) =
b(Bs ..., B). We can take bk(Bl,...,Bk) as symmetrical, hence
given by the polarization formula (7.87). This provides the fol-
lowing bound, implying that Be det2(1+B) is holomorphic on

the Banach space LI(E):

b (ByseeuB ) s (ek/a)X 2y By I L HB 1]
(8.23)

Let us mention the following analogue of formula (7.92)

0 xjlxp> coo <xilx>
kib, (B B )= det| <X21%1> 0 <xplxp>
AR S T
xplxprexplxg> oL 0 y, (8.24)
for By = |x1><xi|, cee s B = ka><x&|. We could use this for-

mula to estimate bk(Bl""’Bk); using Hadamard's estimate on
determinants, we recover (8.23) with a slightly larger constant,
k/2
namely k /kt o,
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To conclude this subsection, let us mention the modifzed
multiplicative rule

det,((1+8)(14C)) = dety(1+8)dety(1+c)e " (E3C) (8.25)

which is analogous to (7.74). The simplest way to derive it,
is by noticing that both sides are continuous functions of B
and C in the Banach space Ll(E) and that finite rank operators
are dense in Ll(E). This reduces the proof to the finite dimen-
sional case where det,(1+B) = e-Tr(B)det(1+B) and Tr(B;C) =

Tr(BC); the rest of the calculation is easy.

8.5. The theory behaves in a much smoother way when the

Banach space E enjoys the approximation property. In this case,
the trace of a nuclear operator is defined and Tr(B;C) is the
trace of the product BC. We then define the determinant by

Tr(B)

det(1+B) = e det,(1+B) . (8.26)

For the characteristic determinant we get

Az
D(z) = det(l - 28) = ™" 1 (1 -pz) e’ (8.27)
n

with t = Tr(B). In general, the series Iy, is not conver-

gent, and even if it converges, may fail 20 sum to the trace
T of B. ‘

The formulas of the previous subsections admit of the
following variants:

D(z) = exp - I Tr(8%) z¥/k (8.28)
(for lz| < 1/1IBll;) and
D(z) = = (-1)¥c(8) 2 (8.29)
k20

Here again c (B) is obtained by putting By = ... = B = B in
a continuous symmetrical multilinear form Ck(Bl""’Bk)' It
is characterized by the formula

! v = X 8.30
ktc (B, I lg?gk <x1|xJ> (
l<jsk
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for decomposable operators B; = Ixp><xilseens B = Ixpo<xpl.
Using Hadamard's estimate for determinants, one gets the
estimate

k/2

lc, (BysensB)] 5 K (k!)'1||31||1...|]8k||1. (8.31)

Grothendieck originally developed his theory of Fredholm
determinants in Banach space by using formulas (8.29) and
(8.30) as a starting point.

As we expect, the operator 14B is invertible iff
det(1+B) # 0 and from (8.25) one derives immediately the mul-
tiplicative rule

det((1+B)(1+C)) = det(1+B) det(1l+(C) . (8.32)

8.6. To make the story complete, let us specialize our theory
to the Banach space E = C(®) of continuous functions. For every
- > i .

integer r 2 1, choose a finite open covering (Ua)aEI(r) of @
by sets of diameter < 1/r. For each a, choose a point x, in

Ua and a continuous function wa,taking positive values and

vanishing outside U_, in such a way that X v, = 1 ("parti-
. a€l(r) *
tion of unity"). Define the finite rank linear operator Py in

C(a) by

(P F)(x) = = flx o (x) . (8.33)
w€I(r)

Any continuous function f being uniformly continuous on the
compact space @, the sequence of functions prf converges uni-
formly to f on u. Moreover, by Ascoli theorem, the convergence
is uniform in f when f runs over a compact subset of C(e). The
space C{g) enjoys therefore the approximation property. It can
be shown that an integral operator A, with continuous kernel K
acts on C(9) as a nuclear operator, although <t does not act
on LZ(Q) as a trace-class operator, denerally speaking. With
the previous notations, the finite rank operator prAK transforms
a function f in C(Q) into % o  u,(f) where ue(f) =

[¢3

fQ K(xa,y)f(y) dy. Therefore Tr(pkAK) is equal to 5 ua(wa) =
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2 fﬁ K(x,,x)®,(x) dx. This converges to fQ K(x,x) dx hence

the trace of Ay as a nuclear operator in C(2) is equal to the

"natve" trace fQ K(x,x) dx.

From this fact and the results given in subsection 7.18,
it follows that the Fredholm determinant det(l+K) Zs equal to
the Grothendieck determinant det(1+AK) associated to the nu-

elear operator AK.

PART THREE:

OVERVIEW OF RECENT DEVELOPMENTS

9. Grassmann Calculus and Berezin Determinants

9.1, Let V be a complex vector space of finite dimension n,
and choose a basis IR of V. We introduced in subsection
3.4 the symmetric algebra SV and remarked that its elements
can be put in bijective correspondence with the polynomials in
n variables XpsewnsXye In this correspondence, the vector e;
corresponds to the variable x;. The multiplication obeys the
commutative law x1.xj = + iji' From the variables we built the

monomials, products of variables, which can be put in the nor-
o o

mal form x;° ... xnn because of commutativity. From the mono-
mials, one builds the polynomials by using linear combinations
with complex coefficients.

Consider now the exterior algebra AV built on V. In a
similar way, it can be considered as the algebra of Grassmann

variables gl,...,gn, the vector e; corresponding to £5. These

variables obey the anticommutative law Eigj = - gjgi. This

implies E58; = "E4E4, henceg? = 0. The monomials in E1seresfy

can therefore be normalized as ¢. ...&. with indices il,..,i
iy Ty k

in strictly increasing order. A Grassmann polynomial in the va-
riable £,...,€, can be expressed in a unique way as a linear
combination of the 2" monomials with complex coefficients.
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2 fﬁ K(x,,x)®,(x) dx. This converges to fQ K(x,x) dx hence

the trace of Ay as a nuclear operator in C(2) is equal to the

"natve" trace fQ K(x,x) dx.

From this fact and the results given in subsection 7.18,
it follows that the Fredholm determinant det(l+K) Zs equal to
the Grothendieck determinant det(1+AK) associated to the nu-

elear operator AK.

PART THREE:

OVERVIEW OF RECENT DEVELOPMENTS

9. Grassmann Calculus and Berezin Determinants

9.1, Let V be a complex vector space of finite dimension n,
and choose a basis IR of V. We introduced in subsection
3.4 the symmetric algebra SV and remarked that its elements
can be put in bijective correspondence with the polynomials in
n variables XpsewnsXye In this correspondence, the vector e;
corresponds to the variable x;. The multiplication obeys the
commutative law x1.xj = + iji' From the variables we built the

monomials, products of variables, which can be put in the nor-
o o

mal form x;° ... xnn because of commutativity. From the mono-
mials, one builds the polynomials by using linear combinations
with complex coefficients.

Consider now the exterior algebra AV built on V. In a
similar way, it can be considered as the algebra of Grassmann

variables gl,...,gn, the vector e; corresponding to £5. These

variables obey the anticommutative law Eigj = - gjgi. This

implies E58; = "E4E4, henceg? = 0. The monomials in E1seresfy

can therefore be normalized as ¢. ...&. with indices il,..,i
iy Ty k

in strictly increasing order. A Grassmann polynomial in the va-
riable £,...,€, can be expressed in a unique way as a linear
combination of the 2" monomials with complex coefficients.
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A monomial Ei ceeEy is called even or odd if k is respecti-
1 k

vely even or odd. An even (odd) polynomial is a linear combi-
nation containing only even (odd) monomials.

There is only one monomial of degree n, namely €1 ««v &y
Let A = (aij) be any matrix of size n x n, and introduce the
n
Grassmann polynomials ny = L aijgj of degree 1. Then the an-
j=1

ticommutativity rule ni”j = -njniholds and the product
Nyeeenp is homogeneous of degree n, hence a scalar multiple

of &, ceebp Since the Grassmann polynomials are just another
way of denoting the elements of AV, their product corresponds

to the wedge product,hence formula (2.16) can be rewritten as

NpeeeNp = (det A) €1« &g . (9.1)
We can develop the product Ni««en, as the sum of the n" pro-
ducts a;; ...a_: £&. ...£; . The monomial €, ...&, is O un-
13y N "J1 In J1 In
less the indices jl...jn form a permutation o of 1 ... n,

and in this case is equal to (sqno)&;...&, . Hence we get the
familiar complete expansion of the determinant

det A = oésn (sgno) a; o(1)""" anc(n) . (9.2)
9.2. Berezin's very original idea was to define a differen-
tial and integral calculus of Grassmann polynomials. Consider
first the derivatives. Choose an index i between 1 and n. Then
any given Grassmann polynomial P(el,...,gn) can be written uni-
quely as A + EiB, where A and B are Grassmann polynomials in
the variables different from Ly We define the partial deriva-
tive GiP = GP/agi as the coefficient B of 51 in P. Notice that,
due to anticommutativity we have to distinguish €;B from BE,.
For this reason, GiP is called the forward derivative with
respect to 51.

We record here a few basic formulas, which except for the
minus signs, are similar to familiar formulas
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6;(PQ) = 6;P.Q £ P-48.Q . (9.5)

In formula (9.4), £, is interpreted as the operator mapping
a Grassman polynomial P into £,P ("forward muitiplication” by
£;)s hence, we get more explicitely

S1(E5P) + £5-(8;P) = 6P . (9.6)

In formula (9.5), the sign is + or - if P is even or odd res-
pectively. Notice that 8,P is odd (even) when P is even(odd),
hence Gi changes the parity. According to the sign rule for
the parity of products

even X even = even H even x odd odd H

odd x even = odd 5 odd x odd

even s

(see formula (3.3)), the operators Gi (as well as Ei) are to be
considered as odd. Formula (9.4) can be rewritten as

i
mula (9.5), a minus sign occurs only at the place where §,

GiEj = —Ejé. for i # j in analogy with (9.3). Moreover in for-

and P are interchanged and only when P is odd. A1l this agrees
fully with Koszul's sign rule (see subsection 2.9)).

If I is any subset of the set {1,2,...,n} with elements
il,...,ik arranged in increasing order, we set

£y = & £, , Sy = 8¢ uun . (9.7)

T 151
According to the rules (9.3) and (9.4), we can shift in any
product of factors £ and Gj the factors Gj to the right and

the factors £; to the left. Hence a differential operator acting
on the Grassman polynomials can be written in the normal form

[N
Tk

D= % a £.6 . (9.8)
1,4 I,0 7179

Moreover the monomials EK form a basis of the Grassman algebra
A(Eys++.38,). The action of the operator £;6, is given as
follows
Tt if JcK and I n (K\NJ) = @
(£765)(8) = (9.9)
0 otherwise
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(where L =1 U (K\J)). It is then easy to prove that any linear
operator acting on A(El,...,in) can be uniquely written in
the form (9.8). In particular, any operator is a differential
operator.

Let us add two remarks. When n = 1, write El as &. Hence
the Grassmann algebra A(E&) has a basis 1,&£ in which the ope-
rators &= &, and § = 61 are expressed by the matrices

0 0 0 1\
£ = ( \ , § = { . (9.10)
1 0 lo o)
The relations (9.3) and (9.4) take the form

£EE = 88 = 0, £E8 + 8¢ = 1 . (9.11)

which are easy to cneck on (9.10). Notice that the Pauli ma-
trices are o = 8,0_ = &, o3 = SE-£S

Moreover, the relations (9.3) and (9.4) define a Clifford
algebra with generators El,...,in, 61,...,6n and our result
about differential operators corresponds to the well-known fact
that such an algebra is an algebra M  (C) of complex matrices
of size 2" x 2", 2
9.3. We come now to Berezin integral. Write a Grassmann poly-
nomial in A(El,...,in) as

n
P = ¢ B + E c.&. + ... + C12.. .1 E1...8

The coefficient €12 n is called the Berezin integral of P,
to be denoted by [pP.8"¢ , or [pesg ... 8¢,. This integral can
be calculated as a repeated inteqral

Jog foey, oo fee P(Ey,..iut)

In this kind of calculation, we assume that the 551 anticom-
mute with each other, and commute with the Ej (there is no una-
nimous agreement on this last point). The basic rules are as
follows:

[P(Eyse sEy)oEy. 8t = ICI TR SO LI SRR

(9.12)
IR(Eq+1"--’En)5€q+1...5in
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i P(Epse..sg,) splits as Q(Eq,...s¢ )R(gq+1,...,gn)

q
Jegs =0, fegse, = 1 . (9.13)

In the derivative §;P, we have a Grassmann polynomial of
51""’51-1'5i+1""’5n hence there can be no term pronortio-
nal to £7,...,€,. Hence we get

[o.p 5" = 0 , (9.14)

and from (9.5) one derives the rule of <ntegration by parts
[s;p-qs"e = T fp-s.qse (9.15)

where the sign + (-) holds for P odd(even).

9.4, Let us mention the formula for a linear change of varia-
bles in a Berezin integral. Recall first that given a real
function f(x) on W" and an invertible linear map A from Rr"
to mn, one gets

[ f(x)d"x = det A [ f(Ay)d"y . (9.16)

x" R"
Hence the rule: the integral is unchanged under the simulta-
neous substitutions x w> Ay, d"x v (det A)'dny.

Consider now a Grassmann polynomial P in A(gqs..-s8,)
and express the £; as linear combinations of new Grassmann va-
riables

€; = I_aj.in; , Or in shorter form ¢ = An, (9.17)

j=1 13N

where the matrix A = ( ) is invertible., Then we get

aiJ-
[p(e)s"e = (det A)"l [P(An)s™ (9.18)

or in symbolic form

"t = (det A)"! &M for ¢ = An . (9.19)

To prave (9.18), let us remark that for P(f£) homogeneous of de-
gree k < n in ¢, the Grassmann polynomial P(Aa) is homogeneous
of degree k < n in =n, hence both integrals in (9.18) are 0.
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It remains the case P(g) = £;...£,, hence P(An)=(det A)nj...n,
and our formula follows from

Jeg o gy 88) Lou8e = [ng counpeng Laen =]

9.5. We come to the exponential. If P and  are even Grassmann
polynomials, we get the commutativity rule PQ = QP. We define
the exponential of P by the familiar power series

exp P = 3z pP"/m! (9.20)
m=0

provided it converges. The convergence can be proved as fol-

lows. Write P as ¢ + Q where ¢ is the constant term of P.Then

Q having no constant term begins with terms of degree 2 2,

hence Qm = 0 form > %. The series for exp Q breaks down,

namely N

m

exp Q = & Q /m! s (9.21)
m=

where N is the inteqral part of %. Moreover, by the binomial

theorem, one obtains

N

PM/mt =z (<™ /(m-r)1) Q1) (9.22)
r=0

By the convergence of the ordinary exponential series for

exp ¢, we get, after rearranging, the convergence of the se-

ries for exp P, and the formula

exp P = exp ¢ . exp () . (9.23)
The functional equation
exp(P + P') = exp P - exp P’ (9.24)

can now be proved by expanding the exponentials in power se-
ries and using the binomial theorem to calculate (P+P')m/m!.
The algebra works because P and P' commute, and the calculus
goes on because of the convergence of the series. One could
also use formula (9.23).

Notice that the square of any monomial in E1seeesby
is 0. Hence, any even element Q of A(gl,...,gn) without con-
stant term, can be written as @§ = x1+;..+xr where
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2 2 2

Al = el = Ar = 0 and of course Aixj = iji' If A7 = 0 then
expA = 1 + A, and from the functional equation (9.24), one
concludes
r
exp Q = 1§1 (1 + ;) . (9.25)

9.6. We derive now the Grassmann analogues of the gaussian
integrals (see section 4). Consider an element Q of A(El,..,sn)

homogeneous of 'degree 2, hence Q = I qijEiEj’ with a skew-
153
symmetric matrix (qi')' We can write also %Q = X qijEiE‘
J i<j J

and from (9.25),one derives

exp g0 = T (1*aggEE) (9.26)
J

We have to calculate the coefficient ¢ of E] «--Ep in exp Q.

It is obviously 0 if n is odd. Suppose n even, n = 2m say.

Then ¢ is obtained as follows: one considers all possible

partitions of the set {1,2,...,2m} into m pairs {il,jl},...,

{im,jm}, denotes by € the sign of the permutation sending

12 ... 2m into i1j1i2j2 “e 1mjm’ and multiplies it by a;
LI Then make the sum of all such contributions,
mYm

two partitions into m pairs differing by the order of the pairs
being considered as identical. This is the so-called Pfaffian

13177

of the matrix (qij)

n
—
-
(2]
1}

Examples: a) for m a5

b) for m

n
~n
-
(2]

= 9729347913924%914923

This Pfaffian, to be denoted Pf(Q) or Pf(qij) is a Berezin in-
tegral
PF(Q) = fexp %Q(s) s"e (n even) . (9.27)

The determinant of a square matrix A = ( ) of size

a,.
13
n x n can also be interpreted as a Berezin integral. Namely
introduce Grassman variables Eqseresbps Nysensany and the bi-
Tinear form A(g,n) = I a,:t:n; ., We claim
iy 1R

k]

[fexp A(g,n) &"es™n = (_l)n(n-l)/Z . det A . (9.28)
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Indeed develop A(f,n) as gqup(n) + oot gnun(n) with
n

u;(n) = Each of the terms £.u.(n) has a square equal

z LN
jor T30
to 0, hence w% have to calculate the coefficient of Epeertp
nyeeeny, in n (1l + g;u;(n)). The relevant term in the pro-

1
)

>

;
duct is glul(
(_1)n(n-1)/2

gnun(n), which can be rearranged as

Eqrer Ep up(n) «ooup(n)

We remarked already that wuj(n) ... un(n) is equal to
(det A)-nl...nn, hence formula (9.28) is proved. We could
rewrite this formula as

ffexp{izjgiaijnj} 8£q8ny...6¢ 6n = det A (9.29)

in analogy with formula (4.22). To make the analogy more
complete, some authors have proposed the normalization [gs¢ =
(-211)Y/? instead of [ese = 1.

To get a formula analogous to (4.10), namely

fexp 50(£)6"e = (det Q)Y 2 (9.30)
we need only to prove the classical result that the determinant
of the skew-symmetric matrix Q is the square of its Pfaffian
(for n even). This can be done by a trick similar to the one
used in subsection 4.1. Namely, from (9.12) and (9.27) we get

n/2 2

(-1)™Z pr()® = [fexp $(Q(g) - Q(n)) 6"es™n . (9.31)

Introduce the bilinear form Q(f,n) = T Q458405 From (9.28)
one gets 1

(-2 ger g = frexp 0(g,n)s"es™ . (9.32)

But the integral is transformed into the previous one, if one
makes the substitution (g£,n) - (g-n, %(E+n)), of determinant 1

- 2
(Notice that n is even, hence (-1)n /2 . 1). The important fact
about formula (9.30) 1is that it chooses one of the square

roots of det Q.
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9.7. We shall now mix ordinary variables with Grassmann va-
riables. So consider vectors x = (xl,...,xp) in ®RP and Grass-
mann variables £ = (El,...,iq). By a superfunction we mean a
Grassmann polynomial in the variables £ whose coefficients de-

pend on x, namely

F(x3g) = ? FI(x)-EI (9.33)

(summation over all subsets I of {1,...,9}). On such a super-
function, we operate with ordinary derivatives ai = 3/ax1 in
the parameter x, and Grassmann derivatives Gj = 6/65j. The

rules (9.3) and (9.4) are supplemented by the classical ones

3:9:1 = 9.,9, , XiXon = XgiXg (9.34)

v - Xilai = 61'1'1 . (9.35)

Moreover any operator in the bosonic family S ERERFLI
31,..,ap commutes with any operator in the fermionic family
Els°-°sgqs 615"'56q'

Berezin's integral can be defined in the general case

[f F(xse) dPxd% = [ Fo, o (x) dPx . (9.36)

q

Integration by part with respect to ordinary variables as well
as to Grassmann variables is now permitted.

In what sense if F(x3;&) a function ? The question has
been much debated. Here is a simple answer. Consider an auxi-
liary Grassman algebra A = A(nl"‘°’”r) with real coefficients.

Consider even elements CPIFRERPE of A and odd elements
al,...,aq of A . For any subset I of {1,2,...,q}with elements
Jp < 3p¢ -.. <dg» the substitution of o5 to Ej in EI=Ej1...EjS

gives obviously ar= We propose to define

G. ...0, .
AR Jg
F(al,...,ap;al,...,aq) as EFI(al,...,ap)aI provided we give
a rule to substitute even e]éments al,...,ap of A into an or-
dinary function G(xl,...,xp). Remark that a: can be written

as aj = ag + bj where the constant term ag is a real number.

Since bl""’bp begin with Grassmann monomials of degree 22,
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any monomial in bl""’bp (which commute two by two !) of de-
gree d > ; will vanish. Hence we can use a truncated Taylor
series to define G(al,...,a ) as an element of A, namely

p
G(a?+b1,...,ag+bp) = z r 311---a;p G(a?,---,ag)
)\1+...+)\p§'2
A A
1 Py Al
bl ...bp / TRNEERIRS (9.37)

9.8. Let us return to our discussion in subsection 3.5. Intro-

duce a basis eq,...,e  of V. The algebra W, direct sum of the
Ky o b : B,Fy_cBy g oF

spaces I W, is also the sum of the spaces £ * W=5"V @& A"V,

It follows that IW is an algebra of mixed polynomials in com-

muting variables xy,...,x, and anticommuting variables

€1,...5E,. They can be considered as superfunctions F(x:g) =

z FI(x)EI where each component FI(x) is a polynomial in

I

X = (xl,...,xn). On these mixed polynomials, we can operate
with the operators xi,gj, a/axi, 6/6gj. We consider the two
differential operators

n n 5
d = I g o . s = I X: T . (9.38)

We get the Leibnitz rules

d(FG) dF .G + F-dG

s(FG) = sF*G + F.sG

(with a plus (minus) sign for F even (odd)). Since B/Bx‘j is
an even operator, and 6/égj and odd operator, both d and s
are odd operators. Let us calculate sd + ds:

sd+ds

izj(xiaigjaj + gjajxidi)
3

.+6..)6i

2 x:(8; ’5351)3j + gj(xiaJ ij

iy 'Y

=5 X0, + I E6.
;o ;o

(notice that xigjaiaj is equal to ijiajai s1nc§ ;i commutes
U

to £, and 3, commutes to §;). An element H in % is a
J J 1
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homogeneous polynomial of degree B in x, hence by Euler clas-
sical result, one gets I XiaiH = B.H. Similarly, H is a homo-
geneous polynomial of deéree F in £ and the formula ZiiéiH =
F-H 1is easily proved. Hence sd + ds multiplies H by the total
degree k =B + F.

It remains to prove that our operators satisfy the
rules (3.20) and (3.21). Any element a in W' is a linear com-
bination with complex coefficients of X{s=eesXps hence
da = wa. From Leibnitz rule one derives

B

d(ay...ag) = =

1=1a1...a1-_1 daiai+l T

and moreover elements of W act as scalars with respect to the
derivation d. Formula (3.20) follows at once, and the proof
of (3.21) 4s similar.

9.9. The basic idea in supersymmetry is to consider transfor-
mations mixing ordinary variables xl,...,xp (hereafter called
bosonic variables) with Grassmann variables gl,...,gq (the
“fermionic"variables). A linear transformation will take the
matrix form

%" X

( ) i T

g’ £

where T is written in block form

(M N
“\\J
P Q
. , _ P q
For instance, one gets X3 = jilmijxi + kzlnikgk.

If we insist that x% should be bosonic (that is even), we can-
not achieve such a transformation with ordinary numbers unless
the "ikls are 0, that is N =0, P = 0. If T is a mgtrix with
complex coefficients, it will have the form T =( and we

shall get no mixing 0

x' = Mx ) £' = Qg

The trick is to introduce an auxiliary Grassmann algebra
A = A(“l"'°’“r) and to assume the following parity rule:

the elements of M and Q@ are even
the elements of N and P are odd.
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We shall define the (Berezin) determinant of such a matrix as
an even element of A
Let us preface the definition by a few remarks:

o]

(a) Let us denote by a~ the constant term of an element

a of A; we can say that a° is obtained by putting ny=--.=n,.=0
in a. One checks that (a+b)°® = a® + b%,and (ab)° = a%° for
a,b in A. So if for instance P(tl,...,ts) is a polynomial
and aj,...,a, are even elements of A , the constant term of
P(al,...,as) will be equal to P(ao,...,a:).

(b) Suppose an element a of A has an inverse b,that s
ab = 1; hence a°b° = 1 holds. Therefore, a° is not zero. Conver-
sely, if this is so, write a = a°(1 - 1) where X has a zero
constant term. Then one gets Al 0 and (ao)-1(1+x+...+xr)
is an inverse of a. ‘Moo

Let us assume that T = k ) is as before and that the
P Q

constant terms of detM and detQ are not zero. Then the matrix
M has an inverse, and the matrices 7 and Q - PM'lN have the
same constant term (since P and N have odd elements, and the
constant term of an odd element is 0). Hence the determinant
of Q - pM™IN has the same constant term as detQ, which is not
0, and our determinant has an inverse in A. We are justified

to define the superdeterminant (or Berezin determinant) of T
as

1,,-1

sdet T = det M . det{Q - PM™°N) . (9.39)

This formula should be compared to formula (1.24).

9.10. The justification of the previous definition comes from
the possibility to extend to superfunctions a number of classi-
cal formulas,

We begin with Gaussian integrals. Consider a mixed qua-

dratic form in the variables (x,&) =(x1,...,xp,51...gq)
namely
Q({x,&) = = d.. XsX,0 + 2 % boix.e, +
.i’.il 11 11 .i’j 13 17
+ I C:s1E:E s (9.40)
i JJ 737
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Here we assume ;50 = agy and c.., = "Cj'j' We assume further-

i'i Jj
more that a i and c... are even and that bij is odd. Hence

Q(x,&) will take even values when we replace xl,...,xp by even

elements in A, and El,...,Eq by odd elements in A. Introduce
{tA B\ where
\'s ¢/

) etc. Assume that the constant term of I As X Xy
i,i!

has a strictly positive real part when xl,...,xp are real.

the matrix of coefficients of Q(x,&), namely Q =

A =(ay;
Furthermore, assume the matrix C has an inverse (that is

det(C)® # 0). Notice that this implies that the integer q is
even. Under these hypothesis, one gets

-1/2

(9.41)
a common generalization of formulas (4.11) and (9.30). The in-

fexp - 3 0(x,6)dPxs% = (2m)P/2(-1)%2(sdet )

p
In a similar way associate to the matrix T =

tegration variables X{s+++sX  are real (M N\
\P Qy

a bilinear form

S(x*,E*;x,E) = I X:mii'xi' +

a1 (9.42)
T Xing.E. 4 T g*p X:+ L q g*g

R MR AR S R A LR A TR RS R
Assume that the selfadjoint part %(M + M*) of M be positive
definite and that Q be invertible as a matrix. Then we get the

following generalization of formulas (4.22) and (9.29)

[exp -S(x*,g*;x,g)dedxl...dx;dx 65?651...65*65 =

P 9 °q

= (eri)P(s det )T (9.43)

In this integral, X1s.++,X, are considered as complex variables,

with x? complex conjugate Eo X5 and dx?dxj interpreted as
Zidujdvj if X5 = Uj + 1'vj and uj. vy are real (see formula
(4.23)).
We can also generalize the formula for nonlinear chanaes
of coordinates. We consider again variables xl,...,xp, 51,..,gq
where the x%s are even (or bosonic) and the gjs odd (or fer-

mionic). A superchange of variables is of the form

551



x; = Usi(ysn) €5 = V;(ysn) .

Herey = (,Ylg'-‘!.yp) )

are odd variables. Moreover, the superfunction U (y;n) is

are even variables and n = (nl,...,nq

even containing only terms with a product of an even number of

odd variables n., and Vj(y;n) is odd with a similar definition.
Denote by 3U/3y the matrix M = (mii') with entries

m = an(y;n)/ayi. and use similar notations in the case of

t;; other partial derivatives. The matrix

al/ay sU/é8n

T =

aV/ay §V/én
has the required properties: 23U/3y and 6V/én are even and
U/én, 3V/3y are odd. Assume furthermore that the matrices
3U/3y and &V/6n are invertible. Then the superjacobian deter-
minant is defined as the superfunction J(y;:n) = s det T.
Given any superfunction G(x;g) we have the following integra-
tion formula

J16(x58)dPxs% = [[G(U(ysn);sV(ysn))d(ysn) dPys%n. (9.44)
Symbolically, we have

dPxg% = 9(y3n)dPysn for x = U(ysn), £ = V(ysn).
(9.45)
9.11. As with any definition of determinant, there arises the
question of the validity of the multiplicative rule. The defi-
nition of sdet T can be recast as follows (see our calcula-
tions in subsection 1.8). Write T as a product

1 0 A D I Y

T = P P . (9.46)
x 1flo sflo 1
Then we get
s det (T) =(det A)-(det B)"} . (9.47)

X I

Ip 0 1 Y
In particular, the matrices of the form or P
have a superdeterminant equal to 1, and the formula
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s det (TT') = s det (T) . s det (T') (9.48)

1.0 A O
holds if T is of the form P or , or else if T
X 1 0 B

is of the form (;p :"j or (2' :|> . To prove the multipli=
q

cative rule (9.48) in general, we need only to settle the case
where

/ \ \
I
. ( b Y \ e Ip 0 \
0 Iq X Iq

It then reduces to the proof of the identity

det(1, + YX) = det(I, - X(I, + )"ty . (9.49)
Using the identity
I - (1 + YX)_lYX = (1 + \{x)'1 (9.50)
P P P ’
it suffices to prove the relation
det(I, + VU) = det(I, + oy b, (2.51)

if U and V are matrices of respective sizes g x p and p x q
with odd elements from A. This should be compared to the stan-
dard formula

det(1, + vu) = det(I, + UV) , (9.52)

Y

where U and V are matrices with elements from a commutative
ring, for instance even elements from A. We leave it to the
reader to prove formula (9.51) directly.

9.12, Let us sketch an"invariant" definition of the superde-
terminant, due to I.Manin. Consider first polynomials P(x;¢&)
in one even variable x and one odd variable & . Such a polyno-
mial can be written as P(x3;&) = A(x) + B(x)&. Denote by § the
odd polynomial xg¢ . Then the product 8§P(x;&) is equal to
xA(x)t because 52 = 0. Hence if 6P = 0, we get xA(x) = 0,
hence A(x) = 0, hence P(x3g) = B(x)E. In turn,B(x) can be
written as B(0) + xC(x), where C(x) is a polynomial, and
finally

553



P(x;£) = B(0)t + &C(x) . (9.53)

This can be generalized to any number of even variables
X{seresX, and odd variables Eqseresby- Consider the odd poly-

nomial & = x151+ Ces +xn£n. Setting Sj = xjgj, we get § =
61t ...+6n ?d Giéj = —djsi since x1.xj = xjxi and Eigj = -gjgi.
Therefore §° = 0. Then by induction on n, one proves that a

polynomial P = P(x;£) satisfies the equation 6P = 0 iff it
can be written as

P(x38) = ¢ £q.veby + 8Q(x,E) (9.54)

for some polynomial Q(x3;£). The constant ¢ is uniquely defined
by P since CEp +vebpy = P(03E).

Consider again varijables XpoervaXy, EqseeesEy and a

fp q
linear transformation with matrix T = (M N) as before. Intro-
P Q

duce new variables yl,...,yq, Npseessly with yj

odd , and the odd polynomial

even and ny

§ = Xqnpt ...t xpnp Yyt o +ngq . (9.55)

MYON!

) the inverse of the transpose of T
PI QI

Let us denote by (

and define
QI PI
7% = (N' M|) . (9.56)

If we act simultaneously on (x,£) by the linear transformation
with matrix T, and on (y,n) by the matrix T*, we see that ¢
remains invariant.
Put w = 51"'5q
P = P(x,g,y,n) of 8P = 0 is of the form c.w + 8Q for some
constant ¢ and some polynomial Q = Q(x,&,ysn). The constant c

Npesenpye Then 8w = 0y and any solution

is equal to P(0,£,0,n). Mow transform simultaneously x,t by
T and y,n by T%. Let ¢ be the transform of w. From 8w= 0 and
the invariance of §, we get 8o = 0, hence

@ = Cw +6Q(X,£,y,n) . (9'57)
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The constant ¢ is obtained by putting x and y equal to 0, that
is neglecting the terms containing these variables. But then,
& transforms into Q& and n into M'n, hence by the Grassmann
definition of the determinant (formula (9.1)), one gets
¢ = det Q- det M'., We want to show fhat the constant ¢, which
we denote for a moment by D(T), <Zs the inverse of the superde-
terminant of T.

By definition, T transforms w in D(T).w + 6Q for some
Q. Acting now by the transformation associated to a matrix T',
we transform w in D(T')w + 8Q' for some Q' and Q into Q",
hence we transform D(T)e + 6Q into D(T)D(T')w + 8Q'" for a
suitable Q'". The multiplicative rule follows

D(TT') = D(T) . D(T') . (9.58)

It remains to consider the elementary cases:

1, 0) « [ g 0

(a) If T = \ then T =k t ), hence Q =1,
- q
\x I, X I,
MY o= Ip and D(T) = 1.
(1, 1\ . (1, -5
(b) If T = then T = , hence G =1,
0 I 0 I q
q p
MY =1 and D(T) = 1.
P (t 1
(A 0\ B~ 0 .
(¢) I1fT = k J then T* = f ) Mence Q=8
0 B 0 A
M = 'A"1, hence D(T) = (det B)-(det A)"}

-1

The formula D(T) = (s det T) follows now from the remarks

at the beginning of subsection 9.11.

Since s det T is equal to D(T) ~, the multiplicative
rule follows at once from formula (9.58).

9.13. We conclude by a few remarks.

Moo Q P
(a) For T = as before, put T" = . Then
P 0 N M

s det (T") s the inverse of s det (T). This is the general
symmetry rule for changing the parity. Indeed T acting on va-
riables Xis gj, replace the even variables X by odd variables
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n; and the odd variables Ej by even variables Yj- Then T is
transformed into T"
(b) Same notations as before. Consider the vector space
of polynomials in x,£ homogeneous of degree B in x and F in &;
it is the same as the space denoted ZB’FV in subsection 2.9,
where V is the vector space generated by xl,...,xp, 51""’5q
with obvious subspaces vF and V7. Introduce an auxiliary varia-

ble t. We get the following general form of the Master theorem

s det(1 + tT) = 1z (-1)FeB*F 1ro(7i2BoFyy) (9.59)
B,F

where the last term is the trace of the operator induced on
ZB’FV by the transformation of the variables x,& by T in the

B’FV.

polynomials P(x;3;&) in £ The Master theorem in the form

(3.16) reads as follows
A0

s det (1 + t )y = 1. (9.60)
\0 A

M N
(c) For a matrix T = ( ) ., Wwe define its supertrace
P Q

as str(T) = Tr(M) - Tr(Q). The following formulas

1

dlog s detT = s tr(T "dT) . (9.61)

1

s det(1 + zT) = exp { £ (-1)""* s tr(Tz"/n}

nzl

are the analogues of formulas for determinants considered
before.
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