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In this article we discuss the work of Karen Uhlenbeck,
mainly from the 1980s, focused on variational problems
in differential geometry.

The calculus of variations goes back to the 18th century.
In the simplest setting we have a functional

𝐹(𝑢) = ∫Φ(𝑢,𝑢′)𝑑𝑥,
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defined on functions 𝑢 of one variable 𝑥. Then the condi-
tion that ℱ is stationary with respect to compactly
supported variations of 𝑢 is a second order differential
equation—the Euler–Lagrange equation associated to the
functional. One writes

𝛿ℱ = ∫𝛿𝑢 𝜏(𝑢) 𝑑𝑥,

where

𝜏(𝑢) = 𝜕Φ
𝜕𝑢 − 𝑑

𝑑𝑥
𝜕Φ
𝜕𝑢′ . (1)

The Euler–Lagrange equation is 𝜏(𝑢) = 0. Similarly
for vector-valued functions of a variable 𝑥 ∈ 𝐑𝑛. Depend-
ing on the context, the functions would be required to sat-
isfy suitable boundary conditions or, as in most of this ar-
ticle, might be defined on a compact manifold rather than
a domain in𝐑𝑛, and 𝑢might not exactly be a function but
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Figure 1. Finding a critical point with a minimax
sequence.

a more complicated differential geometric object such as a
map, metric, or connection. One interprets 𝜏(𝑢), defined
as in (1), as the derivative at 𝑢 of the functional ℱ on a
suitable infinite dimensional space 𝒳 and the solutions
of the Euler–Lagrange equation are critical points of ℱ.

A fundamental question is whether one can exploit the
variational structure to establish the existence of solutions
to Euler–Lagrange equations. This question came into fo-
cus at the beginning of the 20th century. Hilbert’s 22nd
problem from 1904 was:

Has not every regular variational problem a solution, pro-
vided certain assumptions regarding the given boundary condi-
tions are satisfied?

If the functional ℱ is bounded below one might hope
to find a solution of the Euler–Lagrange equation which
realises the minimum of ℱ on 𝒳. More generally, one
might hope that if𝒳 has a complicated topology then this
will force the existence ofmore critical points. For example,
if Δ is a homotopy class of maps from the 𝑝-sphere 𝑆𝑝

to 𝒳 one can hope to find a critical point via a minimax
sequence, minimising over maps 𝜙 ∈ Δ the maximum of
ℱ(𝜙(𝑣)) over points 𝑣 ∈ 𝑆𝑝.

In Hilbert’s time the only systematic results were in the
case of dimension 𝑛 = 1 and for linear problems, such
as the Dirichlet problem for the Laplace equation. The de-
velopment of a nonlinear theory in higher dimensions has
been the scene for huge advances over the past century and
provides the setting for much of Karen Uhlenbeck’s work.

Harmonic Maps in Dimension 2
We begin in dimension 1 where geodesics in a Riemann-
ian manifold are classical examples of solutions to a vari-
ational problem. Here we take 𝑁 to be a compact, con-
nected, Riemannianmanifold and fix two points𝑝,𝑞 in𝑁.
We take𝒳 to be the space of smooth paths𝛾 ∶ [0, 1] → 𝑁

with 𝛾(0) = 𝑝,𝛾(1) = 𝑞, and the energy functional

ℱ(𝛾) = ∫
1

0
|∇𝛾|2,

where the norm of the “velocity vector” ∇𝛾 is computed
using the Riemannian metric on 𝑁. The Euler–Lagrange
equation is the geodesic equation, in local co-ordinates,

𝛾″
𝑖 −∑

𝑗,𝑘
Γ𝑖
𝑗𝑘𝛾′

𝑗𝛾′
𝑘 = 0,

where the “Christoffel symbols” Γ𝑖
𝑗𝑘 are given by well-

known formulae in terms of the metric tensor and its
derivatives. In this case the variational picture works as
well as one could possibly wish. There is a geodesic from
𝑝 to 𝑞 minimising the energy. More generally one can use
minimax arguments and (at least if 𝑝 and 𝑞 are taken in
general position) the Morse theory asserts that the homol-
ogy of the path space 𝒳 can be computed from a chain
complex with generators corresponding to the geodesics
from 𝑝 to 𝑞. This can be used in both directions: facts
from algebraic topology about the homology of the path
space give existence results for geodesics, and, conversely,
knowledge of the geodesics can feed into algebraic topol-
ogy, as in Bott’s proof of his periodicity theorem.

The existence of a minimising geodesic between two
points can be proved in an elementaryway and the original
approach of Morse avoided the infinite dimensional path
space 𝒳, working instead with finite dimensional approx-
imations, but the infinite-dimensional picture gives the
best starting point for the discussion to follow. The basic
point is a compactness property: any sequence 𝛾1, 𝛾2,… in
𝒳 with bounded energy has a subsequence which converges in
𝐶0 to some continuous path from 𝑝 to 𝑞. In fact for a path
𝛾 ∈ 𝒳 and 0 ≤ 𝑡1 < 𝑡2 ≤ 1 we have

𝑑(𝛾(𝑡1), 𝛾(𝑡2)) ≤ ∫
𝑡2

𝑡1
|∇𝛾| ≤ ℱ(𝛾)1/2 |𝑡1 − 𝑡2|1/2,

where the last step uses the Cauchy–Schwartz inequality.
Thus a bound on the energy gives a 1

2 -Hölder bound on
𝛾 and the compactness property follows from the Ascoli-
Arzela theorem.

In the same vein as the compactness principle, one can
extend the energy functional ℱ to a completion 𝒳 of 𝒳
which is an infinite dimensional Hilbert manifold, and el-
ements of 𝒳 are still continuous (in fact 1

2 -Hölder con-
tinuous) paths in 𝑁. In this abstract setting, Palais and
Smale introduced a general “Condition C” for functionals
on Hilbert manifolds, which yields a straightforward vari-
ational theory. (This was extended to Banach manifolds
in early work of Uhlenbeck [24].) The drawback is that,
beyond the geodesic equations, most problems of interest
in differential geometry do not satisfy this Palais–Smale
condition, as illustrated by the case of harmonic maps.
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The harmonic map equations were first studied system-
atically by Eells and Sampson [5]. We now take 𝑀,𝑁
to be a pair of Riemannian manifolds (say compact) and
𝒳 = Maps(𝑀,𝑁) the space of smooth maps. The energy
of a map 𝑢 ∶ 𝑀 → 𝑁 is given by the same formula

ℱ(𝑢) = ∫
𝑀
|∇𝑢|2,

where at each point 𝑥 ∈ 𝑀 the quantity |∇𝑢| is the stan-
dard norm defined by the metrics on𝑇𝑀𝑥 and𝑇𝑁𝑢(𝑥). In
local co-ordinates the Euler Lagrange equations have the
form

Δ𝑀𝑢𝑖 −∑
𝑗𝑘

Γ𝑖
𝑗𝑘∇𝑢𝑗∇𝑢𝑘 = 0, (2)

where Δ𝑀 is the Laplacian on 𝑀. This is a quasi-linear
elliptic system, with a nonlinear term which is quadratic
in first derivatives. The equation is the natural common
generalisation of the geodesic equation in𝑁 and the linear
Laplace equation on 𝑀.

The key point now is that when dim 𝑀 > 1 the energy
functional does not have the same compactness property.
This is bound up with Sobolev inequalities and, most funda-
mentally, with the scaling behaviour of the functional. To
explain, in part, the latter consider varying the metric 𝑔𝑀
on 𝑀 by a conformal factor 𝜆. So 𝜆 is a strictly positive
function on 𝑀 and we have a new metric ̃𝑔𝑀 = 𝜆2𝑔𝑀.
Then one finds that the energy ̃𝐹 defined by this new met-
ric is

ℱ̃(𝑢) = ∫
𝑀
𝜆2−𝑛|∇𝑢|2,

where 𝑛 = dim𝑀. In particular if 𝑛 = 2 we have ℱ̃ = ℱ.
Now take 𝑀 = 𝑆2 with its standard round metric and 𝜙 ∶
𝑆2 → 𝑆2 a Möbius map. This is a conformal map and it
follows from the above that for any 𝑢 ∶ 𝑆2 → 𝑁 we have
ℱ(𝑢∘𝜙) = ℱ(𝑢). Since the space of Möbius maps is not
compact we can construct a sequence of maps 𝑢∘𝜙𝑖 with
the same energy but with no convergent subsequence.

We now recall the Sobolev inequalities. Let 𝑓 be a
smooth real valued function on 𝐑𝑛, supported in the unit
ball. We take polar co-ordinates (𝑟, 𝜃) in 𝐑𝑛, with 𝜃 ∈
𝑆𝑛−1. For any fixed 𝜃 we have

𝑓(0) = ∫
1

𝑟=0

𝜕𝑓
𝜕𝑟𝑑𝑟.

So, integrating over the sphere,

𝑓(0) = 1
𝜔𝑛

∫
𝑆𝑛−1

∫
1

𝑟=0

𝜕𝑓
𝜕𝑟𝑑𝑟𝑑𝜃,

where 𝜔𝑛 is the volume of 𝑆𝑛−1. Since the Euclidean vol-
ume form is 𝑑𝑛𝑥 = 𝑟𝑛−1𝑑𝑟𝑑𝜃 we can write this as

𝑓(0) = 1
𝜔𝑛

∫
𝐵𝑛

|𝑥|1−𝑛 𝜕𝑓
𝜕𝑟 𝑑𝑛𝑥.

The function 𝑥 ↦ |𝑥|1−𝑛 is in 𝐿𝑞 over the ball for any
𝑞 < 𝑛/𝑛−1. Let 𝑝 be the conjugate exponent, with 𝑝−1+
𝑞−1 = 1, so 𝑝 > 𝑛. Then Hölder’s inequality gives

|𝑓(0)| ≤ 𝐶𝑝‖∇𝑓‖𝐿𝑝

where 𝐶𝑝 is 𝜔−1
𝑛 times the 𝐿𝑞(𝐵𝑛) norm of 𝑥 ↦ |𝑥|1−𝑛.

The upshot is that for 𝑝 > 𝑛 there is a continuous em-
bedding of the Sobolev space 𝐿𝑝

1—obtained by completing
in the norm ‖∇𝑓‖𝐿𝑝—into the continuous functions on
the ball. In a similar fashion, if 𝑝 < 𝑛 there is a contin-
uous embedding 𝐿𝑝

1 → 𝐿𝑟 for the exponent range 𝑟 ≤
𝑛𝑝/(𝑛 − 𝑝), which is bound up with the isoperimetric
inequality in 𝐑𝑛. The arithmetic relating the exponents
and the dimension 𝑛 reflects the scaling behaviour of the
norms. If we define 𝑓𝜇(𝑥) = 𝑓(𝜇𝑥), for 𝜇 ≥ 1, then

‖𝑓𝜇‖𝐶0 = ‖𝑓‖𝐶0 ,
‖𝑓𝜇‖𝐿𝑟 = 𝜇−𝑛/𝑟‖𝑓‖𝐿𝑟 ,
‖𝑓𝜇‖𝐿𝑝

1
= 𝜇1−𝑛/𝑝‖𝑓‖𝐿𝑝

1
.

It follows immediately that there can be no continuous
embedding 𝐿𝑝

1 → 𝐶0 for 𝑝 < 𝑛 or 𝐿𝑝
1 → 𝐿𝑟 for 𝑟 >

𝑛𝑝/(𝑛 − 𝑝).
The salient part of this discussion for the harmonicmap

theory is that the embedding 𝐿𝑝
1 → 𝐶0 fails at the criti-

cal exponent 𝑝 = 𝑛. (To see this, consider the function
log log 𝑟−1.) Taking 𝑛 = 2 this means that the energy of
a map from a 2-manifold does not control the continuity
of the map and the whole picture in the 1-dimensional
case breaks down. This was the fundamental difficulty ad-
dressed in the landmark paper [12] of Sacks and Uhlen-
beckwhich showed that, with a deeper analysis, variational
arguments can still be used to give general existence re-
sults.

Rather thanworking directlywithminimising sequences,
Sacks and Uhlenbeck introduced perturbed functionals on
𝒳 = Maps(𝑀,𝑁) (with 𝑀 a compact 2-manifold):

ℱ𝛼(𝑢) = ∫
𝑀
(1 + |∇𝑢|2)𝛼.

For 𝛼 > 1 we are in the good Sobolev range, just as in the
geodesic problem. Fix a connected component 𝒳0 of 𝒳
(i.e. a homotopy class of maps from 𝑀 to 𝑁). For 𝛼 > 1
there is a smooth map 𝑢𝛼 realising the minimum of ℱ𝛼
on 𝒳0. This map 𝑢𝛼 satisfies the corresponding Euler–
Lagrange equation, which is an elliptic PDE given by a vari-
ant of (2). The strategy is to study the convergence of𝑢𝛼 as
𝛼 tends to 1. The main result can be outlined as follows.
To simplify notation, we understand that 𝛼 runs over a
suitable sequence decreasing to 1.

• There is a finite set 𝑆 ⊂ 𝑀 such that the 𝑢𝛼 con-
verge in 𝐶∞ over 𝑀\𝑆.
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Figure 2. Schematic representation of “bubbling.”

• The limit 𝑢 of the maps 𝑢𝛼 extends to a smooth
harmonic map from 𝑀 to 𝑁 (which could be a
constant map).

• If 𝑥 is a point in𝑆 such that the𝑢𝛼 do not converge
to 𝑢 over a neighbourhood of 𝑥 then there is a
non-trivial harmonic map 𝑣 ∶ 𝑆2 → 𝑁 such that
a suitable sequence of rescalings of the 𝑢𝛼 near 𝑥
converge to 𝑣.

In brief, the only way that the sequence 𝑢𝛼 may fail to
converge is by forming “bubbles,” in which small discs in
𝑀 are blown up into harmonic spheres in𝑁. We illustrate
the meaning of this bubbling through the example of ra-
tional maps of the 2-sphere. (See also the expository article
[11].) For distinct points 𝑧1,…𝑧𝑑 in 𝐂 and non-zero co-
efficients 𝑎𝑖 consider the map

𝑢(𝑧) =
𝑑
∑
𝑖=1

𝑎𝑖
𝑧 − 𝑧𝑖

,

which extends to a degree 𝑑 holomorphic map 𝑢 ∶ 𝑆2 →
𝑆2 with 𝑢(∞) = 0. These are in fact harmonic maps, with
the same energy 8𝜋𝑑. Take 𝑧1 = 0,𝑎1 = 𝜖. If we make
𝜖 tend to 0, with the other 𝑎𝑖 fixed, then away from 0 the
maps converge to the degree (𝑑−1)map∑𝑑

2 𝑎𝑖(𝑧−𝑧𝑖)−1.
On the other hand if we rescale about 0 by setting

𝑢̃(𝑧) = 𝑢(𝜖𝑧) = 1
𝑧 +

𝑑
∑
𝑖=2

𝑎𝑖
𝜖𝑧 − 𝑧𝑖

the rescaled maps converge (on compact subsets of 𝐂) to
the degree 1 map

𝑣(𝑧) = 1
𝑧 − 𝑐

with 𝑐 = ∑𝑑
2 𝑎𝑖/𝑧𝑖.

A key step in the Sacks andUhlenbeck analysis is a “small
energy” statement (related to earlier results ofMorrey). This
says that there is some 𝜖 > 0 such that if the energy of a
map 𝑢𝛼 on a small disc 𝐷 ⊂ 𝑁 is less than 𝜖 then there

are uniform estimates of all derivatives of 𝑢𝛼 over the half-
sized disc. The convergence result then follows from a cov-
ering argument. Roughly speaking, if the energy of the
map on 𝑀 is at most 𝐸 then there can be at most a fixed
number 𝐸/𝜖 of small discs on which the map is not con-
trolled. The crucial point is that 𝜖 does not depend on the
size of the disc, due to the scale invariance of the energy.
To sketch the proof of the small energy result, consider a
simpler model equation

Δ𝑓 = |∇𝑓|2, (3)

for a function 𝑓 on the unit disc in 𝐂. Linear elliptic the-
ory, applied to the Laplace operator, gives estimates of the
schematic form

‖∇𝑓‖𝐿𝑞
1
≤ 𝐶‖Δ𝑓‖𝐿𝑞 + LOT,

where LOT stands for “lower order terms” in which (for
this sketch) we include the fact that one will have to restrict
to an interior region. Take for example 𝑞 = 4/3. Then
substituting into the equation (3) we have

‖∇𝑓‖𝐿4/3
1

≤ 𝐶‖|∇𝑓|2‖𝐿4/3 + LOT ≤ 𝐶‖∇𝑓‖2
𝐿8/3 + LOT.

Now in dimension2wehave a Sobolev embedding𝐿4/3
1 →

𝐿4 which yields

‖∇𝑓‖𝐿4 ≤ 𝐶‖∇𝑓‖2
𝐿8/3 + LOT.

On the other hand, Hölders inequality gives the interpola-
tion

‖∇𝑓‖𝐿8/3 ≤ ‖∇𝑓‖1/2
𝐿2 ‖∇𝑓‖1/2

𝐿4 .
So, putting everything together, one has

‖∇𝑓‖𝐿4 ≤ 𝐶‖∇𝑓‖𝐿4‖∇𝑓‖𝐿2 + LOT.
If ‖∇𝑓‖𝐿2 ≤ 1/2𝐶 we can re-arrange this to get

‖∇𝑓‖𝐿4 ≤ LOT.
In other words, in the small energy regime (with √𝜖 =
1/2𝐶) we can bootstrap using the equation to gain an es-
timate on a slightly stronger norm (𝐿4 rather than 𝐿2) and
one continues in similar fashion to get interior estimates
on all higher derivatives.

This breakthrough work of Sacks and Uhlenbeck ties in
with many other developments from the same era, some
of which we discuss in the next section and some of which
we mention briefly here.

• Inminimal submanifold theory: when𝑀 is a2-sphere
the image of a harmonic map is a minimal surface
in𝑁 (ormore precisely a branched immersed sub-
manifold). In this way, Sacks and Uhlenbeck ob-
tained an important existence result for minimal
surfaces.

• In symplectic topology the pseudoholomorphic
curves, introduced by Gromov in 1986, are exam-
ples of harmonic maps and a variant of the Sacks–
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Uhlenbeck theory is the foundation for all the en-
suing developments (see, for example, [7]).

• In PDE theory other “critical exponent” variational
problems, in which similar bubbling phenomena
arise, were studied intensively (see for example
the work of Brezis and Nirenberg [4]).

• In Riemannian geometry the Yamabe problem of
finding a metric of constant scalar curvature in a
given conformal class (on a manifold of dimen-
sion 3 or more) is a critical exponent variational
problem for the Einstein-Hilbert functional (the
integral of the scalar curvature), restricted to met-
rics of volume 1. Schoen proved the existence of
a minimiser, completing the solution of the Yam-
abe problem, using a deep analysis to rule out the
relevant bubbling [14].

A beautiful application of the Sacks–Uhlenbeck theory
was obtained in 1988 byMicallef andMoore [8]. The argu-
ment is in the spirit of classical applications of geodesics
in Riemannian geometry. Micallef and Moore considered
a curvature condition on a compact Riemannian manifold
𝑁 (of dimension at least 4) of having “positive curvature
on isotropic 2-planes.” They proved that if 𝑁 satisfies this
condition and is simply connected then it is a homotopy
sphere (and thus, by the solution of the Poincaré conjec-
ture, is homeomorphic to a sphere). The basic point is
that a non-trivial homotopy class in 𝜋𝑘(𝑁) gives a non-
trivial element of 𝜋𝑘−2(𝒳), where 𝒳 = Maps(𝑆2,𝑁),
which gives a starting point for a minimax argument. If
𝑁 is not a homotopy sphere then by standard algebraic
topology there is some 𝑘 with 2 ≤ 𝑘 ≤ 1

2dim𝑁 such
that 𝜋𝑘(𝑁) ≠ 0, which implies that 𝜋𝑘−2(𝒳) is non-
trivial. By developingmini-max arguments with the Sacks–
Uhlenbeck theory, using the perturbed energy functional,
Micallef and Moore were able to show that this leads to a
non-trivial harmonic map 𝑢 ∶ 𝑆2 → 𝑁 of index at most
𝑘 − 2. (Here the index is the dimension of the space on
which the second variation is strictly negative.) On the
other hand the Levi–Civita connection of𝑁 defines a holo-
morphic structure on the pull-back 𝑢∗(𝑇𝑁 ⊗ 𝐂) of the
complexified tangent bundle. By combining results about
holomorphic bundles over𝑆2 and aWeitzenbock formula,
in which the curvature tensor of 𝑁 enters, they show that
the index must be at least 1

2dim𝑁 − 3
2 and thus derive a

contradiction.
If the sectional curvature of 𝑁 is “1

4 -pinched” (i.e. lies

between 1
4 and 1 everywhere) then 𝑁 has positive curva-

ture on isotropic 2-planes. Thus the Micallef and Moore
result implies the classical sphere theorem of Berger and
Klingenberg, whose proof was quite different. In turn,
much more recently, Brendle and Schoen [3] proved that a

(simply connected) manifold satisfying this isotropic cur-
vature condition is in fact diffeomorphic to a sphere. Their
proof was again quite different, using Ricci flow.

Gauge Theory in Dimension 4
From the late 1970s, mathematics was enriched by ques-
tions inspired by physics, involving gauge fields and the
Yang-Mills equations. These developments were
many-faceted and here we will focus on aspects related to
variational theory. In this set-up one considers a fixed Rie-
mannian manifold 𝑀 and a 𝐺-bundle 𝑃 → 𝑀 where 𝐺
is a compact Lie group. The distinctive feature, compared
to most previous work in differential geometry, is that 𝑃 is
an auxiliary bundle not directly tied to the geometry of 𝑀.
The basic objects of study are connections on 𝑃. In a local
trivialisation 𝜏 of 𝑃 a connection 𝐴 is given by a Lie(𝐺)-
valued 1-form 𝐴𝜏. For simplicity we take 𝐺 to be a matrix
group, so 𝐴𝜏 is a matrix of 1-forms. The fundamental in-
variant of a connection is its curvature 𝐹(𝐴) which in the
local trivialisation is given by the formula

𝐹𝜏 = 𝑑𝐴𝜏 +𝐴𝜏 ∧𝐴𝜏.
The Yang-Mills functional is

ℱ(𝐴) = ∫
𝑀
|𝐹(𝐴)|2,

and the Euler–Lagrange equation is 𝑑∗
𝐴𝐹 = 0 where 𝑑∗

𝐴 is
an extension of the usual operator 𝑑∗ from 2-forms to 1-
forms, defined using 𝐴. This Yang-Mills equation is a non-
linear generalisation ofMaxwell’s equations of electromag-
netism (which one obtains taking 𝐺 = 𝑈(1) and passing
to Lorentzian signature).

In the early 1980s, Uhlenbeck proved fundamental an-
alytical results which underpin most subsequent work in
this area. Themain case of interest is when themanifold𝑀
has dimension 4 and the problem is then of critical expo-
nent type. In this dimension the Yang-Mills functional is
conformally invariant and there are many analogies with
the harmonic maps of surfaces discussed above. A new
aspect involves gauge invariance, which does not have an
analogy in the harmonic maps setting. That is, the infinite
dimensional group 𝒢 of automorphisms of the bundle 𝑃
acts on the space 𝒜 of connections, preserving the Yang-
Mills functional, so the natural setting for the variational
theory is the quotient space 𝒜/𝒢. Locally we are free to
change a trivialisation 𝜏0 by the action of a𝐺-valued func-
tion 𝑔, which will change the local representation of the
connection to

𝐴𝑔𝜏0 = 𝑔𝑑(𝑔−1) + 𝑔𝐴𝜏0𝑔−1.
While this action of the gauge group 𝒢 may seem un-

usual, within the context of PDEs, it represents a funda-
mental phenomenon in differential geometry. In study-
ing Riemannian metrics, or any other kind of structure, on
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a manifold one has to take account of the action of the
infinite-dimensional group of diffeomorphisms: for exam-
ple the round metric on the sphere is only unique up to
this action. Similarly, the explicit local representation of a
metric depends on a choice of local co-ordinates. In fact
diffeomorphism groups are much more complicated than
the gauge group 𝒢. In another direction one can have in
mind the case of electromagnetism, where the connection
1-form 𝐴𝜏 is equivalent to the classical electric and mag-
netic potentials on space-time. The 𝒢-action corresponds
to the fact that these potentials are not unique.

Two papers of Uhlenbeck [25], [26] addressed both of
these aspects (critical exponent and gauge choice). The pa-
per [25] bears on the choice of an “optimal” local trivialisa-
tion𝜏 of the bundle over a ball 𝐵 ⊂ 𝑀 given a connection
𝐴. The criterion that Uhlenbeck considers is the Coulomb
gauge fixing condition: 𝑑∗𝐴𝜏 = 0, supplemented with
the boundary condition that the pairing of 𝐴𝜏 with the
normal vector vanishes. Taking 𝜏 = 𝑔𝜏0, for some arbi-
trary trivialisation 𝜏0, this becomes an equation for the 𝐺-
valued function 𝑔 which is a variant of the harmonic map
equation, with Neumann boundary conditions. In fact the
equation is the Euler–Lagrange equation associated to the
functional ‖𝐴𝜏‖𝐿2 , on local trivialisations 𝜏. The Yang-
Mills equations in such a Coulomb gauge form an elliptic
system. (Following the remarks in the previous paragraph;
an analogous discussion for Riemannian metrics involves
harmonic local co-ordinates, in which the Einstein equa-
tions, for example, form an elliptic system.)

The result proved by Uhlenbeck in [25] is of “small en-
ergy” type. Specialising to dimension 4 for simplicity, she
shows that there is an 𝜖 > 0 and a constant 𝐶 such that if
‖𝐹‖𝐿2(𝐵) < 𝜖 there is a Coulomb gauge 𝜏 over 𝐵 in which

‖∇𝐴𝜏‖𝐿2 + ‖𝐴𝜏‖𝐿4 ≤ 𝐶‖𝐹‖𝐿2 .

The strategy of proof uses the continuity method, applied
to the family of connections given by restricting to smaller
balls with the same centre, and the key point is to obtain a
priori estimates in this family. The PDE arguments deriving
these estimates have some similarity with those sketched
in Section “Harmonic maps in dimension 2” above. An
important subtlety arises from the critical nature of the
Sobolev exponents involved. If𝜏 = 𝑔𝜏0 then an𝐿2 bound
on ∇𝐴𝜏 gives an 𝐿2 bound on the second derivative of 𝑔
but in dimension 4 this is the borderline exponent where
we do not get control over the continuity of 𝑔. That makes
the nonlinear operations such as 𝑔 ↦ 𝑔−1 problematic.
Uhlenbeck overcomes this problem by working with 𝐿𝑝

for 𝑝 > 2 and using a limiting argument.
In the companion paper [26], Uhlenbeck proves a

renowned “removal of singularities” result. The statement
is that a solution 𝐴 of the Yang-Mills equations over the

punctured ball 𝐵4 \{0} with finite energy (i.e. with curva-
ture 𝐹(𝐴) in 𝐿2) extends smoothly over 0 in a suitable lo-
cal trivialisation. One important application of this is that
finite-energy Yang-Mills connections over𝐑4 extend to the
conformal compactification 𝑆4. We will only attempt to
give the flavour of the proof. Given our finite-energy solu-
tion 𝐴 over the punctured ball let

𝑓(𝑟) = ∫
|𝑥|<𝑟

|𝐹(𝐴)|2,

for 𝑟 < 1. Then the derivative is

𝑑𝑓
𝑑𝑟 = ∫

|𝑥|=𝑟
|𝐹(𝐴)|2.

The strategy is to express 𝑓(𝑟) also as a boundary integral,
plus lower order terms. To give a hint of this, consider
the case of an abelian group𝐺 = 𝑈(1), so the connection
form𝐴𝜏 is an ordinary1-form, the curvature is simply𝐹 =
𝑑𝐴𝜏, and the Yang-Mills equation is 𝑑∗𝐹 = 0. Fix small
𝜖 < 𝑟 and work on the annular region𝑊 where 𝜖 < |𝑥| <
𝑟. We can integrate by parts to write

∫
𝑊
|𝐹|2 = ∫

𝑊
⟨𝑑𝐴𝜏, 𝐹⟩ = ∫

𝑊
⟨𝐴𝜏, 𝑑∗𝐹⟩+∫

𝜕𝑊
𝐴𝜏∧∗𝐹.

Since 𝑑∗𝐹 = 0 the first term on the right hand side van-
ishes. If one can show that the contribution from the inner
boundary |𝑥| = 𝜖 tends to 0 with 𝜖 then one concludes
that

𝑓(𝑟) = ∫
|𝑥|=𝑟

𝐴𝜏 ∧∗𝐹.

In the nonabelian case the same discussion applies up to
the addition of lower-order terms, involving𝐴𝜏∧𝐴𝜏. The
strategy is then to obtain a differential inequality of the
shape

𝑓(𝑟) ≤ 1
4𝑟

𝑑𝑓
𝑑𝑟 + LOT, (4)

by comparing the boundary terms over the 3-sphere. This
differential inequality integrates to give 𝑓(𝑟) ≤ 𝐶𝑟4 and
from there it is relatively straightforward to obtain an 𝐿∞

bound on the curvature and to see that the connection can
be extended over 0. The factor 1

4 in (4) is obtained from
an inequality over the 3-sphere. That is, any closed 2-form
𝜔 on 𝑆3 can be expressed as 𝜔 = 𝑑𝑎 where

‖𝑎‖2
𝐿2(𝑆3) ≤

1
4‖𝜔‖2

𝐿2(𝑆3).
The main work in implementing this strategy is to con-
struct suitable gauges over annuli in which the lower order,
nonlinear terms 𝐴𝜏 ∧𝐴𝜏 are controlled.

These results of Uhlenbeck lead to a Yang-Mills analogue
of the Sacks–Uhlenbeck picture discussed in the previous
section. This was not developed explicitly in Uhlenbeck’s
1983 papers [25], [26] but results along those lines were
obtained by her doctoral student S. Sedlacek [16]. Let 𝑐
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be the infimum of the Yang-Mills functional on connec-
tions on 𝑃 → 𝑋, where 𝑋 is a compact 4-manifold. Let
𝐴𝑖 be a minimising sequence. Then there is a (possibly
different) 𝐺-bundle ̃𝑃 → 𝑋, a Yang-Mills connection 𝐴∞
on ̃𝑃, and a finite set 𝑆 ⊂ 𝑋 such that, after perhaps pass-
ing to a subsequence 𝑖′, the𝐴𝑖′ converge to𝐴∞ over𝑋\𝑆.
(More precisely, this convergence is in 𝐿2

1,loc and implic-
itly involves a sequence of bundle isomorphisms of 𝑃 and
̃𝑃 over 𝑋\𝑆.) If 𝑥 is a point in 𝑆 such that the 𝐴𝑖′ do

not converge to 𝐴∞ over a neighbourhood of 𝑥 then one
obtains a non-trivial solution to the Yang-Mills equations
over 𝑆4 by a rescaling procedure similar to that in the har-
monic map case. Similar statements apply to sequences of
solutions to the Yang-Mills equations over 𝑋 and in par-
ticular to sequences of Yang-Mills “instantons.” These spe-
cial solutions solve the first order equation 𝐹 = ±∗𝐹 and
are closely analogous to the pseudoholomorphic curves in
the harmonic map setting. Uhlenbeck’s analytical results
underpinned the applications of instanton moduli spaces
to 4-manifold topology which were developed vigorously
throughout the 1980s and 1990s—just as for pseudoholo-
morphic curves and symplectic topology. But we will con-
centrate here on the variational aspects.

For simplicity fix the group 𝐺 = 𝑆𝑈(2); the 𝑆𝑈(2)-
bundles 𝑃 over 𝑋 are classified by an integer 𝑘 = 𝑐2(𝑃)
and for each 𝑘 we have a moduli space ℳ𝑘 (possibly
empty) of instantons (where the sign in 𝐹 = ± ∗ 𝐹 de-
pends on the sign of 𝑘). Recall that the natural domain for
the Yang-Mills functional is the infinite-dimensional quo-
tient space 𝒳𝑘 = 𝒜𝑘/𝒢𝑘 of connections modulo equiv-
alence. The moduli space ℳ𝑘 is a subset of 𝒳𝑘 and (if
non-empty) realises the absolute minimum of the Yang-
Mills functional on 𝒳𝑘. In this general setting one could,
optimistically, hope for a variational theory which would
relate:

(1) The topology of the ambient space 𝒳𝑘,
(2) The topology of ℳ𝑘,
(3) The non-minimal critical points: i.e. the solutions

of the Yang-Mills equation which are not instan-
tons.

A serious technical complication here is that the group 𝒢𝑘
does not usually act freely on 𝒜𝑘, so the quotient space
is not a manifold. But we will not go into that further
here and just say that there are suitable homology groups
𝐻𝑖(𝒳𝑘), which can be studied by standard algebraic topol-
ogy techniques and which have a rich and interesting struc-
ture.

Much of the work in this area in the late 1980s was
driven by two specific questions.

• The Atiyah-Jones conjecture [1]. They considered
the manifold 𝑀 = 𝑆4 where (roughly speaking)
the space𝒳𝑘 has the homotopy type of the degree

𝑘 mapping space Maps𝑘(𝑆3, 𝑆3), which is in fact
independent of 𝑘. The conjecture was that the in-
clusion ℳ𝑘 → 𝒳𝑘 induces an isomorphism on
homology groups 𝐻𝑖 for 𝑖 in a range 𝑖 ≤ 𝑖(𝑘),
where 𝑖(𝑘) tends to infinity with 𝑘. One motiva-
tion for this idea came from results of Segal in the
analogous case of rational maps [17].

• Again focusing on 𝑀 = 𝑆4: are there any non-
minimal solutions of the Yang-Mills equations?

A series of papers of Taubes [20], [22] developed a varia-
tional approach to the Atiyah-Jones conjecture (and
generalisations to other 4-manifolds). In [20] Taubes
established a lower bound on the index of any non-
minimal solution over the 4-sphere. If the problem sat-
isfied the Palais–Smale condition this index bound would
imply the Atiyah-Jones conjecture (with 𝑖(𝑘) roughly 2𝑘)
but the whole point is that this condition is not satisfied,
due to the bubbling phenomenon formini-max sequences.
Nevertheless, Taubes was able to obtain many partial re-
sults through a detailed analysis of this bubbling. The
Atiyah-Jones conjecture was confirmed in 1993 by Boyer,
Hurtubise, Mann, and Milgram [2] but their proof worked
with geometric constructions of the instanton moduli
spaces, rather than variational arguments.

The second question was answered, using variational
methods, by Sibner, Sibner, and Uhlenbeck in 1989 [18],
showing that indeed such solutions do exist. In their proof
they considered a standard𝑆1 action on𝑆4 with fixed point
set a 2-sphere, an 𝑆1-equivariant bundle 𝑃 over 𝑆4 and
𝑆1-invariant connections on 𝑃. This invariance forces the
“bubbling points” arising in variational arguments to lie
on the 2-sphere 𝑆2 ⊂ 𝑆4 and there is a dimensional re-
duction of the problem to “monopoles” in 3-dimensions
which has independent interest.

A connection over 𝐑4 which is invariant under the ac-
tion of translations in one direction can be encoded as a
pair (𝐴,𝜙) of a connection 𝐴 over 𝐑3 and an additional
Higgs field 𝜙 which is a section of the adjoint vector bun-
dle ad𝑃whose fibres are copies of Lie(𝐺). The Yang-Mills
functional induces a Yang-Mills-Higgs functional

ℱ(𝐴,𝜙) = ∫
𝐑3

|𝐹(𝐴)|2 + |∇𝐴𝜙|2

on these pairs over 𝐑3. One also fixes an asymptotic con-
dition that |𝜙| tends to 1 at ∞ in 𝐑3. In 3 dimensions
we are below the critical dimension for the functional, but
the noncompactness of 𝐑3 prevents a straightforward ver-
ification of the Palais–Smale condition. Nonetheless, in a
series of papers [19], [21] Taubes developed a far-reaching
variational theory in this setting. By a detailed analysis,
Taubes showed that, roughly speaking, aminimax sequence
can always be chosen to have energy density concentrated
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in a fixed large ball in 𝐑3 and thus obtained the neces-
sary convergence results. In particular, using this analysis,
Taubes established the existence of non-minimal critical
points for the functional ℱ(𝐴,𝜙).

The critical points of the Yang-Mills-Higgs functional on
𝐑3 yield Yang-Mills solutions over 𝐑4, but these do not
have finite energy. However the same ideas can be applied
to the 𝑆1-action. The quotient of 𝑆4 \𝑆2 by the 𝑆1-action
can naturally be identified with the hyperbolic 3-space𝐻3,
and 𝑆1-invariant connections correspond to pairs (𝐴,𝜙)
over𝐻3. There is a crucial parameter 𝐿 in the theory which
from one point of view is the weight of the 𝑆1 action on
the fibres of 𝑃 over 𝑆2. From another point of view the
curvature of the hyperbolic space, after suitable normali-
sation, is −𝐿−2. The fixed set 𝑆2 can be identified with
the sphere at infinity of hyperbolic space and bubbling of
connections over a point in 𝑆2 ⊂ 𝑆4 corresponds, in the
Yang-Mills-Higgs picture, to some contribution to the en-
ergy density of (𝐴,𝜙) moving off to the corresponding
point at infinity.

The key idea of Sibner, Sibner, and Uhlenbeck was to
make the parameter 𝐿 very large. This means that the cur-
vature of the hyperbolic space is very small and, on sets of
fixed diameter, the hyperbolic space is well-approximated
by 𝐑3. Then they show that Taubes’ arguments on 𝐑3 go
over to this setting and are able to produce the desired
non-minimal solution of the Yang-Mills equations over𝑆4.
Later, imposingmore symmetry, other solutionswere found
using comparatively elementary arguments [13], but the
approach of Taubes, Sibner, Sibner, and Uhlenbeck is a
paradigmof theway that variational arguments can be used
“beyond Palais–Smale,” via a delicate analysis of the be-
haviour of minimax sequences.

We conclude this section with a short digression from
the main theme of this article. This brings in other rela-
tions between harmonic mappings of surfaces and
4-dimensional gauge theory, and touches on another very
important line of work by Karen Uhlenbeck, represented
by papers such as [27], [28]. In this setting the target space
𝑁 is a symmetric space and the emphasis is on explicit so-
lutions and connectionswith integrable systems. There is a
huge literature on this subject, stretching back to work of
Calabi and Chern in the 1960s, and distantly connected
with the Weierstrass representation of minimal surfaces in
𝐑3. From around 1980 there were many contributions
from theoretical physicists and any kind of proper treat-
ment would require a separate article, so we just include a
few remarks here.

As we outlined above, the dimension reduction of Yang-
Mills theory on 𝐑4 obtained by imposing
translation-invariance in one variable leads to equations
for a pair (𝐴,𝜙) on 𝐑3. Now reduce further by imposing

translation-invariance in two directions. More precisely,
write 𝐑4 = 𝐑2

1 ×𝐑2
2, fix a simply-connected domain Ω ⊂

𝐑2
1, and consider connections on a bundle over Ω × 𝐑2

2
which are invariant under translations in 𝐑2

2. These corre-
spond to pairs (𝐴,Φ)where𝐴 is a connection on a bundle
𝑃 over Ω and Φ can be viewed as a 1-form on Ω with val-
ues in the bundle ad𝑃. Now 𝐴+ 𝑖Φ is a connection over
Ω for a bundle with structure group the complexification
𝐺𝑐: for example if 𝐺 = 𝑈(𝑟) the complexified group is
𝐺𝑐 = 𝐺𝐿(𝑟,𝐂). The Yang-Mills instanton equations on
𝐑4 imply that𝐴+𝑖Φ is a flat connection. By the fundamen-
tal property of curvature, sinceΩ is simply-connected, this
flat connection can be trivialised. The original data (𝐴,Φ)
is encoded in the reduction of the trivial 𝐺𝑐-bundle to the
subgroup 𝐺, which amounts to a map 𝑢 from Ω to the
non-compact symmetric space 𝐺𝑐/𝐺. For example, when
𝐺 = 𝑈(𝑟) the extra data needed to recover (𝐴,Φ) is a Her-
mitian metric on the fibres of the complex vector bundle,
and 𝐺𝐿(𝑟,𝐂)/𝑈(𝑟) is the space of Hermitian metrics on
𝐂𝑟. The the remaining part of the instanton equations in
four dimensions is precisely the harmonic map equation
for 𝑢. This is one starting point for Hitchin’s theory of “sta-
ble pairs” over compact Riemann surfaces [6].

One is more interested in harmonic maps to compact
symmetric spaces and, asUhlenbeck explained in [28], this
can be achieved by a modification of the set-up above. She
takes 𝐑4 with an indefinite quadratic form of signature
(2, 2) and a splitting 𝐑4 = 𝐑2

1 × 𝐑2
2 into positive and

negative subspaces. Then the invariant instantons corre-
spond to harmonicmaps fromΩ to the compact Lie group
𝐺. Other symmetric spaces can be realised as totally ge-
odesic submanifolds in the Lie group, for example com-
plex Grassmann manifolds in𝑈(𝑟), and the theory can be
specialised to suit. This builds a bridge between the “inte-
grable” nature of the 2-dimensional harmonic map equa-
tions and the Penrose-Ward twistor description of Yang-
Mills instantons over 𝐑4, although as we have indicated
abovemuch of thework on the former predates twistor the-
ory. In her highly influential paper [28], Uhlenbeck found
an action of the loop group on the space of harmonicmaps
fromΩ to𝐺, introduced an integer invariant “uniton num-
ber,” and obtained a complete description of all harmonic
maps from the Riemann sphere to 𝐺.

Higher Dimensions
In a variational theory with a critical dimension 𝜈 certain
characteristic features appear when studying questions in
dimensions greater than 𝜈. In the harmonic mapping the-
ory, for maps 𝑢 ∶ 𝑀 → 𝑁, the dimension in question is
𝑛 = dim 𝑀 and, as we saw above, the critical dimension
is 𝜈 = 2. A breakthrough in the higher dimensional the-
ory was obtained by Schoen and Uhlenbeck in [12]. Sup-
pose for simplicity that 𝑁 is isometrically embedded in
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some Euclidean space 𝐑𝑘 and define 𝐿2
1(𝑀,𝑁) to be the

set of 𝐿2
1 functions on 𝑀 with values in the vector space

𝐑𝑘 which map to 𝑁 almost everywhere on 𝑀. The en-
ergy functionalℱ is defined on 𝐿2

1(𝑀,𝑁) and Schoen and
Uhlenbeck considered an energy minimising map 𝑢 ∈
𝐿2
1(𝑀,𝑁). The main points of the theory are:

• 𝑢 is smooth outside a singular set Σ ⊂ 𝑀 which
has Hausdorff dimension at most 𝑛− 3;

• at each point 𝑥 in the singular set Σ there is a tan-
gent map to 𝑢.

The second item means that there is a sequence of real
numbers 𝜎𝑖 → 0 such that the rescaled maps

𝑢𝑖(𝜉) = 𝑢(exp𝑥(𝜎𝑖𝜉))
converge to a map 𝑣 ∶ 𝐑𝑛 → 𝑁 which is radially invariant,
and hence corresponds to a map from the the sphere 𝑆𝑛−1

to𝑁. (Here exp𝑥 is the Riemannian exponential map and
we have chosen a frame to identify 𝑇𝑀𝑥 with 𝐑𝑛.)

To relate this to the case 𝑛 = 2 discussed above, the
general picture is that a ℱ-minimising sequence in Maps
(𝑀,𝑁) can be taken to converge outside a bubbling set of
dimension at most 𝑛− 2 and the limit extends smoothly
over the (𝑛−2)-dimensional part of the bubbling set. The
new feature in higher dimensions is that the limit can have
a singular set of codimension 3 or more.

Two fundamental facts which underpin these results are
energy monotonicity and 𝜖-regularity. To explain the first,
consider a smooth harmonic map 𝑈 ∶ 𝐵𝑛 → 𝑁, where
𝐵𝑛 is the unit ball in 𝐑𝑛. For 𝑟 < 1 set

𝐸(𝑟) = 1
𝑟𝑛−2 ∫

|𝑥|<𝑟
|∇𝑈|2.

Then one has an identity, for 𝑟1 < 𝑟2:

𝐸(𝑟2) − 𝐸(𝑟1) = 2∫
𝑟1<|𝑥|<𝑟2

|𝑥|2−𝑛|∇𝑟𝑈|2, (5)

where ∇𝑟 is the radial component of the derivative. In
particular, 𝐸 is an increasing function of 𝑟. The point of
this is that 𝐸(𝑟) is a scale-invariant quantity. If we de-
fine 𝑈𝑟(𝑥) = 𝑈(𝑟𝑥) then 𝐸(𝑟) is the energy of the map
𝑈𝑟 on the unit ball. The monotonicity property means
that 𝑈 “looks better” on a small scale, in the sense of this
rescaled energy. The identity (5) follows from a very gen-
eral argument, applying the stationary condition to the in-
finitesimal variation of 𝑈 given by radial dilation. (One
way of expressing this is through the theory of the stress-
energy tensor.) Note that equality 𝐸(𝑟2) = 𝐸(𝑟1) holds
if and only if 𝑈 is radially-invariant in the corresponding
annulus. This is what ultimately leads to the existence of
radially-invariant tangent maps.

The monotonicity identity is a feature of maps from𝐑𝑛,
but a similar result holds for small balls in a general Rie-
mannian 𝑛-manifold 𝑀. For 𝑥 ∈ 𝑀 and small 𝑟 > 0 we

define

𝐸𝑥(𝑟) =
1

𝑟𝑛−2 ∫
𝐵𝑥(𝑟)

|∇𝑈|2,

where 𝐵𝑥(𝑟) is the 𝑟-ball about 𝑥. Then if 𝑈 is a smooth
harmonic map and 𝑥 is fixed the function 𝐸𝑥(𝑟) is increas-
ing in 𝑟, up to harmless lower-order terms.

The 𝜖-regularity theoremof Schoen andUhlenbeck states
that there is an 𝜖 > 0 such that if 𝑢 is an energy minimiser
then 𝑢 is smooth in a neighbourhood of 𝑥 if and only if
𝐸𝑥(𝑟) < 𝜖 for some 𝑟. An easier, related result is that if
𝑢 is known to be smooth then once 𝐸𝑥(𝑟) < 𝜖 one has a
priori estimates (depending on 𝑟) on all derivatives in the
interior ball 𝐵𝑥(𝑟/2). The extension to general minimis-
ingmaps is one of themain technical difficulties overcome
by Schoen and Uhlenbeck.

We turn now to corresponding developments in gauge
theory, where the critical dimension 𝜈 is 4. A prominent
achievement of Uhlenbeck in this direction is her work
with Yau on the existence of Hermitian-Yang-Mills connec-
tions [29]. The setting here involves a rank 𝑟 holomorphic
vector bundle 𝐸 over a compact complex manifold𝑀with
a Kähler metric. Any choice of Hermitian metric ℎ on the
fibres of𝐸 defines a principle𝑈(𝑟) bundle of orthonormal
frames in 𝐸 and a basic lemma in complex differential ge-
ometry asserts that there is a preferred connection on this
bundle, compatible with the holomorphic structure. The
curvature 𝐹 = 𝐹(ℎ) of this connection is a bundle-valued
2-form of type (1, 1)with respect to the complex structure,
andwewriteΛ𝐹 for the inner product with the (1, 1) form
defined by the Kähler metric. Then Λ𝐹 is a section of the
bundle of endomorphisms of 𝐸. The Hermitian-Yang-Mills
equation is a constant multiple of the identity:

Λ𝐹 = 𝜅1𝐸

(where the constant 𝜅 is determined by topology). As the
name suggests, these are special solutions of the Yang-Mills
equations. The result proved by Uhlenbeck and Yau is
that a “stable” holomorphic vector bundle admits such a
Hermitian-Yang-Mills connection. Here stability is a nu-
merical condition on holomorphic sub-bundles, or more
generally sub-sheaves, of 𝐸 which was introduced by alge-
braic geometers studying moduli theory of holomorphic
bundles. The result of Uhlenbeck and Yau confirmed con-
jectures made a few years before by Kobayashi andHitchin.
These extend older results of Narasimhan and Seshadri, for
bundles over Riemann surfaces, and fit into a large devel-
opment over the past 40 years, connecting various stability
conditions in algebraic geometry with differential geome-
try. We will not say more about this background here but
focus on the proof of Uhlenbeck and Yau.

The problem is to solve the equation Λ𝐹(ℎ) = 𝜅1𝐸
for a Hermitian metric ℎ on 𝐸. This boils down to a sec-
ond order, nonlinear, partial differential equation for ℎ.
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While this problemdoes not fit directly into the variational
framework we have emphasised in this article, the same
compactness considerations apply. Uhlenbeck and Yau
use a continuity method, extending to a 1-parameter fam-
ily of equations for 𝑡 ∈ [0, 1] which we write schemati-
cally as Λ𝐹(ℎ𝑡) = 𝐾𝑡, where 𝐾𝑡 is prescribed and 𝐾1 =
𝜅1𝐸. They set this up so that there is a solution ℎ0 for
𝑡 = 0 and the set 𝑇 ⊂ [0, 1] for which a solution ℎ𝑡 ex-
ists is open, by an application of the implicit function the-
orem. The essential problem is to prove that if 𝐸 is a stable
holomorphic bundle then 𝑇 is closed, hence equal to the
whole of [0, 1] and in particular there is a Hermitian-Yang-
Mills connection ℎ1.

The paper of Uhlenbeck and Yau gave two independent
treatments of the core problem, one emphasising complex
analysis and the other gauge theory. We will concentrate
here on the latter. For a sequence 𝑡(𝑖) ∈ 𝑇 we have con-
nections 𝐴𝑖 defined by the hermitian metrics ℎ𝑡(𝑖) and the
question is whether one can take a limit of the 𝐴𝑖. The de-
formation of the equations by the term 𝐾𝑡 is rather harm-
less here so the situation is essentially the same as if the
𝐴𝑖 were Yang-Mills connections. In addition, an integral
identity usingChern-Weil theory shows that the Yang-Mills
energy ‖𝐹(𝐴𝑖)‖2

𝐿2 is bounded. Then Uhlenbeck and Yau
introduced a small energy result, for connections over a
ball 𝐵𝑥(𝑟) ⊂ 𝑀. Since the critical dimension 𝜈 is 4, the
relevant normalised energy in this Yang-Mills setting is

𝐸𝑥(𝑟) =
1

𝑟𝑛−4 ∫
𝐵𝑥(𝑟)

|𝐹|2,

where 𝑛 is the real dimension of 𝑀. If 𝐸𝑥(𝑟) is below a
suitable threshold there are interior bounds on all deriva-
tives of the connection, in a suitable gauge. Then the global
energy bound implies that after perhaps taking a subse-
quence, the 𝐴𝑖 converge outside a closed set 𝑆 ⊂ 𝑀 of
Hausdorff codimension at least 4. Uhlenbeck and Yau
show that if the metrics ℎ𝑡(𝑖) do not converge then a suit-
able rescaled limit produces a holomorphic subbundle of
𝐸 over 𝑀\𝑆. A key technical step is to show that this
subundle corresponds locally to a meromorphic map to
a Grassmann manifold, which implies that the subbundle
extends as a coherent sheaf over all of 𝑀. The differen-
tial geometric representation of the first Chern class of this
subsheaf, via curvature, shows that it violates the stability
hypothesis.

The higher-dimensional discussion in Yang-Mills the-
ory follows the pattern of that for harmonic maps above.
The corresponding monotonicity formula was proved by
Price [10] and a treatment of the small energy result was
given by Nakajima [9]. Some years later, the theory was
developed much further by Tian [23], including the exis-
tence of “tangent cones” at singular points.

This whole circle of ideas and techniques involving the
dimension of singular sets, monotonicity, “small energy”
results, tangent cones, etc. has had a wide-ranging im-
pact in many branches of differential geometry over the
past few decades and forms the focus of much current re-
search activity. Apart from the cases of harmonicmaps and
Yang-Mills fields discussed above, prominent examples are
minimal submanifold theory, where many of the ideas ap-
peared first, and the convergence theory of Riemannian
metrics with Ricci curvature bounds.
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HISTORY

The story of how Uhlenbeck became a mathematician 
is traced with a nuance that builds on Claudia Henrion’s 
earlier account in Women in Mathematics: The Addition of Dif-
ference.1 One detail that emerges clearly is the significance 
of Uhlenbeck’s mother’s social circle. Carolyn Keskulla was 
a painter, and Uhlenbeck remembers vividly as a girl that 
her mother’s painter friends and artistic interests brought 
her into contact with “a lot of people who did not live 
normal, middle-class lives.” The liveliness and eccentricity 
of this crowd made a lasting impression. Moreover, like her 
own mother (Uhlenbeck’s grandmother), Carolyn was a 
strong, intelligent, active woman, so the value for intellec-
tual endeavor and the uses of the imagination were early 
and firmly established in the family circle.

Jackson also explores the relevance of talent, and frames 
it instructively in the context of opportunities afforded 
by education: high school, first, and then a high-quality 
public university education. While Uhlenbeck’s family 
background emphasized intellectual attainment, her high 
school gave her no specific encouragement vis-à-vis math-
ematics. The first seeds of mathematical inspiration were 
sown at university. The following excerpt from Jackson's 
article (see pull quote, facing page) highlights that revela-
tory moment, which occurred during Uhlenbeck’s time as 
an undergraduate.

Mathematical Sciences Publishers (msp.org) is pleased to 
announce the publication of three new volumes devoted to 
the careers of Karen Uhlenbeck, Joan Birman, and Dusa Mc-
Duff as part of its electronic archive of mathematicians of 
note, Celebratio Mathematica. The work was supported with 
funding from the Mathematical Sciences Research Institute 
(msri.org) and spearheads an intensive project now un-
derway to develop the archive’s holdings on the careers and 
accomplishments of women mathematicians. The support 
made it possible to undertake a number of special projects 
for these volumes, one of which we highlight here: a new 
interview with Karen Uhlenbeck by Allyn Jackson (the latter 
needing no introduction to readers of the Notices).

Interviews like this are especially valuable to students 
of mathematics for whom knowledge about the careers 
of other women scientists can be powerfully reinforcing. 
In publishing them, we aim to inspire student readers es-
pecially by showing them that there are diverse paths to a 
career in the sciences. What leads women to mathematics is 
perhaps not so different in essence from what makes men 
choose math, but the social and institutional realities of 
women’s careers have been different enough from those of 
men to warrant thoughtful attention. This fact is certainly 
one of the subjects of the interview.

Celebratio Mathematica: An 
Interview with Karen Uhlenbeck 

and Three New Volumes 
on Women Mathematicians

Sheila Newbery 

Sheila Newbery is the managing editor of Celebratio Mathematica 
(celebratio.org), an online archive of mathematicians of note published 
by Mathematical Sciences Publishers (msp.org). Her email address is 
sheila@msp.org.

For permission to reprint this article, please contact: reprint 
-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1807 1Bloomington: Indiana University Press, 1997, pp. 25–46.
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over the place, in all sorts of geometric 
and physical problems.”

In addition to Jackson’s in-depth 
interview, we want to call readers’ 
attention to several other unique con-
tributions to these three new volumes:

•• Cliff Taubes on “Karen Uhlen-
beck’s contributions to gauge theoretic 
analysis”;

•• Leonid Polterovich and Felix 
Schlenk’s article on Dusa McDuff’s 
contributions to “Symplectic embed-
ding problems”;

•• Bill Menasco’s essay “My work 
with Joan Birman”;

•• Dan Margalit and Rebecca R. Wi-
narski’s overview of Joan Birman and 
Hugh Hilden’s collaboration in “The 
Birman–Hilden theory.”

Mathematical Sciences Publishers 
will continue to build its archive: 
soon to be published are volumes on 
the careers of Mary Ellen Rudin and 
Cathleen Morawetz. We welcome sug-
gestions from the mathematical com-
munity for future volumes on women 
mathematicians, and we are grateful 
to MSRI for its support in making our 
work available in perpetuity to a broad 
readership.

Credits
Author photo is courtesy of Sheila Newbery.

When I first read these words (while 
preparing the manuscript for pub-
lication), I was struck by them: for 
many women of Uhlenbeck’s gener-
ation, the question of what one was 
or wasn’t allowed to do was never 
too far from lived experience. Her 
word choice seemed telling. Yet the 
emotional impact of the episode is 
gloriously positive: it is one of deep 
intellectual excitement.

Although Uhlenbeck faced certain 
obstacles, such as the impossibility 
even as a gifted student of applying 
to or attending either of the nearby 
all-male colleges (Princeton and Rut-
gers), she nevertheless had access to 
a superb university education at the 
University of Michigan, and that was 
how she gained her first significant 
exposure to higher mathematics. 
In the post-Sputnik era of the 60s, 
moreover, federal agencies were issu-
ing a clarion call to talented students, 
encouraging them to pursue a career 
in math and science after college. 
That posture had clear benefits for 
Uhlenbeck. As she puts it, “They were 
encouraging everybody, and women 
counted.”

Jackson touches on the importance of mathematical 
collaboration—in Uhlenbeck’s case, with such colleagues 
as Jonathan Sacks, Lesley and Robert Sibner, S.-T. Yau, Rich-
ard Schoen, and Chuu-Lian Terng. The separate, detailed 
accounts here of Uhlenbeck’s friendships with Yau and 
Lesley Sibner, in particular, vividly underscore the unpre-
dictable swerves of social and intellectual opportunity that 
make up a career.

Jackson’s keen sense of timing is one of her gifts as an 
interviewer, yet equally important is her ability to layer 
questions that illuminate the penumbra of intuition and 
wonder that motivate mathematical inquiry in the first 
place. So a question about mathematical “tastes” (“What 
kinds of mathematical problems appeal to you?”) leads to a 
fascinating exchange about what Uhlenbeck refers to as one 
of the mysteries of mathematics: “[W]hy KdV comes up all 

I had a very advanced 
course, similar to an un-
dergraduate real analy-
sis course. We had done 

limits. I went to a help 
session, and the teach-

ing assistant showed 
how to take a deriva-
tive....It was a moment 
where suddenly I real-

ized there were all sorts 
of things in mathematics 
that you “were allowed 

to do.” 
–Karen Uhlenbeck

Sheila Newbery 
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statistics for women. Cox replied that the “field of statistics 
is certainly wide open to women” and described some of 
her own experiences as a statistician:

In this area of experimental statistics, we coop-
erate with the research workers in other science 
areas with the planning and then with the 
evaluation and interpretation of their research 
results. I could give a list of a variety of interest-
ing areas in which I have cooperated such as, the 
best methods of raising flowers in a greenhouse, 
development and selection of new varieties 
of corn, the nutritional problems among the 
Indian children in Guatemala, how to sample 

Gertrude M. Cox 
and Statistical Design

Sharon Lohr is an Emerita Professor of Statistics at Arizona State University. 
Her email address is sharon.lohr@asu.edu.

Communicated by Notices Associate Editor Noah Simon.

For permission to reprint this article, please contact: reprint 
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Introduction
On December 2, 1959, Gertrude Cox (Figure 1), Director 
of the Institute of Statistics at the consolidated University 
of North Carolina, responded to a query from a young 
woman named Pat Barber about career opportunities in 

Sharon L. Lohr
Figure 1. Gertrude Cox in office.
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because they were thought to be more patient with the 
tedious calculations than men—and, incidentally, could 
also be paid much less [19, 20, 30].

Many of the statistical computations involved finding 
correlation or regression coefficients—calculations for a 
regression model with a large number of independent 
variables could take weeks [25]. The main result in Cox’s 
first publication [13] was a table of correlations between 
scores on the Iowa State College Aptitude Test, high school 
subjects, and college courses.

Cox received her bachelor’s degree in mathematics in 
1929. She stayed on at Iowa State to earn the first master’s 
degree awarded in statistics from the Department of Math-
ematics in 1931, with Snedecor as advisor.

In 1933, while she was midway through a doctoral pro-
gram in psychology at University of California, Berkeley, 
Snedecor invited her to return to Iowa State, writing, “I … 
am rapidly being drawn into statistical responsibilities for 
a large part of the College. Would you like to be a part of 
this? I think the opportunity is great. Are you interested? 
Immediately you would have charge of the girls, 140 cal-
culating machines, and all the stray jobs that I can rustle 
for you” [18].

As one of three initial faculty members in the Iowa State 
Statistical Laboratory, Cox supervised the computers per-
forming data analyses. She visited laboratories and fields 
to see how the data were collected, which led to collabora-
tions with researchers to develop experimental designs and 
analyses that would best answer the scientific questions. 
Her classes in experimental design attracted students from 
across the campus, and she soon became known as an ex-
pert in the field. Initially hired as an assistant to Snedecor, 
Cox was appointed Research Assistant Professor in 1939.

In 1941 Cox became the first female full professor and 
the first female department head at North Carolina State 
College, charged with developing a department that would 
provide statistical expertise to researchers. Her colleague 
Richard Anderson related how the appointment was made:

In 1940 Snedecor was asked to recommend 
candidates to head the new Department of Ex-
perimental Statistics in the School of Agriculture 
at North Carolina State College. “Why didn’t 
you put my name on list?” Gertrude asked when 
he showed her his all-male list of candidates, 
and her name was added to the accompanying 
letter in the following postscript: “If you would 
consider a woman for this position, I would rec-
ommend Gertrude Cox of my staff.” This terse 
note was to have far-reaching consequences for 
statistics, for not only was Gertrude considered, 
she was selected [10].

Historian Margaret Rossiter described how unusual it 
was for a woman to be considered for a position as depart-
ment head in the 1940s: “As for department chairmanships, 

gold in South Africa, variations in ways to make 
instant frosting for cakes, how to evaluate the 
effectiveness of fly sprays, and many others [17].

Cox’s letter reflected her view of the statistician as a 
partner in science, a view that, in part because of her in-
fluence, is now standard in the discipline. Her pioneering 
contributions and example widened opportunities in 
statistics around the world. To list just a few of her accom-
plishments, Cox:

•• Founded one of the world’s first statistics departments 
(1941) at North Carolina State College.

•• Became the first woman elected to membership in the 
International Statistical Institute (1949) and one of the 
first statisticians elected to the National Academy of 
Sciences (1975).

•• Received the O. Max Gardner Award (1959) from the 
University of North Carolina for “contribution to the 
welfare of the human race.”

•• Served as president of the American Statistical Associ-
ation (1956) and the International Biometric Society 
(1968), and was founding editor of the journal Biomet-
rics (1947–1955).

•• Co-authored one of the most influential statistics books 
ever written, Experimental Designs, first published in 1950 
and still in print.

•• Championed the use of electronic computers for sta-
tistical work.
Her collaborator William G. Cochran wrote, “I doubt if 

anyone contributed more than Gertrude Cox to building 
up the profession of statistics as we know it today” [11].

Early Career
Few would have predicted in 1924 that Gertrude Mary 
Cox would become one of the most influential statisti-
cians of the twentieth century. She was then a 24-year-old 
housemother for 16 boys at a Montana orphanage, having 
previously taught in a one-room schoolhouse in Iowa and 
studied at the Iowa National Bible Training School [21].

Cox enrolled in Iowa State College to obtain the training 
and credentials needed for her planned career as an orphan-
age superintendent. She explained in a 1975 interview how 
she became a statistician: she took courses in math because 
she liked it and it was “the easiest subject,” giving her time 
to also take the classes in psychology and crafts she would 
need in her chosen career. She became interested in statis-
tics after her calculus professor, George Snedecor, invited 
her to work as a computer in the Mathematical Statistical 
Service Center. She reminisced, “As soon as I could learn to 
use that math knowledge with people and their orientation, 
it became life” [19].

Through the 1950s, a “computer” referred to a per-
son—usually a woman—who performed calculations on a 
hand-operated machine such as the one seen on the table 
by the radiator in Figure 1. Women were hired for this work 
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experimental units within blocks—one twin is randomly 
chosen to receive treatment A, and the other treatment 
B—the block-to-block variability is removed from the 
treatment comparison. If blocks represent a range of 
experimental conditions, results from the blocked ex-
periment have wider applicability as well as increased 
precision for estimating treatment effects.

The 1950 book and its second edition in 1957 set out 
detailed plans for Latin square, factorial, fractional factorial, 
split plot, lattice, balanced incomplete block, and other 
designs. Each design description started with examples, fol-
lowed by a discussion of when the design was suitable and 
detailed instructions for how to perform randomization. 
Then came one or more detailed case studies, showing why 
that design had been chosen for each experiment and how 
it had been randomized, and taking the reader step-by-step 
through the calculations needed to construct the analysis 
of variance table and estimate the standard errors for dif-
ferences of treatment means. The authors also discussed 
how to estimate the efficiency of the design relative to a 
completely randomized design and how to do the calcula-
tions for the unbalanced structure that resulted when one 
or more experimental runs had missing data.

The chapters on the complex designs contained tables 
of designs for different block sizes and numbers of treat-
ments. Today, statistical software quickly calculates optimal 
designs for almost any experimental structure, but in 1950 
printed design tables were needed, particularly when there 
was more than one blocking variable or when the number 
of treatments (t) exceeded the number of experimental 
units in a block (k).

For the latter situation, a balanced incomplete block 
design was recommended, where each pair of treatments 
occurs together in the same number of blocks. Of course 
such a design can always be constructed by using all combi-
nations of the t treatments taken k at a time, but Experimen-
tal Designs laid out the designs that met the constraint with 
the smallest numbers of experimental units. For example, 
the smallest balanced incomplete block design with seven 
treatments and blocks of size four required only seven 
blocks and twenty-eight experimental units—one-fifth the 
size of the fully combinatorial design.

Cox’s experience as a consulting statistician can be seen 
on every page of the book. Her background as a computer 
is also apparent: each set of instructions for calculating 
an analysis of variance table came with practical tips and 
quality checks for ensuring the calculations are accurate. In-
deed, the first experiment described in Experimental Designs 
compared the speed of two calculating machines, A and B, 
using a cross-over design, where the same person computed 
the sum of squares of 10 sets (blocks) of 27 numbers on 
each machine; machine B turned out to be significantly 
faster, taking only 2 minutes 13.6 seconds, on average, to 
calculate the sum of squares for 27 numbers.

the lowest level of academic administration, women sci-
entists still so rarely held these positions at coeducational 
institutions in the forties, fifties, and mid-sixties that one 
can almost count these exceptions on two hands.” Rossiter 
singled out Cox as the most successful of this handful, 
noting that she, unlike many other university women of 
the time, ended up getting credit for her accomplishments 
in building her department and scientific discipline: “She 
not only managed to ride the wave of Big Science in the 
1950s and 1960s but to be enough ahead of it to shape the 
form it took and the impact it had on her university, field, 
and region” [29].

Designing Experiments
Cox began her new position in North Carolina with the 
same energy she had shown in her work at Iowa State. 
She immediately started establishing training programs, 
hiring faculty members, collaborating with scientists, 
promoting statistics in the university and nationally, and 
teaching classes on experimental design. She expanded 
her mimeographed notes from the design classes into the 
book Experimental Designs [12], published with collaborator 
William G. Cochran in 1950.

Experimental Designs emphasized three principles:

1. Statisticians need to be involved in the research from the 
planning stages: the first steps, setting out the objectives 
of the experiment and planning the analysis, are crucial. 
Often, one of the statistician’s most valuable contri-
butions arises “by getting the investigator to explain 
clearly why he is doing the experiment, to justify the 
experimental treatments whose effects he proposes to 
compare, and to defend his claim that the completed 
experiment will enable its objectives to be realized.” 
When a statistician is consulted only after the data are 
collected and discovers that the poorly planned experi-
ment cannot answer the research questions, “[i]n these 
unhappy circumstances, about all that can be done is to 
indicate, if possible, how to avoid this outcome in future 
experiments” [12, pp. 9, 10].

2. Randomize everything that can be randomized. “Ran-
domization is somewhat analogous to insurance, in that 
it is a precaution against disturbances that may or may 
not occur and that may or may not be serious if they 
do occur. It is generally advisable to take the trouble 
to randomize even when it is not expected that there 
will be any serious bias from failure to randomize. The 
experimenter is thus protected against unusual events 
that upset his expectations” [12, p. 8].

3. Use blocking whenever possible to reduce the effects of 
variability. Blocks are homogeneous groups of exper-
imental units: for example, identical twins, neighbor-
ing agricultural plots, batches of raw material, cancer 
patients with similar demographics and disease stage, 
schools in the same city, or experimental runs done on 
the same day. When treatments are randomly assigned to 
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had been scheduled to teach, but wartime authorities in 
London withheld authorization for his travel. During the 
program, all faculty and staff members were available for 
individual consultations with students about statistical 
problems [5, 3, 21]. These courses and three affiliated 
one-week conferences drew 243 registrants from around 
the country, including many who were, or were to become, 
leaders of the statistics profession.

Instruction was not limited to future statisticians. The 
department taught multiple courses to help state govern-
ment workers and other persons in the community. Cox, 
in addition to her administrative and other teaching duties, 
offered an introductory course on experimental statistics 
intended for tabulating clerks and computers.

In 1943, Cox intensified the department’s efforts to 
provide trained statisticians to meet wartime and post-
war needs. The summer session in 1943 offered “[f]our 
intensive courses in applied statistics, designed to appeal 
to young women who are college graduates or advanced 
undergraduates,” including training in sampling methods. 
Cox said, “This training is offered because of the extreme 
importance of having efficient workers to help with rush 
work. There are numerous sampling investigations now in 
progress, such as those for locating sources and require-
ments of farm labor as well as those for studying food 
production and distribution problems. Training in ma-
chine problems and statistical and sampling methods is 
of immediate value in prosecution of the war with limited 
manpower” [2].

By 1946, statistics in North Carolina had grown under 
Cox’s leadership to include the Department of Experi-
mental Statistics at North Carolina State College and the 
Department of Mathematical Statistics at the University of 
North Carolina. Both departments were incorporated in 
the Institute of Statistics, which Cox directed [27]. After 
retiring from the university in 1960, Cox led the statistical 
research division at the newly formed Research Triangle In-
stitute. She continued promoting statistics after her second 
“retirement” in 1965, traveling around the world to provide 
statistical advice and help establish statistical programs. 
Between travels, she served on advisory boards for the US 
Census Bureau, the Department of Agriculture, the National 
Science Foundation, and many other organizations.

When Cox established the Department of Experimental 
Statistics at North Carolina State in 1941, there were only a 
handful of statistics departments in the world: the first, Karl 
Pearson’s Department of Applied Statistics at University 
College London, had been established in 1911. In general, 
mathematical statistics classes were taught in mathemat-
ics departments; applied statistics classes were taught in a 
department of agriculture, psychology, biology, or another 
discipline. In each, statistics was viewed as a subfield of the 
discipline where it was taught. Harold Hotelling, who later 
joined Cox’s Institute of Statistics, wrote in 1940 that a great 
deal of the current knowledge in statistics was still in the 

When Cox began her career, randomization was seldom 
used to protect against systematic errors or to promote valid 
inferences from experiments; some thought that random-
ization conflicted with attempts to control variation [25]. 
She viewed randomization as the distinguishing feature of 
modern statistical experimental design, and the feature that 
allowed proper inferences to be drawn from the results.

Cox emphasized the importance of randomization for 
each case study in the book. In the calculating machine ex-
periment, for example, randomizing the machine order was 
essential. If the sums of squares for each block of numbers 
were computed first on machine A and then on machine B, 
and machine B turned out to be faster, one could not attri-
bute the difference to the machines; it could have occurred 
because the operator became familiar with the numbers 
after entering them on the first machine and was able 
to enter them more quickly on the second. By randomly 
assigning machine A to be first for five of the blocks and 
machine B to be first for the other five, Cox could separate 
out the order effect and conclude that the speed difference 
was indeed due to the machines [12].

Cox advised the statistician to “use the simplest design 
that meets the needs of the experiment” [14]. In many 
of the experiments she consulted on, the simplest design 
meeting cost constraints needed blocking or other types 
of restricted randomization, and she and her staff tailored 
and developed designs for each experiment. From 1942 to 
1948, all but 59 of the 6,317 experiments performed at the 
North Carolina Agricultural Experiment Station involved 
some form of blocking; 62 percent were randomized 
complete block designs [14]. She strove to develop ways 
of conducting experiments “so that the greatest amount of 
information can be obtained with the least expenditure of 
time and money” [6].

Experimental Designs is still widely used by persons de-
signing experiments. The many experimental researchers 
who have recently relied on the book for guidance include 
Wood and Porter [33], who adopted a Latin square design 
to study the effects of presenting factual information to 
persons with strong political views, and Reeves et al. [28], 
who used a balanced incomplete block design to compare 
community and hospital eye care for persons with macular 
degeneration.

Designing the Statistical Profession
Of equal importance to Cox’s contributions in designing 
experiments were her contributions in shaping the disci-
pline of statistics.
Statistical Training
One of her earliest activities in North Carolina was estab-
lishing a summer training program in statistics. In the first 
six-week program, during June and July of 1941, Cox taught 
beginning and advanced courses on design of experiments, 
Snedecor taught two courses on applied statistics, and Har-
old Hotelling taught mathematical statistics; Ronald Fisher 
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an Experiment Station agronomist work out the best set-up 
for an experiment. She has also visited several of the test 
farms for the same purpose” [1]. Throughout her career, she 
tirelessly promoted statistics around the world, providing 
expertise and helping develop programs in statistics. Her 
travels included consultations in Egypt, Thailand, South 
Africa, Guatemala, Japan, Hong Kong, Lebanon, Malaysia, 
Brazil, and Honduras.

Cox encouraged collaboration and sound statistical 
practice in her many presentations at US and international 
statistical conferences. She also viewed the community as 
a partner in statistical activity and regularly spoke about 
statistics and her travels to civic organizations and women’s 
clubs in Raleigh. The Raleigh News and Observer reported 
on many of Cox’s local talks. In 1954, for example, they 
wrote: “A talk by Gertrude Cox, director of Statistics at the 
University of North Carolina, was a highlight of last night’s 
meeting of the Lewis school PTA.” Her talk was followed 
by a presentation of a minuet from Mrs. Hicks’s fourth 
grade class [4].

Cox provided statistical expertise locally, as well as in-
ternationally, throughout her years in Raleigh. In 1975, for 
example, she was asked to evaluate a controversial statistical 
investigation on the effectiveness of kindergarten in North 
Carolina. The investigators had selected 18 schools for the 
assessment but had omitted one school—whose results 
would have changed the conclusions—from the analysis. 
Cox’s primary recommendation was that analysts should 
not be selective in choosing data to be analyzed unless 
there is justification, and she argued that the small sam-
ple size and possible selection biases made it difficult to 
draw clear conclusions from the study. She concluded that 
the investigators “could use a great deal more help from 
qualified statisticians” [7]—a gentle way of saying that the 
controversy could have been avoided if the investigators 
had consulted a statistician before conducting the study.
Computation and Statistics
Cox, well aware of the importance of computation to the 
field of statistics, established a computing laboratory soon 
after moving to North Carolina. The laboratory performed 
computations for statistical analyses as well as for other 
units on campus. During World War II, the department of-
fered classes to train women as computers for the war effort.

Perhaps because of her work as a human computer, Cox 
was one of the first persons in statistics to embrace the 
ability of “electronic computing machines” to contribute 
to the discipline. She immediately saw their use for regres-
sion problems and computing standard errors for complex 
sampling designs, and she forecast that they would soon 
allow statisticians to “open up even wider frontiers” in 
statistics [16].

Not surprisingly, Cox’s department was one of the first in 
the country to acquire one of the new IBM-650 electronic 
computing machines, in 1956 [27]. Computations for 
large regression models could now be done in less than 

form of oral tradition and “the seeker after truth regarding 
statistical theory must make his way through or around an 
enormous amount of trash and downright error. The great 
accumulation of published writings on statistical theory 
and methods by authors who have not sufficiently studied 
the subject is even more dangerous than the classroom 
teaching by the same people” [23].

Cox insisted that students receive a thorough grounding 
in mathematical theory and applications of statistics, and 
that they gain experience in collaborating with scientists. 
The universities and organizations that consulted her about 
establishing statistics programs inherited this philosophy, 
and most statistics departments today are organized around 
the principles she advocated for training students.

The American Statistical Association’s recent guidelines 
for graduate and undergraduate programs in statistics [8, 
9], urging that “graduates should have a solid foundation 
in statistical theory and methods” as well as experience 
with collaborating on real problems and designing studies, 
repeat many of the principles for statistical education that 
Cox outlined in 1953:

It is the statistician’s duty to keep informed of 
the rapidly expanding knowledge of statistics 
and to make such information available to 
the users of statistics. This combination of a 
thorough knowledge of statistical theory and 
method along with adequate competence in the 
field of application requires that the consultant 
statistician be a person of substantial ability…. 
A close integration between theory and appli-
cations constitutes the best foundation for im-
portant advances in the science of statistics [15].

Statistics as a Collaborative Discipline
Cox held that statistics is by its nature collaborative. Al-
though statisticians engage in a wide range of theoretical 
and applied investigations, those investigations need to 
be directed toward “solving problems concerned with 
decision making” [16]. “The cooperation involved when 
the statistician consults and works with researchers in 
other fields is an advantage to all. Also, the consulting or 
applied statistician in his daily use of statistics encounters 
new problems which call for help from the theoretical stat-
istician. The theoretical statistician requires the stimulus of 
practical needs which lead him into useful developments 
of new techniques” [18].

Equally important was the presentation of results, and a 
good experimental design leads to clear findings: “close co-
operation between the research worker and the statistician 
before the experiment is started—planning the experiment 
so that the statistics collected will be easily interpreted by 
the average reasonably intelligent person” [1].

Cox practiced what she preached. Less than a week after 
her arrival at North Carolina State College in 1940, “she 
was out trooping over a soybean field near Raleigh, helping 
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for the analysis of nonexperimental data? Much of the data 
used in the descriptive methods continent are observational 
or nonexperimental records” [16].

Cox’s comments are relevant to many of today’s fron-
tiers in statistics. One frontier in 2019 concerns making 
inferences from large observational data sets such as credit 
card transactions, electronic medical records, sensor data, 
or internet activity. Statistics from “big data” are often pre-
sented without any measures of uncertainty.

Participants in the 2017 National Academies of Sciences 
workshop on “Refining the Concept of Scientific Inference 
When Working with Big Data” echoed Cox’s views on 
the need for statistical collaboration, carefully designed 
experiments, and appropriate statistical inference. In their 
report they wrote:

•• “[T]oo often statisticians become involved in scientific 
research projects only after experiments have been de-
signed and data collected. Inadequate involvement of 
statisticians in such ‘upstream’ activities can negatively 
impact ‘downstream’ inference, owing to suboptimal 
collection of information necessary for reliable infer-
ence” [26, p. 5].

•• “[B]igger data does not necessarily lead to better infer-
ences,” in part “because a lot of big data is collected 
opportunistically instead of through randomized exper-
iments or probability samples designed specifically for 
the inference task at hand” [26, p. 14].

•• “Without careful consideration of the suitability of 
both available data and the statistical models applied, 
analysis of big data may result in misleading correlations 
and false discoveries, which can potentially undermine 
confidence in scientific research if the results are not 
reproducible” [26, p. 1].
Most of Cox’s views on statistics do not seem revolu-

tionary to a statistician in 2019. That is because Cox helped 
define the profession of statistics from her entrance in the 
1920s until her death in 1978. Her vision of the statistician 
as a partner in science—who collaborates on designing 
and analyzing studies, and who can develop new statistical 
theory as needed—characterizes the discipline today. She 
promoted sound statistical practice in the department and 
institutes she founded, in the community, and around the 
world.

As she said in 1940, “There is fascination about exper-
imental work. In searching the unknown for new truths, 
there is mystery, and there is adventure, and there is the 
thrill of discovery” [1].

20 minutes rather than taking weeks. Some of the earliest 
computer programs for regression and analysis of variance 
were written at North Carolina State College [22].

Cox’s interest in computational issues continued well 
after her retirement from the university. In the early 1970s, 
she provided expertise to the Department of Health, Ed-
ucation, and Welfare on statistical, computational, and 
privacy issues relating to the proposed use of the Social 
Security number as a universal personal identifier and, 
more generally, to the large amounts of personal data that 
were being collected in computer-based record-keeping 
systems. The 1973 report of the Advisory Committee on 
Automated Personal Data Systems set forth principles—
the Code of Fair Information Practices—that became the 
foundation of subsequent US privacy legislation [32, 31]. 
The report’s recommendations reflected Cox’s strong views 
that an individual has a right to know how his or her data 
are being used.
Statistical Frontiers
Cox summarized her vision for statistics in her 1956 ad-
dress as President of the American Statistical Association, 
titled “Statistical Frontiers.” She invited the audience to 
tour the three major continents of the statistical universe: 
“(1) descriptive statistics, (2) design of experiments and 
investigations, and (3) analysis and theory” [16]. As she 
visited each continent, she briefly described some of the 
“well developed countries” where statisticians have devel-
oped many techniques for design and analysis, and she 
then gave examples of frontiers needing more exploration.

The descriptive statistics continent, although having the 
longest history of exploration, nevertheless had multiple 
frontiers. Cox noted that although statistical tabulations 
were common, too few persons described the variability 
of a population or the uncertainty of an estimate. She also 
emphasized the statistician’s contributions to the presen-
tation of results country, where “you will be asked to swear 
allegiance to logical organization, preciseness, and ease of 
comprehension” [16, p. 3].

The longest sojourn of the tour, not surprisingly, was in 
the design of experiments and investigations (sampling) 
continent. Cox foresaw the survey sampling research prob-
lems that would arise in future decades, such as the need 
for statistical methods to assess and control nonsampling 
errors, and she anticipated the development of comput-
er-intensive methods for estimating variances [24].

While visiting the analysis and theory continent, Cox 
mentioned some of the frontiers of the late 1950s such as 
variance component models and nonparametric methods. 
She also discerned the fundamental problems of inference 
facing future statisticians in these general frontiers. The 
methods of statistical inference that work for data from 
a designed experiment or carefully collected probability 
sample do not necessarily apply to data that happen to be 
conveniently at hand. She wrote, “How far are we justified 
in using statistical methods based on probability theory 
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prodigy. Her father instilled in her that she was as good as 
anyone and could achieve whatever she desired, but she 
was never to think that she was better than others.

White Sulphur Springs had no high school for Black 
children. Because the Coleman family valued education 
highly and was determined that their children should have 
a quality education through high school and college, her 
parents rented a house in Institute, Kanawha County, West 
Virginia where their children attended high school and 
college. Thus, every autumn for eight years, Katherine's 
mother moved with her children to the rented home. In the 
summer they would return some 125 miles back to White 
Sulphur Springs where her father lived in their home house 
and worked, primarily as a farmer and at a hotel, earning 
about $100 per month. All four Coleman children com-
pleted high school and college under this arrangement of 
living in two different places during the year.

Katherine entered West Virginia State College High 
School before her teens and graduated at the age of 14. 
In high school, she excelled in mathematics, science, and 
English. In high school she also developed some affinity 
for astronomy. This was where she met another person who 
greatly influenced her love for math: Angie Turner King, 
who taught her geometry in high school. King later taught 
her math in college and continued to encourage her.

Katherine entered West Virginia State College (WVSC), 
a Historically Black College (HBCU), in her early teens. As 
a student at WVSC, she took every math course offered by 
the college. Several professors mentored her math studies, 
including chemist and mathematician Angie Turner King, 
who had also taught her in high school. Katherine said that 
King was “...a wonderful teacher—bright, caring, and very 
rigorous.” James Carmichael Evans, who had BS and MS 
degrees from the Massachusetts Institute of Technology, 
also nurtured Katherine in her study of math. He was a 
very talented and encouraging teacher who insisted that 
she must major in mathematics, even though he knew of 
her strong interests and mentoring in French and English 
by others. And there was W. W. Schieffelin Claytor, the 
third African American to receive a PhD degree in math 
who took Katherine “under his wing.” He was a brilliant 
teacher and researcher. Claytor not only taught her many 
of her math classes, but he also added new math courses to 
the curriculum just for Katherine. She recalled that Claytor 
told her, “You would make a good research mathematician” 
(after her sophomore year), and he continued, “I am going 
to prepare you for that career.” According to a videotaped 
interview with Katherine, one of the courses Claytor created 
for her was analytic geometry, which was invaluable to her 
in her work at NASA. She was very fortunate to have had 
Claytor as a teacher. He only taught at West Virginia State 
College from 1934 to 1937. Katherine graduated from 
WVSC summa cum laude at the age of 18 in 1937 with 
degrees in mathematics and French; she had joined Alpha 
Kappa Alpha sorority while a student.

I first met mathematician Katherine G. Johnson when I 
presented her with the National Association of Mathema-
ticians (NAM) Distinguished Service Award at NAM’s Re-
gional Conference in Norfolk, Virgina in 1996. The award 
celebrated her more than 50 years as a productive mathe-
matician, most of these years having been spent with the 
National Aeronautics and Space Administration (NASA).

Given her necessary security clearance, NAM did not 
probe Johnson about the nature of her work. For an African 
American mathematician to have worked at NASA from the 
1950s well into the 1980s was itself historic.

The full and extraordinary story of her life and pioneer-
ing contributions was revealed to the world in the New 
York Times bestseller Hidden Figures, published in 2016 and 
written by Margot Lee Shetterly. However, Johnson’s con-
tributions became best known after the Oscar®-nominated 
movie Hidden Figures was released in December 2016. I was 
highly impressed with Johnson from what I learned from 
both the book and the movie. She was a pioneer extraor-
dinaire and a brilliant mathematician. Her work impacted 
the success of NASA’s early space flight missions. I was 
extremely delighted that in her lifetime she has received 
the awards, honors, and recognitions that many pioneers 
never live long enough to witness and enjoy. I found her 
life story itself to be a fascinating one to know.

Katherine Coleman was born on August 26, 1918 in 
White Sulphur Springs (Greenbrier County), West Virginia 
as the fourth and youngest child of Joshua and Joylette 
Coleman. She had a brother Horace (b. 1912), a sister 
Margaret (b. 1913), and a brother Charles (b. 1915). Her 
mother was a schoolteacher and her father was a lumber-
man, farmer, and handyman who worked at the Greenbrier 
Hotel.

At an early age (her third birthday or younger) she began 
to speak very articulately and was very curious about know-
ing details of everyday things that she observed. Her father, 
with only a sixth-grade education, had an incredible ability 
for doing math problems. For Katherine, he was the smart-
est person she knew. She started to count everything she 
saw and attempted to emulate her father in solving math 
problems. For Katherine, counting things and constantly 
learning new information about things became her favorite 
daily activity. Her mother being a nurturing teacher and 
her father being a math whiz kept her motivated to learn. 
Katherine officially began attending elementary school at 
the age of five.

However, because of what she had learned prior to that 
age, she was placed into the second grade during her first 
year of school. When she was eight years old she should 
have entered the fifth grade but, being such an advanced 
student, she was placed in the sixth grade of a newly opened 
school for Blacks. With her advanced placement, she was 
now a grade ahead of her brother Charles who was three 
years older than she was. At age ten, Katherine was ready 
to enter high school. She was viewed by many as a child 



326   	 Notices of the American Mathematical Society	 Volume 66, Number 3

her about open positions in mathematics at the all-Black 
West Area Computing Section at the National Advisory 
Committee for Aeronautics (NACA), Langley Laboratory, 
Hampton, Virginia that she desired a different use of her 
mathematical talent. The program was headed by Dorothy 
Vaughan, whom she had met some years earlier in West 
Virginia. Katherine and her husband, Jimmy, decided to 
move the family to Newport News, Virginia to pursue this 
opportunity. The NACA had stopped hiring in 1952 when 
they arrived and she worked as a substitute teacher for a 
year. Katherine was hired by Langley the next year and 
began work there in the summer of 1953. Just two weeks 
into Katherine’s tenure in the office, Dorothy Vaughan as-
signed her to a project in the Maneuver Loads Branch of the 
Flight Research Division. Katherine’s temporary position 
with the previously all White research team soon became 
permanent. She spent the next four years analyzing data 
from flight tests and worked on the investigation of a plane 
crash caused by wake turbulence. As she was completing 
this work, her husband Jimmy died from a serious medical 
challenge in December 1956.

Katherine sang in the choir at Carver Memorial Presby-
terian Church in Newport News, Virginia for 50 years. The 
minister there introduced James A. Johnson to her. He had 
been commissioned in 1951 as a Second Lieutenant in the 
United States Army and was a veteran of the Korean War. 
In 1959, the two married. Katherine had no additional 
children with her second husband.

Both in the West Area Computing Section and in the 
Flight Research Division, Katherine worked as a “human 
computer,” doing the complex math calculations for air-
planes and space flights. NACA disbanded the “Colored 

After graduation from college, she took a teaching 
job at a Black public school in Marion, Virginia. She was 
offered the job in Marion because she could teach math, 
teach French, and play the piano. In 1939, Katherine 
married James Francis Goble, who was called “Jimmy” by 
his friends. He worked as a high school chemistry teacher 
in Marion. This marriage produced three daughters: Con-
stance, Joylette, and Katherine. All three became mathema-
ticians and teachers.

In 1940 (before having children), Katherine enrolled in a 
graduate math program. She entered the graduate program 
at West Virginia University in Morgantown, West Virginia, 
the flagship university for the state of West Virginia that 
had been reserved for White students only. She was the 
first African American woman to attend the university’s 
graduate school. This was facilitated with the courage of 
and assistance from WVSC’s president, Dr. John W. Davis. 
He selected her as one of three African American students 
(she was the only female) to integrate the graduate school 
after the United States Supreme Court ruling Missouri ex 
rel. Gaines v. Canada (1938). The court ruled that states 
that provided public higher education for White students 
also had to provide it for Black students, to be satisfied 
either by establishing Black colleges and universities or 
by admitting Black students to previously White-only uni-
versities. Katherine spent a term at the University but left 
the program after she became pregnant. She chose to give 
priority, at that time, to raising a family. Jimmy and her 
parents supported her decision.

Katherine returned to teaching when her three daughters 
grew older. She taught in Morgantown and Bluefield, West 
Virginia. However, it was not until 1952 when a relative told 

Katherine G. Johnson working at NASA in the 1960s as a ”human computer,“ physicist, and aerospace 
technologist in an all-White research division of engineers.
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reports for which she received no written credit or rec-
ognition in the report itself. The first report with Kather-
ine’s name on it was major for NASA [8]. It contained the 
theory necessary for launching, tracking, and returning 
space vehicles and was used for the famous space flight 
by Alan Shepard in May 1961 and the flight of John 
Glenn in February 1962.

D.	Currently, there are more than twenty five scientific 
reports in the NASA archive in space flight history that 
Katherine authored or co-authored, the largest number 
by any African American or woman.

E.	From 1958 until her retirement in 1986, Johnson 
worked as an aerospace technologist in the Spacecraft 
Controls Branch where all final decisions were made 
for space travel; she served as NASA’s premier research 
mathematician at the time.

F.	 She calculated the trajectory for the May 5, 1961 flight 
of Alan Shepard, the first American to travel in space.

G.	She also calculated the launch window for Shepard’s 
1961 Mercury mission.

H.	She plotted backup navigation charts for astronauts in 
case of electronic failures.

I.	 When NASA used electronic computers for the first 
time to calculate John Glenn’s orbit around the Earth, 
NASA’s officials called on Johnson to verify the com-
puter's numbers. Glenn specifically asked for Johnson’s 
verifications, and he refused to fly unless she verified 
the calculations. These were very difficult calculations; 
they had to account for the gravitational pulls of celestial 
bodies.

J.	 As NASA began relying heavily on digital computers, 
they used Johnson’s calculations to help them check the 
accuracy of the computers; her validations caused NASA 
to establish confidence in the new digital computer 
technology.

K.	In 1961, NASA used Johnson’s calculations of trajectories 
to help to ensure that Alan Shepard's Freedom 7 Mercury 
capsule would be found quickly after landing.

L.	 Johnson also helped to calculate the trajectory for the 
1969 Apollo 11 flight to the Moon.

M.	In 1970, Johnson worked on the Apollo 13 moon mis-
sion; her work on backup procedures and charts helped 
set a safe path for the crew’s return to Earth.

N.	In case of malfunctioning, Johnson had helped to create 
a one-star observation system that would allow astro-
nauts to determine their location with accuracy.

O.	Later in her career, Johnson worked on the Space Shuttle 
Program, the Earth Resources Satellite, and on plans for 
a mission to Mars.

Human Computers Group” in 1958 when it was super-
seded by NASA, which adopted digital computers. In the 
Research Flight Division, where she was the only Black, 
all the Whites were hired as engineers and Katherine was 
considered a “human computer,” a mathematician, a phys-
icist, and an aerospace technologist. During the NACA era, 
Katherine had to leave the Research Flight Division and go 
back to the West Area Colored Section to use the restroom, 
eat, or retrieve something out of her locker. Her questions 
about her daily inconveniences had a great impact on per-
suading NASA to eradicate its segregated facilities in the 
early 1960s. At NASA, she fulfilled Claytor’s prophecy and 
vision. She became a world-class research mathematician 
on the stage of the largest grand challenge problem of the 
time: successfully conquering the frontier of space flights 
to other celestial bodies in space. Katherine G. Johnson 
made many pioneering contributions on this grand chal-
lenge stage. For the sake of brevity of this document, only 
15 will be listed.

Fifteen of Katherine G. Johnson’s Major 
Pioneering Contributions to Space Flight History:
A.	Katherine Johnson was the first African American and 

the first woman to work in NASA’s Research Flight Di-
vision.

B.	She was the first African American and the first woman 
to attend NASA’s Research Test Flight Briefings where 
the fundamental problems of a space flight mission 
were presented, discussed, and analyzed; she specifi-
cally requested to be able attend, and they honored her 
requests.

C.	She was the first African American and first woman to 
have her name placed on a Scientific Report at NASA; 
however, she actually did major work on many earlier 

Katherine G. Johnson’s primary contributions at 
NASA were in computational science and research. 
In 2017 NASA opened and named in Johnson’s 
honor the above state-of-the-art 40,000 square-foot 
Computational Research Facility at NASA Langley in 
Hampton, Virginia.
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O. 2012 selected as a Science His-
tory Maker (now archived in the 
Library of Congress)

P. 2010 received an Honorary Doc-
tor of Science from Old Domin-
ion University, Norfolk, Virginia

Q. 2006 received an Honorary 
Doctor of Science from Capitol 
University, Laurel, Maryland

R. 1999 selected as West Virginia 
State College Outstanding 
Alumnus of the Year

S. 1998 received an Honorary Doc-
tor of Law from SUNY, Farming-
dale, New York

T. 1996 received the National As-
sociation of Mathematicians 
Distinguished Service Award 

U. 1971, 1980, 1984, 1985, and 
1986 received NASA Langley Re-
search Center Special Achieve-
ment Award

In Her Own Words: Quotes 
from Katherine G. Johnson
A. I like to learn. That’s an art and 

a science.
B. Let me do it. You tell me when 

you want it and where you want 
it to land, and I’ll do it back-
wards and tell you when to take 
off.

C. Girls are capable of doing every-
thing men are capable of doing. Sometimes they have 
more imagination than men.

D.	We will always have STEM with us. Some things will 
drop out of the public eye and will go away, but there 
will always be science, engineering, and technology. And 
there will always be mathematics.

E.	I don't have a feeling of inferiority. I never had one. I’m 
as good as anybody, but not better.

F.	 Like what you do, and then you will do your best.

On August 26, 2018, Katherine Coleman Goble John-
son completed her 100th trip around the Sun, becoming a 
highly distinguished centenarian African American mathe-
matician. Katherine G. Johnson lives in Hampton, Virginia. 
She continues to encourage her grandchildren and students 
to pursue careers in science, technology, engineering, and 
mathematics (STEM).

In recognition of her life and 
contributions as a role model, 
a scholar, an educator, and her 
pioneering career as a research 
mathematician with NASA in space 
travel, Johnson has received many 
awards, honors, and recognitions. 
For the sake of brevity, only 20 will 
be listed.

Twenty of Katherine G. 
Johnson’s  Awards, Honors, 
and Recognitions: 
A.	2019 (January 18) the National 

Association of Mathematicians, 
NAM’s Centenarian Award

B.	2018 (August 25) West Virginia 
University, Morgantown, un-
veiled a life-size bronze statue of 
Katherine Johnson on campus 
and established a STEM schol-
arship in her name

C.	2018 (May 12) College of Wil-
liam and Mary awarded her an 
Honorary Doctorate Degree

D.	2017 (September 22) The Kath-
erine G. Johnson Computa-
tional Research Facility at NASA 
Langley in Hampton, Virginia 
opened and was named in her 
honor (40,000 sq. feet)

E.	2017 received Daughters of the 
American Revolution Medal of 
Honor

F.	 2016 Oscar®-nominated movie Hidden Figures profiled 
her life as a “colored human computer” and a research 
mathematician at NASA

G.	2016 received Presidential Honorary Doctorate of Hu-
mane Letters from West Virginia University, Morgantown

H.	2016 New York Times bestseller Hidden Figures, by Margot 
Lee Shetterly, profiled her life as a scholar, an educator, 
a “colored human computer,” and a research mathema-
tician at NASA

I.	 2016 received the Space Flight Industry Silver Snoopy 
Award from Leland Melvin

J.	 2016 received the Astronomical Society of the Pacific’s 
Arthur B. C. Walker II Award

K.	2016 listed as one of the 100 most influential women 
worldwide by the BBC 

L.	2015 received National Center for Women and Informa-
tion Technology’s Pioneer in Tech Award

M.	2015 received the Presidential Medal of Freedom from 
then president Barack Obama

N.	2014 received the De Pinza Honor from National 
Women History’s Museum 

Having recently celebrated her centennial 
birthday, Katherine Coleman Goble 
Johnson has lived to receive many awards, 
honors, and recognitions for her pioneering 
work. One such award was the Presidential 
Medal of Freedom from President Barack 
Obama in 2015.
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Her achievements read as a list of firsts: she was an ex-
pert at programming Harvard’s Mark I, the first large-scale
electromechanical computingmachine; shewas part of the
team who developed the UNIVAC I, the first commercial
computer produced in the United States, for which she
wrote the first compiler; she created the first English-based
data processing language FLOW-MATIC, a principal pre-
cursor for COBOL, one of the most important program-
ming languages for business applications; and when she
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Figure 1. Grace Hopper at the blackboard with
students, 1957.

retired from the Navy as a Rear Admiral, at 79 years old,
she was the oldest active-duty officer in the entire armed
forces. She has been widely lauded for these accomplish-
ments. Named in her honor are: a Naval guided missile
destroyer warship; a super computer at the National En-
ergy Research Scientific Computing Center; several build-
ings and a bridge on Naval bases; a park in Arlington, Vir-
ginia; a major yearly convention for women in computer
science and technology; several prizes, including an early
career award from the Association for Computing Machin-
ery; and a recently renamed residential college at Yale Uni-
versity, among others. Her inspiring story has been the
subject of many books and several upcoming film projects.

However, what is often overlooked in accounts of Hop-
per’s life and work is her mathematical legacy. The results
of her 1934 Yale PhD thesis advised byØysteinOre (which
are detailed in the section “Thesis Work”) are never men-
tioned. Incorrect characterizations of her graduate work
abound; her PhD is routinely cited as being in “mathemat-
ics and physics” or “mathematical physics” or “under com-
puter pioneer Howard Engstrom.” Her training in pure
mathematics and her identity as a mathematician are of-
ten minimized or treated as a kind of incongruous early
chapter in the story of the “Queen of Code.”

But Grace Hopper was most certainly a mathematician.
Asked in an interview [30, p. 7] later in her career what she
would consider herself, she immediately replied: “Math-
ematician.” Then adding wryly: “A rather degraded one
now, because I deal with actual digits instead of letters
and formulas.” Her broad and rigorous mathematical ed-
ucation constituted what she called her “basic thinking.”
She was, once and forever, a mathematician: “I’ve been
called an engineer, a programmer, systems analyst and ev-
erything under the sun but I still think my basic training

Figure 2. Grace Hopper teaching a COBOL class,
1961.

Figure 3. Grace Hopper with programmers at the
console of UNIVAC I, 1957.

is mathematics.” For the first time, using archival mate-
rial from Yale University’s collections, this article will at-
tempt to illuminate Hopper’s foundational mathematical
training as well as the specific contributions of her thesis
research.

Academic Training

As both an undergraduate and a graduate student, Grace
Hopper pursued a mathematical education. In 1928, she
earned her BA from Vassar College, with her coursework
primarily in mathematics, and secondarily split between
economics and physics. She then enrolled as a graduate
student in the Department of Mathematics at Yale Univer-
sity, receiving her MA in 1930 with a thesis titled On Carte-
sian Ovals and her PhD in 1934 with a dissertation titled
New Types of Irreducibility Criteria. Hopper took courses in
a wide variety of fields, as her graduate transcript reveals
(see Figure 5). Her PhD advisor was Norwegian algebraist
Øystein Ore, who had recently been recruited to Yale and
“breathed new life into an aging department” [32, p. 10].
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Figure 4. Grace Murray’s senior portrait from the
Vassar yearbook, 1928.

Notable on Hopper’s transcript are Ore’s courses on Alge-
braic Numbers, which had never been offered until his ar-
rival the previous year [32, p. 10]. Hopper was awarded
numerous prestigious dissertation fellowships during her
years at Yale and was one of the first dozen women (go-
ing back to 1895) to earn doctoral degrees in mathematics
from the university, see [16]. In 1931, while still a graduate
student, Hopper started a faculty position at Vassar, even-
tually being promoted to assistant professor in 1939 and
associate professor in 1944. During the 1941–42 academic
year, Hopper was granted a half-time leave from Vassar to
take courses with Richard Courant at New York Univer-
sity’s Center for Research and Graduate Education (later to
become the Courant Institute of Mathematical Sciences).

Numerous distinguished mathematicians can be count-
ed as Hopper’s mentors. At Vassar, she studied with Henry
Seely White (1861–1943), a prominent American geome-
ter who received his PhD under Felix Klein in 1891 and
served as President of the AMS (1906–1908), andGertrude
Smith (1874–1965), whom Hopper declared “taught the
best calculus anybody ever taught” [30, p. 21]. At Yale, she
was influenced by James P. Pierpont (1866–1938) and was
a close contemporary of Howard Engstrom (1902–1962),
who received his PhD under Ore in 1929, five years before
Hopper, and who eventually returned to Yale to take up a
faculty position. In 1941, Engstrom joined the Navy and
did foundational work in cryptography; later, he became a
deputy director of the National Security Agency, see [12].

Engstrom encouraged several mathematicians, includ-
ing Hopper and the famous group theorist Marshall Hall,
Jr., to join Naval intelligence during World War II. Hall,
who received his PhD underOre in 1936, recalls that while
Ore was his “nominal” advisor, he received “far more help
and direction” from Engstrom, see [18]. In interviews over
the years, Hopper repeatedly describes Engstrom as one
of her “instructors.” Though no course with Engstrom is
listed onHopper’s transcript, hismentorship seems to have

Year Course Name Instructor
1928–29 Higher Algebra Lucius Terrell Moore

Foundations of Real Variables Wallace Alvin Wilson
Foundations of Geometry Percey Franklyn Smith
Analytic Geometry I Joshua Irving Tracey

1929–30 Algebraic Numbers I Øystein Ore
Differential Geometry James K. Whittemore
Finite Groups Øystein Ore

1930–31 Algebraic Numbers II Øystein Ore
Calculus of Variations Egbert J. Miles
Non Euclidean Geometry James P. Pierpont
Mathematical Statistics Øystein Ore

1931–32 Dissertation Øystein Ore
1932–33 Dissertation Øystein Ore
1933–34 Dissertation Øystein Ore

Figure 5. Grace Murray Hopper’s original Yale
Graduate School transcript lists: her courses and the
grades she received (on an Honors/High
Pass/Pass/Fail scale), the dates of her language
exams (which years later became fodder for her
stories about the interchangeability of written
languages [30, pp. 22–23]), as well as her yearly
tuition and the date of her election to Sigma Xi, the
scientific research honor society. Transcription
includes full names of her professors.

been as important for Hopper as it was for Hall. What
is clear from the historical record is that Hopper did not
“receive her PhD under Engstrom” as several authors have
claimed (see [16]), perhaps in an effort to link the early
histories of two pioneers in the field of computers. When
Hopper enlisted in the Navy, she expected to be assigned
to the Communications Supplementary Activity (Navy
Communications Annex) in Washington, DC, where En-
gstrom led a top-secret team building cryptographic
computingmachines. Though she was eventually assigned
to work on the Mark I at Harvard, Hopper and Engstrom
stayed life-long friends.
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Several of Ore’s graduate students from the early 1930s
tackled similar research problems on generalized irreduc-
ibility criteria for polynomials. His two male students,
Harold Dorwart (PhD 1931) and Casper Shanok (PhD
1933), produced dissertations very close in subject to Hop-
per’s work. Dorwart published a number of articles from
his thesis work: in the Annals of Mathematics [7], in the
Duke Mathematical Journal [8], and a survey in the Amer-
ican Mathematical Monthly [9, p. 373] that mentions and
cites Hopper. Almost immediately following his gradua-
tion, Shanok’s thesis [45] was published in the Duke Math-
ematical Journal (though he did not appear to continue in
academia). Distressingly, Ore’s two female graduate stu-
dents, Hopper and Miriam Becker (PhD 1934), never pub-
lished their thesis work at all. Both would, however, go on
to long careers (Becker would eventually join the faculty of
the City University of New York), even if their earliest work
still remains unknown.

As a junior faculty member at Vassar, Hopper was given
“all the courses nobody else wanted to teach.” But she was
such an innovative teacher that classes like technical draw-
ing, trigonometry, calculus, probability, and finite differ-
ence method for numerical solutions of differential equa-
tions were suddenly popular [30, pp. 16–21]. On top of
her demanding teaching schedule of five or six courses,
she also audited two courses per year, including basic as-
tronomy, statistical astronomy, geology, philosophy, bac-
teriology, biology, zoology, plant horticulture, chemistry,
physics, economics, and architecture. She also took a
course on cryptography sponsored by the Navy [30, p. 27].

Later in life, Hopper would reflect on the “inestimable
value” of her broad education as she shaped the new field
of computers [30, p. 17]. For example, it was in a chemistry
course when she learned the essential concepts of round-
off and truncation errors [27, p. 46]. Her years teaching
technical drawing courses enabled her to invent a new me-
thod for diagramming the relay timing and associated cir-
cuitry (see Figure 6) for the Mark I (formally known as the
Automatic Sequence Controlled Calculator) control man-
ual [22], see [30, pp. 32–33]. Hopper summed it up quite
neatly in a 1986 interview on The Late Show with David Let-
terman [21]. During a discussion of her Mark I days, Let-
terman asked, “Now, how did you know so much about
computers then?” “I didn’t,” Hopper immediately replied,
with some bemusement. “It was the first one.”

But arguably, it was studying and teaching mathematics
—thinking about symbolic language and how to commu-
nicate meaning with symbols—that was most pivotal in
Hopper’s early work on computers. Her invention of var-
ious types of early compilers enabled the translation of
mathematical statements or English words into computer
code.

Figure 6. Wiring diagram of a Mark I table relay
encoding 𝜋 [22, p. 91].

Manipulating symbolswas fine formathematicians
but it was no good for data processors who were
not symbol manipulators. Very few people are re-
ally symbolmanipulators. If they are they become
professional mathematicians, not data processors.
It’s much easier for most people to write an Eng-
lish statement than it is to use symbols. So I de-
cided data processors ought to be able to write
their programs in English, and the computers
would translate them intomachine code. [13, p. 3]

One of Hopper’s most academically rewarding experi-
ences was taking courses from Richard Courant at New
York University in 1941–1942, during her half-time leave
funded by a Vassar Faculty Fellowship. Hopper found
Courant to be “one of the most delightful people to study
with I’ve ever known inmy life.” It was, she recalled, “a per-
fectly gorgeous year. Of course, he scolded me at intervals,
just as all of the others did because I kept doing unortho-
dox things and wanting to tackle unorthodox problems”
[30, p. 28]. While there, she studied calculus of variations,
differential geometry, and perhaps most fortuitously, she
took a government-sponsored defense training course on
methods of solutions to partial differential equations in-
volving finite differences taught by Courant, see [30, p. 24].
Hopper later learned that her involvement in this course
was in her Navy file and was one of the determining factors
in her initial assignment: to program Harvard’s Mark I, im-
plementing calculations for the war effort including some
for John von Neumann’s work on the Manhattan Project.

The attack on Pearl Harbor, which took place during her
year studying with Courant, forever changed the direction
of Hopper’s life. Her great grandfather had been in the
Navy, and by the summer of 1942, many of Hopper’s fam-
ily members were joining the armed services: her husband
(from whom she was already separated) and brother vol-
unteered for the draft; her female cousins joined through
the Women’s Army Corps (WAC) and the Navy’s Women
Accepted for Volunteer Emergency Service (WAVES) pro-
gram; her mother served on the Ration Board; and her re-
tired father went back towork and served on the local Draft
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Figure 7. Grace Hopper standing behind a car parked
near Cruft Lab, Harvard University, ca. 1945–1947.

Board, see [47, p. 20]. Hopper was eager to enlist in the
Navy, but was rejected when she failed to meet the mini-
mum weight requirement for her height and was consid-
ered too old for enlistment. In the meantime, she taught
an accelerated summer calculus course at Barnard College
for women training for war-related posts. But her profes-
sion was also an impediment.

Mathematicianswere [in] an essential industry and
you could not leave your job to go in the services
without permission [fromboth theNavy and one’s
employer]. You couldn’t even transfer jobs with-
out permission... And Iwas beginning to feel pretty
isolated sitting up there, the comfortable college
professor—all I was doing wasmore teaching, and
I wanted very badly to get in and so I finally gave
Vassar an ultimatum that if they wouldn’t release
me I would stay out of work for six months be-
cause I was going into the Navy, period. [30, p. 25]

Eventually, she obtained a waiver for the weight require-
ment and a leave of absence from Vassar, and trained at
the Naval Reserve Midshipmen’s School at Smith College
in Northampton, Massachusetts in the spring of 1944. Af-
ter graduating first in her class, she was commissioned lieu-
tenant junior grade.

On July 2, 1944, Hopper reported for duty at the Bureau
of Ships Computation Project at Harvard under the com-
mand of Howard Aiken, and began work on the Mark I.
Aside from programming the Mark I, and its successor, the
Mark II, she was assigned the job of compiling notes about
the operation of the Mark I into a book [22]. Hopper

Figure 8. Captain Grace Hopper, ca. 1975.

edited the volume and wrote several of its sections, includ-
ing an introduction containing the first ever scholarly ac-
count of the history and development of calculating ma-
chines [22, Chapter I]. “Nobody had done this before,”
Hopper later said. “[The] history of computers had never
been put together.” It was, to use her words, “really a job”
[30, p. 32].

Thesis Work

Grace Hopper’s PhD thesis work with Øystein Ore con-
cerned irreducibility criteria for univariate polynomials over
the field of rational numbers. Though her work was never
published, it was presented to an American Mathematical
Society meeting on March 30, 1934 in New York with an
abstract appearing in the Bulletin of the AMS [20]. The only
apparent extant text of her thesis [19] remains in Yale’s
archives, and a detailed account of her mathematical work
has never before appeared in the literature.

In this section, we provide an explanation of GraceHop-
per’s thesis work, the central theme of which concerns nec-
essary conditions for the irreducibility of univariate poly-
nomials with rational coefficients based on their Newton
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polygons, see the subsection “Irreducibility via Newton
polygons.” The connection between the decomposabil-
ity of polynomials and the slopes of their Newton poly-
gons was initiated at the turn of the twentieth century by
Dumas [10], with further refinements by Kürschak [26],
Ore [35], and Rella [41]. In her work, Hopper obtains
new irreducibility criteria by considering an Archimedean
analogue of the Newton polygon, see the subsection
“Archimedean Newton polygon.” While this Archimedean
Newton polygon dates back at least to an 1893 paper of
Hadamard [17, §4, p.174], and was later developed fur-
ther in a 1940 paper ofOstrowski [36, pp. 106, 132] and by
Valiron [46, Ch. IX, pp. 193–202], its use for establishing
irreducibility criteria seems to be a novel feature of Hop-
per’s work.

Irreducibility of polynomials. Anonconstant polynomial

𝑓(𝑥) = 𝑎𝑛𝑥𝑛 +𝑎𝑛−1𝑥𝑛−1 +⋯+𝑎1𝑥 + 𝑎0

whose coefficients𝑎0,… ,𝑎𝑛 are rational numbers is called
irreducible if there is no way to write 𝑓(𝑥) as a product
𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥) where 𝑔(𝑥) and ℎ(𝑥) are themselves
nonconstant polynomials with rational coefficients. The
study of irreducible polynomials is one of the foundations
of modern field theory and often involves quite a bit of
number theory as well.

For example, that 𝑥2 − 2 is irreducible is equivalent to
the classical fact that √2 is irrational. More generally, a
quadratic polynomial

𝑎𝑥2 +𝑏𝑥+ 𝑐
is irreducible if and only if its discriminant 𝑏2−4𝑎𝑐, which
appears in the quadratic formula, is not a square.

When 𝑝 is an odd prime number, that the cyclotomic
polynomial

Φ𝑝(𝑥) = 𝑥𝑝−1 + 𝑥𝑝−2 +⋯+ 𝑥+ 1
is irreducible was first proved by Gauss in Disquisitiones
Arithmeticae and is related to the arithmetic of the𝑝th roots
of unity 𝑒2𝜋𝑖𝑘/𝑝 and the (non-)constructibility of the reg-
ular 𝑝-gon with compass and straightedge.

In 1929, Schur [44] proved that for𝑛 ≥ 1, the truncated
exponential series

1 + 𝑥+ 𝑥2

2! +⋯+ 𝑥𝑛

𝑛!
is irreducible with an argument that used a generalization
of Bertrand’s Postulate, whose original statement—that for
any positive integer 𝑘 there exists a prime number 𝑝 such
that𝑘 < 𝑝 ≤ 2𝑘—was conjectured by Bertrand and proved
by Chebyshev. This result, and its generalizations, implies
the irreducibility of various families of orthogonal poly-
nomials, such as those of Laguerre and Hermite type, see
[9, §4].

Several standard methods for testing irreducibility are
taught in a basic course on field and Galois theory. The
most elementary are reduction modulo a prime number
and the “rational root test.” A more powerful, and yet easy
to use, tool is Eisenstein’s criterion: assuming that 𝑓(𝑥) has
integer coefficients, if for some prime number 𝑝, the co-
efficients satisfy 𝑝|𝑎𝑖 for all 𝑖 ≠ 𝑛, as well as 𝑝 ∤ 𝑎𝑛
and 𝑝2 ∤ 𝑎0, then 𝑓(𝑥) is irreducible. In fact, a state-
ment equivalent to Eisenstein’s Criterion was first proved
by Schönemann [43] in a 1846 paper that Eisenstein even
cites in his own paper [11] in 1850, hence the criterion was
often called the Schönemann–Eisenstein theorem in liter-
ature from the early twentieth century, see [5] for a discus-
sion.

Irreducibility via Newton polygons. In the late nineteenth
century and early twentieth century, various generalizations
of the Eisenstein criterion, depending on the divisibility
properties of the coefficients of 𝑓(𝑥), appeared in work of
Königsberger, Netto, Bauer, Perron, Ore, and Kahan. Fi-
nally, these were all mostly subsumed by an observation of
Dumas [10], that such criteria could be rephrased in terms
of the irreducibility of the Newton polygon associated to
𝑓(𝑥). This history is very well summarized in the histori-
cal introduction to Hopper’s thesis [19, Chapter I] and in
Dorwart’s survery article [9].

Given a prime number 𝑝, we consider the 𝑝-adic val-
uation 𝑣𝑝 on ℚ. The Newton polygon 𝑁𝑝(𝑓) of the poly-
nomial 𝑓(𝑥) = ∑𝑖 𝑎𝑖𝑥𝑖 ∈ ℚ[𝑥] with respect to 𝑝 is the
lower convex hull of the points (𝑖, 𝑣𝑝(𝑎𝑖)) in ℝ2. We as-
sume that 𝑎0 ≠ 0. If 𝑎𝑖 = 0 for some 𝑖 ≥ 0 then by defi-
nition 𝑣𝑝(𝑎𝑖) = +∞, hence for the purposes of taking the
lower convex hull, we can ignore such zero coefficients. In-
tuitively, we can imagine a large rubber band surrounding
these points inℝ2, which each have small nails sticking up
from them; as we stretch the rubber band up toward +∞,
we obtain the Newton polygon as the lower sequence of
line segments formed by the stretched rubber band.

The central insight of Dumas [10, p. 217] is that the
Newton polygon 𝑁𝑝(𝑔 ⋅ ℎ) of the product of polynomi-
als 𝑔(𝑥) and ℎ(𝑥) is formed by composing the line seg-
ments of the Newton polygons 𝑁𝑝(𝑔) and 𝑁𝑝(ℎ) in or-
der of increasing slope, an operation that we could denote
𝑁𝑝(𝑔)∘𝑁𝑝(ℎ) and call the Dumas sum. This was general-
ized in [3] and [6], and by many later authors, including
to the more general context of (multivariate) polynomials
over valued fields.

If the projections to the 𝑥- and 𝑦-axes of the line seg-
ments of theNewton polygon of 𝑓(𝑥) are denoted 𝑙1,… , 𝑙𝑟
and 𝑘1,… , 𝑘𝑟, respectively, we denote by 𝑒𝑖 = gcd(𝑙𝑖, 𝑘𝑖)
and write 𝑙𝑖 = 𝑒𝑖𝜆𝑖. Then Dumas [10, p. 237] deduces a
general irreducibility criterion: 𝑓(𝑥) can only have factors
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Figure 9. The Newton polygon (with 𝑝 = 2) of
𝑔(𝑥) = 𝑥2 + 6𝑥+ 4 in red, of
ℎ(𝑥) = 𝑥4 + 2𝑥3 + 10𝑥2 + 48𝑥+ 16 in blue, and
𝑔(𝑥)ℎ(𝑥) =
𝑥6 +8𝑥5 +26𝑥4 +116𝑥3 +344𝑥2 +288𝑥+ 64, with
sides colored appropriately showing the Dumas
sum.

Figure 10. Graphical depiction of the Minkowski sum
of two classical Newton polygons of bivariate
polynomials. Hand drawn by Grace Hopper
[19, p. 24].

of degree 𝑚 that can be expressed in the form

𝑚 =
𝑟
∑
𝑖=1

𝜇𝑖𝜆𝑖

where 𝜇𝑖 ∈ {0, 1,… , 𝑒𝑖} for each 1 ≤ 𝑖 ≤ 𝑟.
For example, if 𝑁𝑝(𝑓) consists of a single line segment

that does not pass through any lattice point in the plane,
then 𝑓(𝑥) is irreducible. This immediately gives the Eisen-
stein criterion. Generalizations and refinements of this
idea were developed by Fürtwangler, Kürschak, and Ore,
see [19, Chapter I, §4].

The classical Newton polygon associated to a bivariate
polynomial 𝑓(𝑥, 𝑦) over a field, defined as the convex hull
of the weight vectors (𝑖, 𝑗) inℝ2 of all monomials 𝑥𝑖𝑦𝑗 ap-
pearing with nonzero coefficients in 𝑓(𝑥, 𝑦), first appears
in a 1676 letter from Newton to Oldenberg [23] and was
well known to Newton and his followers throughout the
18th and 19th century, cf. [4, Chapter XXX, §24, Histor-
ical Note]. Though it must have been well known, the
observation that the classical Newton polygon of a prod-
uct of polynomials is the Minkowski sum (see Figure 10)
of their classical Newton polygons does not seem to be
clearly enunciated in the literature until the theses of
Shanok [45, §2, p. 103, footnote 3] andHopper [19, Chap-
ter II, §1].

Archimedean Newton polygon. A completely different
type of irreducibility criterion depending on the relative
magnitudes of the absolute values of the coefficients was
introduced by Perron [40]. (We now assume that 𝑓(𝑥) is
a monic polynomial with coefficients in ℤ.) These crite-
ria depend on the following simple observation: if 𝑛 − 1
of the (complex) roots of 𝑓(𝑥) have absolute value < 1,
then 𝑓(𝑥) is irreducible. Indeed, if 𝑓(𝑥) has a noncon-
stant factor (which by Gauss’s Lemma can be taken to be
monic with integer coefficients), then all of its roots will
have absolute value< 1, but their product is the (integral)
constant term, a contradiction. The resulting irreducibility
criterion is, letting𝐴 = |𝑎0|+⋯+|𝑎𝑛−1|+1: if the coeffi-
cients satisfy |𝑎𝑛−1| > 1

2𝐴, then 𝑓(𝑥) is irreducible. There
is a similar criterion if all but a pair of complex conjugate
roots have absolute value < 1.

To take into account the relative magnitudes of the coef-
ficients, Hopper [19, Chapter III] considers anArchimedean
Newton polygon associated to a polynomial 𝑓(𝑥) with com-
plex coefficients. Define 𝑁∞(𝑓) to be the lower convex
hull of the set of points (𝑖,− log |𝑎𝑖|) in ℝ2. As before, if
𝑎𝑖 = 0 for some 0 < 𝑖 < 𝑛, then −log |𝑎𝑖| = +∞, so
can be ignored for the purposes of taking the lower convex
hull. (In fact, Hopper defines themirror image of this poly-
gon.) This is a natural generalization of the Newton poly-
gon with respect to a prime 𝑝 considered above. Indeed,
the negative absolute logarithm can be considered as an
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Archimedean analogue of a valuation; writing 𝑣∞(𝑥) =
− log |𝑥|, then |𝑥| = 𝑒−𝑣∞(𝑥) is in analogy with the non-
Archimedean 𝑝-adic absolute value |𝑥|𝑝 = 𝑝−𝑣𝑝(𝑥).

Later in the twentieth century, the Archimedean New-
ton polygon was, in various guises, used in a variety of con-
texts, including: by Khovansky [25] (cf. [42]) in an alge-
braic reformulation of his study of exponential equations
and eventually for combinatorial invariants attached to di-
visors on algebraic varieties; by Mueller and Schmidt [33],
[34] for bounding the number of solutions to Thue equa-
tions; and by Passare and his collaborators (see
e.g., [38], [37, §2.1], [1]) and Mikhalkin (see e.g., [39]) in
the theory of amoebas and in tropical geometry. The gen-
esis of the Archimedean Newton polygon going back to
Hadamard, as well as most of these later uses, stems from
the fact that its geometry is related to the absolute values
of the roots of the polynomial.

Taking a different approach, Hopper [19, Chapter III]
studies the Archimedean Newton polygon of a product of
polynomials, in analogy with Dumas’s result in the non-
Archimedean case: how do 𝑁∞(𝑔) and 𝑁∞(ℎ) compare
with 𝑁∞(𝑔 ⋅ ℎ)? Hopper remarks that if the analogue of
Dumas’s product result held for𝑁∞, then irreducibility cri-
teria such as Perron’s, which depend on the relative magni-
tude of the coefficients, would follow immediately. How-
ever, −log |𝑥| is not a valuation as there is an error term
in relating −log |𝑥 + 𝑦| with min(− log |𝑥|,− log |𝑦|),
hence such an exact product formula is not expected. How-
ever, Hopper goes on to prove bounds on how far apart
𝑁∞(𝑔 ⋅ ℎ) can be from 𝑁∞(𝑔) ∘ 𝑁∞(ℎ). To state these
bounds, if 𝑓(𝑥) ∈ ℂ[𝑥] is a polynomial of degree 𝑛 ≥ 1,
we consider 𝑁∞(𝑓) as a piecewise-linear function of 𝑡 on
the real interval [0, 𝑛].

Theorem 1 (Hopper [19, Chapter III, §3–5, pp. 33–38]).
Let 𝑔(𝑥), ℎ(𝑥) ∈ ℂ[𝑥] be monic polynomials and 𝑛 =
deg(𝑔) + deg(ℎ). Then

−log(1 + 𝑛
2) ≤ (𝑁∞(𝑔 ⋅ ℎ)(𝑡) − (𝑁∞(𝑔) ∘𝑁∞(ℎ))(𝑡)

≤ log(3 ⋅ 2𝑡(𝑛−𝑡))

for all 𝑡 ∈ [0, 𝑛].

More precisely, Hopper establishes an upper bound, as
in Theorem 1, that depends on the sharpness of the bends
in 𝑁∞(𝑔) ∘ 𝑁∞(ℎ), defined as the (exponential of the)
ratio of slopes of consecutive sides. Near very sharp bends,
the two polygons are very close; the careful analysis [19,
Chapter III, §5] of bends with small sharpness gives the
upper bound. She remarks that the “result can however
probably be considerably improved upon” due to certain
estimates employed in the proof [19, p. 38].

The Newton–Hopper polygon. In [19, Chapter II, §2],
Hopper introduces a new construction of a convex poly-
gon associated to a monic polynomial with integer coef-
ficients that takes into account both the divisibility (with
respect to a fixed prime 𝑝) and the magnitudes of the coef-
ficients. We call this the Newton–Hopper polygon 𝑁𝐻𝑝(𝑓)
associated to 𝑓(𝑥) = ∑𝑖 𝑎𝑖𝑥𝑖 ∈ ℤ[𝑥]. It is defined by
writing

𝑓(𝑥) = ∑
𝑖
∑
𝑗
𝑟𝑖𝑗𝑝𝑗𝑥𝑖

where 𝑟𝑖𝑗 ≠ 0 and satisfy −𝑝 < 𝑟𝑖𝑗 < 𝑝, and then taking
the convex hull of the points (𝑖, 𝑗) in ℝ2. This construc-
tion yields a convex polygon whose “lower half” is 𝑁𝑝(𝑓)
and whose “upper half” is the upper convex hull of the
points (𝑖, ⌊log𝑝 |𝑎𝑖|⌋), so that the upper half is approx-
imately −𝑁∞(𝑓). The analogous bounds in Theorem 1
hold for the upper half of the Newton–Hopper polygon
of a product.

Hopper’s strategy [19, Chapter IV] is then to start with
a polynomial 𝑓(𝑥) ∈ ℤ[𝑥], plot 𝑁𝐻𝑝(𝑓) (in black ink),
and then plot (in red and blue ink) the limits of the upper
and lower bounds in Theorem 1 away from 𝑁𝐻𝑝(𝑓). Fi-
nally, if one can verify that each possible polygon within
the region bounded between the (red and blue) limits can-
not be decomposed as a Dumas sum of Newton–Hopper
polygons (where we formally apply Dumas composition
to the upper half and lower half separately) of lower de-
grees, then 𝑓(𝑥)must be irreducible. This observation pro-
vides new irreducibility criteria that simultaneously gener-
alize those depending on the divisibility and the magni-
tudes of the coefficients.

Hopper then proceeds with a careful analysis of vari-
ous general situations in which this occurs, and then pro-
duces families of sparse polynomials that satisfy these cri-
teria. Some of her families in [19, Chapter IV, §5] cannot
be proven to be irreducible solely using either divisibility
properties or relative magnitude properties of the coeffi-
cients on their own. For example, the polynomial

𝑓(𝑥) = 𝑥7 ± (𝑝11 +𝑝)𝑥5 ±𝑝4,

for any prime 𝑝 > 3 ⋅ 249/4 > 14, 612 (e.g., 𝑝 = 14, 621
is the first such prime), is irreducible. Similarly, the poly-
nomial

𝑓(𝑥) = 𝑥9 ± (𝑝6 +𝑝)𝑥3 ± (𝑝9 +𝑝3)𝑥2 ±𝑝3, (1)

for any𝑝 > 3⋅281/4 > 3, 740, 922 (e.g.,𝑝 = 3, 740, 923
is the first such prime) is irreducible, see Figure 11. For
all primes 𝑝 below these bounds, a computer algebra sys-
tem can verify the irreducibility of the above polynomials.
Also, the following infinite family of polynomials

𝑓(𝑥) = 𝑥𝑛 ± 𝑘𝑥2 ± 𝑙𝑝2𝑣+1,
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Figure 11. The Newton–Hopper polygon of the
polynomial (1), in black, with the upper and lower
bounds in Theorem 1 in red and blue, respectively.
Hand drawn by Grace Hopper [19, p. 55].

where 𝑛≥3, 𝑣≥3, 0<𝑘<𝑝2(𝑣−2), 𝑝 ∤ 𝑘, 0< 𝑙<𝑝, and
𝑝 > 3 ⋅ 2𝑛2/4, are all irreducible. Similarly, the following
infinite family of polynomials

𝑓(𝑥) = 𝑥𝑛 ± 𝑘𝑝𝑥±𝑚𝑝𝑣,
where 𝑛 ≥ 2, 𝑣 ≥ 4, 0 < 𝑘 < 𝑝2(𝑣−2), 0 < 𝑚 < 𝑝𝑣−3,
𝑝 ∤ 𝑘𝑚, and 𝑝 > 3 ⋅ 2𝑛2/4, are all irreducible.
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Introduction
Joan Birman published her first paper, “On braid groups,”
in January 1969. That work introduced one of the most
important tools in the study of braids and surfaces, now
called the Birman exact sequence. Fifty years and more
than one hundred papers later, Birman is an active resear-
cher and has long been established as a leading figure in
the field of low-dimensional topology.

The goal of this article is to give a broad overview of Bir-
man’s mathematics. In the process, we will see several re-
lated themes emerge. Time and again, Birman has shown a
knack for asking the right questions, for pursuing and em-
bracing unlikely collaborations across mathematical disci-
plines, and for uncovering and revitalizing hidden or for-
gotten fields. Because of this, her work has often been
ahead of its time, with important implications and appli-
cations found years or decades after the original discov-
eries. For instance, her book on braids is credited with
bringing that theory from the fringes to the fore. Similarly,
when Birman beganworking onmapping class groups and
Torelli groups, she was working in isolation. Now these
are core topics in topology, and her contributions are of
fundamental importance. In fact, Birman’s work has un-
derpinned two Fields medals.

Birman’s research revolves around the theories of knots,
braids, mapping class groups of surfaces, and 3-manifolds.
Figure 1 shows a diagram of these topics and gives a road
map for this article. We will introduce the various objects
and the connections between them in the sections indi-
cated. It is a bit of a miracle that these subjects are so
closely intertwined. In what follows we will see how Bir-
man’s work has influenced and interacted with this beau-
tiful circle of ideas.

§1 Knots
A knot is the image of a smooth embedding of the circle
𝑆1 intoℝ3. We can think of a knot as a piece of string with
its ends glued together. We can draw a diagram of a knot
by projecting it to a plane and indicating the over/under-
crossings of the strands by putting a break in the strand
that is crossing below; see Figure 2. Two knots are equiva-
lent if they are isotopic, that is, if one knot can be contin-
uously deformed into the other without creating any self-
intersections along the way.

The fundamental problem in knot theory is to decide if
two knots are equivalent. A (not really) simpler version is
to decide if a given knot is equivalent to the trivial knot.
The knots in Figure 2 fall into two equivalence classes (left
and right trefoils). Which are equivalent?

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti/1808

Figure 1. A road map for this article (and Birman’s career).

Figure 2. Some examples of knots.

As this exercise illustrates, knot theory is difficult be-
cause there are many diagrams for the same knot that are
very different from one another. There is no easy way to
move between two different diagrams, and there is no sys-
tematic way to choose a canonical diagram for a knot.

Among the many successes of knot theory is the discov-
ery of knot invariants. An invariant for a knot is an object
(number, polynomial, etc.) we can associate to a knot with
the property that equivalent knots have the same invariant.
If we find two knots with different invariants, then they are
inequivalent knots.

One of the most famous and important knot invariants
is the Alexander polynomial, a Laurent polynomial that
can be computed from any knot diagram. The Alexander
polynomial is not a complete invariant: it attains the same
value on the left- and right-handed trefoil knots, and also
Kinoshita and Terasaka found a nontrivial knot with the
same Alexander polynomial as the trivial knot. The sim-
plest diagram for the latter has 11 crossings. It is still an
open problem to find an easily computable, complete in-
variant for knots (more on this later).
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Knot theory has applications to statistical mechanics,
molecular biology, and chemistry; seeMurasugi’s book [71]
for a survey. Later in this article we will see several connec-
tions of knot theory with other parts of topology, group
theory, dynamics, and number theory.

§2 Braids
A braid on 𝑛 strands is a collection of 𝑛 disjoint paths in
ℝ2×[0, 1], connecting 𝑛 points in ℝ2×{0} to the corre-
sponding points in ℝ2 ×{1}, and intersecting each plane
ℝ2 × {𝑡} in exactly 𝑛 points. The 𝑛 paths are called the
strands of the braid.

We consider two braids to be equivalent if they are iso-
topic, that is, if we can continuously deform one to the
other while holding the endpoints fixed and without al-
lowing strands to pass through each other. Figure 3 shows
two equivalent braids. The set of braids on𝑛 strands forms
a group 𝐵𝑛, with the group operation given by stacking
braids.

Figure 3. Two equivalent braids.

There is a more succinct (and sophisticated) way to de-
fine the braid group. Let𝐶𝑛 denote the configuration space
of 𝑛 distinct points in the plane. We have

𝐵𝑛 ≅ 𝜋1(𝐶𝑛).

The isomorphism is obtained as follows. Let 𝑒𝑡𝑎 be a braid
on 𝑛 strands. For each 𝑡 in [0, 1] we may consider the cor-
responding plane parallel to the original two planes. If we
intersect this plane with the braid 𝑒𝑡𝑎, we obtain a point
in 𝐶𝑛. As 𝑡 changes from 0 to 1, we obtain a loop in 𝐶𝑛,
that is, an element of 𝜋1(𝐶𝑛). This map is the desired iso-
morphism.

We can now see why the braid group is ubiquitous in
mathematics and science: it records the motions of points
in the plane. The points can be roots of polynomials, crit-
ical values of branched covers, particles in a two-dimen-
sional medium, or autonomous vehicles moving through
city streets. See the survey by Birman and her student Bren-
dle for an excellent introduction to the theory [16].

§3 Braids and Knots
There is a simple way to obtain a knot from a braid, namely
by connecting the top of the braid to the bottom by 𝑛 par-
allel strands. Actually, in general we obtain a link, which
is a disjoint union of knots. The resulting knot or link is
called a closed braid; see the left-hand side of Figure 4 for
an example. In 1923 Alexander proved the remarkable the-
orem that every knot is equivalent to a closed braid [3].

On the face of it, braids are more tractable than knots
because of the group structure, and Alexander’s theorem
gives us hope of applying our knowledge of braid groups to
the theory of knots. The immediate problem is that there
are many braids giving rise to the same knot. For instance,
if two braids are conjugate, then their braid closures are
equivalent.

There are also nonconjugate braids with equivalent
closures, and there are braids with different numbers of
strands that have equivalent closures. One specific way
to construct braids with different numbers of strands and
equivalent closures is through stabilization, illustrated in
Figure 4. In 1936 Markov announced (without proof) the
following surprising theorem: if two braid closures are
equivalent, then, up to conjugacy, the braids differ by a
finite sequence of stabilizations, destabilizations, and ex-
change moves (although it was soon realized that the ex-
change moves were not needed).

Figure 4. A closed braid and its stabilization.

Four decades later, Birman published a monograph,
Braids, links, and mapping class groups [12], based on a grad-
uate course she gave at Princeton University during the
academic year 1971–72. Her book was the first compre-
hensive treatment of braid theory, and its appearance rep-
resented the birth of the modern theory. It contains in
particular the first complete proof of Markov’s theorem.

Our discussion of braids and knots so far points us in
three natural directions:

1. the conjugacy problem for the braid group, namely, the
problemof algorithmically determiningwhether or not
two elements of 𝐵𝑛 are conjugate;
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2. the algebraic link problem, namely, the more general
problem of algorithmically determining if two braids
have equivalent closures; and

3. the big question of whether we can use braid theory to
discover new knot invariants.

Birman’s monograph focused precisely on these prob-
lems. Here we briefly touch on the first two problems, and
some contributions to these made by Birman later in her
career. In the next section we discuss how the book con-
tributed to the third problem.

With respect to the conjugacy problem, Birman’s work
has led in two directions. In the 2000s she wrote three
papers with Gebhardt and Gonzáles-Meneses [21–23] in
which they expand on the Garside approach to the conju-
gacy problem, explored three decades earlier in Birman’s
book. A different approach is provided by her paper with
Ko and Lee [7]. There, they introduce a new algebraic ap-
proach to the braid group, a tool now called the Birman–
Ko–Lee monoid for the braid group. This is the second-
most cited paper in Birman’s catalog.

In the 1990s Birman and Menasco wrote a series of six
papers with the title “Studying links via closed braids” [31–
36]. The fourth in the series was published in Inventiones
Mathematicae. A basic question is studied in these papers:
If two braids have the same number of strands and have
equivalent closures, can we find a sequence of elementary
moves that pass fromone braid to the other without chang-
ing the number of strands? Can we do this algorithmi-
cally?

In the end Birman and Menasco did find a “Markov the-
oremwithout stabilization,” a calculus for dealingwith the
algebraic link problem [37]. Along the way, they devel-
oped connections and applications to the field of contact
topology. In particular, they give examples where the iso-
topy class of a knot and the Bennequin invariant do not
fully determine the transverse isotopy class [38]; see also
Birman’s work with her student Wrinkle [45] as well as the
work of Etnyre and Honda [47].

§4 Birman’s Book and the Jones Polynomial
While at Princeton, Birman’s research focus was on the
third problem described in the last section, namely, using
braid theory to discover new knot invariants. One tool
that becomes available when we have a group in hand is
the subject of representation theory. This is relevant to the
theory of knot invariants because conjugacy classes of ma-
trices have many natural invariants, such as the determi-
nant.

At the time of Birman’s book, only one interesting rep-
resentation of the braid group was known, namely, the Bu-
rau representation. This representation gives a knot invari-
ant as follows: given a knot, choose a braid whose closure
is that knot, apply the Burau representation, subtract this

matrix from the identity, take the determinant, and then
scale by (1−𝑡)/(1−𝑡𝑛). This conjugacy class invariant for
braids interacts nicely with stabilization, and so we indeed
obtain a knot invariant.

The knot invariant arising from the Burau representa-
tion turns out to be nothing other than the Alexander poly-
nomial. (To paraphrase one of Birman’s sayings, when
you discover a new knot invariant, your task is to figure
out which existing invariant you have just rediscovered.)
The Alexander polynomial is of fundamental importance
in knot theory, but as mentioned earlier it is not a com-
plete invariant. And without any new representations on
the horizon, it seemed hopeless for Birman to use her ideas
to extract knot invariants from braids.

But then in 1984, after Birman became a professor at
Columbia University, Vaughan Jones asked to meet with
Birman to discuss a new representation of the braid group
he had discovered through his work on von Neumann al-
gebras. His representation was a direct sum of matrix rep-
resentations, one of the summands being the Burau rep-
resentation. From the representation, Jones extracted a
conjugacy class invariant for braids. This was not a deter-
minant (as for the Alexander polynomial) but a weighted
sum of the traces of the summands [56].

Birman explained the Markov theorem to Jones, who
then realized that his conjugacy invariant for braids gave a
new invariant of knots, similar to how the Burau represen-
tation gives the Alexander polynomial.

Jones’ new polynomial was quickly seen to be an im-
provement over the Alexander polynomial, as it could dis-
tinguish the left- and right-handed trefoil knots. Even bet-
ter, it evaluated nontrivially on the 11-crossing Kinoshita–
Terasaka knot [58]. And so the Jones polynomial was born,
and a revolution in knot theory was begun.

Jones received the Fields Medal in 1990 for this work.
Fittingly, Birman gave the laudation at the International
Congress of Mathematicians. See Birman’s article from
the proceedings [17] and also her personal recollections
in this journal [1]. In his Annals paper [57], Jones writes,
“The author would like to single out Joan Birman among
the many recipients of his thanks. Her contribution to this
new topic has been of inestimable importance.”

Jones showed that his polynomial is not a complete
knot invariant: the Conway knot and the 11-crossing
Kinoshita–Terasaka knot have the same Jones polynomial.
In a paper published in Inventiones Mathematicae, Birman
further found many inequivalent closed 3-braids with the
same Jones polynomial [15]. It is an open question whe-
ther or not there is a nontrivial knot with trivial Jones poly-
nomial.

Birman and Wenzl used the theory of the Jones poly-
nomial (specifically, the two-variable polynomial of Kauff-
man) to construct a new representation of the braid group
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[42]. Both Jones and Birman’s student Zinno [78] proved
that one summand of this representation is the same as
the Lawrence representation, famously proved to be faith-
ful by Bigelow [5] and Krammer [61].

Shortly after Jones’ discovery, Vassiliev discovered new
invariants of knots, named for him (and sometimes called
finite-type invariants). Birman and Lin gave a simplified,
axiomatic, combinatorial approach to these invariants [29].
This is Birman’s most cited paper and was also published
in Inventiones Mathematicae. Birman wrote a beautiful sur-
vey paper explaining this work and the connection to the
Jones polynomial [18]; this article won the Chauvenet
Prize in 1996.

§5 Mapping Class Groups
Wenowmove on from theworld of knots and braids, which
are one-dimensional objects, to the realmof surfaces, which
are inherently two-dimensional. The theory of mapping
class groups of surfaces was initiated by Dehn in the 1920s.
Dehn was the doctoral advisor of Magnus who, in turn,
was the advisor to Birman. As we will see, mapping class
groups will play a prominent role in Birman’s career.

To start at the beginning, a surface is a two-dimensional
manifold. For each 𝑔 ≥ 0 there is a surface 𝑆𝑔 of genus 𝑔,
obtained as the connect sum of 𝑔 tori (so 𝑆0 is the sphere,
and 𝑆1 is the torus). The classification of surfaces says that
these are all of the surfaces that are closed (compact and
without boundary) and orientable.

Figure 5. The first few closed, orientable surfaces.

While surfaces are completely classified, there are many
open questions, and the theory of surfaces is an active area
of research today. Of particular interest is the mapping
class group MCG(𝑆) of a surface 𝑆, the group of homo-
topy classes of homeomorphisms of 𝑆. This is a discrete
group that encodes the symmetries of 𝑆. One source of
nontrivial elements of MCG(𝑆) is the set of rotations of 𝑆.
For instance the surface 𝑆3 in Figure 5 admits an obvious
rotation of order 3.

An important type of infinite order element is a Dehn
twist. In Figure 6 we depict a twist of the annulus. A Dehn
twist on a surface is a homeomorphism that performs such
a twist on some annulus and is the identity on the com-
plement. If 𝑐 is a simple closed curve in 𝑆, then the Dehn
twist about an annular neighborhood of 𝑐 is a well-defined
element 𝑇𝑐 of MCG(𝑆).

Figure 6. A twist of an annulus.

Dehn proved the foundational theorem that MCG(𝑆𝑔)
is finitely generated by Dehn twists. Dehn’s point of view
was motivated by the following analogy:

linear maps : vectors :: mapping classes : curves

More specifically, Dehn was interested in simple closed
curves, those with no self-intersections. He referred to the
set of these as the arithmetic field of the surface.

After the early work of Dehn and his student Nielsen,
the subject of mapping class groups was largely forgotten.
Birman reignited interest in the subject through her thesis
work (see Section 8, “The Birman Exact Sequence”), her
book, and her various survey articles [13,14,20]. The sub-
ject really exploded with the work of Thurston, which was
announced shortly after Birman’s book was published; see
the next section.

Today, the theory of mapping class groups is a central
topic, connected to many fields of mathematics and phy-
sics. For instance it can be interpreted as:

1. the outer automorphism group of the fundamental
group of the surface;

2. the fundamental group of the moduli space of alge-
braic curves;

3. the isometry group of Teichmüller space; and
4. the classifying group for surface bundles.

See the primer by Farb and the author [48] for a modern
introduction to mapping class groups.

§6 Curves on Surfaces
Birman and Series wrote a number of papers aimed at un-
derstanding the nature of the set of simple closed curves
in a surface. They gave, for instance, an algorithm for de-
termining if an element of the fundamental group of a sur-
face has a simple representative [39]. They also described
a sense in which the action of MCG(𝑆) on the space of
simple closed curves in 𝑆 is linear, as per Dehn’s analogy
above [41].

The most influential result of Birman and Series [40]
addresses the question, What does the set of simple closed
curves look like if we draw them all at once? Precisely, they
fix a surface of negative Euler characteristic and a hyper-
bolic metric on the surface, and they consider the (unique)
geodesic representative of each homotopy class of simple
closed curves. Their main theorem is that the union of all
such geodesics is nowhere dense and hasHausdorff dimen-
sion 1.
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Figure 7. Left(7a): the 88 shortest geodesics on a hyperbolic punctured torus; right(7b): the 88 shortest geodesics on a Euclidean
torus.

This result is illustrated by Figure 7. The left side shows
a square with the four corners deleted. If we identify op-
posite sides, we obtain a punctured torus (a torus minus
one point). The hyperbolic metric on the latter is mapped
to the square by a conformal mapping. Long hyperbolic
geodesics are well approximated by arcs of short ones. So
even though the picture only shows the 88 shortest simple
geodesics, it gives a decent approximation of the union of
all simple geodesics.

Here are two striking points of contrast: (1) the union
of all closed geodesics (including the ones with self-inter-
sections) is dense; and (2) if we consider a Euclidean torus
(the torus obtained by identifying opposite sides of a Eu-
clidean square) and choose one geodesic in each homo-
topy class of simple closed curves, the resulting union of
geodesics is dense (see the right-hand side of Figure 7).

At the end of their paper, Birman and Series suggest an-
other interesting problem: counting the number of simple
geodesics as a function of the length. They write:

In fact the degree of the polynomial 𝑃0(𝑛) bound-
ing the number of simple geodesics of length 𝑛 is
at most 6𝑔+ 2𝑏− 6, where 𝑔 is the genus and 𝑏
the number of boundary components of 𝑀... In
general the precise nature of the bound seems to
be a very interesting number theoretic question.

Many years later, Mirzakhani did find the precise nature
of the bound (the upper bound of Birman and Series is
also a lower bound), one of the many stunning achieve-
ments in her Fields Medal work [68].

The Birman–Series result also plays a central role in the
proof of the celebratedMcShane identity, which states that
for any hyperbolic metric on the punctured torus, we have

∑
𝛾

1
1 + 𝑒ℓ(𝛾) = 1/2,

where the sum is over all simple closed geodesics and ℓ(𝛾)
denotes the hyperbolic length [66]. This theorem was also
generalized by Mirzakhani [67], who used her generaliza-
tion to compute the volume of moduli space in the Weil–
Petersson metric.

§7 Basic Algebraic Properties of the Mapping
Class Group
In this section we discuss Birman’s work on the following
basic algebraic questions about MCG(𝑆𝑔):
1. What is the abelianization?
2. What is the rank of amaximal torsion-free abelian sub-

group?

These are among the first questions we can ask about any
infinite group.

Mumford was one of the few mathematicians who stud-
ied the mapping class group in the period between Dehn
and Birman. He was interested in the applications to alge-
braic geometry. What he proved [70] is that any abelian
quotient of MCG(𝑆𝑔) is a quotient of ℤ/10 when 𝑔≥ 3.
Birman [11] improved the ℤ/10 to ℤ/2. Building on this,
her student Powell further improved the ℤ/2 to the triv-
ial group [73], thus establishing the fundamental theorem

346 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 3



that MCG(𝑆𝑔) is perfect for 𝑔 ≥ 3. This completely an-
swers the first question.

The second question was answered in a joint paper by
Birman, Lubotzky, and Birman’s student McCarthy [30].
The three of them were working to understand Thurston’s
groundbreaking work on the mapping class group. As a
part of his Fields Medal work, Thurston [75] gave a clas-
sification of elements of the mapping class group, now
called the Nielsen–Thurston classification. This theorem
states that every element of the mapping class group has a
representative homeomorphism that preserves a (possibly
empty) collection of disjoint curves and, on the comple-
mentary pieces, is either of finite order or pseudo-Anosov.
A pseudo-Anosov map is one that locally looks like the

action of the matrix ( 𝜆 0
0 𝜆−1 ) on ℝ2. So there are two in-

variant foliations, one stretched by 𝜆 and one by 𝜆−1.
We should think of Thurston’s theorem as a sort of Jor-

dan form for mapping classes. There is one problem: he
did not prove that the decomposition along curves was
canonical. Birman, Lubotzky, and McCarthy addressed ex-
actly that, by defining the canonical reduction system for
a mapping class.

As a result of this work, Birman, Lubotzky, and McCar-
thy showed that the answer to the second question is
3𝑔−3 for MCG(𝑆𝑔). They further proved that every solv-
able subgroup of themapping class group is virtually abelian.

Like the Jordan canonical form for matrices, canonical
reduction systems feature prominently in modern theory
of mapping class groups, especially in work on their alge-
braic structure. For instance, Ivanov and McCarthy used
canonical reduction systems to prove that mapping class
groups satisfy a Tits alternative, thus strengthening the anal-
ogy between mapping class groups and arithmetic groups
[51,65].

§8 The Birman Exact Sequence
There are many connections between the theories of braid
groups and mapping class groups. The two most impor-
tant are the Birman exact sequence and the Birman–Hilden
theory, discussed in this section and the next. One running
theme is that of group presentations for mapping class
groups.

Dehn proved that the mapping class group of the torus
is isomorphic to SL2(ℤ), which has a well-known finite
presentation. In her thesis work, Birman’s goal was to find
group presentations for other mapping class groups. She
succeeded right away in finding an inductive procedure for
computing presentations of mapping class groups of sur-
faces with marked points.

Let 𝑆 be a surface of negative Euler characteristic, and
let 𝑝 ∈ 𝑆. We consider MCG(𝑆,𝑝), the group of homo-
topy classes of homeomorphisms of 𝑆 fixing the point 𝑝
(it is crucial that the homotopies fix 𝑝 as well). There is a

forgetful map MCG(𝑆,𝑝) → MCG(𝑆). Birman wanted to
understand the kernel.

For [𝜙] ∈ MCG(𝑆,𝑝) to be in the kernel, this means
that 𝜙 is homotopic to the identity as long as we allow 𝑝
to move during the homotopy. If we follow the path of 𝑝
throughout this homotopy, we obtain a loop in 𝑆, that is,
an element of the fundamental group 𝜋1(𝑆, 𝑝). Birman’s
theorem is that this identification is well-defined and that
it gives an isomorphism of 𝜋1(𝑆, 𝑝) with the kernel.

The resulting map 𝜋1(𝑆, 𝑝) → MCG(𝑆,𝑝) is usually
called the push map because we can think of the image of
𝛼 ∈ 𝜋1(𝑆, 𝑝) as the element of MCG(𝑆,𝑝) obtained by
pushing 𝑝 along 𝛼 (Birman originally called this the spin
map).

Birman’s result is usually stated as saying that the fol-
lowing sequence is exact:

1 → 𝜋1(𝑆, 𝑝) → MCG(𝑆,𝑝) → MCG(𝑆) → 1.

Using this, she could promote a presentation of MCG(𝑆)
to a presentation for MCG(𝑆,𝑝). The Birman exact se-
quence is ubiquitous in the theory ofmapping class groups,
as it is used in many inductive arguments.

What is the connection to braid groups? The first step in
this direction is to generalize from one point 𝑝 to a finite
set of points 𝑃 = {𝑝1,… ,𝑝𝑛}. The group MCG(𝑆,𝑃) is
the group of homotopy classes of homeomorphisms of 𝑆
fixing 𝑃 as a set. Let 𝐶𝑛(𝑆) denote the space of configu-
rations of 𝑛 distinct points in 𝑆. Birman’s more general
exact sequence is

1 → 𝜋1(𝐶𝑛(𝑆),𝑃) → MCG(𝑆,𝑃) → MCG(𝑆) → 1.

When 𝑛 = 1, the space𝐶𝑛(𝑆) is homeomorphic to 𝑆, and
so we obtain the first exact sequence above. Recall that
𝐵𝑛 is defined as 𝜋1(𝐶𝑛(ℝ2), 𝑃). The group 𝜋1(𝐶𝑛(𝑆),𝑃)
is known as a surface braid group. We can visualize the
elements as braided strands in 𝑆×[0, 1]. As a special case,
when 𝑆 is the disk, we conclude that 𝐵𝑛 is isomorphic to
the mapping class group of a disk with 𝑛 marked points.

Birman used themore general exact sequence in her the-
sis to obtain presentations for the mapping class groups
of the torus with any number of marked points [10]. The
surface of genus 2 would have to wait for her work with
Hilden.

§9 The Birman–Hilden Theory
After graduating from New York University’s Courant In-
stitute in 1968, Birman took a job at Stevens Institute of
Technology, where she began a very successful collabora-
tion with Hilden, a graduate student there at the time.

Birman and Hilden originally set out to find a presen-
tation for MCG(𝑆2), the next natural mountain to climb.
The key idea in their work is to relate MCG(𝑆2) to a braid
group in the following way. The hyperelliptic involution
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𝜄 ∶ 𝑆2 → 𝑆2 is the rotation by 𝜋 about the axis indicated
in Figure 8.

Figure 8. The hyperelliptic involution of 𝑆2.

The quotient𝑆2/⟨𝜄⟩ is a sphere𝑆0,6 with six distinguished
points (the images of the six fixed points of 𝜄). Birman and
Hilden proved that there is an isomorphism

MCG(𝑆2)/⟨[𝜄]⟩
≅⟶ MCG(𝑆0,6).

Since MCG(𝑆0,6) is closely related to a braid group (with
the sphere replacing the disk), this allowed them to con-
vert a known presentation for MCG(𝑆0,6) into a presenta-
tion for MCG(𝑆2). This work is the subject of Birman’s
article, “My favorite paper” [9].

The above isomorphism is defined as follows. As ob-
served earlier by Birman, every element of MCG(𝑆2) has a
representative that commutes with 𝜄. Such a representative
descends to a homeomorphism of 𝑆0,6 and hence gives an
element of MCG(𝑆0,6). The hard part of their theorem is
showing that this map is well-defined, that is, that it inter-
acts well with homotopies.

Birman and Hilden vastly generalized this theorem in a
series of papers on hyperelliptic and symmetric mapping
class groups [24–26], culminating in their most general
result [28], which was published in Annals of Mathematics.
This work was later generalized byMacLachlan andHarvey
[63] and byWinarski [76], who gave Teichmüller-theoretic
and combinatorial-topological points of view.

The Birman–Hilden theory gives a dictionary between
the theories of braid groups and mapping class groups,
with important applications on both sides. For instance
it is used in the proof that MCG(𝑆2) is linear [6, 60] and
also in the resolution of a question of Magnus about the
action of the braid group on the fundamental group of the
punctured disk [28]. We refer the reader to our survey with
Winarski for a detailed discussion [64].

§10 Heegaard Splittings, Torelli Groups,
and Homology Spheres
We now turn to the interface between the theories of sur-
faces and 3-manifolds. A 3-manifold is the three-dimensional
analogue of a surface, that is, a space that locally looks like
ℝ3. A first example is the 3-sphere 𝑆3. We can use stere-
ographic projection to identify 𝑆3 as ℝ3 with one added
point at infinity, in much the same way that we identify 𝑆2

as ℝ2 with a point at infinity.

In this section we will focus on one particular construc-
tion of 3-manifolds from surfaces, namely Heegaard split-
tings. If 𝑆𝑔 is the surface of a donut with 𝑔 donut holes,
then the handlebody 𝐻𝑔 is the donut itself. By gluing
two copies of 𝐻𝑔 along their boundaries, we obtain a 3-
manifold without boundary. For each 𝑔 there is a particu-
lar gluing 𝜓 ∶ 𝑆𝑔 → 𝑆𝑔 that results in the sphere 𝑆3. (The
usual embedding of 𝐻𝑔 in ℝ3 ⊆ 𝑆3 is a realization of
this gluing: the outside of 𝐻𝑔 is another copy of 𝐻𝑔!) In
general, the decomposition of a 3-manifold into two han-
dlebodies glued along their boundary is called a Heegaard
splitting.

If we take any homeomorphism 𝜙 of 𝑆𝑔 and post-com-
pose the gluing map𝜓 by𝜙, we obtain a new 3-manifold.
The resulting 3-manifold only depends on the mapping
class [𝜙] ∈ MCG(𝑆𝑔). What is more, every closed, ori-
entable 3-manifold arises in this way. The upshot is that
the theory of Heegaard splittings gives us a set map

MCG(𝑆𝑔) → 3-manifolds.
Themapping class groupMCG(𝑆𝑔) acts on the first homol-
ogy group 𝐻1(𝑆𝑔). The kernel of this action is called the
Torelli group ℐ(𝑆𝑔). By the Mayer–Vietoris theorem, we
have the restriction

ℐ(𝑆𝑔) → homology 3-spheres.
Here, a homology 3-sphere is a 3-manifold that has the
same homology groups as 𝑆3. This is an important sub-
class of 3-manifolds. Indeed, the fact that there exist non-
trivial homology 3-spheres is the reason that the Poincaré
conjecture cannot be stated in terms of homology alone
(and this is what forced Poincaré to invent 𝜋1).

Birman published a number of works onHeegaard split-
tings, specifically with the aim of classifying 3-manifolds
through the lens of the mapping class group. For instance,
with Hilden [27] she gave an algorithm to determine if a
manifold with a given Heegaard splitting is homeomor-
phic to 𝑆3.

§11 Birman’s Work on Torelli Groups
Birman made two monumental contributions to the the-
ory of Torelli groups. In particular, her work was aimed at
the following questions:

1. What is a natural generating set for the Torelli
group?

2. What are the abelian quotients of the Torelli
group?

3. Is the Torelli group finitely generated?

As with mapping class groups, these are among the first
properties we would like to know about a group.

There is also a connection with algebraic geometry: the
Torelli group encodes the fundamental group of the Torelli
space, the space of framed curves of genus 𝑔. The period
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mapping takes this space to the Siegel upper half-space,
sending a framed curve to its period matrix. (Torelli is the
name of an Italian algebraic geometer.) As such, the above
questions can be reinterpreted as basic questions about the
topology of Torelli space.

Birman spent the academic year 1969–70 in Paris. By
her own account, she was mathematically isolated there
and discouraged [1]. But she had an idea for how to attack
the first question by brute-force calculation. The starting
point is that the mapping class group MCG(𝑆𝑔) and the
Torelli group ℐ(𝑆𝑔) fit into a short exact sequence

1 → ℐ(𝑆𝑔) → MCG(𝑆𝑔) → Sp2𝑔(ℤ) → 1.

The group Sp2𝑔(ℤ) is isomorphic to the automorphism
group of 𝐻1(𝑆𝑔; ℤ) ≅ ℤ2𝑔; we have the symplectic group
here instead of the whole general linear group because
automorphisms preserve the algebraic intersection form,
which is symplectic. From this point of view, we can think
of Sp2𝑔(ℤ) as capturing the linear, easy-to-understand as-
pects ofMCG(𝑆𝑔) and of ℐ(𝑆𝑔) as encapsulating the more
difficult, mysterious aspects.

Birman knew that the defining relations for Sp2𝑔(ℤ)
correspond to generators for ℐ(𝑆𝑔) (this is a general princi-
ple that applies to any short exact sequence of groups). So
the task then was to find a reasonable group presentation
for Sp2𝑔(ℤ). She succeeded and obtained a presentation
with three families of generators and 10 families of rela-
tions.

Birman’s student Powell then gave simple descriptions
of the resulting generators for ℐ(𝑆𝑔): they are Dehn twists
about separating curves and bounding pair maps [73]. A
bounding pair map is 𝑇𝑎𝑇−1

𝑏 , where 𝑎 and 𝑏 are disjoint,
homologous, nonseparating curves; see Figure 9. Putman,
who gave a geometric proof of the Birman–Powell result
in his thesis [74], describes Birman’s work as “absolutely
heroic.”

Figure 9. Left: a bounding pair; right: a separating curve.

Birman and Craggs took aim at the second and third
questions, and they made a most spectacular contribution.
They showed that, unlikeMCG(𝑆𝑔), the group ℐ(𝑆𝑔) does
have nontrivial abelian quotients. They found a family
of homomorphisms 𝜌𝜓 ∶ ℐ(𝑆𝑔) → ℤ/2. Surprisingly,
the definition involves the theories of 3- and 4-manifolds.
One hope they hadwas that therewould be infinitelymany
distinct such homomorphisms, thus proving that ℐ(𝑆𝑔)
was not finitely generated.

In order to specify one of the Birman–Craggs homomor-
phisms, we need to fix some Heegaard splitting 𝜓 of 𝑆3.
Now let 𝑓 ∈ ℐ(𝑆𝑔). As in Section 10, “Heegaard Splittings,
Torelli Groups, and Homology Spheres,” 𝑓 determines a
homology 3-sphere 𝑀𝑓. Every homology 3-sphere is the
boundary of some 4-manifold. The Rokhlin invariant of
𝑀𝑓 is the signature of this 4-manifold, divided by 8, mod 2
(by Rokhlin’s theorem, this is well-defined). This element
of ℤ/2 is 𝜌𝜓(𝑓). Miraculously, this defines a homomor-
phism ℐ(𝑆𝑔) → ℤ/2. The proof features what is probably
the first instance of a 4-manifold trisection, a tool popu-
larized four decades later by David Gay and Robion Kirby
[79].

Several years after these works, Johnson arrived on the
scene. In a stunning series of deep, beautiful papers, he
expanded on the work of Birman and her collaborators.
He proved [55] that ℐ(𝑆𝑔) is finitely generated for 𝑔 ≥ 3.
Also he classified the Birman–Craggs homomorphisms—
showing directly that there were only finitely many—and
gave a complete description of the abelianization of ℐ(𝑆𝑔)
[52]. (Amazingly, there is still no definition of these ho-
momorphisms that does not involve the construction of a
4-manifold.) As a byproduct, Johnson showed that ℐ(𝑆𝑔)
cannot be generated byDehn twists about separating curves,
disproving a conjecture of Birman.

See Johnson’s delightful survey for more about his work
[53]. In the survey, Johnsonnotes that the interest in Torelli
groups from topologists “was initiated principally through
the work of Joan Birman” [54].

§12 Lorenz Knots
We end by discussing the work of Birman and Williams on
Lorenz knots in the early 1980s. This is a fitting finale, as
it combines all four of the main objects of study in this
article. It is also a prime example of work that was ahead
of its time, with 94 of its 106 citations on MathSciNet®
coming after the year 2000.

E. N. Lorenz was a pioneer of chaos theory. He was
particularly interested in the weather, and whether it was
deterministic. Lorenz is perhaps most famous for coining
the phrase “butterfly effect.”

In order to help understand weather patterns, Lorenz
devised a simplified version of the Navier–Stokes equa-
tions, a system of three ordinary differential equations in
three variables [62]. This system has a strange attractor,
called the Lorenz attractor, shown in the top of Figure 10.
Forward trajectories of points converge to the attractor and,
once there, stay forever.

A Lorenz knot is a knot obtained as a periodic orbit in
the Lorenz attractor. Williams showed that Lorenz knots
are exactly the ones that can be drawn on the “template”
shown at the bottom of Figure 10.

A Lorenz braid is a braid consisting of strands that either
go monotonically left to right or from right to left, where
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Figure 10. Top(10a): the Lorenz attractor; bottom(10b): the
Lorenz template.

the strands going from left to right pass over the strands
going from right to left, and where neither the left-to-right
nor the right-to-left strands cross amongst themselves; see
Figure 11. Lorenz knots can also be described as the clo-
sures of Lorenz braids.

Figure 11. A Lorenz braid.

Williams approached Birman at a conference and asked
her if she could identify some of the knots he was study-
ing. She could, and their discussion quickly turned into
a fruitful collaboration. In their first paper [44], Birman
and Williams proved many theorems about Lorenz knots,
including:

1. There are infinitely many (inequivalent) Lorenz knots.
2. Lorenz knots are prime.
3. Every algebraic knot is a Lorenz knot.
4. Every Lorenz knot is fibered.

In the third theorem, an algebraic knot is any component
of the link of an isolated singularity of a complex curve.
The fourth theorem requires some explanation. We can
construct a 3-manifold from a surface 𝑆 by the mapping

torus construction: for [𝜙] ∈ MCG(𝑆), we take the prod-
uct 𝑆 × [0, 1] and glue 𝑆 × {0} to 𝑆 × {1} by 𝜙. The
resulting 3-manifold has a natural map to 𝑆1 with fiber 𝑆,
and we say that the 3-manifold is fibered. A knot in ℝ3

is said to be fibered if its complement in 𝑆3 is a fibered
3-manifold.

Two decades after Birman and Williams, Ghys entered
the picture. He was studying the manifold𝑀 = PSL2(ℝ)/
PSL2(ℤ). The manifold 𝑀 is homeomorphic to the com-
plement in 𝑆3 of the trefoil knot, and it can also be de-
scribed as the unit tangent bundle of the modular surface
(the quotient of the hyperbolic plane by PSL2(ℤ)). From
the latter description, 𝑀 has a geodesic flow. Ghys was
studying the closed orbits in this flow, and he proved that
the knots arising from these closed orbits are in natural
bijection with the Lorenz knots (the connection was fur-
ther investigated by Pinsky [72]). He further showed that
the Rademacher function exactly records the linking num-
ber of each knot with the missing trefoil. We recommend
Ghys’s beautiful survey, written on the occasion of his ple-
nary lecture at the International Congress of Mathemati-
cians [50].

We next turn to the question, How common are Lorenz
knots? Dehornoy, Ghys, and Jablon showed that of the
1,701,936 knotswith atmost 16 crossings in their diagrams,
only 20 are Lorenz knots. And so from this point of view
they appear to be rather rare. Birman and her postdoc Kof-
man took a different point of view. In order to explain it,
we take a detour into hyperbolic geometry and the classifi-
cation of 3-manifolds.

Thurston revolutionized the theory of 3-manifolds by
showing that many knots are hyperbolic; that is, their com-
plements in 𝑆3 could be given complete Riemannian met-
rics of constant sectional curvature −1. By the Mostow
rigidity theorem, hyperbolic structures on 3-manifolds are
unique. In particular, a hyperbolic knot has a well-defined
volume.

Thurston’s work on knots eventually led him to formu-
late his geometrization conjecture, which shaped the field
for several decades. The conjecture states that every 3-man-
ifold can be decomposed into geometric pieces, namely,
Seifert-fibered spaces (completely classified in the 1930s
by Seifert) and hyperbolic manifolds. The Poincaré conjec-
ture is a special case of Thurston’s conjecture because there
are no counterexamples to the latter among the Seifert-
fiber
-ed spaces or the closed hyperbolic manifolds (which have
infinite fundamental group).

The geometrization conjecture was famously proved by
Perelman in 2003; see [46,59,69]. More recently, Agol and
Wise proved that every closed hyperbolic 3-manifold has
a finite cover that is fibered, verifying another conjecture
of Thurston [2,4,77]. This gives a satisfying description of
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the hyperbolic pieces of a 3-manifold: up to taking finite
covers, they all come from surface homeomorphisms.

We return now to our story about Lorenz knots. Rather
than organizing knots by the number of crossings in their
diagrams, Birman and Kofman organized the hyperbolic
knots by their volumes. They showed that of the 201 hy-
perbolic knots of smallest volume, more than half of them
are Lorenz knots [8]. So among all knots, Lorenz knots are
extremely rare, but among the small-volume hyperbolic
knots, Lorenz knots are quite prevalent.

Birman and Williams wrote a companion paper [43]
where they studied a different flow on 𝑆3 and discovered
an appropriate template in that case as well. In his gem
of a thesis, Ghrist [49] showed that this flow is universal,
in that it contains all knots as closed orbits, disproving a
conjecture of Birman and Williams.

There are many other intriguing aspects to the story and
tantalizing questions to answer. As Birman writes at the
end of her survey [19], “There is a big world out there, and
a great deal of structure, waiting to be discovered!”

Epilogue
A distinguishing feature of Birman’s career is that her re-
search has been motivated by her own vision, interests,
and curiosity. There are very few instances where Birman
was trying to answer someone else’s question or solve some-
one else’s problem. While thismay seem like a risky way to
approach a career in mathematics, it is hard to argue with
the results. Besides the beautiful mathematics she has pro-
duced by herself and with her collaborators, she has had
(as we have seen) a direct impact on two Fields Medals
(Jones’ and Mirzakhani’s) and a plenary address at the In-
ternational Congress of Mathematicians (Ghys’), among
the many works she has helped to inspire.

As we touched on at the outset and throughout this ar-
ticle, Birman’s work was in many cases ahead of its time,
her foundational work finding applications (and apprecia-
tion) many years after the original discovery. Braid groups,
mapping class groups, Torelli groups, and Lorenz knots
were fringe topics when she started. With the break-
throughs of Jones, Mirzakhani, Thurston, Johnson, and
Ghys we have seen the impact and validation of Birman’s
work.

As a recent collaborator of Birman’s and as a researcher
in the same field, the author has had the pleasure of seeing
Birman’s mathematics from up close and being inspired
by her work. We eagerly look forward to the next chapters
of Birman’s career, including new discoveries by Birman
herself and new perspectives on her prior work, yet to be
uncovered.
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Marina Evseevna Ratner, renowned for her work in dynam-
ics, passed away on July 7, 2017, at her home at El Cerrito, 
California, USA, at the age of 78. Her profound contri-
butions, establishing the Raghunathan conjecture and its 
variants, from the 1990s when she was in her early fifties, 
have become a milestone in homogeneous dynamics and 
have had an impact on the study of a broad range of areas 
of mathematics, including dynamics, diophantine approx-
imation, ergodic theory, geometry, and Lie group theory.

Marina was born in Moscow on October 30, 1938 
to scientist parents, her father a plant physiologist and 
mother a chemist. As a Jewish family they had a difficult 
time in Russia at that time. In particular, her own mother 
lost her job for having corresponded with none other than 
her mother who was in Israel, which was considered an 
enemy state. Marina was educated in Moscow and fell in 
love with mathematics when she was in the fifth grade; 
“mathematics came naturally to me and I felt unmatched 
satisfaction solving difficult problems” she was to aver 
later.1 After completing school she gained admission to 
the Moscow State University, which, with the dawning of 
the Khrushchev era, had begun to accept Jewish students 
on an equal footing.

After graduating from the University in 1961, Ratner 
worked for four years as an assistant in the Applied Statistics 
Group of A. N. Kolmogorov, the celebrated Russian math-
ematician who laid the foundations of measure-theoretic 
probability theory and had a great influence on her during 
her undergraduate years. Kolmogorov had an intensive 
training program for talented high school students with 
which Marina was actively involved. It is also during these 
years that she gave birth to a daughter from a short-lived 
marriage.

Marina Ratner
S. G. Dani 

S. G. Dani was affiliated with the Tata Institute of Fundamental Research 
(TIFR), Mumbai for over four decades, until mandatory retirement in 
2012. Subsequently, he was associated with IIT Bombay and, more recently, 
is with the UM-DAE Centre for Excellence in Basic Sciences, Mumbai, a 
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Ratner landed in Israel, with her daughter, in 1971 and 
served as a lecturer until 1974 at the Hebrew University 
of Jerusalem and then at the Pre-academic School of the 
Hebrew University for another year. During this period 
Ratner continued her work on the geodesic flows, and also 
their generalizations in higher dimensions, and established 
in particular a property manifesting complete randomness 
of behavior of the trajectories of the Anosov flows, known 
as the Bernoulli property, that was much sought after in 
various systems.

In the West the study of flows analogous to Anosov 
flows, called “Axiom A” flows, was introduced by Stephen 
Smale, then at the University of California (UC), Berkeley. 
Apart from a certain generality of setting, this study involves 
separating the role of the measure and understanding the 
dynamics in terms of the construction of special kinds of 
partitions of the space, known as Markov partitions. Pro-
found work was done in this direction by one of Smales’s 
students, Robert E. Bowen, known commonly by his ad-
opted name “Rufus” Bowen; the work led Bowen to the 
construction of invariant measures inherently associated to 
the systems in more general settings, now known as Bowen 
measures. Bowen completed his doctorate in 1970 and 
joined the Berkeley faculty in the same year. Not surpris-
ingly, Bowen was interested in the work of Marina Ratner, 
and their correspondence during her Jerusalem years cul-
minated in Ratner getting an invitation from UC Berkeley, 
which she joined in 1975 as acting assistant professor.

Another class of flows, called horocycle flows, are seen to 
have become a major love for Marina after moving to Berke-
ley. The geodesic flow associated with a surface of constant 
negative curvature has two natural companion flows, called 
the contracting horocycle flow and the expanding horocycle 
flow; they are actually twins, interchangeable through time 
reversal of directions at each point, so one may simply talk 
of the horocycle flow. Passing through each point of the 
phase space (consisting of a point of the surface together 

In 1965 Marina took up research under the supervision 
of Ya. G. Sinai, a former student of Kolmogorov, renowned, 
in particular, for his role jointly with his advisor in the 
development of the very influential “entropy” invariant in 
ergodic theory around 1960.2 In the context of how the 
theory was developing then, in Russia, the geodesic flows 
associated with surfaces of negative curvature had emerged 
as crucial examples for study from an ergodic-theoretic 
point of view, and Ratner also wrote her thesis on this 
topic.3 Apart from the examples themselves, a general 
class of systems known as Anosov flows, named after D. 
V. Anosov who introduced and proved some deep results 
about them, were of interest, and Ratner worked on the 
asymptotic statistical properties of these flows as well. For 
the work she received the equivalent of the PhD degree in 
1969 from Moscow State University.

After receiving the degree Ratner was employed as an 
assistant at the High Technical Engineering School in 
Moscow. In 1970 the government of USSR was led, in the 
face of international pressure, to increase substantially the 
emigration quotas, sparking an exodus of Russian Jews to 
Israel, of which earlier there had just been a trickle. Not-
withstanding the relaxation in the policy, the government 
and the bureaucracy in general were highly resistant to 
emigration and treated those desirous of migrating with 
utmost severity in various ways. Thus, when Ratner applied 
for a visa that year (1970) to emigrate to Israel, she was 
dismissed from the job at the Engineering School.

2A dynamical system in the present context means a one-parameter group 
of transformations of a space (sometimes called the phase space), with the 
parameter representing time (which could be continuous or discrete); the 
theory focuses on the long-term behavior of the trajectories of points under 
application of the transformations, namely, as the time parameter tends to 
infinity. In ergodic theory the phase space is further considered equipped 
with a measure of unit mass, namely, a probability is associated for points 
to belong to various subsets; the system is said to be measure-preserving if 
the probability remains unchanged when any of the transformations under 
consideration is applied to a point. In these instances one often focuses on 
trajectories of “generic points" in terms of the measure or equivalently in 
statistical terms with respect to the initial point. The Kolmogorov–Sinai 
entropy is a nonnegative number associated with each measure-preserving 
system, and when the entropy of two systems is different, their long-term 
behavior is different. The invariant thus enabled distinguishing dynamical 
systems on a much finer scale than was possible before.
3The “geodesic flow” consists of starting with a given point on the surface 
(or manifold in general) and a direction from that point and moving on, 
along the distance-minimizing paths corresponding to the geometry of the 
surface, for the desired amount of time, and noting the point of arrival and 
the direction of movement at that point; thus, the phase space in this case 
is formed of pairs consisting of a point of the surface and a direction at that 
point, and the above procedure describes how the transformation is defined. 
On the usual sphere the trajectories (paths) of such a flow would follow the 
great circle, and return to the original point after a fixed amount of time. 
However, when the surface has negative curvature, the trajectories move 
away from each other substantially, exponentially in time, and when the 
surface is compact, “almost all” of them (statistically) tend to fill up the 
whole space with the passage of more and more time.

Marina Ratner giving a talk at the International 
Colloquium at TIFR, 1996.
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serving flows would imply that the surfaces themselves are 
geometrically indistinguishable. The answer to the corre-
sponding question in the case of the geodesic flows is a de-
finitive no since in fact the flows being Bernoullian means 
(by a well-known result of D. S. Ornstein) that any two of 
them are isomorphic to each other (up to a rescaling of the 
time parameter), irrespective of the specific geometries of 
the underlying surfaces. Ratner proved that on the other 
hand the horocycle flows corresponding to two distinct 
compact surfaces of constant negative curvature would 
never be isomorphic. This kind of phenomenon is referred 
to as rigidity. She also exhibited various variations of the 
rigidity property of the horocycle flows, through a series of 
papers, describing their factors, joinings, etc. (joining is a 
technical construction that enables comparing two systems 
with regard to the nature of their dynamics). Two of the 
three papers in this respect appeared, in 1982 and 1983, 
in the Annals of Mathematics. Apart from the immediate 
outcomes, which were striking in themselves, the work has 
germs of the ideas involved in the later celebrated work on 
the Raghunathan conjecture.

Let me now come to the Raghunathan conjecture, resolu-
tion of which was the major feat of Marina’s work. Genesis 
of the conjecture is intricately connected with my student 
years at the Tata Institute of Fundamental Research, and it 
would be worthwhile to recall some details in that regard. 
I did my doctoral work in the early 1970s under the super-
vision of M. S. Raghunathan on flows on homogeneous 
spaces.4 The thesis dealt primarily with the Kolmogorov 
property, which is a statistical property concerning a strong 
form of mixing, with no direct bearing on the behavior of 
individual orbits. However, in a paper written shortly after 
completing the thesis paper (before the award of the degree, 
in fact) I proved that all the orbits of actions of a class of 
flows, more specifically horospherical flows, are dense in 
the space. Around that time Jyotsna Dani (my wife) who 
was working under the supervision of S. Raghavan, at 
TIFR, had proved that for any vector whose coordinates 
are nonzero and not rational multiples of each other, the 

with a direction at the point), there is a uniquely defined 
curve such that if we pick two points on any one of these 
curves and consider their trajectories under the geodesic 
flow we find them getting closer and closer with the pas-
sage of time, with the distance between the corresponding 
points of the trajectories tending to zero. Moreover, there 
is a natural parametrization on these curves with respect 
to which they can be thought of as the trajectories of a 
measure-preserving flow, and that is the (contracting) 
horocycle flow associated with the surface; the expanding 
horocycle flow arises similarly from consideration of tra-
jectories of the geodesic flow in the reverse direction. These 
flows have historically proved to be very useful in studying 
the properties of the geodesic flows. While in the nature 
of things the horocycle flow would seem just a sidekick of 
the geometrically majestic geodesic flow, in the theory of 
dynamical systems the former has acquired a stature of its 
own, on account of some of its unique properties.

In two papers published in 1978 and 1979 Ratner 
showed that the horocycle flows are “loosely Bernoulli” 
while their Cartesian squares are not “loosely Bernoulli”; 
the loose Bernoullicity property was introduced by J. Feld-
man, a colleague at Berkeley, and concerns the flow being 
similar to the standard winding line flows on the torus 
along lines with irrational slopes, if one allows the time 
parameter associated with the trajectories to be modified 
suitably. The fact, as established by Ratner, that the Carte-
sian square is not loosely Bernoulli for the horocycle flows 
is rather curious and was the first such instance to be found.

The early 1980s saw a major breakthrough in the under-
standing of the horocycle flows associated with compact 
surfaces, of constant negative curvature, at the hands of 
Ratner. A major question involved was the following: given 
two such surfaces whether the horocycle flows associated 
with them being isomorphic to each other as measure-pre-

Marina Ratner with M. S. Raghunathan and S. G. Dani 
at the conference held in her honor at the Hebrew 
University of Jerusalem in October 2013.

4For an idea of homogeneous spaces and dynamics on them let us consider a 
Euclidean space and agree to identify two given vectors of the space if their 
difference has integer coordinates, namely, we view the vectors modulo the 
lattice of vectors with integral coordinates; geometrically in effect we are 
considering a torus, and translations by vectors on any particular line define 
a translation flow on the torus. Similarly, when the elements of various 
matrix groups, more generally Lie groups, are considered modulo elements 
of large enough discrete subgroups (called lattices) we get what are called 
homogeneous spaces with a natural finite measure on them, and matrix 
multiplication by elements from a one-parameter subgroup of the ambient 
group, considered modulo the lattice, defines a flow on the homogeneous 
space. In the particular case when the group involved is the “modular group,” 
the group of 2×2 matrices with real entries and determinant 1, the flows 
arising in this way (other than those which are periodic) in fact correspond 
to the geodesic and horocycle flows associated with various surfaces with 
constant negative curvature, via certain natural identification of the phase 
space of the flow with a homogeneous space of the modular group.
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is a geometrically nice object—this is a remarkable thing 
to happen for a dynamical system, the crucial point being 
that the statement is being made for every orbit and not 
only the generic ones.7 In that paper I proposed another 
conjecture, as a step toward proving the Raghunathan con-
jecture, relating to measures that are invariant under these 
flows, namely, that the ergodic8 ones from among them in 
fact arise as measures invariant under the action the larger 
subgroups as above and are supported on a single orbit 
of the subgroup; a weak result was proved in the paper in 
that direction, partially vindicating the conjecture. Ratner 
proved the latter conjecture, which she referred to as “Ra-
ghunathan’s measure conjecture,” and in a separate paper 
deduced the original topological version.9

The Oppenheim conjecture itself, which had inspired 
the Raghunathan conjecture, was settled by G. A. Margulis 
in 1986 by proving a much weaker statement than the 
Raghunathan conjecture but in a similar spirit. Not surpris-
ingly, proving the full conjecture led to a much broader per-
spective in the study of values of quadratic forms at points 
with integer coordinates, and many other applications, 
some quite immediately and many more over the years. 
There have been numerous results since then making use 
of Ratner’s theorems in crucial ways, in a variety of contexts, 
and there is no doubt that it will serve as a mainstay for a 
good deal of mathematics in the coming decades.

The proofs are long and intricate and involve various 
ancilliary results. However, there is a beautiful key idea 
that concerns observing and adopting a property of the 
unipotent flows, which it may be worthwhile to recall. It 
may be informally stated as the following: if you find two 
trajectories of the flow having stayed quite close for rea-
sonably long, then you can expect them to stay fairly close 
for substantially longer. This property of the unipotent 
flows, now called the Ratner property, has since acquired 
significance as a dynamical phenomenon.

As to be expected, Ratner gained considerable pro-
fessional recognition. While her initial appointment at 
Berkeley had been a source of some controversy in the 
Department, her subsequent rise in the ranks seems to have 

orbit under the action of the group of integral unimodular 
(determinant 1) matrices on the corresponding Euclidean 
space, is dense in the Euclidean space. At some point in 
time around 1975, which had these events in the back-
ground, when I was talking to Raghunathan about possible 
problems to pursue, he casually suggested a statement on 
the behavior of what are called unipotent flows5 and quite 
nonchalantly added “call it my conjecture and prove it.” He 
pointed out that proving it would in particular settle the 
conjecture of Oppenheim on density of values of indefinite 
forms at integral points,6 which was one of the hallowed 
problems at that time in the Tata Institute precincts.

That statement of Raghunathan—the Raghunathan 
conjecture—first recorded in print in my Inventiones 
Mathematicae (1981) paper, is that the closure of any 
orbit of a unipotent one-parameter subgroup acting on 
a homogeneous space of finite volume is the orbit of a 
(possibly larger) subgroup of the ambient Lie group; in 
particular this means that each of these closures of orbits 

Marina Ratner at the inaugural function of the 
International Colloquium on Lie Groups and 
Ergodic Theory at the Tata Institute of Fundamental 
Research, Mumbai, 1996. The others on the dais, 
from left to right are, S. G. Dani, Virendra Singh, R. 
Chidambaram, Hillel Furstenberg, Anatole Katok, and 
M. S. Raghunathan.

5A flow on a homogeneous space of a matrix group as in the previous 
footnote is said to be unipotent when the one-parameter group involved 
consists of unipotent matrices, namely, matrices that have no eigenvalue, 
even in complex numbers, other than 1; for a general Lie group there is 
a variation of this involved. In the case of the modular group there are 
precisely the horocycle flows associated with surfaces of constant negative 
curvature and finite area.
6The conjecture originating from a paper of Alexander Oppenheim from 
1929 predicted that for any nondegenerate indefinite quadratic form in at 
least three variables, which is not a multiple of a form with rational coef-
ficients, the set of its values at integer tuples is dense in real numbers. It 
had been worked on by several notable number theorists, and by the 1980s 
many partial results were known, confirming the conjecture under various 
restrictions, but a general solution had eluded the efforts.

7For a one-parameter flow the orbit of a point is the set of all the points that 
can be reached by application of one of the transformations from the flow 
(including those corresponding to the negative value of the time parameter); 
similar terminology applies also to a more general group of transformations, 
in place of the one-parameter flows. The closure of the orbit means all the 
points that can be approximated by points on the orbit. In a typical dynam-
ical system, even when the closures of almost all orbits are the whole space, 
for others, the exceptional ones, the closures can be very crazy. For instance, 
for the geodesic flows as in the above discussion there are orbit closures 
whose intersection with some curves transversal to the flow consists of a 
mess of uncountably many individual points disconnected from each other.
8Those that cannot be expressed nontrivially as a sum of two invariant 
measures.
9During the interim there were various partial results proved in that direc-
tion, but we shall not concern ourselves with it here.
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We had an International Colloquium on Lie Groups and 
Ergodic Theory at TIFR in 1996 and the pleasure of having 
Ratner as one of the speakers. She also contributed a paper 
to the proceedings of the colloquium on p-adic and S-arith-
metic generalizations of the Raghunathan conjecture.

My last meeting with her was in 2015, when there was 
a special semester organized at the Mathematical Sciences 
Research Institute, Berkeley, on homogeneous dynamics. 
On one evening she had organized a dessert party at her 
home. It had been a wonderful evening thanks, apart 
from the sumptuous desserts of wide variety, to the warm 
reception by Marina that she conducted so cheerfully and 
energetically. My wife and I got to see some photographs 
from her visit to Mumbai, which she had dug out for the 
occasion. We also got to meet her daughter Anna and 
her children. On receiving the news of her sad demise, I 
emailed Anna a condolence message expressing shock and 
sadness, in which I also mentioned how energetic Marina 
had seemed at the party. In her response Anna added, 
“This is all very sudden and unexpected and difficult to 
comprehend. She was always so full of energy.” Indeed, her 
sad demise was very abrupt, and we deeply miss her lively 
presence amongst us.

Credits
Opening photo of Marina Ratner is courtesy of Anna Ratner.
Photos of Marina Ratner at the 1996 International Colloqui-

um at TIFR are courtesy of TIFR Archives.
Photo of Marina Ratner at the Hebrew University of Jerusa-

lem, 2013 is courtesy of Israel Institute for Advanced Stud-
ies, The Hebrew University of Jerusalem.

Photo of Marina Ratner at Lake Louise is courtesy of Nimish 
A. Shah.

been smooth-sailing. She was elected in 1992 to the Amer-
ican Academy of Arts and Sciences, and in 1993 she was 
awarded the Ostrowski Prize.10 In 1994 she won the John 
J. Carty Prize of the National Academy of Science. She was 
invited as a plenary speaker at the International Congress 
of Mathematicians, held in Zurich, in 1994, to become 
only the third woman mathematician, along with Ingrid 
Daubechies, to receive such an honor; Emmy Noether (in 
1932) and Karen Uhlenbeck (in 1990) are the two women 
to have received the distinction earlier.

A conference on “Homogeneous Dynamics, Unipotent 
Flows, and Applications” was held at the Hebrew Uni-
versity of Jerusalem, October 13–17, 2013, in honor of 
Marina Ratner and her work, hosted by the Israel Institute 
for Advanced Studies and supported by the European Re-
search Council. Earlier that year the Hebrew University of 
Jerusalem conferred upon her an honorary doctorate, at its 
Convocation held on June 16, 2013.

My personal contacts with Marina were, unfortunately, 
only sporadic, though they extended over a stretch of more 
than three decades.11 I found her a very warm-hearted per-
son, going out of her way to extend hospitality, which I had 
numerous occasions of enjoying together with my family. 

Marina Ratner at an excursion to Lake Louise, 
Alberta, Canada, with some of the delegates to the 
Conference on Ergodic Theory, held at the Banff 
International Research Station, Banff, Alberta, 
Canada, in July 2005. In the photo, from left to right, 
are Dave Witte Morris, Nimish Shah, Marina Ratner, 
S. G. Dani, and M. S. Raghunathan.

10The prize is awarded, since 1989, by the Ostrowski Foundation every 
alternate year for outstanding achievements in pure mathematics or foun-
dations of numerical analysis.
11The first of these was in the spring of 1982 when I had an opportunity to 
visit the University of California, Berkeley for the semester; though in antic-
ipation of the visit I was hoping for a serious mathematical interaction with 
her, it turned out, much to my disappointment, that she was on sabbatical 
leave during the period, which she was spending at Stanford University, and 
we happened to meet only occasionally during her brief visits to Berkeley.
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In this note we delve a bit more into Ratner’s rigidity theo-
rems for unipotent flows and highlight some of their strik-
ing applications, expanding on the outline presented by
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Dani above. As the name suggests, these theorems assert
that the closures, as well as related features, of the orbits of
such flows are very restricted (rigid). As such they provide
a fundamental and powerful tool for problems connected
with these flows. The brilliant techniques that Ratner in-
troduced and developed in establishing this rigidity have
been the blueprint for similar rigidity theorems that have
been proved more recently in other contexts.

We begin by describing the setup for the group of 𝑑×𝑑
matrices with real entries and determinant equal to 1 —
that is, SL(𝑑,ℝ). An element 𝑔 ∈ SL(𝑑,ℝ) is unipotent if
𝑔−1 is a nilpotent matrix (we use 1 to denote the identity
element in𝐺), and we will say a group𝑈 < 𝐺 is unipotent
if every element of 𝑈 is unipotent. Connected unipotent
subgroups of SL(𝑑,ℝ), in particular one-parameter unipo-
tent subgroups, are basic objects in Ratner’s work. A unipo-
tent group is said to be a one-parameter unipotent group if
there is a surjective homomorphism defined by polyno-
mials from the additive group of real numbers onto the
group; for instance

𝑢(𝑡) = (1 𝑡
1) and 𝑢(𝑡) = ⎛⎜

⎝

1 𝑡 𝑡2/2
1 𝑡

1
⎞⎟
⎠
.

In both cases it is easy to verify directly that these poly-
nomials do indeed define a homomorphism: i.e., for any
𝑠, 𝑡 ∈ ℝ it holds that 𝑢(𝑡 + 𝑠) = 𝑢(𝑡) ⋅ 𝑢(𝑠). While
there is essentially no loss of generality in discussing only
the case of SL(𝑑,ℝ), a more natural context is that of lin-
ear algebraic groups — subvarieties of SL(𝑑,ℝ) defined
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by polynomial equations that are closed under multiplica-
tions and taking inverses (this notion actually makes sense
formore general fields than the real numbers; if wewant to
emphasize that we are working with the field of real num-
bers we will call such groups linear algebraic groups over
ℝ). Connected unipotent subgroups of SL(𝑑,ℝ) are al-
ways linear algebraic groups. Another nice class of exam-
ples are the orthogonal groups. Given a quadratic form
𝑄(𝐱) over ℝ (positive definite or not) in 𝑑 variables, one
can consider the group SO(𝑄) of all matrices in SL(𝑑,ℝ)
that preserve this form, i.e. 𝑑×𝑑-matrices𝑀 so that𝑄(𝑀𝐱)
= 𝑄(𝐱) for all 𝑥 ∈ ℝ𝑑. This group will be compact if and
only if 𝑄 is a positive definite or a negative definite form.

Ratner’s theorems on rigidity of unipotent group actions
deal with the action of a unipotent group 𝑈 on a quotient
space of 𝐺 by a discrete subgroup. An important exam-
ple of such a quotient space is when 𝐺 = SL(𝑑,ℝ) and
Γ = SL(𝑑, ℤ), in which case 𝐺/Γ can be identified with
the space lattices in ℝ𝑑 that have unit covolume. A lattice
inℝ𝑑 can be specified by giving𝑑 linearly independent vec-
tors that generate it — i.e. vectors 𝑣1, . . . , 𝑣𝑑 ∈ ℝ𝑑 (that
we prefer to think of as column vectors) so thatΛ = ℤ𝑣1+
⋯+ℤ𝑣𝑑, and the condition that the lattice has unit covol-
ume amounts to requiring that det(𝑣1,… ,𝑣𝑑) = 1, or
in other words that the matrix 𝑔 = (𝑣1,… ,𝑣𝑑) obtained
by joining together these 𝑑 vectors be in SL(𝑑,ℝ). The
generators of the lattice Λ are not uniquely determined:
𝑣′
1, . . . , 𝑣′

𝑑 generate the same lattice as 𝑣1, . . . , 𝑣𝑑 if and
only if (𝑣′

1,… ,𝑣′
𝑑) = (𝑣1,… ,𝑣𝑑)𝛾 for 𝛾 ∈ SL(𝑑, ℤ), in

other words, lattices of unit covolume in ℝ𝑑 are in one-to-
one correspondence with elements of SL(𝑑,ℝ)/ SL(𝑑, ℤ).
Any matrix ℎ ∈ SL(𝑑,ℝ) acts on this space by left mul-
tiplication; in terms of lattices this amounts to the map
from the space of unit covolume lattices to itself taking a
lattice Λ < ℝ𝑑 to the lattice {ℎ.𝑣 ∶ 𝑣 ∈ Λ}.

This quotient space has the important property of hav-
ing finite volume, or more precisely an SL(𝑑,ℝ)-invariant
probability measure. A subgroup Γ of a topological group
𝐺 which is discrete and such that 𝐺/Γ has finite volume
is called a lattice (admittedly, this can be a bit confusing
at first since our basic example of such 𝐺/Γ is the space
of lattices inℝ𝑑. . . , though this terminology is consistent).
Hermann Minkowski seems to have been the first to real-
ize the importance of such quotients, and in particular the
space of lattices in ℝ𝑑, to number theory at the turn of the
19th century. In the introduction to his book Geometrie
der Zahlen, Minkowski writes1

This book contains a new kind of applications of analy-
sis of the infinite to the theory of numbers or, better, cre-
ates a new bond between these two areas. . .Geometry

1Translated from the original German to English.

of Numbers is how I have called this book, since I ar-
rived at the methods, which deliver in it proofs of arith-
metic theorems, through spatial considerations.

Ratner’s work is a remarkable contribution in the general
theme of applying “analysis of the infinite” and “spatial
considerations” to number theory.

So what did Ratner prove in these remarkable papers?
Perhaps the easiest to explain is her Orbit Closure Classi-
fication Theorem, confirming an important conjecture of
M. S. Raghunathan:

Theorem 1 (Ratner’s Orbit Closure Theorem [M3]). Let
𝐺 be a real linear algebraic group as above, Γ a lattice in 𝐺
and 𝑈 < 𝐺 a connected unipotent group. Then for any point
𝑥 ∈ 𝐺/Γ the closure of its 𝑈-orbit is a very nice object: a
single orbit of some closed connected group 𝐿 that is sandwiched
between 𝑈 and 𝐺 (and may coincide with either). Moreover,
this single orbit of 𝐿 has finite volume.

Recall that the 𝑈-orbit of a point 𝑥 is simply the set
{𝑢.𝑥 ∶ 𝑢 ∈ 𝑈}. Note that in particular this shows that any
𝑈-orbit closure has a natural 𝑈-invariant probability mea-
sure attached to it. We also remark that one can loosen the
requirement that 𝑈 be unipotent to 𝑈 being generated by
one-parameter unipotent groups — the passage from The-
orem 1 to this more general statement is not very difficult.
Unlike previous work towards Raghunathan’s Conjecture,
in particularMargulis’ proof in themid 1980s of the (then)
fifty year old Oppenheim Conjecture using a special case
of Raghunathan’s Conjecture, Ratner’s route to classifying
orbit closures was not direct but by via a measure classifi-
cation result:

Theorem 2 (Ratner’s Measure Classification Theorem
[M2,M1]). Let 𝐺, Γ and 𝑈 be as in Theorem 1. Then the
only (Borel) probability measures on 𝐺/Γ that are invariant
and ergodic under 𝑈 are the natural measures on the orbit clo-
sures described in Theorem 1.

This requires a bit of explanation: We equip 𝑋 = 𝐺/Γ
with the Borel𝜎-algebraℬ, and consider probability mea-
sures on the measurable space (𝑋,ℬ). Such a measure 𝜇
is 𝑈-invariant if the push forward of it under left multipli-
cation by every 𝑢 ∈ 𝑈 remains the same; 𝜇 is 𝑈-ergodic if
every𝑈-invariant Borel subset of𝑋 is either null or conull.
Every𝑈-invariant probability measure can be presented as
an average of ergodic ones, hence classifying the𝑈-ergodic
measures gives a description of all 𝑈-invariant probability
measures on 𝑋. Dani conjectured this measure classifica-
tion result in the same paper where Raghunathan’s Conjec-
ture first appeared.

It is possible to reduce both Theorem 1 and Theorem 2
to the case where 𝑈 is a one-parameter unipotent group.
The following theorem implies both of the theorems quoted
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above in the one-parameter case, but is used by Ratner as a
bridge allowing her to pass from themeasure classification
theorem (which, as we said in the outset, is the heart of her
work on unipotent flows) to the obit closure theorem:

Theorem 3 (Ratner’s Distribution Rigidity Theorem
[M3]). Let 𝐺, Γ, 𝑈 be as above, and let 𝑥 ∈ 𝐺/Γ. Then
there is a 𝑈-ergodic probability measure 𝑚𝑥 of the form given
above (i.e. the uniform measure on a finite volume orbit of a
connected group sandwiched between 𝑈 and 𝐺) so that 𝑥 is in
the support of 𝑚𝑥 and for any bounded continuous function 𝑓
on 𝐺/Γ we have that the ergodic averages

1
𝑇 ∫

𝑇

0
𝑓(𝑢(𝑡).𝑥)𝑑𝑡 → ∫𝑓𝑑𝑚𝑥 as 𝑇 → ∞. (0.1)

The reader with some basic knowledge of ergodic theory
might be fooled to think that (0.1) is an application of the
Birkhoff Pointwise Ergodic Theorem. Not so! The Birkhoff
Pointwise Ergodic Theorem only gives information about
almost every point (with respect to a given ergodicmeasure).
The whole point of Ratner’s Distribution Rigidity Theorem
is that it is true for each and every 𝑥 ∈ 𝐺/Γ. Almost every-
where results are almost always much easier to prove,2 but
in a mathematical manifestation of Murphy’s Law, such
results might say something about virtually all points but
if you are given a specific point and want to study its be-
haviour under a given action they tell you absolutely noth-
ing. To give a simple analogy, it is trivial to prove that for
a.e. 𝑥 ∈ [0, 1] the asymptotic density of occurrence of
each of the digits 0,1,2,. . . ,9 in the decimal expansion of 𝑥
is 1/10, but asking whether this holds for particular num-
bers of interest such as 21/3 or 𝜋 seems at present to be a
hopelessly difficult question!

As it turns out, for some of the most juicy applications
of these rigidity results a more general setup is required.
To begin with, one may consider linear algebraic groups
over other fields; and since the topological structure is very
much in play here, the natural class of fields to look at are
local fields, i.e. topological fields whose topology is locally
compact, such as ℝ or the 𝑝-adic numbers ℚ𝑝. Both Rat-
ner [M4] and independentlyMargulis and Tomanov [GAGM]
extended the above results to this setting, and more gen-
erally to quotients 𝐺/Γ where 𝐺 = ∏𝑘

𝑖=1 𝐺𝑖 with each
𝐺𝑖 a linear algebraic group over a local field of character-
istic zero.3 We shall refer to such quotient spaces 𝐺/Γ as
𝑆-arithmetic quotients, a terminology that probably needs
some explanation which we omit to avoid too much of a

2This is a slight pun—“almost everywhere” is used in the above sentence in its precise math-
ematical sense, whereas “almost always” is used in the ordinary, non-mathematical sense of
the phrase...
3Note that our definitions of unipotent groups and one-parameter unipotent groups make
sense over any field, and can be easily extended to the product case, e.g. a subgroup 𝑈 <
∏𝑘

𝑖=1 𝐺𝑖 (with each 𝐺𝑖 defined over a different local field) is a one-parameter unipotent
group if there is an 𝑖 so that 𝑈 is a one-parameter unipotent subgroup of 𝐺𝑖.

digression. It would have been interesting to have such
rigidity results also for local fields of positive characteristic
such as 𝔽𝑞((𝑡)) — the field of formal Laurent series with
coefficients in the finite field 𝔽𝑞 with 𝑞 elements — but
there seem to be serious technical obstacles to doing so
and only partial results in this direction are known.

The rigidity theorems of Ratner have had numerous ap-
plications in many areas of mathematics. A highly non-
trivial special case of her general measure classification re-
sult, namely the classification of measures on a reducible
product (SL(2,ℝ)/Γ1) × (SL(2,ℝ)/Γ1) invariant under
a one-parameter unipotent group (the interesting case is
classifying measures that project to the uniform measure
on each (SL(2,ℝ)/Γ𝑖) factor, or in the ergodic theoretic
terminology, joinings) was proved by Ratner already in the
early 1980s. The original motivation of Ratner in study-
ing these flows was to understand better (and give natural
examples for) a property of measure preserving systems
called Loosely Bernoulli — we can view this somewhat
anachronistically as an application of unipotent flows to
the abstract theory of dynamical systems. Since then her
work has had several other applications to abstract ergodic
theory and descriptive set theory. There are very striking
applications of her work to mathematical physics, for in-
stance in the work of Marklof and Strömbergsson on the
Lorentz gas, and to geometry. In this note we have chosen
to highlight a couple of the many applications of her theo-
rems (as well as the extension to products of linear groups
over local fields as above) to number theory.

Inmaking his famous conjecture, Raghunathanwasmo-
tivated by the connection to the Oppenheim Conjecture,
a connection that allowed Margulis to resolve this long-
standing open problemby establishing a special case of the
conjecture posed by Raghunathan [G]. Oppenheim conjec-
tured in the 1930s that for any indefinite quadratic form𝑄
in 𝑑 ≥ 3 variables that is not proportional to a quadratic
form with integer coefficients, the set of values attained by
𝑄 at integer vectors, that is to say 𝑄(ℤ𝑑), contains zero
as a non-isolated point. Using Ratner’s Measure Classifica-
tion Theorem, and relying upon prior work by Dani and
Margulis, Eskin, Margulis, and Mozes [AGS] were able not
only to show that there are integer vectors 𝐧 ∈ ℤ𝑑 for
which 𝑄(𝐧) is close to a given value (say 0), but to count
the number of such vectors. More precisely, for indefinite
quadratic forms as above, not of signature (1,2) or (2,2),
Eskin, Margulis, and Mozes show that for any 𝑎 < 𝑏, the
number of integer vectors 𝐧 ∈ ℤ𝑑 inside a ball of radius
𝑅 for which 𝑎 < 𝑄(𝐧) < 𝑏 is asymptotically given by the
volume of the corresponding shape cut by the two hyper-
surfaces𝑄(𝐱) = 𝑎 and𝑄(𝐱) = 𝑏 in this ball. Perhaps an
illustration of the delicacy of the question is that this nat-
ural statement is false(!) for quadratic forms of signature
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(1,2) or (2,2), though in a follow-up paper Eskin, Mozes,
andMargulis were able to prove this estimate for quadratic
forms of signature (2,2) under a suitable Diophantine con-
dition, a result which is of interest in the context of the
study of the statistics of energy levels of quantization of
integrable dynamical systems.

The reason unipotent dynamics is relevant to the Op-
penheim Conjecture is that the symmetry group of an in-
definite (real) quadratic form with ≥ 3 variables contains
(indeed, is generated by) one-parameter unipotent groups.
Surprisingly, there is a relatively recent application of the
S-arithmetic analogue of Ratner’s results to positive definite,
integral forms.

Legendre’s Three Squares Theorem says that a positive
integer 𝑛 can be presented as a sum of three squares if and
only if it is not of the form 4𝑎(8𝑏 + 7) ,with 𝑎,𝑏 inte-
gers. This is an example of a local-to-global principle: the
quadratic form 𝑄(𝑥,𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 represents an
integer 𝑛 if and only if the congruences 𝑄(𝑥,𝑦, 𝑧) ≡ 𝑛
(mod 𝑝𝑎) are solvable for any prime 𝑝 and any 𝑎 ∈ ℕ
(for a given 𝑝, consistency of this infinite set of congru-
ences is equivalent to 𝑄(𝑥,𝑦, 𝑧) = 𝑛 being solvable by
𝑝-adic integers). In this particular case, only the prime
2 can be an obstacle though there is another restriction
on 𝑛 implicit in the way that we set up the problem —
that 𝑛 is positive — which can be said to come from the
“place at infinity,” in other words from the necessity that
𝑄(𝑥,𝑦, 𝑧) = 𝑛 be solvable over ℝ.

Legendre’s Three Squares Theorem can be viewed as a
special case of the following problem: Given a fixed posi-
tive definite integral quadratic form𝑄 inmany (say 𝑘) vari-
ables, which quadratic forms 𝑄′ in ℓ < 𝑘 variables can be
represented by𝑄? That is to say, when can we find a 𝑘×ℓ
integer matrix 𝑀 so that as quadratic forms 𝑄′ = 𝑄∘𝑀?
For ℓ = 1 and 𝑄 = 𝑥2 + 𝑦2 + 𝑧2 this reduces to the
question addressed by Legendre: the form 𝑄′ = 𝑛𝑥2 can
be represented by 𝑄 iff 𝑛 can be written as a sum of three
squares. Local solvability — the existence of such matrix
𝑀with entries in ℤ𝑝 for every 𝑝— is an obvious necessary
condition that can be verified with a finite calculation.

Hsia, Kitaoka, and Kneser in 1978 established the va-
lidity of such a local-to-global principle for representing
any form 𝑄′ in ℓ variables with sufficiently large square
free discriminant by a given form 𝑄 in 𝑘 variables once
𝑘 ≥ 2ℓ + 3 by using more traditional number theoretic
methods. This remained the best result on this very classi-
cal problem (essentially dating back to the work of Gauss)
until Ellenberg and Venkatesh [JA] were able to use the 𝑆-
arithmetic extensions to Ratner’s Orbit Closure Theorem
to very significantly reduce the restriction on 𝑘 and ℓ to
be 𝑘 ≥ ℓ+ 5. While we cannot get into the details of the

argument, we note that even if a quadratic form 𝑄 is posi-
tive definite, hence its symmetry group over ℝ is compact,
over the 𝑝-adic numbers in general for 𝑘 ≥ 3 variables it
would be a non-compact group with plenty of unipotents.
In truth, the relevant symmetry group for this case is not
the symmetry group of𝑄 but the subgroup of this symme-
try group fixing a given quadratic form in ℓ variables, but
this is precisely why in this problem one needs to employ
𝑝-adics.

An evenmore surprising application of Ratner’s work to
number theory was given by Vatsal and Cornut–Vatsal (e.g.
[V]). We do not give details here, but in these works fam-
ilies of elliptic curve 𝐿-functions, and in particular their
central values (or derivatives thereof when their functional
equation is odd rather than even), are considered. Us-
ing Ratner’s Orbit Closure Theorem as a basic ingredient
Vatsal (and in the more general cases Cornut and Vatsal)
showed that all but finitely many of these values are not
zero. When combined with well-known results towards
the Birch and Swinnerton–Dyer Conjecture, this proves a
conjecture of Mazur: essentially all the points on an ellip-
tic curve whose coordinates lie in ring class fields with re-
stricted ramification are generated by explicit special points
first constructed by Heegner.

The impact of Ratner’s work cannot be measured only
by direct application of her seminal results. Techniques
introduced by Ratner to study ergodic theoretic joinings
in her early works on unipotent flows in the 1980s were
a main inspiration in the work of the first named author
on diagonalizable flows and its applications to Arithmetic
QuantumUnique Ergodicity and equidistribution. Benoist
andQuint were similarly inspired by Ratner’s work in their
breakthroughwork understanding stationarymeasures and
orbit closures for actions of thin groups on homogeneous
spaces, and Eskin and Mirzakhani transformed the study
of moduli spaces of abelian and quadratic differentials on
Riemann surfaces by proving an analogue of Ratner’s work
in this setting.

The prevalence of deep and suprising applications of
Ratner’s Rigidity Theorems on unipotent flows is remark-
able, and shows the richness of the subject of homoge-
neous dynamics and how interconnected it is with many
other subjects. It is also a tribute to a wonderful mathe-
matician who has left a legacy to future mathematicians
for many years to come.
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Marina wrote her thesis about Markov partitions in 
multi-dimensional systems. At that time it was a very 
hot topic. One of the referees of Marina’s thesis was V. A. 
Rokhlin, who wrote a very good report. This was important 
because the Scientific Council where Marina’s thesis was 
considered was known at that time for its antisemitism. It 
was rather surprising that in the case of Marina the system 
worked well, including the voting of the PhD committee 
and the approval of the High Attestation Committee (VAK).

Quite soon she started to work in one of the Moscow 
Institutes where Marina was appointed to her first academic 
position. The fact that she got a position so quickly was 
rather unusual at the time.

In another case it would be a big step in someone’s ca-
reer. But not for Marina, because quite soon she decided to 
go in a different direction and applied to emigrate to Israel 
together with her daughter.

In Israel she joined the Institute of Mathematics at the 
Hebrew University and started teaching there. Marina did 
everything very well. Soon she became famous among her 
students. Many of them kept as souvenirs the notes left 
after Marina’s classes.

A bit later Marina heard about some vacancies opening 
in Berkeley and moved there with her family. Berkeley 
became her home until the end of her life. She was elected 
as a full member of the National Academy of Sciences of 
the USA, and was invited as a plenary speaker to ICM-94 
in Zürich.

Marina had many close friends in Berkeley and other 
places. One can mention Smale, Ornstein, Arnold, Fuchs, 
Pyatetskii-Shapiro, Kazhdan, Chorin, Zalenko, Kresin, and 
many others. Marina was always ready to help her friends 
and other people. I remember the case when our family 
arrived to Princeton after my son had seriously broken his 
leg. Marina contacted many people and eventually they 
helped us to find V. Golyakhowsky, who was a remarkable 
orthopedist. His treatment was excellent, and my son com-
pletely recovered and can freely walk now without any trace 
of the previous accident.

I met Marina almost the same time as her elder sister, Yulia. 
Their father was a famous biologist. Marina started as a 
student of Moscow State University, and initially she was 
a student of A. N. Kolmogorov and later became a student 
of R. L. Dobrushin. When she entered graduate school she 
became interested in ergodic theory. This is how I became 
her advisor.

Marina married A. Samoilov when they both were under-
graduate students of the second year. Their marriage didn’t 
last long and soon they separated, though they maintained 
contact. Marina was left with her daughter, Anya. Marina 
was very close to the family of her daughter. During many 
years, Marina spent a lot of time with her grandchildren. 
Marina’s friends knew that it was strictly forbidden to call 
her on Saturdays because she was always busy working the 
whole day with her grandson.

To the Memory of Marina Ratner
Yakov Sinai

Yakov Sinai is a professor of mathematics at Princeton University. His email 
address is sinai@math.princeton.edu. 

For permission to reprint this article, please contact: reprint 
-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1830

Sinai and Ratner in 1978.
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Marina was involved in many types of social and po-
litical activity, and was very strong and principled in pro-
moting the causes that she believed in. For instance, she 
had strong opinions about mathematical education and 
education in general.

This text is a small part of what can be written about 
Marina. She was a great mathematician, a remarkable per-
sonality, and a close friend.

Credits
Photo is courtesy of Anna Ratner.
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I cannot claim that I have been Marina’s close friend from 
our very first meeting. But I believe at some moment this 
became so. Our meetings lasted for many years, with fre-
quency dependent on circumstances of our lives and on 
political events as well. I am going to remember several of 
these meetings in the hope that my story will shed addi-
tional light on this remarkable character.

I got to know Marina when we were about seven years 
old and went to the same musical school for children. By 
coincidence we had the same piano teacher, whose name 
was Anna Ratner. In one or two years I moved to another 
musical school, closer to my home, and we lost one another 
for several years.

Our next meeting occurred at the Mechanics and Math-
ematics Department of Moscow State University, where 
we entered simultaneously and quite independently. I 
happened to meet Marina at one of the first lectures and 
recognized her almost immediately, strange though it may 
seem. That is why when in several days our very sociable 

Meetings: For Almost All of 
Our Lives
Boris Gurevich 

Boris Gurevich is a professor of mathematics at Lomonosov Moscow State 
University. His email address is gurevich@mech.math.msu.su. 

For permission to reprint this article, please contact: reprint 
-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1831

Ratner with her daughter Anna, 1971.

Ratner with her family, 1947 (left to right): mother 
Ksia, sister  Yulia, Marina, and father Yehoshua.
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About that time she married a student from our course, 
and I met her not too often. But in 1965 she came back to 
the university as a graduate student under the supervision 
of Y. G. Sinai, and our meetings became regular again be-
cause we both attended seminars on ergodic theory.

Once we examined an undergraduate. I began with a 
question, then Marina entered and I went out for some 
time, while she continued. When I came back, I was not 
pleased that she finished too fast. But later I decided that 
she was right: first, this student was Lenya Bunimovich, 
and second, Marina was very thorough in everything. Once, 
already in Berkeley, she observed that in one of her papers, 
it was written “weak convergence” instead of “weak* con-
vergence,” and she asked me to insert the asterisk by pen 
each time I was at a library where a journal with the paper 
was accessible. She told me, “I am a perfectionist,” and this 
was the truth.

She published several papers and defended her PhD 
thesis on geodesic flows in 1969. Thereafter she was teach-
ing at one of the technical universities in Moscow, but not 
for very long, because she applied for emigration to Israel. 

fellow student tried to introduce me to her, this sounded 
funny for both of us.

During the first two years we were in different groups 
and met only at common lectures. But in our third year, 
everybody had to choose a specialization. And again, we 
made the same choice, which was probability, and got into 
the same group.

At that time the probability and statistics subdivision 
of the department was headed by A. N. Kolmogorov, and 
almost all who worked there were his former students. 
Kolmogorov was very active in various directions; in a few 
years he included Marina in a small, young team involved 
in his study of statistical laws in language. But her first 
supervisor was R. L. Dobrushin, who, as I know, liked very 
much her master’s thesis in information theory.

Upon graduating from the university, Marina was for 
some time working at Kolmogorov’s boarding school, a 
high school for gifted children from all over the country 
founded by Kolmogorov and later named after him. She 
also took part in the preparation of the principal works of 
Claude Shannon for publication in Russian.

Visiting Leningrad with fellow students—(left to right) Ilya Mindilin, Vener Galin, Lena Odnorobova (or Vera 
Steniushkina), Slava Perlov)—from Moscow, circa 1961.
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Honestly speaking, I initially considered her intention 
reckless: I knew that she was going alone, with a small 
daughter, without language and having no relatives there.

But I had underestimated Marina: she overcame diffi-
culties, which were indeed considerable, and in 1971 she 
was already working at the Hebrew University. At the time, 
the Soviet Union had no diplomatic relations with Israel 
and postal services were unreliable. Of fragmentary infor-
mation from Marina I remember that in the fall of 1973, 
the university professors were asked to write their lectures 
down in order that the students, turned into soldiers for a 
while, could read them at the front.

When Marina moved to Berkeley, I used a possibility 
to hear something of her from J. Feldman, whom I met in 
1977 in Warsaw at a conference on ergodic theory.

Only when Gorbachev came to power did mutual visits 
become possible. Marina came to Moscow more than one 
time in the 1990s and early 2000s. Once she left for a few 
days for Minsk, where a mathematical conference was con-
ducted. Being aware of food shortage in Moscow at the time, 
she bought in Minsk, on her own initiative, some cheese 
for a small child of our friend. I appreciated her solicitous 
concern for her friends once again when I visited her at 
Berkeley in the late 1990s.

As far as I know, she came to Moscow for the last time 
in June of 2003 to the conference devoted to Kolmogor-
ov’s centennial, where she was an invited speaker and met 
many old friends.

I saw Marina for the last time in May 2014 in Oslo, where 
we were invited by Sinai, our common teacher, as his guests 
as he was awarded the Abel Prize. We walked through the 
city in full lilac bloom and followed Sinai, visiting the town 
of Stawanger for one day, where we took, together with 

As a girl of twelve, 1950.

a few friends, an excursion along a fjord; Marina took a 
number of snapshots there.

She was always worried about the health of others. 
Throughout several years she insisted that I should regu-
larly inform her of my state of health (results of tests, etc.). 
Answering my questions about her own health, she would 
always insist that she was splendidly sound. I have kept her 
last message of July 1, 2017, in which she wrote about her 
problems, but hoped that the treatment would eventually 
help. I also thought so.

Credits
All photos are courtesy of Anna Ratner.
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light of her later and more spectacular results. The study 
of the horocycle flow and the geodesic flow as flows on 
an abstract measure space began in 1938 with the work of 
Hedlund and Hopf. While the geodesic flow is the most 
random measure preserving flow on an abstract measure 
space, the horocycle flow has the opposite behavior. Marina 
elucidated its rigidity properties.

I will give just one example. If two horocycle flows on 
the quotient space M of SL(2,ℝ) by a discrete subgroup are 
the same as measure preserving flows, then the underlying 
surfaces are conformally isometric. This means that even 
though we replaced M by an abstract measure space, the 
flow retains all of the geometry that we threw out.

Credits
Photo is courtesy of Anna Ratner.

Marina Ratner was a good friend and colleague. Although 
we never wrote a joint paper, we did work together, and 
I was able to gain great appreciation for the depth of her 
mathematical ability. The commitment to her family was 
very impressive; she homeschooled her grandchildren. She 
was not a fan of affirmative action and made it very clear 
that she wanted her achievements to be rated solely on her 
mathematics not her gender.

I would like to call attention to Marina’s work on the 
horocycle flow, which I hope will not be overlooked in the 

In Memory
D. Ornstein 

Donald Ornstein is a professor emeritus of mathematics at Stanford  
University. His email address is ornstein@math.stanford.edu.

 For permission to reprint this article, please contact: reprint 
-permission@ams.org.
DOI: http://dx.doi.org/10.1090/noti1832

Ratner with (left to right) Ornstein, Yakov Sinai, and Jack Feldman, 1978.
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sion across a few years of mathematical excitement, a list 
of papers in which she developed her theory of horocycle 
flows culminating in the complete description of their join-
ings, which entails all their rigidity properties. Strikingly,  
Marina always worked alone and never had coauthors. As to 
joinings, she managed all by herself, and to my knowledge, 
without trying to get too many contacts with the people 
close to her who were active in this field at that time.

On a visit that she paid to Paris at about the same epoch, 
I put her up in a nice hotel close to Jussieu (as I usually 
did with visitors). But almost immediately, she came to me 
quite pleased to have moved with her daughter to a very 
modest place close to Gare de l’Est, proudly announcing, 
“Believe me, it is the best possible place as a starting point 
to visit Paris.” Singular Marina!

Her work took a new turning point when she got, as an 
elaboration of her previous ideas, her fundamental result 
on the Ragunathan measure conjecture. Strangely, her 
mathematics, so deep, which is so much alive nowadays, 
and in so many different directions, is most frequently used 
as a black box or as a model.

It was a great shock to receive the message from B. Weiss 
that she had died, shortly before a conference dedicated 
to the memory of Rufus Bowen, which she had accepted 
to attend.

I want to mention another memory, or more precisely, 
an image, because of the deep impression that it has left 
on me, although I cannot trace back exactly when it took 
place. I think that it was at a conference in Warwick: she 
was lecturing, so strong, so determined, and in appearance 
so fragile, all alone, in front of a huge audience.

In the same way as her mathematics does for our com-
munity, her presence, in the minds of those who have 
known her, persists with all the strength, the singularity, 
and the seduction of the exceptional.

At my first encounter with Marina, in Jerusalem, in 1974, 
just after the Lavi Conference, I saw a young woman quite 
shy, sweet and smiling, pleased to receive a gift that a com-
mon friend had prepared for her from Paris. I met her later 
in Berkeley when she was already settled; I paid several 
visits there. Memory is sometimes strangely selective—I 
remember distinctly that, in an excursion which we took 
together with her and the Katok family to “Pebble Beach” 
(this I am not sure of), she had a very battered car, with the 
exhaust threatening to fall off at every turn.

Her mathematics, which had started in Moscow with 
Sinai, received the influence of the California environ-
ment, and one of her first works there was the proof 
that the horocycle flow is loosely Bernoulli, an abstract 
measure-theoretic property that was quite popular at that 
time in Berkeley, the impetus for it having been given by 
Jack Feldman. A second paper, which came quite quickly, 
was that the Cartesian square of the horocycle flow is not 
loosely Bernoulli. This was, for the group of people working 
in this field, quite unexpected and very strong. The non-
loosely Bernoulli property all of a sudden being attached 
to a simple algebraic object, while all previous examples, 
starting with the one of Jack Feldman, required elaborate 
combinatorial constructions. This work of Marina is ex-
tremely difficult to read, and I remember, when I came to 
complain (the last time was not so long ago) to her, “But 
it is so simple, just follow what is written, everything is 
completely natural, you will not find any obstacle…” In 
this same work appeared for the first time the “shearing” 
that was going to play such an important role in her sub-
sequent works. And then came, in an extraordinary succes-

Marina Ratner, quelques 
évocations
Jean-Paul Thouvenot 

Jean-Paul Thouvenot is directeur de recherches émérite au CNRS à 
Sorbonne Université. His email address is jean-paul.thouvenot 
@upmc.fr.
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opposite horospherical subgroups, which was a conjecture 
of Margulis based on Selberg’s earlier work in the case of a 
product of SL(2,ℝ)s. I had solved this conjecture for discrete 
subgroups of SL(n,ℝ) for n ≥ 4. Ratner’s theorem on orbit 
closures was a key ingredient of my proof. I did not get to 
receive any comments from her either on my talk or on my 
work at that time.

Seventeen years later in 2013, there was a conference 
in her honor titled “Homogenous Dynamics, Unipotent 
Flows, and Applications” at the Hebrew University. I had 
just finished my joint work with Amir Mohammadi on 
the classification of joining measures for geometrically 
finite subgroups of SL(2,ℝ) or of SL(2,ℂ). It was an exten-
sion of her work “Horocycle flows, joining and rigidity of  
products,” published in Annals of Mathematics 1983, and 
our approach was to adapt her proof in the infinite-volume 
setting. I opened my lecture saying that I was proud of my 
mathematical aunt; she and Margulis shared a common 
advisor, Sinai. I then successfully squeezed the two subjects 
of discrete groups and joinings into my one-hour lecture 
and closed with the statement that I had started my math-
ematical career by applying Ratner’s theorem as a black box 
and that I was now hoping to generalize her ideas in the 
infinite-volume setting. After my lecture, I asked Marina di-
rectly, “Did you like my lecture?” She said, “Yes, very much,” 
with a big emphasis on “very,” and asked, “Why don’t you 
post your lecture notes in your webpage?” I jokingly replied 
to her, “Marina, who is going to read it?”

She once said in an email to me, “If a woman is good in 
math, she does not need encouragement or a role model. 
I remember when I was young, no matter what anyone 
would say, I knew that I would go to math. I did not need 
any encouragement for that. The same is probably true 
about you. Did you need encouragement?”

I wrote back, saying, “Marina, whether you wanted to or 
not, you have been a great source of pride and inspiration 
for female mathematicians in the area. I am very grateful 
to you for having been such a great role model.”

Thank you Marina.

Credits
Photo is courtesy of Nimish A. Shah.

I first met Marina at the International Conference on Lie 
Groups and Ergodic Theory held at TIFR in Mumbai in Jan-
uary of 1996. I was a fourth-year graduate student working 
with Gregory Margulis.

She gave a talk on the p-adic and S-arithmetic general-
izations of her earlier proof of Raghunathan’s conjecture. 
I remember how she began her talk with the assertion that 
while some notations and definitions may be standard, 
she still needed them to know for herself what she was 
talking about. She then went on to spend quite a big chunk 
of her time introducing a long list of notations and basic 
definitions, such as Ad-unipotents and p-adic Lie algebras. 
At the time, her talk was too technical for me to follow, but 
her uncompromising style left a strong impression on me.

My own lecture was about my ongoing thesis work 
on the arithmeticity of discrete subgroups in a higher 
rank simple Lie group generated by lattices in a pair of  

Remembering Marina Ratner
Hee Oh 

Hee Oh is Abraham Robinson Professor of Mathematics at Yale University. 
Her email address is hee.oh@yale.edu.
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-permission@ams.org.
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Ratner with (left to right) François Ledrappier, Dmitry 
Kleinbock, Hillel Furstenberg, and Oh, 2005. 
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[The Clare Boothe Luce Program].2 The 30th anniversary of 
the initial Clare Boothe Luce Fund awards provides a timely 
opportunity to reflect on the life of Clare, to consider her 
motivation in establishing this support, and to explore the 
impact of her funding on women and institutions.

Clare Boothe Luce: Life Experiences Shaping 
a Bequest
On March 10, 1903, in New York City, Clare, born Ann 
Clare Boothe, began her life as she would live it—sur-
rounded by conflict and drama. Clare was the second ille-
gitimate child of Ann Snyder (Anglicized from Anna Clara 
Schneider) and William Franklin Boothe [Morris, 1997, p. 
15]. William Boothe was legally married to another woman 
at the time. Although he subsequently divorced his first wife 
in 1906, William and Ann Snyder never married. After his 
once successful piano business dwindled, he worked as a 
medical salesman and, finally, as a musician. In search of 
work, William’s musical career took the family to various 
cities, including Memphis, Nashville, and Chicago. Money 
grew increasingly scarce with each move. As William’s fi-
nancial resources faded, so did Ann’s affection for him. She 
had met him as a flourishing executive and now he was an 

Introduction
With her death in 1987 Clare Boothe Luce bequeathed 
nearly $70 million1 to establish a fund “to encourage 
women to enter, study, graduate and teach” in the fields 
of science, engineering, and mathematics. This decision 
seems an unlikely choice for a woman who, while alive, was 
widely known as a playwright, magazine editor, American 
ambassador to Italy, war correspondent, congresswoman, 
and wife of Henry Luce, who co-founded TIME Inc. Despite 
having no known connection to or interest in what are now 
STEM fields [Teltsch], Clare Boothe Luce challenged women 
to enter into and excel in more commonly male-domi-
nated fields. Her vision established a foundation that has 
become “the most significant source of private support for 
women in science, math and engineering in the US [Grant 
Spotlight].”

The Clare Boothe Luce Program has supported more 
than 2300 women since awarding the first grants in 1989 

Creating Opportunities 
and Building Confidence:
Clare Boothe Luce’s Unexpected Support 

of  Women in Math and Science

Della Dumbaugh 
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1Roughly $156 million in 2018 dollars.
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ABSTRACT. How did a woman who was a playwright 
and a politician advance American women in mathe-
matics and science? This paper explores the life of Clare 
Boothe Luce and her pioneering—and unexpected—im-
pact on the development of mathematics and science.

2Interestingly, nearly twenty years before her death, Clare proposed the 
idea of considering a woman for a (Henry) Luce Fellowship. Specifically, 
in 1968, when asked her opinion on a proposed Luce Fellowship Program 
at Time, Inc. Clare Boothe Luce wrote mostly about “the man” or “him” 
in this position. Near the end of the letter, however, she dared to suggest, 
“Sooo—is there anything in the idea of a Time Inc. Associates Program, 
among whom, hopefully, the Board of Selection might annually choose a 
man, or woman (please!) worthy to be dubbed a Luce Fellow…” [Clare 
Boothe Luce to Andrew Heiskell, February 4, 1968, p. 8, Clare Boothe 
Luce papers, my emphasis].
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provided Clare with plenty of money and an increased so-
cial confidence. Although “she had ample means to settle 
for the life of a socialite” after her divorce from Brokaw, 
she chose, instead, to “capitalize on her own abilities in the 
workplace [Morris, 2014, p. 29].”

In an attempt to give her life new direction and mean-
ing, Clare interviewed for a position at Vogue magazine. 
After waiting all summer to hear from the magazine, Clare 
self-assuredly walked into the Vogue building and con-
vinced an office assistant that she was a new employee. 
Soon enough, colleagues gave the new beautiful, profes-
sional woman sitting at an empty desk work to do. Vogue’s 
editor, Edna Woolman Chase, thought the publisher of 
the magazine, Condé Nast, had hired Clare. Nast, in turn, 
thought Chase had brought her on board the magazine’s 
staff [Morris, 2014]. Clare received her first paycheck after 
one month [Morris, 1997, p. 163]. Consequently, with no 
formal education or experience in writing, Clare secured a 
job with one of the most popular magazines of the time. 
She soon moved down the hall to Vanity Fair with the title 
of Junior Editor. Her first piece “Talking Up—and Thinking 
Down: How to Be a Success in Society Without Saying a 
Single Word of Much Importance” appeared in 1930 [Clare 
Boothe Luce, “Talking Up”]. In this article, Clare encour-
aged readers to be conventional, predictable, safe, and even 
boring in order to have a successful conversation. She iden-
tified the six topics guaranteed to start a conversation: golf, 
the stock market, prohibition, theater, gossip, and current 
social activities [Clare Boothe Luce, “Talking Up,” p. 39]. 

After the 1929 stock market crash, Vanity Fair struggled 
to adjust to the new economic conditions. Advertising 
revenues, for example, dropped twenty percent [Morris, 
1997, p. 181]. Clare helped reestablish Vanity Fair as a 
serious magazine concerned with issues beyond the scope 
of fashion. Her confidence grew with the success of her 
public-affairs articles. She earned a promotion to associate 
editor. She used her candor and satire to develop her skills 
as a political writer. This work led her to the 1932 Dem-
ocratic National Convention in Chicago, where she met 
Bernard Baruch, an advisor to Franklin D. Roosevelt and the 
fourth richest man in America. Baruch introduced Clare to 
many of the nation’s most powerful and prominent men.

With her increasing success, Clare began to take some 
liberties at Vanity Fair. She requested weeks off for personal 
travel. When in the office, she often arrived late or left 
early. She produced fewer articles [Morris, 1997, p. 227]. 
Consequently, Condé Nast expressed concern over her 
schedule. He also questioned her ability to successfully 
balance her roles as an editor and author along with her 

aging musician with too few prospects and too much of a 
drinking habit. Ann Snyder wanted more for her children 
and for herself. When Ann’s father suffered a serious illness 
in September 1912, she took the opportunity to move her 
children to her parents’ home in New Jersey. She eventu-
ally told acquaintances she was a widow. With the death 
of Ann’s father in 1913, the family relocated to New York 
City [Morris, 1997, p. 39].

This transient lifestyle proved challenging for Clare. She 
had a difficult time making friends, a situation that would 
not improve in her lifetime. Clare spent two years at the 
Cathedral School of St. Mary’s in Garden City, Long Island, 
where some students viewed her as “the most conceited girl 
in the school [Morris, 1997, p. 57].” Clare felt she would 
never succeed at St. Mary’s, so she appealed to her mother 
to let her leave. Clare’s mother subsequently enrolled her 
at the Castle School above Tarrytown-on-Hudson in New 
York. This move was intended to put Clare in a better po-
sition to find a suitable husband rather than earn a college 
degree. At the Castle, although Clare won the school’s titles 
of “Most Artistic,” “Cleverest,” and “Prettiest,” she finished 
second for “Most Ambitious,” the only award she felt she 
truly deserved. As she expressed it in her diary, “[m]y whole 
heart and soul is wrapt [sic] up in three things: Mother, 
Brother and my ambition for success [Clare Boothe Luce 
Diary, February 6, 1919, as quoted in Morris, 1997, p. 61].”

Clare’s drive for success remained with her throughout 
her life. She decided the best route to success was through 
marriage, and, in particular, marriage to a wealthy man. As 
she put it in a letter to a friend, “Damned if I’ll ever love any 
mere man. Money! I need it and the power it brings, and 
someday you shall hear my name spoken of as—famous 
[Clare Boothe Luce to Ruth B. Morton, November 18, 1921, 
as quoted in Morris, 1997, p. 99].”3 True to her word, Clare 
loved one man, but married another. At the age of twenty, 
she married George Tuttle Brokaw, a millionaire alcoholic 
more than twice her age who simultaneously doubled as 
New York’s most eligible bachelor [Morris, 2014].

Four months after the wedding, Clare learned she was 
pregnant. Although she tried scalding hot baths as a way to 
induce an abortion, the child lived and Ann Clare Brokaw 
was born in 1924. The baby helped the marriage temporar-
ily but could not save a marriage damaged from the start. 
Clare plotted how to exit the marriage “with minimum 
damage and the maximum amount of money [Morris, 
1997, p. 140].” When Clare and Brokaw amicably divorced 
in May, 1929,4 Clare received a settlement of a $425,000 
trust fund, an annual income, and expenses for Ann. Fol-
lowing a difficult custody battle, each parent was allotted 
six months a year with Ann. For all its faults, the marriage 

3As Gore Vidal pointed out more than 75 years later, Clare expressed these 
thoughts fifteen years before Scarlett O’Hara leapt to and out of the pages 
of Gone With the Wind [Vidal, p. 208].

4Between 1867 and 1967, the Census Bureau measured the divorce rate by 
the number of divorces for every 1000 people in the population. In 1929, 
the rate was 1.7. See 100 Years of Marriage and Divorce Statistics, 
1867–1967.
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Clare fought for the continued military strength of the US 
and she supported equal employment opportunities and 
racial equality. Of these interests, she prioritized the na-
tion’s safety and security above the “feminist issue [Morris, 
2014, p. 30].” Clare, however, found it difficult to be taken 
seriously. While her male colleagues were often valued for 
their ideas or achievements, she found that female public 
figures were evaluated on their looks or personalities. As 
a Congresswoman then, Clare must have found herself at 
the confluence of the theoretical and the practical, fighting 
for women’s rights while living the reality of a woman in 
Congress on a daily basis.

Clare felt pressure to succeed. As she put it, “because I 
am a woman I must make unusual efforts to succeed. If I 
fail no one will say, ‘She doesn’t have what it takes.’ They 
will say, ‘Women don’t have what it takes [Martin, p. 306, 
Clare’s emphasis].”5 Clare grew tired of politics because 
she felt politicians were overly critical and never capable 
of admitting a mistake. She confessed, “I always regretted 
that I shifted to politics. You can do nothing truly creative 

recent aspirations to become a playwright. These circum-
stances prompted Clare to leave Vanity Fair and begin work 
as an independent writer. She tried short stories using her 
trademark satire but found her best work as a playwright. 
After a few unsuccessful plays, she published The Women 
in 1936 [Luce, Women]. The Women featured a group of 
New York’s wealthiest idle women whose concerns focused 
on their physical appearance and the town’s latest gossip. 
Clare worked her progressive views into the play with a 
conversation between the protagonist and her daughter:

Child: “What fun is there to be a lady? What can a lady 
do?”

Mother: “These days, ladies do all the things men do. 
They fly aeroplanes across the ocean, they go into politics 
and business [Luce, Women, p. 23].”

The play opened on Broadway on December 26, 1936 
and reached capacity by the end of its fourth week. It ran for 
657 performances in the US and 18 countries and grossed 
over 2 million dollars. The success of The Women and two 
other plays not only established Clare as a talented comedic 
writer but it also allowed her to embody the life of the mod-
ern career woman and encourage others to do the same.

Through her writing, Clare met Henry Robinson Luce, 
the once humble newspaper reporter on the Chicago Daily 
News now turned publishing magnate with his Time, For-
tune, and Life magazines. Harry Luce divorced his wife of 
11 years and married Clare in 1935. The marriage lasted 32 
years but was not without its challenges. In his New York 
Times obituary, Alvin Krebs suggested that the “rumored 
difficulties” were “perhaps inevitable in a marriage between 
two such strongminded personalities [Krebs].”

Although Harry provided Clare with sufficient oppor-
tunities to enhance her writing career, Clare now hoped 
to develop her skills as a politician. In the late 1930s she 
traveled to Europe to observe political events firsthand. 
Harry joined her for part of the trip. When she returned 
to the States, she hastily wrote a nonfiction book titled 
Europe in the Spring to express what she called an eye- and 
ear-witness report of what she saw [Luce, Europe in the 
Spring]. Her book helped shape public opinion in the US 
as Americans tried to make sense of the growing crisis in 
Europe. After the outbreak of war, she accepted the position 
as War Correspondent for Life magazine and traveled again 
through Europe. These opportunities and her connections 
allowed Clare to segue into politics.

In 1942, she ran as a Republican in a largely Demo-
cratic constituency of the Connecticut district where she 
lived. She won by a very narrow margin. Women eager to 
elect the first congresswoman from Connecticut may have 
earned Clare her victory and she felt honored to fulfill 
this role. Clare acknowledged that socially established 
prejudices surrounding women in politics still existed, 
but she was eager to hold a position with (purportedly) 
equal opportunities for power and prestige. In Congress, 

Figure 1. Congresswoman Clare Boothe Luce of 
Connecticut.

5Clare was inducted into the Connecticut Women’s Hall of Fame in 
1994 (posthumously). This quote is also featured on her biography page. 
See cwhf.org/inductees/politics-government-law 
/Clare-boothe-luce#.W5VyKq2ZPUo.

http://cwhf.org/inductees/politics-government-law/Clare-boothe-luce#.W5VyKq2ZPUo
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to Italy, the first woman to serve as an American envoy to 
a major country. The ambassadorship proved mutually 
beneficial to Clare and to the US. On the diplomatic front, 
Clare accomplished her three assigned tasks, including ad-
vancing the Italian-American friendship, helping to settle 
the Trieste crisis, and aiding the young democracy of Italy 
in fighting communism [Hatch, p. 237]. Gore Vidal later 
went so far as to credit Clare with “single-handedly saving 
Italy from Communism [Vidal, p. 203].” She retired after 
this appointment in 1956. She and Harry settled on their 
ranch in Arizona, although they still traveled extensively. 
Harry died unexpectedly of a heart attack in 1967. In his 
will, Harry had established a trust for Clare that paid her 
interest only, “the absolute minimum he could get away 
with without having the will challenged [Brenner, p. 166].” 
The trust would revert to the Henry Luce Foundation at the 
time of her death. Harry Luce’s son, Hank, however, allowed 
Clare to determine how she would like to use the trust.8

The   Vision for the Awards: 
The Clare Boothe Luce Fund
With this freedom, Clare directed the majority of the pro-
ceeds of her Estate to support the Clare Boothe Luce Fund 
“dedicated exclusively to funding scholarships and profes-
sorships for women students and professors at educational 
institutions, a minimum 50% of which shall be Roman 
Catholic. The purpose of the Clare Boothe Luce Fund shall 
be to encourage women to enter, study, graduate, and teach 
in the following fields of endeavor: Physics, Chemistry, 
Biology, Meteorology, Engineering (Electrical, Mechanical, 
Aeronautical, Civil, Nuclear and other Engineering disci-
plines), Computer Science, and Mathematics [CBL Last Will 
and Testament, p. 12].” Her choice of scientific fields was 
deliberate. “I select such fields of endeavor in recognition 
that women today have already entered the fields of medi-
cine, law, business and the arts, and in order to encourage 
more women to enter the fields of science [CBL Last Will 
and Testament, p. 12].” The awards were (and are) desig-
nated for scholarship and teaching in the US only.9

Just as Clare always hoped to accomplish more in life, 
she hoped other women would do the same. She would do 
her part to make this happen. By the time of her death in 

in politics by yourself [Martin, p. 272].” She continued 
in her position, however, because she felt she owed it to 
women to serve as a positive model of an ambitious and 
successful career woman.

In January 1944, tragedy struck and temporarily put 
Clare’s political frustrations aside. Her daughter, Ann, was 
killed in a car accident while traveling back to Stanford. 
Although they had something of a distant relationship, 
Clare was overcome with grief and regret for not spending 
more time with Ann. While a student at Stanford, Ann 
had “pined for her mother to write, telephone or visit. 
But Clare always had excuses [Morris, 2014, p. 45].” In 
July 1943, Ann had blamed herself for requesting Clare’s 
attention. “Forgive all my stupid little letters in which I 
normally ask you to write to me!” Ann wrote to Clare, 
“[s]omehow I always forget how very busy you are—and all 
the good you are doing—until I get a batch of clippings! 
Then it’s always a wonder to me how you even manage to 
survive the work you have to do.”6 When Clare did write 
to Ann, her affection for her daughter was everywhere ap-
parent. On November 7, 1943, for example, Clare opened 
her letter with “Annie my pudding-cake, my peach pie, 
and all assorted delicacies [Morris, 2014, p. 57].” Initially, 
Clare’s grief seemed to propel her into more aggressive and 
combative types of politics and fueled her 1944 reelection 
campaign, which she won.

By September 1945, however, Ann’s death combined 
with discouraging world events led Clare to a point of de-
spair [Luce, The Real Reason, April, 1947]. She called (in the 
middle of the night) a Jesuit priest in New York who had 
written to her over the years. He referred Clare to Monsignor 
(later Bishop) Fulton Sheen in Washington, DC. Father 
Sheen and Clare had several conversations over the course 
of the next several months and, on February 16, 1946, 
Clare converted to Catholicism.7 Since her Connecticut 
district had a very large Catholic vote, she did not want her 
newfound faith to be misconstrued as a political maneuver 
to influence her constituents. To avoid this confusion, two 
weeks before her conversion, Clare announced that she 
would not run for Congress again. This decision may have 
resolved the potential political issue associated with her 
newly adopted Catholicism, but no matter “how religious 
Clare became, the loss of Ann remained a persistent and 
tragic wound [Brenner, p. 164].”

After her two terms as a Congresswoman, she resumed 
her writing and suffered defeat in a Senate race in 1952. In 
1953, Dwight D. Eisenhower appointed Clare ambassador 

6Ann Clare Brokaw to Clare Boothe Luce, July 7, 1943, as quoted in 
Morris, 2014, pp. 45–46.
7Hatch chronicles the conversations between Father Sheen and Clare on 
pp. 176–185. Clare documented her own journey to Catholicism in “The 
Real Reason,” an article that appeared in three installments in McCall’s 
magazine in February, March and April, 1947.

8The close relationship Hank developed with Clare is everywhere evident 
in his tribute to her in “Clare Boothe Luce—Woman of the Century: A 
Son’s Tribute,” Crisis Magazine, December 1, 1987. https://www 
.crisismagazine.com/1987/clare-boothe-luce-woman 
-of-the-century-a-sons-tribute.
9When responding to a query about an initial Visiting Assistant Professor-
ship Program, Terrill Lautz, Program Officer of the Henry Luce Foundation, 
may have provided further insight into the overall aims of the still-to-be 
established Clare Boothe Luce Fund. “[T]he Luce Foundation wants to 
encourage the development of a permanent core of women faculty in fields 
where women have not been well represented in leadership positions at 
American universities [Lautz to Yu, 2 July, 1987].”

https://www.crisismagazine.com/1987/clare-boothe-luce-woman-of-the-century-a-sons-tribute
https://www.crisismagazine.com/1987/clare-boothe-luce-woman-of-the-century-a-sons-tribute
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opportunities for women in higher education. She was 
realistic, however. “Today she [a woman] is free to study 
for any ‘masculine career’ that her own ambition suggests” 
but… “as matters stand, her ambition is understandably 
dampened by the knowledge that even if she graduates at 
the top of her class, she will not find it easy to translate her 
well-earned degree into an upward-mobility job [Luce, 21st 
Century Woman, pp. 61–62].” Thus Clare understood that 
even though women had access to new educational oppor-
tunities, they still faced challenges in a male-dominated 
job market. Though Clare’s success was not related to her 
level of education, she recognized that gender equality in 
education was a necessary precursor to job equality.

In her will, Clare designated “that the following named 
institutions shall be allocated a portion of the princi-
pal of such fund in the amount of…$3,000,000 each 
(about $6,692,000 today) [CBL Last Will and Testament, 
pp.12–13].” These schools included Boston University, 
Colby College, Creighton University, Fordham University, 
Georgetown University, Marymount College, Mount Holy-

1987, Clare had seen women make significant advances in 
some fields, but not, from her perspective, in mathematics, 
engineering, and certain sciences. Even though these disci-
plines fell outside her own areas of expertise, she recognized 
the need for support and funding. A comment late in her 
life may offer insight into Clare’s choice for her legacy. 
In 1981, she admitted to one of her biographers, Wilfred 
Sheed, that she envied Sandra Day O’Connor, America’s 
first female Supreme Court justice. Although Clare was a 
woman of many “firsts” herself, she told Sheed, “I don’t 
want to be her, I [would] just like to have had that kind of 
chance [Sheed, p. 163].” Her creation of the Clare Boothe 
Luce Fund provided women with a chance.

She also publicly recognized the three most important 
breakthroughs for women that could help them achieve 
equal opportunity: the legal process, the female contracep-
tive, and opportunities for higher education [Luce, “Women 
Superior to Men,” p. 281]. She especially valued higher 
education. Since Clare had only a very limited formal ed-
ucation, she was thrilled to witness—and advance—new 

Figure 2. Pages 12–13 of Clare Boothe Luce's last will and testament, noting her wish to fund women in STEM 
studies and careers.
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preceded her. This initial welcome segued into continued 
support and mentorship. At least two of the previous Clare 
Boothe Luce professors have moved into leadership posi-
tions on campus. These opportunities testify to the power 
of Clare’s vision. Creighton’s ongoing cycle of chances 
for women to earn a degree, teach others, and move into 
leadership positions is precisely the sort of outcome Clare 
aimed to achieve.

As part of her professorship, Baker oversees the selec-
tion of the Clare Boothe Luce undergraduate scholarships. 
Typically, Creighton offers 5–8 full tuition scholarships 
through the Clare Boothe Luce program. These scholar-
ships are generally awarded to students who are actively 
engaged in research. Scholarship recipients take a “Women 
in Science” Seminar, taught by the Clare Boothe Luce 
Professor. This seminar focuses on issues facing women in 
science, including the impostor syndrome and stereotype 
threat.10 The seminar fosters community and inspires 
conversations about graduate school, research, etc. As Dr. 
Baker described it, “the presence of the Clare Boothe Luce 
undergraduate scholarships creates an environment where 
women involved in undergraduate research are supported 
and valued [Interview with Catie Baker].” The ongoing 
presence of Clare Boothe Luce support at Creighton has 
not only advanced women at various stages in their careers 
but has also fostered a favorable environment on campus 
for women in mathematics and science to succeed as part 
of a broader community.11

Impact of Invited Institutions
Beyond the institutions designated in Clare’s will, other 
eligible institutions of higher education can apply for 
awards through the “Invited Institution Competition.” 
Sarah Spence Adams, Professor of Mathematics and Elec-
trical & Computer Engineering at Olin College, received 
a Clare Boothe Luce scholarship for her final two years 
as a student at the University of Richmond in Richmond, 
Virginia in 1995–1997, for example. The award also in-
cluded funding for undergraduate research. Her professor 
at Richmond, Dr. James Davis, called the Clare Boothe 
Luce opportunity to her attention and encouraged her to 
apply. At the time, she had no idea what “undergraduate 

oke College, Mundelein College, Notre Dame University, 
Santa Clara University, St. John’s University (Long Island, 
NY), Seton Hall University, Trinity College (Washington, 
DC), and Villanova Preparatory School in Ojai California. 
[CBL Last Will and Testament, p. 13]. (Mundelein College 
affiliated with Loyola University Chicago in 1991 and is no 
longer funded from this initial allocation.) These fourteen 
schools had a Catholic affiliation, had awarded Clare an 
honorary degree, or had a sentimental attachment for her. 
Other schools can apply for funding through the “Clare 
Boothe Luce Program Invited Institution Competition.” 
The Clare Boothe Luce Fund especially encourages Catholic 
institutions with strong science programs to apply [Clare 
Boothe Luce Program]. In 2017, by way of an example, 
eleven institutions received grants through the Invited 
Competition for funding to begin in 2018. Three decades 
after the initial bequest, in addition to the designated 
schools, more than 100 colleges and universities have 
benefited from the Clare Boothe Luce program [see CBL 
Recent Grants].

To fulfill Clare’s aim “to encourage women to enter, 
study, graduate and teach,” the Clare Boothe Luce Program 
administers awards in the three distinct categories of un-
dergraduate scholarships and research awards; graduate fel-
lowships for the first two years of a PhD program; and pro-
fessorship support for the first five years of a tenure-track 
appointment. In the most recent year of funding for invited 
institutions, the Clare Boothe Luce Fund awarded grants in 
each of these categories [CBL Recent Grants].

Impact of a Designated Institution
Creighton University, one of the institutions designated 
in Clare’s will, has a robust “Clare Boothe Luce Program 
for Women in Science [Creighton Clare Boothe Luce Pro-
gram].” Through this program, Creighton funds undergrad-
uate scholarships, graduate scholarships for women pur-
suing PhDs, and faculty positions. Since 1992, Creighton 
has rotated a Clare Boothe Luce Professorship in various 
fields in mathematics and science. Dr. Cynthia Farthing, 
who earned her PhD in mathematics from the University 
of Iowa, held the Clare Boothe Luce Professorship from 
2007–2012. Dr. Catie Baker, an Assistant Professor in Com-
puter Science, is currently the seventh Clare Boothe Luce 
Professor at Creighton. The Chair is designed to support 
a pre-tenure woman in a science or math field through 
tenure. It provides support to attend conferences, to fund 
undergraduate researchers, and to purchase supplies and 
materials.

Four of the six previous Clare Boothe Luce professors 
remain at Creighton and offer a strong network of support 
for Baker. Baker underscored the benefits of having a Clare 
Boothe Luce professorship at a designated institution. 
When she arrived at Creighton, she immediately shared a 
connection with the Clare Boothe Luce professors who had 

10[Harris] includes a sample reading list for the Creighton Women in 
Science Seminar on pp. 109–110.
11For more on the impact of the early years of Clare Boothe Luce Funding 
at Creighton, see [Harris]. Although written in 1995, her insights apply to 
contemporary issues. As Harris puts it, “[a] topic of particular concern to stu-
dents in the past 2 years has been sexual harassment…It is imperative that 
women not internalize harassment, whether it is called harassment or not.  
This is particularly true for gender-based harassment. Sexual harassment is 
much easier to identify, but gender-based harassment is far more common 
and more dangerous to the self-esteem and success of women.  Examples of 
gender-based harassment include females being ignored in class (not called 
on) or, when they are called on, a female student’s answer being deemed 
not as correct as a male student’s identical response [Harris, p. 107].”
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reached out to Adams to help craft an application for a 
Clare Boothe Luce grant to support undergraduate research, 
she was eager to help. Olin modeled their proposal around 
the two-year undergraduate research experience Adams had 
at Richmond. Olin’s proposal included academic support, 
summer support, travel to conferences, and travel to see 
mentors. Adams recalls, “I had seen all of these components 
at Richmond and with Joe Gallian at Duluth and knew 
the impact they had on me.” In 2011, Olin received an 
$180,000 award from the Clare Boothe Luce Foundation. 
Olin granted their first awards in 2013 [Bailey].

Epilogue
In February, 1942, Clare posed a question of possibility to 
her daughter Ann. “Would it amuse you,” Clare asked, “to 
have your ma run for Congress and one day get to be a Cab-
inet minister, or maybe the first lady Vice President? [Mor-
ris, 1997, p. 473].” A year later, Albert P. Morano, Clare’s 
executive assistant when she served as a Congresswoman, 
remarked that she “might even get to be President [Morris, 
2014, p. 22].” Thus Clare and Morano at least considered 
the chance of Clare as the Vice President and/or President 
of the United States.12 We know Clare valued a chance, for 
herself, and, as it turns out, for other women. 

By the time Clare signed her will in early 1987, her ex-
periences had more than acquainted her with the realities 
of life as an ambitious woman who exceeded the expec-
tations of the existent social milieu. In perpetuity, then, 
she drew from these experiences to encourage women to 
pursue education for careers in fields, that at the time of 
her death, Clare viewed as primarily available to men. The 
last three decades testify to the continued vibrancy and 
veracity of her ideas.

Drawing from her two generations of experience with 
Clare Boothe Luce awards for mathematics, Sarah Spence 
Adams observed that “Clare Boothe Luce awards build 
confidence and create opportunities.”13 That formidable 
combination has advanced women not only in mathemat-
ics, but also in science and engineering, precisely what Clare 
Boothe Luce hoped to accomplish with her bequest and 
what the Clare Boothe Luce Fund aims to achieve today. 
Clare Boothe Luce may not have understood the intricacies 
of the fields she supported. She did, however, understand 
the necessary general framework for women to forge new 

research” meant. Davis showed her a book with an open 
question he had solved and helped her understand what 
undergraduate research might look like for her. She studied 
coding theory with Davis and cryptography with Dr. Gary 
Greenfield with her Clare Boothe Luce summer undergrad-
uate research support.

The scholarship served as an “enormous source of con-
fidence that I could actually be part of a mathematical re-
search community," Adams says. "I wasn't exactly sure what 
that meant at the time but I understood that I had received 
funding to do mathematics. That was a novel idea.” She 
presented her research at the Joint Mathematics Meetings 
in 1996 and won a prize for her poster. The prize was a gift 
certificate to select a book at a publisher. As she described 
it, “[to] claim the prize, I walked into the exhibit hall and 
was able to pick out any book I wanted. At that point, I 
only had books that my professors had assigned to me. 
Choosing my own mathematics book made me feel like a 
real mathematician [Interview with Sarah Spence Adams].”

Her undergraduate research experiences at Richmond 
made her a viable candidate for Joe Gallian’s Research 
Experience for Undergraduates (REU) at the University of 
Minnesota in Duluth. She could take her Clare Boothe Luce 
funding with her so she did not have to rely on Gallian’s 
NSF resources. The REU “propelled her into research” and 
helped her gain admission to the NSA Director’s Summer 
Program the following year. These experiences not only 
improved her level of mathematics but also continued to 
open doors for her. She had the confidence to pursue a PhD 
in mathematics at Cornell, specializing in algebraic coding 
theory, and then to accept a faculty position at Olin College 
in Needham, Massachusetts, where she is now Professor of 
Mathematics and Electrical & Computer Engineering and a 
former Associate Dean of Faculty Affairs and Development. 
Adams says, “The Clare Boothe Luce experience taught me 
the value of undergraduate research so I dedicated myself 
to mentoring undergraduates at Olin.” In her first decade 
at Olin, she mentored around 30 students, approximately 
25 of whom continued for multiple years. All but three of 
these students have published professional journal articles 
with Adams. “I took their mentorship seriously,” Adams 
explained. “I knew the impact it would have on them to 
come up with novel results, to edit, to revise, to publish, to 
attend a conference, to give a talk, to field questions, etc. 
I knew these values because I discovered them as an un-
dergraduate myself [Interview with Sarah Spence Adams].”

Since Adams received her Clare Boothe Luce support 
more than twenty years ago, she provides an advantageous 
perspective on the long-term benefits of the program. “My 
Clare Boothe Luce experience was officially two years long. 
As the days, months and years have gone by, however, 
Adams notes, I have realized how much I gained from the 
scholarship and the opportunities that came along with 
it.” Not surprisingly, when the Olin Development Office 

12A decade after her death, Gore Vidal went so far as to say, “If born a 
man,” she “could have easily been a president, for what that’s worth these 
days: a cool billion, I believe.” Vidal, p. 216. 
13Of course, confidence is also a helpful skill for men in mathematics. Uni-
versity of Chicago mathematician Gilbert Ames Bliss noted the confidence 
his colleague, E. H. Moore, a pivotal figure in American mathematics in 
the late 1800s and early 1900s, acquired during his year of study in Berlin 
and Göttingen in 1885–1886. “There is no doubt,” Bliss wrote, “that the 
year abroad affected greatly…Moore’s career as a scholar. It established 
his confidence in his ability to take an honorable place in the … circle of 
mathematicians... [as quoted in Parshall and Rowe, p. 282, my emphasis].”
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pathways and find success. Clare Boothe Luce drew from 
her own experiences and observations to lay out the details 
for a foundation that would continue to promote and en-
sure these goals over time. 
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lection are written for a broad mathematical audience that 
includes students.

This volume grew out of a contributed paper session at 
MAA MathFest 2015 that was sponsored by the Association 
for Women in Mathematics (AWM). In connection with 
the celebration of the one hundredth anniversary of the 
Mathematical Association of America, the session sought 
to “recognize the contributions, achievements, and prog-
ress of women mathematicians over the past 100 years” 
through “talks about mathematics done by women and 
historical or biographical presentations celebrating women 
in mathematics.” As the editors note in their preface, the 
resulting collection of articles is a mix of current scholar-
ship and exposition on a wide variety of topics related to 
women in mathematics as opposed to a balanced study 
of the participation of women in mathematics during 
this time. Some of the articles summarize or extend work 
that has appeared previously, including Judy Green and 
Jeanne LaDuke’s detailed documentary history of all of the 
American women who earned PhDs in mathematics from 
American and European universities between 1886 and 
1939 and Margaret Murray’s research on American women 
who earned PhDs in mathematics between the years 1940 
and 1959. As a result, the volume also serves as a survey of 
a portion of the existing literature and compellingly invites 
the reader to delve deeper into that work. 

The first two parts of the book are dedicated to telling the 
stories of women mathematicians in articles that range in 
style from formal historical and cultural studies to personal 
reflections and collections of interviews. These articles 
include more than eighty biographical profiles of women 
mathematicians and statisticians as well as numerous more 
concise descriptions of the experiences and contributions 
of women in these fields. The profiles are a mix of short 
sketches grouped within larger discussions of the mathe-
matical and social context of a particular time, place, or 
culture and more in-depth studies of the professional and 
personal lives of individual women. Most of the profiles 
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of America 
Janet L. Beery, Sarah J. Greenwald, 
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In the last three years,1 at least 
three mass market books—Mar-
got Lee Shetterly’s Hidden Figures, 

Nathalia Holt’s Rise of the Rocket Girls, and Liza Mundy’s 
Code Girls—and a major motion picture—Hidden Figures, 
based on Shetterly’s book—have captivated audiences with 
the previously overlooked stories of women mathemati-
cians who worked as human computers and cryptogra-
phers for the United States government. These works have 
offered the public a glimpse into the ongoing efforts of 
mathematicians and historians to write a social history of 
the lived experiences and contributions of women in the 
mathematical sciences.2 Women in Mathematics adds to this 
literature with a collection of twenty-one engaging articles 
that include biographies, historical and cultural studies, 
and profiles of outreach and education initiatives related 
to women in mathematics. Most of the articles in this col-
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statistics at James Madison University. Her email address is querteks@
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2Margaret Murray describes the concept of social history in more detail in 
Chapter 5 of Women in Mathematics. 
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Dunbar was known for having committed, highly educated 
teachers who encouraged their students to attend college. 
The influence of these teachers seems to have played a 
strong role in both Haynes’s and Granville’s enrollments 
at Smith. Despite their many commonalities, Granville has 
said that she did not learn about Haynes until 1999, almost 
twenty years after Haynes’s death. Haynes taught in the DC 
public school system, established the mathematics depart-
ment at Miner Teachers College (now part of the University 
of the District of Columbia), served as president of the DC 
Board of Education, and was a key advocate for integration 
of the DC public schools. Granville’s career in industry 
at IBM and other NASA contractors was bookended by 
academic positions, including faculty positions at Fisk 
University and the University of Texas at Tyler. Continuing 
the chain of influence begun by the teachers at Dunbar, 
two Black women taught by Granville, Etta Zuber Falconer 
and Vivienne Malone-Mayes, earned PhDs in mathematics 
and mentored additional generations of mathematicians. 

The celebration of women’s often under-recognized 
contributions in areas such as mentoring, teaching, pro-
fessional service, academic administration, and advocacy 
is a theme that runs throughout most of the articles. It is 
impossible to categorize all of these contributions here, so 
I will just mention a few that I learned about for the first 
time while reading this book. An article by Emelie Agnes 
Kenney explores the vital roles that women played in keep-
ing mathematics alive in Nazi-occupied Poland by studying 
and teaching in the clandestine education system despite 
the danger they faced if caught. Kenney recounts how Irena 
Goła̧b disguised her math classes as crochet circles to avoid 
detection. Patti Hunter discusses Gertrude Cox’s efforts to 
support statistics training around the world, efforts that are 

focus on women from the United States, Canada, and 
Europe whose career paths are connected to academia or 
secondary education during at least a portion of their pro-
fessional careers. Several chapters highlight women from 
underrepresented groups in mathematics, although the 
total number of biographical profiles of women from these 
groups is still small. The authors can be commended for 
including profiles of women whose stories are not widely 
known, so readers should expect to encounter at least a few 
unfamiliar names in these pages. 

By presenting many of the profiles in groups, the articles 
emphasize both the connections between the individual 
women and the diversity of professional paths that they 
pursued even in times of limited career options. In their 
article on Girton College, Cambridge, Shawnee McMurran 
and James Tattersall profile a group of ten women who 
studied at Girton between 1880 and 1900 and achieved 
honors on the Mathematical Tripos exam despite the fact 
that women could not earn degrees from Cambridge at this 
time. These women applied their mathematical training to 
achieve success in numerous areas. As examples, Charlotte 
Angas Scott and Hertha Ayrton, the founders of Girton’s 
Mathematical Club, had widely recognized research careers, 
Scott in algebraic geometry and Ayrton in engineering. Kate 
Knight Gale taught for many years, eventually becoming co-
owner and joint headmistress of a school in South Africa, 
and Margaret Frances Evans was Mathematical Mistress of 
St Leonards School before ending her professional career 
to focus on family life. Emily Perrin and Beatrice Mabel 
Cave-Browne-Cave were both computers in Karl Pearson’s 
statistical research lab at University College, London. In 
the 1930s, Girton College’s Yarrow Research Fellowship 
supported the early work of Olga Taussky-Todd and Mary 
Lucy Cartwright, who both became prolific research math-
ematicians, Taussky-Todd in matrix theory and number 
theory and Cartwright in function theory and differential 
equations. Cartwright was elected Mistress of Girton Col-
lege in 1948, and she led the college in this role for nine-
teen years while continuing her active involvement in the 
mathematical community.

Erica Walker explores the history of Black women in 
mathematics in the United States in a reflective essay that 
draws upon research she conducted for her 2014 book, 
Beyond Banneker: Black Mathematicians and the Paths to Ex-
cellence. As part of this essay, Walker juxtaposes the stories 
of Euphemia Lofton Haynes (PhD 1943) and Evelyn Boyd 
Granville (PhD 1949), the first two Black women to be 
awarded doctorates in mathematics in the United States.3 
Although they were born thirty-four years apart, both 
women were raised in Washington, DC, attended the same 
segregated high school, now called Dunbar High School, 
and earned undergraduate degrees from Smith College. 

3Marjorie Lee Browne also finished the requirements for a PhD in  
mathematics in 1949, but her degree was not awarded until 1950.
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Figure 1. Euphemia Lofton Haynes (Smith College 
Class of 1914), left, and Evelyn Boyd Granville (Smith 
College Class of 1945), shown here in their college 
yearbook photos, attended the same Washington, 
DC, high school and the same college before earning 
PhDs in mathematics.
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mathematical thinking embedded in arts and crafts, and 
challenges stereotypes through dance and music. In an 
example of the connections between articles, Daughters of 
Hypatia includes an adaption of one of Sue Geller’s skits 
on micro-inequities mentioned above. Sylvia Bozeman, 
Susan D’Agostino, and Rhonda Hughes discuss the EDGE 
Program (Enhancing Diversity in Graduate Education), 
which supports women mathematicians from diverse back-
grounds through an annual summer session for beginning 
graduate students and ongoing mentoring networks. As part 
of this article, the authors describe aspects of the program 
that are designed to increase students’ ability to successfully 
navigate the academic, cultural, and social transitions they 
will encounter in graduate school. 

Readers with a wide variety of mathematical, educa-

tional, and historical interests will find the articles in this 
collection engaging and inspiring. Most of the articles 
are accessible to undergraduate and graduate students 
although a faculty mentor may be required at times to 
help students contextualize the importance of contribu-
tions described in terms of journal titles and professional 
committees. The material is well suited for inclusion in 
existing courses and math club activities, and it provides 
opportunities not only to teach students about the history 
of women in mathematics but also to introduce them to 
important elements of mathematical culture through sto-
ries in which women play central roles. For example, Amy 
Shell-Gellasch’s article on Mina Rees provides an excellent 
starting point for discussing both research funding and the 
value of conference attendance. Rees was instrumental in 
shaping federal funding of mathematics research through 
her work with the US government’s Applied Mathematics 
Panel and the Office of Naval Research, and this article 
recounts, in Rees’s own words, the importance she placed 
on the personal connections and broad understanding of 

not as widely known as her achievements in building statis-
tics programs in the United States or her service as president 
of the American Statistical Association. As part of this work, 
Cox was a program specialist at Cairo University’s Institute 
of Statistical Studies and Research in 1964–1965. She was a 
strong advocate for the importance of statistical consulting 
and personally consulted on numerous projects in Cairo. 
Norma Hernandez earned a PhD in mathematics education 
in 1970 and was a faculty member at the University of Texas 
at El Paso for thirty years, serving as dean of the College 
of Education for six of those years. Hernandez was born 
and raised in El Paso, and Luis Ortiz-Franco investigates 
how Hernandez’s life experiences in this multicultural city 
likely influenced her research on the relationships between 
culture and mathematics in the context of the K–12 math-
ematics education of Latinx students. 

Woven throughout the historical accounts of women’s 
contributions are discussions of some of the challenges 
the women faced in their pursuit of mathematical careers, 
especially those they encountered prior to the 1970s. Each 
woman’s story is different, but common obstacles include 
barriers to advanced training, bias against women in hir-
ing and promotion practices, and a lack of recognition of 
women’s accomplishments. Many of these obstacles reflect 
the prevailing social norms of the women’s times, and this 
context is important for helping readers understand the 
significance of individual and collective contributions as 
well as the dedication and perseverance of the women who 
made these contributions.

Multiple authors comment anecdotally on the shifts 
in mathematical culture that have occurred during their 
lifetimes, but a formal analysis of these changes is not the 
focus of this volume. Readers are, however, offered glimpses 
into a few of the advocacy efforts that championed changes 
in culture. Jacqueline Dewar describes outreach activities 
to encourage middle and high school girls to study mathe-
matics that grew out of regional organizing meetings of the 
AWM during the 1970s. Laura Turner explores discussions 
at Canadian Mathematical Society meetings in the late 
1980s and early 1990s that highlighted the underrepre-
sentation of women on journal editorial boards and as 
plenary lecturers at meetings, and Sue Geller discusses skits 
presented at the Summer and Winter Joint Mathematics 
Meetings from 1990 to 1994 that used humor to draw 
attention to micro-inequities.

The third part of the book focuses on outreach and ed-
ucational efforts. In a joint article, Jacqueline Dewar and 
Sarah Greenwald outline courses they have developed on 
women and mathematics that combine history, mathe-
matical work, and equity issues and suggest opportuni-
ties for readers to experiment with these ideas through 
shorter-term outreach activities. Karl Schaffer describes 
the process of creating Daughters of Hypatia, a full-length 
dance performance that shares the stories of historical 
and contemporary women in mathematics, showcases 

Figure 2. Daughters of Hypatia uses dance to share 
the stories of women mathematicians. In this 2015 
photo, Laurel Shastri, left, and Lila Salhov perform 
“A Circle Has No Sides,” one of several pieces that 
employ circular imagery.


