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n March 1994 I organized a two-day conference at

the Massachusetts Institute of Technology in which

nine distinguished women mathematicians gave

colloquium lectures about their current mathe-

matical research. There are many exciting mathe-
matical meetings where the speakers are all men: this
was a meeting where exciting mathematics was pre-
sented that was unusual only in that all the speakers
were women. From the comments that I heard after the
meeting, the conference was clearly very successful. The
audience contained a cross-section of the mathemati-
cal community ranging from MIT Institute Professors
to undergraduates. It was pleasing to hear enthusiasm
on all sides for the mathematics that was discussed. I
have been told that the meeting was particularly in-
spiring for many young women in the audience who are
in the early stages of their mathematical careers.

The conference was funded by MIT and the Visiting
Professorsip for Women Program of the National Sci-
ence Foundation. The Mathematics Department at MIT
was a most supportive host for the conference and I
thank the many people in the department who con-
tributed to the success of the conference, particulary
David Benney and Haynes Miller and the excellent ad-
ministrative staff of the department. To our pleasure,
the conference was opened by Mark Wrighton, the MIT
Provost. Mildred Dresselhaus, a distinguished Institute
Professor, introduced the second day with entertaining
and illuminating remarks about her career at MIT. She
made the very pertinent observation that for a woman
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to be really helpful to the cause of women in sci-
ence, it is important that she work from a base
of solid scientific achievement. The talks at the
meeting were excellent illustrations of such
achievements.

This article contains short summaries of the
mathematics presented by the speakers:

Joan S. Birman, Studying Surfaces in Knot Com-
plements

Ingrid Daubechies, Wavelets and Applications
Dusa McDuff, The Geometry of Symplectic Energy

Jill P. Mesirov, Mathematical Theory in Parallel
Algorithms

Cathleen S. Morawetz, The Wave Equation Re-
visited

Jean E. Taylor, Surface Motion Due to Surface En-
ergy Reduction

Chuu-Lian Terng, Soliton Equations and Differ-
ential Geometry

Karen K. Uhlenbeck, Moduli Spaces and Adia-
batic Limits

—Susan Friedlander
University of Illinois-Chicago
(e-mail address: susan@math.nwu.edu)
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Studying Surfaces
in Knot
Complements

Joan S. Birman

My talk at the Celebra-
tion of Women in Mathe-
matics was about appli-
cations of the theory of
braids to the study of
knots in 3-space.

A knot K is a topolog-
ical circle which is
smoothly embedded in 3-
space R3.Its knot type is
its equivalence class
under isotopies of the
pair (R3, K). Our interest
is in the knot problem, i.e.,the problem of how
to decide whether two knots in 3-space determine
the same knot type. My current research (joint
with William Menasco) is directed toward solv-
ing that problem algorithmically. The ingredients
needed for our proposed algorithm are (i) a con-
cept of a ‘simplest’ representative Ky of a knot,
chosen so that each knot K has at least one and
at most finitely many distinct simplest repre-
sentatives; (ii) a complexity function c(K) which
measures how far K is from the same Kj; (iii) a
method for reducing c(K); and (iv) an under-
standing of how the finitely many simplest rep-
resentatives are related to one another. Braid
structures provide the tools for attacking these
problems.

Choose polar coordinates (z,r, 0) in R3. Let
A be the z-axis. Then R3 — A is fibered by half-
planes Hy = {(z,r, 0) € R3/0 = constant}. Our
knot K is represented as a closed braid with re-
spect to the z-axis A if K meets every Hy trans-
versally, i.e. K is nowhere tangent to an Hy. For
example, if K is the ‘unknot’, an especially sim-
ple representative would be the unit circle
Up=1(0,1,0) € R3;0 < 0 < 21t} in the (r,0)
plane. This is our simplest representative, and
it is unique up to isotopy in the complement of
the braid axis.

Every smooth representative of every knot
type bounds an orientable surface which is em-

Supported in part by NSF grant DMS 91-06584.

Joan Birman is professor of mathematics at Columbia
University, New York, New York. Her e-mail address is
jb@math.columbia.edu.
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bedded in 3-space, and so also an orientable sur-
face S of minimum genus. For example, every
representative U of the unknot bounds a disc D,
our standard representative bounding the unit
disc Dy in the plane z = 0. This disc is foliated
radially by the arcs {Dgn Hp,0 <0 < 21r}.
These arcs also define a flow on Dy as one
pushes the Hg’s forward through the fibration
of R3 — A. See Figure 1a. What happens to this
foliation and the associated flow when we replace
Up with a nonstandard closed-braid represen-
tative U of the unknot, say one which passes n
times around the axis A before closing up to a
circle? Clearly U will still bound a disc, say D,
which will in general admit a singular foliation,
the leaves of the foliation being the components
of {DNHp,0<6<2m}. It can be shown that
the disc D can be assumed to have a particularly
nice foliation: the leaves are all arcs, the singu-
larities (if any) are all saddle points, and near each
point of A N D the foliation is radial. Figure 1b
shows the foliation in a neighborhood of two
points in A N D. It is immediately clear that if
this foliation is to be extended to all of D, then
singularities must occur.

(1¢)

Figure 1

The foliations which we study can be shown
to decompose the surface S into a union of tiles,
each of which is a 2-cell which contains exactly
one singularity of the foliation. In particular, S
is a union of three types of foliated tiles, depicted
in Figures 2a, 2b, and 2c, each of which has a
canonical embedding in 3-space relative to our
cylindrical coordinates. Two of the tile types in-
tersect K nontrivially, but the third is entirely in
the interior of S. These tiles are all depicted as
they appear when viewed on the positive side of
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S. The black dots show the points where A
pierces S. There is a well-defined sense of the
flow about each pierce-point, clockwise or coun-
terclockwise. The orientation of K is consistent
with the sense of the flow around the vertices.
Notice that counterclockwise flows are preferred,
reflecting the fact that the linking number of K
with Aisn > 0.

Returning to our example and pulling D back
(with its foliation) to its preimage D under the
embedding we are able to replace D, which is
difficult to visualize because of its complicated
embedding in 3-space, by the foliated model
disc D. A simple example is given in Figure 1c.
The disc is pierced 3 times by the braid axis and
is foliated by two tiles of the type illustrated in
Figure 2a. We leave it as an exercise for the
reader to reconstruct the embedded disc and the
closed braid representative of its boundary from
the foliated model disc of Figure 1c.

The kind of data which we can see in the fo-
liation includes: (i) properties of the graph and
subgraphs formed by the singular leaves; (ii) the
number and types of tiles which meet at each ver-
tex; (iii) the sense of the flow near the vertices
(clockwise or counterclockwise); (iv) the sign of
the outward-drawn normal to S near a singularity
of the foliation. It turns out that this data (and
other combinatorial data) tells us how to mod-
ify K so as toreduce c(K). Similar methods also
apply to the study of other surfaces which have
a special position relative to that of K, e.g., closed
incompressible tori in the complement of K.

This work is still in progress. At this writing
we have learned a great deal about the closed
braid representatives of knots and have an al-
gorithm in a very special case: knots of braid
index at most 3, which are represented by a
closed 3-braid. We have partial results for closed
braid representatives of the unlink and other spe-
cial cases.
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Wavelets and
Applications

Ingrid Daubechies

The relatively new de-
velopment of wavelet
theory in the last ten
years or so represents a
synthesis of ideas from
mathematics, physics,
engineering, and com-
puter science, some with
roots going back to the
start of the century. The
goal of the talk was to
introduce wavelets, to ex-
plain both their mathe-
matical and algorithmi-
cal aspects, and to illustrate these by several
applications. In 1 dimension, wavelets are typi-
cally defined as the dilates and translates of one

function,
_ x—b
W) =lal (22,
a

where is often required to have some smooth-
ness and some decay, say | (x)|<C(1+ Ix|)~1-¢,
| (&) <C(1+|E))"1-¢ Moreover, should sat-
isfy [ (x)dx =0. It then turns out that any
square integrable function f (and, in fact, many
other functions as well) can be “decomposed”
into such wavelets,

fx)=C Jjo Ko (f, @by ab(x)a~2dadb,

a fact long known to harmonic analysts as
Calderon’s formula and to quantum physicists
as the resolution of the identity for the ax + b-
group. The interest of such a decomposition is
that it views f as a superposition of “building
blocks” 4P each of which is well localized in
“time and frequency”; a typical example is

(x)=(1 - x%)eX*/2 'where | %P(x)| is mostly
concentrated in the region |[x — b| < 2|al, and
| ab(E)| mostly in |al/4 < |E| < 4|a|. By cut-
ting the domain of integration in a, b into dif-
ferent parts, one effectively carves f into dif-
ferent pieces, which may have very different
properties. This is done in (e.g.) Littlewood-Paley
type arguments.

There are also wavelet families where the di-
lation parameter a and the translation parame-
ter b are assigned discrete values only. One

Ingrid Daubechies is a professor in the Program for Ap-
plied and Computational Mathematics and the Math-
ematics Department at Princeton University, Prince-
ton, New Jersey. Her e-mail address is ingrid@
math.princeton.edu.

VOLUME 42, NUMBER 1



widely used choice is a=27J, b =2"Jk, with
Jj,k € Z. 1t is then also possible to choose in
such a way that the jx= 272"k constitute
an orthonormal basis for L2(R). Instead of the
integral representation above, we now have

F=>(f x> jk
K

which can again be understood in L2-sense, or
in many other functional spaces. Harmonic analy-
sis methods can be used to show that such  j x
provide unconditional bases for a variety of Ba-
nach spaces, such as LP(R), 1 < p < oo, the Hardy
space H1(R) and its dual BMO, the Sobolev
spaces WS(R), the Besov spaces BZ,S(R), the
Holder spaces C5(R), etc. That is, for each of
these spaces, there exists a criterion that de-
cides whether f lies in the space or not, solely
by looking at the behavior of the absolute val-
ues [{f, jx)| of the wavelet coefficients. This
unconditionality of wavelet bases for many func-
tional spaces makes them a special and power-
ful tool.

Wavelet bases are also linked with fast algo-
rithms. Every wavelet base is derived from a
multiresolution analysis (provided has some
decay and some smoothness). This means that
there exists an auxiliary function ¢, the scaling
function, such that

P(X) =D cnp@x —n), (x)=> dnp(2x — n);
n n

moreover, [ ¢(x)dx = 1. Because of this latter
property, ¢ can be used to write a resolution of
the identity, i.e.,

f00 = lim 2/ jf(y)qb(zf (v - x)dy

for continuous f. In particular, the integrals
2J [ f(y)$(2/y — k)dy can be approximated by
the sampled values f(2-/k). (In practice, this
approximation may have to be refined.) By the
recurrence relations above, one can then, by
means of a fast algorithm, compute for suc-
cessive j < J the wavelet coefficients
(f, jx)=272[f(y) (2/x —k)dx and the scal-
ing coefficients (f, ¢ ;). In fact, algorithms of
this type were already known to electrical engi-
neers as subband filtering (with exact recon-
struction).

A combination of these fast algorithms on
one hand, and a thorough and deep under-
standing of the mathematical properties of the
underlying functional analytic tool on the other
hand, has led to a variety of applications. A few
examples discussed in the talk were compression
of large, dense matrices (Beylkin, Coifman, and
Rokhlin); theorems showing that wavelets give
asymptotically optimal denoising and estima-
tion techniques for many different types of noisy
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signals (Donoho—this application exploits that
wavelets are an unconditional basis in many
spaces); image compression and manipulation
from edge information encoded in wavelet co-
efficients (Mallat).
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The Geometry of
Symplectic Energy

Dusa McDuff

The talk was divided into three parts.

The first part was an elementary introduction
to symplectic geometry—the geometry intro-
duced on a smooth 2n-manifold M by a closed
2-form w which is nondegenerate (that is, its top
exterior power w™" is a volume form). The basic
example of a symplectic manifold is Euclidean
space R2" with its standard form

wo = dX1 A dXz o+ dX2n_1dX2n.

Dusa McDuff, F.R.S., is professor of mathematics at the
State University of New York at Stony Brook. Her e-mail
address is dusa@math.sunysb.edu.
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One important concept is that of the sym-
plectic gradient Xy of a function H: M — R.
This vector field is characterized by the equation

(Xpg)w = w(Xy, -) =dH,

and, in contrast to the gradient with respect to
a Riemannian metric, points tangent to the level
surfaces of H. Moreover, the flow which it gen-
erates (called the Hamiltonian flow) preserves the
symplectic form w. Thus, if M is the unit 2-
sphere S2 c R3 with its usual area form, and if
H is the height function (given by the third co-
ordinate function), the symplectic gradient Xg
is tangent to the horizontal circles H = const and
generates a rotation about the north-south axis.
Here, one can let the Hamiltonian depend on
time t € [0, 1]. One then gets a family X}{ of vec-
tor fields which integrates up to a family
¢¢,0 < t < 1, of symplectomorphisms. The map
¢1 is called the time-1 map of H;. Essentially,
any symplectomorphism (i.e., diffeomorphism
which preserves w) is the time 1-map of such
a flow.

Symplectomorphisms have important geo-
metric properties, which are just beginning to be
understood. One striking result is Gromov’s non-
squeezing theorem (1985), which states that if
there is a symplectomorphism which embeds a
2n-ball of radius r into a cylinder of radius R,
then r < R. Here, a cylinder is a product of a 2-
dimensional disc of radius R with another sym-
plectic manifold (M, w) of dimension 2n — 2.
Gromov proved this result when M is Euclidean
space R2"~2 with its usual symplectic form, and
it has been proved for all manifolds M by
Lalonde-McDuff.

This leads to the notion of a capacity. We de-
fine the capacity c(B) of a ball of radius r to be
r2, and, for an arbitrary subset U in a sym-
plectic 2n-manifold, define c(U) to be the supre-
mum of the capacities of the symplectic 2n-
balls which embed symplectically in U. Thus, the
nonsqueezing theorem implies that the capac-
ity of the cylinder B2(r) x R2"~2 is 112,

The second part introduced Hofer’s idea of the
energy of a symplectomorphism ¢. We measure
the size of a Hamiltonian function H by

Totvar H = max H(x) — min H(x),
XeM XEM

and define the length of the path ¢¢,0 <t <1,
generated by H; to be

1
L(¢y) = Jo Totvar H; dt.

The energy e(¢) is then defined to be the infi-
mum of the lengths of the paths ¢; which have
time-1 map equal to ¢. Note that, although one
uses the first derivative of H in order to gener-
ate the flow, the size of H depends only on its
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values, not its derivative. Therefore, it is a pri-
orinot clear that the energy of a nontrivial map
is always positive. That this is the case follows
from Hofer’s energy-capacity inequality, which
states that if Uis an open set which is disjoined

by ¢, i.e.,
PU)NU =0,

then e(¢) = c(U). As an example, consider the
function H =y on R? with wgq = dx A dy. The
flow generated by H is translation in the x di-
rection:

(x,¥) = (x+1,y),

and it is easy to check that the energy required
to disjoin the rectangle [0, 1] x [0, a] is precisely
the area a.

The third part of the talk outlined a geomet-
ric proof of the energy-capacity inequality, which
is due to Lalonde-McDuff. The idea is to use a
flow ¢ whose time-1 map disjoins a ball in M
of radius r to construct an embedded ball of ra-
dius r in a cylinder B2(R) x M where

TTR? = L () +TTr2 /2 +€.
The nonsqueezing theorem then implies that
re < L(py) +TTr2 /2 +€,

and hence, taking the infimum over all such
paths ¢; that
c(U) =sup re < 2e(P).

A refinement of this argument gives (a slightly
modified version of) the full energy-capacity in-
equality.
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Mathematical

Theory in Parallel
Algorithms

Jill P. Mesirov

Suppose we would like to understand a physi-
cal phenomenon, for example, how air flows
past an airplane wing, or how a protein folds. We
might perform real experiments and get data
from measurements of actual phenomena in the

Jill Mesirov is Director of Research at Thinking Ma-
chines Corporation in Cambridge, Massachusetts. Her
e-mail address is mesirov@think.com.
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laboratory, e.g., via a
wind tunnel. However, it
would be difficult infer-
ring the behavior in un-
known cases from this
data. On the other hand,
we might also try to build
a mathematical model,
perhaps adding some
simplifying assumptions,
which characterizes the
physical phenomenon.
Using the model we can
then do simulations. His-
torically, these calculations were done by hand,
but now we use computers to do them. We can
test the model’s predictions by comparing the
results of simulations against real experimental
data obtained for stereotypic examples. If the pre-
dictions match the experimental data, then we
gain confidence in our models and may use them
to predict behavior in cases where it is unknown.

The mathematical model/simulation para-
digm described above is used to help design the
cars we drive, the medicines we take, and the air-
planes in which we fly. This approach often rep-
resents a more cost-effective way of doing some
“experiments” via computer simulation. Its suc-
cess has created an ever-increasing demand for
higher-performance computers to allow for real
time, interactive design, and graphics. Mathe-
matics plays an important role in this process,
both in modeling physical phenomena, and in de-
signing efficient algorithms for high-perfor-
mance parallel computers.

For the purpose of our discussion, a parallel
computer consists of a collection of processors,
each with its own local memory, connected by a
network. A processor can only operate on data
in its own local memory. If it has to use data that
is located in another processor’s memory, then
that data must be sent over the network. This
type of action is referred to as “communica-
tions”. When designing algorithms for such dis-
tributed- memory parallel computers, we seek to
minimize the time spent in communications.
This makes the algorithms more efficient in
using the processing power of the machine. In
this lecture we described an interesting interplay
between mathematics and the design of effi-
cient parallel algorithms in the context of N-
body algorithms for both fluid flow and molec-
ular dynamics applications. We also showed
some videos of our simulations which the labo-
ratories of the future may produce in real time.

The two cases we considered require differ-
ent communication patterns. For the fluid flow
problem, we showed how rotated and translated
Gray codes can be used to construct timewise
edge independent Hamiltonian paths on hyper-

Jill P. Mesirov
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cubes, yielding an optimal global communication
pattern for machines with this kind of network.
In molecular dynamics codes for protein dy-
namics, the force law is a local one. Thus, one is
led to solving a local, i.e., on subcubes of side
2a + 1, gossiping problem in multidimensional
grids. We showed that by restricting to the case
where the data distribution paths are transla-
tionally and rotationally symmetric, the problem
corresponds to finding Hamiltonian paths in
orbit graphs. Solutions were found for certain di-
mensions and side lengths by finding solutions
in the case a =1, and then giving a method of
extending those solutions to the cases a > 1.
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The Wave Equation
Revisited

Cathleen S. Morawetz

It is a surprising fact that
there is still much to
learn about the wave
equation. Beginning with
representing the solution
of the initial value prob-
lem in terms of a funda-
mental solution, it is an
easy step to see that in
3D+T Huyghens’s princi-
ple holds, i.e., if the sur-
face of the light cone
from a point backwards
in time does not cut the
support of the initial val-
ues, then the solution at that point is identically
zero. This will be true even if there is a pertur-
bation of the wave equation confined to the in-
side of the cone.

Cathleen Morawetz
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This has led to many investigations, includ-
ing scattering theory for perturbations, and with
Huyghens’s principle gives neater results in-
cluding the exponential decay of the local energy
if the wave equation is perturbed locally in cer-
tain ways, e.g., the presence of a star-shaped re-
flecting obstacle. See (LPM) and (M).

More recent questions are about finding
“transparency conditions”. These are conditions
on a boundary which guarantee that the solution
could be continued outside the boundary as a so-
lution of the wave equation. See (EM), (BT), and
(KM) for approximate transparency conditions.
H. Warchall (W) has shown under more general
but analytic conditions that if, and we think here
only of the wave equation, the initial data is sup-
ported in a ball of radius b, then the solution in-
side thatball for t > t; > 0 depends only on the
data inside the ball at t = t;.

In fact, for the simple case of the wave equa-
tion the transparency condition can be written
down explicitly by giving the outward charac-
teristic derivative in terms of an integral over the
ball of support at the same time. Conversely, if
the solution satisfies this integral condition,
then it can be continued outside as a solution of
the wave equation. Cauchy integrals are involved,
and thus the solution must have three deriva-
tives.

Finally, this circle of ideas leads one to a way
of avoiding transparency conditions but still
solving in a finite domain by repeated use of
Huyghens’s principle.
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Surface Motion Due
to Surface Energy
Reduction

Jean E. Taylor

Suppose one has an ir-
regular blob of some-
thing, without any exter-
nal forces such as gravity
acting on it. Because it is
not a round ball, it does
not have the smallest sur-
face area for its volume.
If it evolves so as to re-
duce its surface area,
how does it evolve? What
different evolution laws
are reasonable, and how
do the shapes differ under these different types
of motion? Can you tell, by some not-too-deli-
cate features of the shapes, which law is, in fact,
governing the motion?

For a crystalline material, such as a single
crystal of ice, the shape of least surface energy
for a given volume is not a round ball, but some-
thing else, like a hexagonal prism. How does a
snowflake evolve towards this?

The claim is that physically interesting motion
problems can be formulated in a variational set-
ting, as gradient flows under various natural
inner products. This enables existence proofs and
a unifying framework for different motion laws
and different surface free energy functions. It
also underlies the whole crystalline approach,
which is interesting both as a model in its own
right and as a possible means of approximation
for other surface free energy functions, and
which has been implemented by computer pro-
grams in many cases.

Surface Energy and Weighted Mean
Curvature

Why does mean curvature H arise for variational
problems involving surface area? Because it is the
rate of decrease of surface area with volume
under deformations. More precisely, the first
variation of area of a smooth oriented surface
S is the bounded linear operator on continuous
vector fields g defined by
d

5S(g) = — 1d4%x,
@) dt Jxen,s X

Jean Taylor is professor of mathematics at Rutgers
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where ;S ={y:y=x+tg(x) forsome x € S}.1
One can also compute that with n(x) denoting
the oriented normal at x and H; the mean cur-
vature vector,

55(g) = Les g - (—Hp(x))d32x.

For solids, with crystal lattice orientations
fixed in space, the surface free energy per unit
area is a function y from the unit sphere to the
real numbers, and it is convenient to extend the
domain of y to all vectors by y(p) = |ply(p/Ipl).
If y is C? and convex and S smooth,

_d 2
5yS@) =4 Lehts Y(n()dH 2x

= J g - (—Kyn)d.’}-[zx
xXes

_ %%y %y s ;
where ky = ﬂKl + a—png. Here k; is the ith
principal curvature and p; the corresponding
principal direction. We call ky the weighted
mean curvature. Note that if AE= [, ¢y — [g¥
and AV denotes the signed volume from S to
h:S, then for g with small support around
X0, 7 ~ 8S(@) ~ —Ky(x0) ¥, 50 Ky(x0) ~ — 1.

Given any y there is associated the Wulff
shape

Wy ={x:x-p <y(p)Vp}.

If Wy is polyhedral, y is crystalline, and the first
variation is neither bounded nor linear. Instead,
the crystalline weighted mean curvature (ab-
breviated crystalline curvature) is nonlocal: one
uses the rate of decrease of surface free energy
with volume, with the deformations moving en-
tire segments. Edges and corners must be energy-
minimizing to avoid infinite contributions to
the analog of first variation. For polygonal curves,
the formula reduces to something quite simple:
Ky(segment i)= —0jA;/¥;, where ¥; is the length
of the segment, A; is the length of the segment
of the Wulff shape boundary with the same nor-
mal direction, and o7 is 1 if the curve makes left
turns at each end (when traveling in the direc-
tion of its orientation) is —1 if both ends make
right turns, and is 0 otherwise [T].

Inner Products and Gradient Flows

Observe that the action of the linear operator 65
on a function g is given by the L? inner prod-
uct of g with —Hj,. Thus, flow by mean curva-
ture is gradient flow for surface area in the L2
inner product. It is an unusual type of gradient

LThere are better definitions that allow for singulari-
ties in S[A].
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flow, in that the inner product space keeps
changing, as S itself keeps changing.

One can use this fastest decrease property to
construct a variational approach to motion by
weighted mean curvature, by selecting a time
step At and minimizing [j¢ y + %h e h starting
with Sp to get Sy, then with S; to get S»4, etc. Con-
vergence of these piecewise constant flows to a
continuous flow as At goes to zero has been
shown [ATW] (with an approximately equal vol-
ume integral replacing the L2 inner product). The
resulting flow is the PDE solution to motion by
weighted mean curvature where that exists, and
is motion by crystalline curvature for curves
and crystalline y [AT].

Are there other reasonable inner products
than the L2 inner product? Yes. In particular, mo-
tion by the negative Laplacian of weighted mean
curvature arises if one does gradient flow in the
H-! inner product. Mullins (who also intro-
duced motion by curvature) derived that motion
by the negative Laplacian of curvature models
surface diffusion: H is a potential, DVH gives
the flux of atoms down the gradient of the po-
tential, and —DAH is then the accumulation of
atoms, which translates into a velocity with the
appropriate constants. For a survey of this field,
see [CT].

This type of motion is difficult to model, how-
ever. There is no maximal principle, and no level-
set (viscosity solution) formulation. However, a
crystalline formulation of this motion for curves
has been devised and implemented in a com-
puter program [CRCT].

We have also derived from physical principles
a whole family of motion laws [CT]. At one ex-
treme, where attachment kinetics are rapid and
surface diffusion is slow, there is motion by
—AKy. At the other, where attachment kinetics
are slow and surface diffusion is rapid, there is
motion by Ky — Kgy where Kgy is an overall av-
erage; this is L2 gradient flow restricted to de-
formations with integral 0. In between is a whole
family of motion laws, which turn out to be flow
by the inner product, which is the appropriate
linear combination of the L2 and H~! inner
products!

Comparing Shapes
We return to the original question of whether
there are gross features of shapes moving under
various laws that can be used to distinguish one
law from another. We have made videos of com-
puter simulations of several initial shapes mov-
ing under each of the two extreme-case motion
laws discussed above. These videos can be
viewed using Mosaic [M]. We comment on the fol-
lowing observable features:

(1) In motion by Ky — Kqav, Zigzag portions of
the curve translate as a whole, with the same ve-
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locity, whereas in surface diffusion, there is a
proximity effect, and each segment can have a
different velocity.

(2) Curves that are convex (or, more generally,
which have ky nonpositive) remain so under
motion by Ky — Kgqy, whereas long skinny por-
tions tend to develop bulbs at the end under mo-
tion by surface diffusion.

(3) Topology changes can happen under either
type of motion, but tend to be more frequent and
dramatic under motion by surface diffusion. In
particular, a simple closed curve with «y non-
positive everywhere can break into two con-
nected components under motion by surface
diffusion.

Summary

The importance of regarding flows as being gra-
dient flows under different inner products has
several advantages. First, it shows there is noth-
ing magic about “decreasing energy fastest”—
each decreases energy fastest in its own metric.
Second, it provides a unifying approach, putting
different surface energies, different motion laws,
and even sharp versus diffuse interface ap-
proaches under one umbrella [TC]. Third, it al-
lows variational techniques to be used for mo-
tion problems. Often both elliptic and highly
nonelliptic problems can be handled in the same
proofs. And, in particular, in the crystalline con-
text the gradient flow approach provides a good
criterion for when a facet must be
stepped [CRCT].

There are also advantages to considering the
crystalline approach. Some physical materials
are faceted. One can see what is special about
area, by comparing area-reducing motions to
corresponding surface-energy reducing motions.
It is flexible; in both theory and computation, one
can alter the motion law without affecting the
basic underlying structure. It is computable: it
uses a natural parametrization, by the Gauss
map. It is a good way to measure curvature nu-
merically, and one can fairly easily detect and
make topological changes. One can use it for ap-
proximations (convergence has been proved in
some cases [G][S]). And it has a nice theory in its
own right, which is sometimes similar to that for
area-related problems and sometimes different.

A longer version of this lecture summary is
expected to appear [T2].

References

[A] W. K. Allard, On the first variation of a varifold,
Ann. of Math. 95 (1972), 417-491.

[AT] F. J. Almgren and J. E. Taylor, Flat flow is mo-
tion by crystalline curvature for curves with crystalline
energies, J. Diff. Geom. (to appear).

[ATW] F. J. Almgren, J. E. Taylor, and L. Wang, Cur-
vature driven flows: A variational approach, SIAM J.
Control Optim. 31 (1992), 387-437.

NOTICES OF THE AMS

[CT] J. W. Cahn and J. E. Taylor, Surface motion by
surface diffusion, Acta Metal. Mater. 42 (1994),
1045-1063.

[CRCT] W. C. Carter, A. Roosen, J. W. Cahn, and J. E.
Taylor, Shape evolution by surface diffusion and sur-
face attachment limited kinetics on completely faceted
surfaces, preprint.

[G] P. Girao, preprint, and P. Girao and R. Kohn,
preprint.

[M] In Mosaic, Open URL to http://jeeves.
nist.gov and follow the prompts.

[S] M. Soner, private communication.

[T]]. E. Taylor, Mean curvature and weighted mean
curvature, Acta Metal. Mater. 40 (1992), 1475-1485.

[T2] J. E. Taylor, Surface motion due to surface en-
ergy reduction, in elliptic and parabolic methods in
geometry (to appear).

[TC] J. E. Taylor and J. W. Cahn, Linking anisotropic
sharp and diffuse surface motion laws via gradient
flows, J. Stat. Phys. (1994) (to appear).

Soliton Equations
and Differential

Geometry

Chuu-Lian Terng

In this talk, I explained
some symplectic geo-
metric properties of har-
monic maps from the
Lorentze space R'! to a
symmetric space: the ex-
istence of a sequence of
compatible sympletic
structures that make the
harmonic map equation
Hamiltonian, a hierarchy
of commuting flows, and
an action of the affine
Kac-Moody group on the space of harmonic
maps.

It is well known that most finite dimensional,
completely integrable, Hamiltonian systems can
be obtained by applying the Adler-Kostant-Symes
(AKS) theorem to some Lie algebra G equipped
with an ad-invariant, nondegenerate bilinear
form, and a decomposition G = K + N. The sym-
plectic manifold is some coadjoint N-orbit
M c X+ =~ N* and the equation is the Hamil-
tonian equation of the restriction of some Ad(G)-
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invariant function fon G to M. Applying the AKS
theorem to the loop algebra of an affine Kac-
Moody algebra, we obtain many well-known soli-
ton equations and equations from differential
geometry. In fact, let G/K be a symmetric space,
G = K + P the Cartan decomposition, A a max-
imal abelian subaglebra in P, P1=A* NP,
a € A afixed regular element, and b € A. We
obtain a sequence of symplectic structures
{wy|r € Z} on the space of Schwartz functions
M = S(R,P1), functionals {Fp,: M—R|n = 1},
and evolution equations, the n-th flow associated
to G/K withrespect to a, b, ur = [Qp,n(u), al with
n=-1 or n > 2 such that
(1) all w, are compatible. Thatis, {,}, + u{, }s
is again a Poisson structure on ‘M for any
u € Rand r,s € Z,where {, },is the Poisson
structure corresponding to wy,
(2) the Hamiltonian equation for Fp , with re-
spect to wy is ur = [Qp p+r+1W), al,
(3) Fp,n are commuting Hamiltonians with re-
spect to w, for all n,r.

These flows contain many interesting equa-
tions. For example, the equation for harmonic
maps from R!'! to G/K is the —1-flow associ-
ated to G/K, the nonlinear Schrédinger equation
is the third flow associated to SU(2), the Modi-
fied KdV equation is the fourth flow associated
to SU(2)/S0(2), and the Beals-Coifman evolution
equations are the n-th flows associated to a
compact Lie group G with n > 2.

There is also a system of partial differential
equations of n variables naturally arising from
the second flow associated to a rank n sym-
metric space. For example, the natural PDE sys-
tem associated to

S02n+1)/SO(n) xSOn+1),
S0(2n)/SO(n) x SO(n)
and SO(2n,1)/SO(n)xS0(n,1)

is the equation for isometric immersions from
N"(c) into N2"(¢) with flat normal bundle and
independent curvature normals with ¢ = 1,0, -1
respectively, where N"(c) is an n-dimensional
space form with sectional curvature c.

For these sequence of flows we also obtain
analogues of K. Uhlenbeck’s loop group action
on the space of harmonic maps from R!:! into
Lie group and the classical Backlund transfor-
mations for the Sine-Gorden equation.
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Moduli Spaces and
Adiabatic Limits

Karen K. Uhlenbeck

The last ten years of dif-
ferential geometry have
been dominated by the
study of very special
geometric partial differ-
ential equations. The
equations I have in mind
include the minimal and
constant mean curvature
equations, the Yamabe
equation, the Kahler-Ein-
stein equation, harmonic
maps, and Yang-Mills
with all its variations.
The origins of the equations vary tremendously,
as they come from both very classical geometry
and modern high-energy physics, but the equa-
tions themselves are clearly very special. One of
the interesting and useful features of most of the
equations is the “large”, by which we mean multi-
dimensional, solution spaces which are regu-
larly found for these equations in special cir-
cumstances.

By and large the origin of the equations of
geometry is intimately connected with varia-
tional principles. The classical equations are
usually posed as minimization problems. It is a
hard and fast rule of physics that interesting
equations are the “equations of motion” for
some integral with a classical Lagrangian. In
these cases, the Euler-Lagrange equation, which
is generated by the variational principle, is nearly
always second order. However, for technical rea-
sons, the second variation is self-adjoint, and
hence has zero index if it can be represented as
a Fredholm operator between Banach spaces.
This means that formally speaking, the dimen-
sion of a critical set, or the solution space of a
geometric equation, tends to be zero dimen-
sional.

There are a multitude of origins for the phe-
nomena of “nonaccidental” solution manifolds
of large dimension. By “nonaccidental” we mean
that a small perturbation which does not change
the nature of the problem will not destroy them.
The most common cause is the existence of a
continuous family of symmetries which leaves
the equation invariant. This is closely allied to
the phenomena of “integrals” which is important
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for mean curvature surfaces. A second philo-
sophically separate cause is the reduction of the
original variational problem, with its second-
order geometric equation, to a first-order equa-
tion for a topological minima. This mechanism
reduces the second-order harmonic map equa-
tion from a Riemann surface into an almost com-
plex symplectic manifold to a pseudo-holomor-
phic curve equation, and Yang-Mills to self-dual
Yang-Mills. The index of the first-order equa-
tion obtained in this fashion is topologically de-
termined and typically not necessarily zero. A
final and not-so-well-known origin for multi-di-
mensional parameter spaces is the introduction
of point singularities, which changes the index.
The Yamabe equation, which has zero index on
a compact manifold, has index k on a manifold
with k punctures.

An optimum strategy for progress includes
the search for new equations, as well as techni-
cal progress on the well-studied equations. An-
other angle is to search for new uses of these al-
ready-studied moduli spaces of solutions to
geometric partial differential equations. We de-
scribe how a reduction technique can result in
the moduli space of solutions to one problem as
the target manifold for more geometry. Credit
for this idea, at least in its modern form in an
application to monopoles, is due to the physi-
cist Nick Manton. Here is a simplified version.

Consider the question of locating long, slow,
closed orbits of the classical mechanics problem
of a point mass moving in R" with potential en-
ergy V(x) and kinetic energy % |%|2. To make the
problem interesting we must have

M={x€R":dV(x)=0}

a nontrivial manifold, and technically speaking
we assume that M is a nondegenerate critical
manifold in the sense of Bott. The action for the
problem is

Jx) = jOT (31%12 = vin) dt

with x(0) = x(T). In our search for long, slow,
closed orbits we renormalize t = TT to get
72| 4X

1
| 1
60 = Jo 2 drt

Let € = T~2. In renormalizing time T, the Euler-
Lagrange equations are

2
— V(x)) Tdr.

*) e (%)2 x(T) + dV(X(T)) =0.
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As T — oo, £ — 0 and we hypothesize that there
is a smooth family of solutions x(¢&, T) which for
each ¢ solves (*), and which has a limitas € — 0.
We call this orbit at € = 0 and adiabatic limit. The
following theorem is cute, if nonobvious, and the
proof can be done with advanced calculus.

Theorem. A necessary condition for x(T) to be
an adiabatic limit for the original mechanics
problem is that x is a closed geodesic on M.

By replacing R" by a function manifold and
V :R" — R by one of the geometric integrals of
the type with a moduli space of critical points,
one finds adiabatic approximations for hyper-
bolic equations. It is also possible to replace t
by static parameters to obtain “adiabatic” lim-
its of static problems. Proving that the adiabatic
limit has some physical or geometric reality is
much more difficult.
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